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Abstract

A striking result of Bouc gives the decomposition of the representation of the
symmetric group on the homology of the matching complex into irreducibles that
are self-conjugate. We show how the combinatorial Laplacian can be used to give
an elegant proof of this result. We also show that the spectrum of the Laplacian is
integral.

1 Introduction

The matching complex of a graph G is the abstract simplicial complex whose vertex
set is the set of edges of G and whose faces are sets of edges of G with no two edges
meeting at a vertex. The matching complex of the complete graph (known simply as the
matching complex) and the matching complex of the complete bipartite graph (known as
the chessboard complex) have arisen in a number of contexts in the literature (see eg. [6]
[16] [2] [19] [3] [4] [8] [12] [1] [9] [15] [13] [17] [18]). Closely related complexes have been
considered in [7] and [14].

Let Mn denote the matching complex of the complete graph on node set {1, . . . , n}.
The symmetric group Sn acts on the matching complex Mn by permuting the graph

∗Research supported in part by a University of Minnesota McKnight Land Grant Professorship held
by Victor Reiner. Current address: Department of Mathematics, Caltech, Pasadena, CA 91125.

†Research supported in part by NSF grant DMS 9701407.

the electronic journal of combinatorics 9 (2002), #R17 1



nodes. This induces a representation on the reduced simplicial homology H̃r(Mn; k),
where throughout this paper k is a field of characteristic 0. The Betti numbers for the
matching complex and the decomposition of the representation into irreducibles were
computed by Bouc [3], and later independently by Karaguezian [8] and by Reiner and
Roberts [12] as part of a more general study. They prove the following result.

Theorem 1.1 (Bouc [3]). For all r ≥ 1 and n ≥ 2, the following isomorphism of
Sn-modules holds

H̃r−1(Mn; k) ∼=Sn

⊕
λ : λ ` n
λ = λ′

d(λ) = n − 2r

Sλ,

where Sλ denotes the Specht module indexed by λ, λ′ denotes the conjugate of λ and d(λ)
denotes the size of the Durfee square of λ.

Józefiak and Weyman [7] and Sigg [14] independently obtained an equivalent result
for a Koszul complex of GL(n, k)-modules (cf. [9]). They use this to give representation
theoretic interpretations of the following classical symmetric function identity of Little-
wood ∏

i≤j

(1 − xixj)
∏

i

(1 + xi)
−1 =

∑
λ=λ′

(−1)
|λ|+d(λ)

2 sλ.

Using Theorem 1.1 one can interpret Littlewood’s formula as the Hopf trace formula for
the matching complex. This interpretation is essentially equivalent to Sigg’s interpreta-
tion.

A decomposition for the chessboard complex analogous to Theorem 1.1 was obtained
independently by Friedman and Hanlon [4] and later by Reiner and Roberts [12] in greater
generality. The method of Friedman and Hanlon [4] is particularly striking. It involves
the combinatorial Laplacian which is an analogue of the Laplacian on differential forms
for a Riemannian manifold. The analogue of Hodge theory states that the kernel of the
combinatorial Laplacian is isomorphic to the homology of the complex. By analyzing
the action of the Laplacian on oriented simplexes and applying results from symmetric
function theory, Friedman and Hanlon are able to decompose all the eigenspaces of the
Laplacian into irreducibles and thereby decompose the homology. They also show that
the spectrum of the Laplacian is integral.

The aim of this note is to work out analogous decompositions for the combinatorial
Laplacian on the matching complex. This results in an elegant proof of Theorem 1.1
which is given in Section 3. Our key observation is that the Laplacian operator behaves
as multiplication by a certain element in the center of the group algebra, namely the sum
of all transpositions in Sn. We also establish integrality of the spectrum of the Laplacian
in Section 3.

Sigg [14] uses the Lie algebra Laplacian to obtain equivalent decompositions for the Lie
algebra homology of the free two-step nilpotent complex Lie algebra. Sigg works within
the framework of representation theory of the Lie algebra gln and expresses the Laplacian
in terms of the Casimir operator. Our approach parallels his, but at a more elementary
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level, making use of readily available facts from symmetric group representation theory.
In Section 4 we establish the equivalence of our results to Sigg’s results.

Reiner and Roberts [12] generalize Theorem 1.1 to general bounded degree graph
complexes by using techniques from commutative algebra. In [9] it is shown that one can
derive the Reiner-Roberts result from Theorem 1.1 by taking weight spaces of the GLn-
modules considered by Józefiak and Weyman. Hence, although the Laplacian technique
does not appear to be directly applicable to general bounded degree graph complexes,
the Laplacian provides an indirect path to the Reiner-Roberts result (and the Józefiak-
Weyman result) that is considerably simpler than the earlier approaches.

2 The Combinatorial Laplacian

Let ∆ be a finite simplicial complex on which a group G acts simplicially. For r ≥ −1, let
Cr(∆) be the rth chain space (with coefficients in k) of ∆. That is, Cr(∆) is the k-vector
space generated by oriented simplexes of dimension r. Two oriented simplexes are related
by

(v1, v2, . . . , vr+1) = sgn σ (vσ(1), vσ(2), . . . , vσ(r+1)),

where σ ∈ Sr+1. The simplicial action of G induces a representation of G on the vector
space Cr(∆).

The boundary map
∂r : Cr(∆) → Cr−1(∆)

is defined on oriented simplexes by

∂r(v1, . . . , vr+1) =

r+1∑
j=1

(−1)j(v1, . . . , v̂j , . . . , vr+1).

Since ∂∗ commutes with the action of G on C∗(∆), (Cr(∆), ∂r) is a complex of G-modules.
It follows that the (reduced) homology groups H̃r(∆; k) are G-modules.

The coboundary map
δr : Cr(∆) → Cr+1(∆)

is defined by
〈δr(α), β〉 = 〈α, ∂r+1(β)〉,

where α ∈ Cr(∆), β ∈ Cr+1(∆) and 〈, 〉 is the bilinear form on ⊕d
r=−1Cr(∆) for which any

basis of oriented simplexes is orthonormal. Note that the action of G on Cr(∆) respects
the form 〈, 〉 and commutes with the coboundary map. Hence (Cr(∆), δr) is a complex of
G-modules.

The combinatorial Laplacian is the G-module homomorphism

Λr : Cr(∆) → Cr(∆)

defined by
Λr = δr−1∂r + ∂r+1δr.
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Although the following analogue of Hodge theory is usually stated and easily proved for
k = R or k = C (cf. [4, Proposition 1], [14, Proposition 9], [10]), the universal coefficient
theorem enables one to prove it for general fields k of characteristic 0. Indeed, one uses
the universal coefficient theorem first to derive the result for k = Q from the result for
k = C and then to go from k = Q to general fields of characteristic 0.

Proposition 2.1. For all r, the following kG-module isomorphism holds:

ker Λr
∼=G H̃r(∆; k).

3 Spectrum of the Laplacian and Bouc’s Theorem

The notation used here comes from [11]. The plethysm or composition product of a Sm-
module V and a Sn-module U is the Smn-module denoted by V ◦ U . The induction
product of U and V is the Sm+n-module denoted by U.V .

Proposition 3.1. For all r ≥ 1 and n ≥ 2 we have the following isomorphism of Sn-
modules

Cr−1(Mn) ∼=Sn (S1r ◦ S2) . Sn−2r.

Proof. Straight forward observation.

We say that a partition is almost self-conjugate if it is of the form (α1 +1, . . . , αd +1 |
α1, . . . , αd) in Frobenius notation.

Proposition 3.2 (Littlewood, cf. [11, I 5 Ex. 9b]). For all r ≥ 1,

S1r ◦ S2 ∼=S2r

⊕
λ

Sλ,

summed over all almost self-conjugate partitions λ ` 2r.

Pieri’s rule and the fact that the induction product is linear in each of its factors yields
the following.

Proposition 3.3. For all r ≥ 1 and n ≥ 2 we have

Cr−1(Mn) ∼=Sn

⊕
λ ∈ A
|λ| = n

ar
λS

λ,

where

A = {(α1, . . . , αd | β1, . . . , βd) | d ≥ 1, αi ≥ βi ∀i}
and ar

λ is the number of almost self-conjugate partitions µ ` 2r such that λ/µ is a hori-
zontal strip.
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Proposition 3.4. Let λ ` n be self-conjugate. Then

ar
λ =

{
1 if d(λ) = n − 2r

0 otherwise

Proof. Straight forward observation.

Propositions 3.1, 3.3 and 3.4 comprise the first steps of Bouc’s proof of Theorem 1.1.
At this point our proof departs from Bouc’s and follows a path analogous to that of
Friedman and Hanlon [4] for the chessboard complex.

Consider the element Tn =
∑

1≤i<j≤n(i, j) of kSn, where (i, j) denotes a transposition
in Sn. In any Sn-module M , left multiplication by Tn is an endomorphism of the Sn-
module, since Tn is in the center of kSn. We will denote this endomorphism by TM . The
Laplacian will be denoted by Λn,r : Cr(Mn) → Cr(Mn).

Lemma 3.5. For all r ≥ 1 and n ≥ 2,

Λn,r−1 = TCr−1(Mn).

Proof. It is a routine exercise to check that Λn,r−1(γ) = Tn · γ for the oriented (r − 1)-
simplex γ = ({1, 2}, . . . , {2r − 1, 2r}) which generates the Sn-module Cr−1(Mn).

Proposition 3.6 (Friedman and Hanlon [4, Lemma 1]). For all λ ` n,

TSλ = cλ idSλ ,

where cλ =
∑

(i − 1)λ′
i −

∑
(i − 1)λi.

Proof. This follows from Schur’s lemma and from I7, Example 7 of [11].

Lemma 3.7. For any partition λ = (α1, . . . , αd | β1, . . . , βd) we have

cλ =

d∑
i=1

((
αi + 1

2

)
−

(
βi + 1

2

))
.

Proof. Easy.

Theorem 3.8. All the eigenvalues of the Laplacian on the matching complex are non-
negative integers. Moreover for each eigenvalue c, the c-eigenspace of Λn,r−1 decomposes
into the following direct sum of irreducibles⊕

λ ∈ A
|λ| = n
cλ = c

ar
λ Sλ,

where A and ar
λ are as in Proposition 3.3.
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Proof. Proposition 3.3, Lemma 3.5 and Proposition 3.6 imply that each eigenvalue c
is an integer and yield the decomposition of the c-eigenspace. It is immediate from
Lemma 3.7 that cλ ≥ 0 for all λ ∈ A. Hence there can be no negative eigenvalues. One
can also conclude that the eigenvalues are nonnegative by using the fact that all rational
eigenvalues of the Laplacian (over any field of characteristic 0) of any simplicial complex
are nonnegative. This fact follows from the positive semidefinitness of the Laplacian over
C .

Proof of Bouc’s Theorem. It follows from Lemma 3.7 that if λ ∈ A then cλ = 0 if and
only if λ is self-conjugate. Hence Theorem 3.8 and Proposition 3.4 imply that the kernel
of the Laplacian decomposes into

ker Λn,r−1
∼=Sn

⊕
λ : λ ` n
λ = λ′

d(λ) = n − 2r

Sλ.

Bouc’s Theorem now follows from Proposition 2.1.

Remark. Bouc’s Theorem is stated and proved in [3] for fields of finite characteristic
p > n as well as for fields of characteristic 0. The characteristic p > n case follows
from the characteristic 0 case provided one knows that there is no p-torsion in integral
homology. The lack of p-torsion for p > n follows easily from a long exact sequence of
Bouc [3, Lemme 7] which is the starting point of Bouc’s proof.

4 Sigg’s Lie Algebra Homology Theorem

In [14], Sigg decomposes the homology of the free two-step nilpotent complex Lie algebra
of rank n into irreducible GL(n, C )-modules by using a Laplacian operator. In this section
we will describe how his results relate to ours.

Let E be an n-dimensional complex vector space, where n ≥ 2. Let ∧rE denote the
rth exterior power and ∧∗E denote the exterior algebra of E. The free two-step nilpotent
complex Lie algebra of rank n is the vector space ∧2E ⊕ E with Lie bracket defined on
generators by

[x, y] =

{
x ∧ y if x, y ∈ E

0 if x ∈ ∧2E or y ∈ ∧2E.

For each r ∈ N , form the GL(E)-submodule

Vr(E) = ∧r(∧2E) ⊗ ∧∗E

of the exterior algebra of ∧2E⊕E. The map ∂E
r : Vr(E) → Vr+1(E) defined on generators

by

∂E
r (f ⊗ (e1 ∧ · · · ∧ et)) =

∑
i<j

(−1)i+j(f ∧ (ei ∧ ej)) ⊗ (e1 ∧ · · · ∧ êi ∧ · · · ∧ êj ∧ · · · ∧ et),
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where f ∈ ∧r(∧2E) and e1, . . . , et ∈ E, is the standard Lie algebra homology differential
for the Lie algebra ∧2E ⊕ E. The complex (Vr(E), ∂E

r ) is a complex of GL(E)-modules.
The adjoint map δE

r : Vr(E) → Vr−1(E) (with respect to the Hermitian form for which
the standard basis of Vr(E) is orthonormal) is defined on generators by

δE
r (((e1 ∧ e2) ∧ · · · ∧ (e2r−1 ∧ e2r)) ⊗ e)

=

r∑
j=1

(−1)j+r+1((e1 ∧ e2) ∧ · · · ∧ ( \e2j−1 ∧ e2j) ∧ · · · ∧ (e2r−1 ∧ e2r)) ⊗ (e2j−1 ∧ e2j ∧ e),

where e1, . . . , e2r ∈ E and e ∈ ∧∗E. Let Hr(V (E)) denote the homology of the GL(E)-
complex (Vr(E), ∂E

r ) and let Hr(V (E)) denote the homology of the GL(E)-complex
(Vr(E), δE

r ).
The Laplacian used by Sigg is the GL(E)-homomorphism ΛE

r : Vr(E) → Vr(E) defined
by

ΛE
r = δE

r+1∂
E
r + ∂E

r−1δ
E
r .

It follows from the discrete version of Hodge theory that

Hr(V (E)) ∼=GL(E) Hr(V (E)) ∼=GL(E) ker ΛE
r .

For each partition λ, let Eλ be the irreducible polynomial representation of GL(E) of
highest weight λ if `(λ) ≤ dim E and 0 otherwise.

Proposition 4.1 (Sigg [14]). All eigenvalues of ΛE
r are nonnegative integers. More-

over for each eigenvalue c, the c-eigenspace decomposes into the following direct sum of
irreducibles ⊕

λ ∈ A
cλ = c

ar
λ Eλ′

,

where A and ar
λ are as in Proposition 3.3. Consequently,

Hr(V (E)) ∼=GL(E) Hr(V (E)) ∼=GL(E)

⊕
λ : λ = λ′

d(λ) = |λ| − 2r

Eλ.

Sigg proves this result by first switching to the derivative representation of the Lie
algebra gl(E) on ⊕rVr(E), and then comparing the Casimir operator of the gl(E)-module
to the Laplacian operator.

We will now describe how one can obtain Sigg’s result from our Proposition 3.8 and
vice-versa. Let Un,r be the 1n-weight space of the GL(E)-module Vr(E) (recall n = dim E).
(See [5] for information on weight spaces.) The weight space Un,r is a Sn-module. Since
ΛE

r (Un,r) ⊆ Un,r, by restricting the Laplacian we get a Sn-module homomorphism Ln,r :
Un,r → Un,r. Now we take the Young dual. That is, we consider the map

Ln,r ⊗ id : Un,r ⊗ sgn → Un,r ⊗ sgn,

where sgn denotes the sign representation of Sn.
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Theorem 4.2. There is an Sn-module isomorphism φr : Un,r ⊗ sgn → Cr−1(Mn) such
that

φr ◦ (Ln,r ⊗ id) = Λn,r−1 ◦ φr.

.

Proof. Consider the oriented (r − 1)-simplex

c = ({1, 2}, . . . , {2r − 1, 2r})
in Cr−1(Mn) and the element

d = ((e1 ∧ e2) ∧ · · · ∧ (e2r−1 ∧ e2r)) ⊗ (e2r+1 ∧ · · · ∧ en)

of Un,r, where e1, . . . , en is a fixed ordered basis for E. Then

{σ · c | σ ∈ Sn} and {σ · d | σ ∈ Sn}
are spanning sets for the respective vector spaces Cr−1(Mn) and Un,r.

Let ξ be a generator of the one dimensional sgn representation. Define φr on the
elements of the spanning set by

φr(σ · d ⊗ ξ) = sgn(σ) σ · c.
It is easy to see that this determines a well-defined Sn-module isomorphism φr : Un,r ⊗
sgn → Cr−1(Mn) by checking that relations on the elements of the spanning set of the
vector space Un,r⊗sgn correspond (under φr) to relations on the elements of the spanning
set of the vector space Cr−1(Mn).

One can also easily check that

φr+1(∂
E
r (d) ⊗ ξ) = δn,r−1(φr(d ⊗ ξ))

and
φr−1(δ

E
r (d) ⊗ ξ) = ∂n,r−1(φr(d ⊗ ξ)),

where ∂n,r−1 and δn,r−1 denote the (r − 1)-boundary and (r − 1)-coboundary maps, re-
spectively, of the matching complex Mn. From this it follows that

φr(Λ
E
r (d) ⊗ ξ) = Λn,r−1(φr(d ⊗ ξ)).

So φr ◦ (Ln,r ⊗ id) and Λn,r−1 ◦ φr agree on the generator d ⊗ ξ of the cyclic Sn-module,
and they are therefore the same map.

Corollary 4.3. The eigenvalues of Λn,r−1 and Ln,r are the same. Moreover, for each
eigenvalue c and partition λ of n, the multiplicity of the irreducible Sλ in the c-eigenspace
of Λn,r−1 equals the multiplicity of Sλ′

in the c-eigenspace of Ln,r.

The following proposition and Corollary 4.3 establish the equivalence of Proposition 4.1
and Theorem 3.8.
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Proposition 4.4. For all c and all partitions λ such that `(λ) ≤ dim E, the multiplicity
of the irreducible Eλ in the c-eigenspace of ΛE

r equals the multiplicity of Sλ in the c-
eigenspace of L|λ|,r.

Proof. Suppose |λ| = dim E. Then the c-eigenspace of L|λ|,r is the 1|λ|-weight space of the
c-eigenspace of ΛE

r . By taking the 1|λ|-weight space of each summand in the decomposition
of the c-eigenspace of ΛE

r into irreducible GL(E)-modules, we obtain a decomposition of
the c-eigenspace of L|λ|,r into irreducible S|λ|-modules Sλ whose multiplicity is the same
as that of Eλ in the c-eigenspace of ΛE

r .
To obtain the result for general λ from the case that |λ| = dim E, we need only observe

the fact that if E1 and E2 are t and s dimensional vector spaces, respectively, and λ is a
partition such that `(λ) ≤ t ≤ s, then the multiplicity of Eλ

2 in the c-eigenspace of ΛE2
r

equals the multiplicity of Eλ
1 in the c-eigenspace of ΛE1

r . To establish this fact, suppose
E1 has ordered basis e1, . . . , et and E2 has ordered basis e1, . . . , es. For any polynomial
GL(E2)-module V and sequence µ = (µ1, . . . , µs) of nonnegative integers let Vµ denote
the µ-weight space of V . For i = 1, 2, let Wi(c) be the c-eigenspace of ΛEi

r . Note that

W1(c) =
⊕

µ

W2(c)µ,

where µ ranges over all weights (µ1, . . . , µs) such that µt+1 = · · · = µs = 0. Suppose
W2(c) decomposes into

⊕
bλE

λ
2 . Then

W2(c)µ =
⊕

λ

bλ(E
λ
2 )µ.

It follows that

W1(c) =
⊕

µ

⊕
λ

bλ(E
λ
2 )µ =

⊕
λ

⊕
µ

bλ(E
λ
2 )µ =

⊕
λ

bλE
λ
1 .

Hence the multiplicities of Eλ
2 in W2(c) and Eλ

1 in W1(c) are the same.
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