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Abstract

Based on Schützenberger’s evacuation and a modification of jeu de taquin, we
give a bijective proof of an identity connecting the generating function of reverse
semistandard Young tableaux with bounded entries with the generating function of
all semistandard Young tableaux. This solves Exercise 7.102 b of Richard Stanley’s
book ‘Enumerative Combinatorics 2’.

1 Introduction

The purpose of this article is to present a solution for Exercise 7.102 b of Richard Stanley’s
book ‘Enumerative Combinatorics 2’ [5]. There, Stanley asked for a ‘nice’ bijective proof
of the identity

∑
R reverse SSYT

of shape λ/µ
with Rij ≤ a + µi − i

qn(R) =

( ∑
P SSYT

of shape λ/µ

qn(P )

)
·

∏
ρ∈λ/µ

(1 − qa+c(ρ)), (1)

where a is an arbitrary integer such that a + c(ρ) > 0 for all cells ρ ∈ λ/µ.1 Here, and in
the sequel, we use notation defined below:

Definition 1.1. A partition is a sequence λ = (λ1, λ2, . . . , λr) with λ1 ≥ λ2 ≥ · · · ≥ λr >
0, for some r.

1In fact, this is the corrected version of the identity originally given in [5], to be found at
http://www-math.mit.edu/~rstan/ec. Stanley took it from [1], Theorem 3.1, where the formula is
stated incorrectly, too.
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Figure 1.

The Ferrers diagram of a partition λ is an array of cells with r left-justified rows and
λi cells in row i. Figure 1.a shows the Ferrers diagram corresponding to (4, 3, 3, 1). We
label the cell in the ith row and jth column of the Ferrers diagram of λ by the pair (i, j).
Also, we write ρ ∈ λ, if ρ is a cell of λ.

A partition µ = (µ1, µ2, . . . , µs) is contained in a partition λ = (λ1, λ2, . . . , λr), if s ≤ r
and µi ≤ λi for i ∈ {1, 2, . . . , s}.

The skew diagram λ/µ of partitions λ and µ, where µ is contained in λ, consists of the
cells of the Ferrers diagram of λ which are not cells of the Ferrers diagram of µ. Figure 1.b
shows the skew diagram corresponding to (4, 3, 3, 1)/(2, 2, 1). The content c(ρ) of a cell
ρ = (i, j) of λ/µ is j − i.

Given partitions λ and µ, a tabloid of shape λ/µ is a filling T of the cells of the skew
diagram λ/µ with non-negative integers. Tρ denotes the entry of T in cell ρ. The norm
n(T ) of a tabloid T is simply the sum of all entries of T . The content weight wc(T ) of a
tabloid T is

∑
ρ∈λ/µ Tρ · (a + c(ρ)), where a is a given integer such that a + c(ρ) > 0 for

all cells ρ ∈ λ/µ.
A semistandard Young tableau of shape λ/µ, short SSYT, is a tabloid P such that the

entries are weakly increasing along rows and strictly increasing along columns.
A reverse semistandard Young tableau of shape λ/µ is a tabloid R such that the entries

are weakly decreasing along rows and strictly decreasing along columns. In Figure 1.c a
reverse SSYT of shape (4, 3, 3, 1)/(2, 2, 1) is shown.

2 A Bijective proof of Identity 1

In fact, we will give a bijective proof of the following rewriting of Identity 1:

∑
P SSYT

of shape λ/µ

qn(P ) =

( ∑
R reverse SSYT

of shape λ/µ
with Rij ≤ a + µi − i

qn(R)

)
·

∏
ρ∈λ/µ

1

1 − qa+c(ρ)

=
∑
(R,T )

R reverse SSYT
of shape λ/µ

with Rij ≤ a + µi − i,
T tabloid

of shape λ/µ

qn(R)qwc(T ).
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So all we have to do is to set up a bijection that maps SSYT’x P onto pairs (R, T ),
where R is a reverse SSYT with Rij ≤ a + µi − i and T is an arbitrary tabloid, such that
n(P ) = n(R) + wc(T ).

The bijection consists of two parts. The first step is a modification of a mapping
known as ‘evacuation’, which consists of a special sequence of so called ‘jeu de taquin
slides’. An in depth description of these procedures can be found, for example, in Bruce
Sagan’s Book ‘The symmetric group’ [4], Sections 3.9 and 3.11. We use evacuation to
bijectively transform the given SSYT P in a reverse SSYT Q which has the same shape
and the same norm as the original one.

The second step of our bijection also consists of a sequence of – modified – jeu de
taquin slides and bijectively maps a reverse SSYT Q onto a pair (R, T ) as described
above. This procedure is very similar to bijections discovered by Christian Krattenthaler,
proving Stanley’s hook-content formula. [2, 3]

0 1
1 7

1 4 9
2 9 9

⇔
9 9
7 4

9 1 1
2 1 0

⇔




4 3
2 2

4 1 0
2 1 0

,

0 0
0 0

1 0 2
0 0 1




n(.) = 43 n(.) = 43 n(.) = 19, wc(.) = 24

Figure 2.

A complete example for the bijection can be found in the appendix. There we chose
a = 6 and map the SSYT P of shape (4, 4, 4, 3)/(2, 2, 1) on the left of Figure 2 to the
reverse SSYT Q in the middle of Figure 2, which in turn is mapped to the pair on the
right of Figure 2, consisting of a reverse SSYT R, where the entry of the cell ρ = (i, j) is
less or equal to a + µi − i, and a tabloid T so that n(Q) = n(R) + wc(T ).

In the algorithm described below we will produce a filling of a skew diagram step by
step, starting with the ‘empty tableau’ of the given shape.

Theorem 2.1. The following two maps define a correspondence between SSYT’x and
reverse SSYT’x of the same shape λ/µ and the same norm:

⇒© Given a SSYT P of shape λ/µ, produce a reverse SSYT Q of the same shape and
the same norm as follows:

Let Q be the empty tableau of shape λ/µ.

WHILE there is a cell of P which contains an entry

Let e be the minimum of all entries of P . Among all cells τ with Pτ = e, let
ρ = (i, j) be the cell which is situated most right.

WHILE ρ has a bottom or right neighbour in P that contains an entry
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Denote the entry to the right of ρ by x and the entry below ρ by y. We
allow also that there is only an entry to the right or below ρ and the other
cell is missing or empty.

If x < y, or there is no entry below ρ, then replace

e x
y

by x e
y

,

and let ρ be the cell (i, j + 1).

Otherwise, if x ≥ y, or there is no empty to the right, replace

e x
y

by y x
e

,

and let ρ be the cell (i + 1, j).

END WHILE.

Put Qρ equal to e and delete the entry of the cell ρ from P . Note that cells
of P which contain an entry still form a SSYT. In the proof below, ρ will be
called the cell where the jeu de taquin slide stops.

END WHILE.

⇐© Given a reverse SSYT Q of shape λ/µ, produce a SSYT P of the same shape and
the same norm as follows:

Let P be the empty tableau of shape λ/µ.

WHILE there is a cell of Q which contains an entry

Let e be the maximum of all entries of Q. Among all cells τ with Qτ = e, let
ρ = (i, j) be the cell which is situated most left.

Set Pρ = e and delete the entry of the cell ρ from Q.

WHILE ρ has a top or left neighbour in P that contains an entry

Denote the entry to the left of ρ by x and the entry above ρ by y. We
allow also that there is only an entry to the left or above ρ and the other
cell is missing or empty.

If x > y, or there is no entry above ρ, then replace

y
x e

by y
e x

,

and let ρ be the cell (i, j − 1).

Otherwise, if x ≤ y, or there is no entry to the left, replace

y
x e

by e
x y

,

and let ρ be the cell (i − 1, j).
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Figure 3.

END WHILE.

The cells of P which contain an entry now form a SSYT. In the proof below,
ρ will be called the cell where the jeu de taquin slide stops.

END WHILE.

Proof. Note that what happens during the execution of the inner loop of ⇒© (⇐©) is a jeu
de taquin forward (backward) slide performed on Q into the cell ρ, see Section 3.9 of [4].

First we have to show that ⇒© is well defined. I.e., we have to check that after each
jeu de taquin forward slide, after the entry e in the cell ρ is deleted from P , the cells of
P which contain an entry form a SSYT as stated in the algorithm. This follows, because
after either type of replacement in the inner loop the only possible violations of increase
along rows and strict increase along columns in P can only involve e and the entries to
its right and below. When the jeu de taquin forward slide is finished, ρ is a bottom-right
corner of P , hence after deleting the entry in ρ no violations of increase or strict increase
can occur.

Next we show that ⇒© indeed produces a reverse SSYT. In fact, we even show that
the tabloid defined by the cells of Q which have been filled already, is a reverse SSYT at
every stage of the algorithm.

Clearly, every cell of Q is filled with an entry exactly once. Furthermore, at the time
the cell ρ is filled, the cells in Q to the right and to the bottom of ρ – if they exist – are
filled already, otherwise ρ would not be a bottom-right corner of P . Because the sequence
of entries chosen is monotonically increasing, rows and columns of Q are decreasing.

So it remains to show that the columns of Q are in fact strictly decreasing. Suppose
that ρ1 and ρ2 are cells both containing the same minimal entry e, and ρ1 is right of ρ2.

When the jeu de taquin forward slide in ⇒© is performed into the cell ρ1, the entry e
describes a path from ρ1 to the cell where the slide stops, which we will denote by ρ′

1.
Similarly, we have a path from ρ2 to a cell ρ′

2.
Now suppose ρ′

1 is in the same column as, but below ρ′
2, as depicted in Figure 3.

Clearly, in this case the two paths would have to cross and we had the following situation:
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First, (the star is a placeholder for an entry we do not know)

∗ c
z y

would be replaced by ∗ y
z c

.

In this situation, z would have to be smaller then y.
Then, when the jeu de taquin forward slide into the cell ρ2 is performed, the following

situation would arise at the same four cells:

c y
z ∗ would have to be replaced by y c

z ∗ .

But this cannot happen, because then y would have to be strictly smaller than z.
It can be shown in a very similar manner that ⇐© indeed produces a SSYT. We leave

the details to the reader.
Finally, we want to prove that ⇐© is inverse to ⇒©. Suppose that in ⇒©, a jeu de taquin

forward slide into the cell ρ containing the entry e is performed on P . Suppose that the
slide stopped in ρ′, Qρ′ is set to e and the entry in ρ′ is deleted from P . Among the entries
of Q, e is maximal, because smallest entries are chosen first in ⇒©. Furthermore, among
those cells of Q containing the entry e, the cell ρ′ is most left. This follows, because the
tabloid defined by the cells of Q which have been filled already, is a reverse SSYT, and
the paths defined by the jeu de taquin slides cannot cross, as we have shown above.

It is straightforward to check that in this situation the jeu de taquin backward slide
into ρ′ performed on P in ⇐© stops in the original cell ρ. By induction we find that ⇐© is
inverse to ⇒©.

The second step of the bijection is just as easy:

Theorem 2.2. The following two maps define a correspondence between reverse SSYT’x
Q to pairs (R, T ), where R is a reverse SSYT with Rij ≤ a + µi − i and T is an arbitrary
tabloid, so that n(Q) = n(R) + wc(T ), Q, R and T being of shape λ/µ:

⇒© Given a reverse SSYT Q of shape λ/µ, produce a pair (R, T ) as described above as
follows:

Set R = Q and set all entries of T equal to 0.

WHILE there is a cell τ = (i, j) such that Rτ > a + µi − i

Let e be maximal so that there is a cell τ with Rτ − (
a + c(τ)

)
= e. Among

all cells τ with Rτ −
(
a + c(τ)

)
= e, let ρ = (i, j) be the cell which is situated

most bottom. Set Rρ = e.

WHILE e < R(i,j+1) or e ≤ R(i+1,j)

Denote the entry to the right of ρ by x and the entry below ρ by y. We
allow also that there is only a cell to the right or below ρ and the other
cell is missing.
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If x − 1 > y, or there is no cell below ρ, then replace

e x

y

by
x−1 e

y

,

and let ρ be the cell (i, j + 1).

Otherwise, if y + 1 ≥ x, or there is no cell to the right, replace

e x

y

by
y +1 x

e

,

and let ρ be the cell (i + 1, j).

END WHILE.

Increase Tρ by one.

END WHILE.

⇐© Given a pair (R, T ) as described above, produce a reverse SSYT Q of shape λ/µ as
follows:

Set Q = R.

WHILE there is a cell τ = (i, j) such that Tτ 6= 0

Let e be minimal so that there is a cell τ with Qτ = e and Tτ 6= 0. Among
these cells τ let ρ = (i, j) be the cell which is situated most right. Decrease Tρ

by one.

WHILE e + a + c(ρ) > Q(i,j−1) or e + a + c(ρ) ≥ Q(i−1,j)

Denote the entry to the left of ρ by x and the entry above ρ by y. We
allow also that there is only a cell to the left or above ρ and the other cell
is missing.

If y > x + 1, or there is no cell above ρ, then replace

y

x e

by
y

e x+1

,

and let ρ be the cell (i, j − 1).

Otherwise, if x ≥ y − 1, or there is no cell to the left, replace

y

x e

by
e

x y−1

,

and let ρ be the cell (i − 1, j).
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END WHILE.

Increase Qρ by a + c(ρ).

END WHILE.

Remark. Because of the obvious similarity to jeu de taquin slides, we will call what
happens in the inner loop of ⇒© (⇐©) a modified jeu de taquin (backward) slide into ρ
performed on R (Q).

Lemma 2.3. The two maps 2.2.⇒© and 2.2.⇐© are well defined. I.e. the tabloid R produced
by ⇒© is indeed a reverse SSYT with Rij ≤ a + µi − i and the tabloid Q produced by ⇐© is
indeed a reverse SSYT. Also, the equation n(Q) = n(R) + wc(T ) holds.

Furthermore, the following statement is true: Suppose that ⇒© performs a modified jeu
de taquin slide on R into a cell ρ1 with Rρ1 = e. After this, suppose that another modified
jeu de taquin slide on R into a cell ρ2 with the same entry e is performed. Let ρ′

1 and
ρ′

2 be the cells where the slides stop. Then ρ′
1 is left of ρ′

2 or ρ′
1 = ρ′

2. A corresponding
statement holds for Algorithm 2.2.⇐©.

Proof. First of all, we have to prove that Algorithm 2.2.⇒© terminates. We required
that a + c(τ) > 0 for all cells τ , which implies that every time when we replace the
entry in cell ρ by e (see the beginning of the outer loop of the algorithm) we decrease
maxτ=(i,j)(Rτ − a − µi + i). It is easy to see that this maximum is never increased in the
subsequent steps of the algorithm.

It is easy to check that after every type of replacement within the modified jeu de
taquin slides, the validity of the equation n(Q) = n(R) + wc(T ) is preserved.

So it remains to show that after every modified jeu de taquin slide of ⇒©, the resulting
filling R of λ/µ is in fact a reverse SSYT: We have that Qτ −

(
a+ c(τ)

)
= e is maximal at

the very left of λ/µ, because rows are decreasing in Q. Therefore, when Qτ > a + µi − i,
as required for the execution of the outer loop of ⇒©, we have

e = Qτ −
(
a + c(τ)

)
> a + µi − i − (a + µi + 1 − i) = −1,

so e is non-negative. Furthermore, after either type of replacement during the modified
jeu de taquin slide, the only possible violations of decrease along rows or strict decrease
along columns can involve only the entry e and the entries to the right and below. By
induction, R must be a reverse SSYT.

The second statement of the lemma is shown with an argument similar to that used
in the proof of Theorem 2.1.

When the jeu de taquin forward slide in ⇒© is performed into the cell ρ1, the entry e
describes a path from ρ1 to the cell ρ′

1, where the slide stops. Similarly, we have a path
from ρ2 to ρ′

2. We conclude that, if ρ′
1 were strictly to the right of ρ′

2, that these paths
would have to cross. (See Figure 4). Hence we had the following situation:

First, (the star is a placeholder for an entry we do not know)

∗ z

e x

would be replaced by
∗ z

x−1 e

.
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In this situation, x would have to be strictly smaller then z.
Then, when the modified jeu de taquin slide into ρ2 is performed, the following situa-

tion would arise at the same four cells:

e z

x−1 ∗
would have to be replaced by

x z

e ∗
.

But this cannot happen, because then x would have to be at least as big as z is.
The corresponding statement for Algorithm 2.2.⇐© is shown similarly.

Proof of Theorem 2.2. It remains to show, that ⇒© and ⇐© are inverse to each other. This
is pretty obvious considering the lemma:

Suppose that the pair (R, T ) is an intermediate result obtained after a modified jeu de
taquin slide into the cell ρ. After this, Tρ′ is increased, where ρ′ is the cell where the slide
stopped. Then the entry in ρ′ must be among the smallest entries of R, so that Tρ′ 6= 0,
because the sequence of e’s in the cells chosen for the modified jeu de taquin slides is
monotonically decreasing. If there is more than one cell ρ which contains a minimal entry
of R and satisfies Tρ 6= 0, the lemma asserts that the right-most cell was the last cell
chosen for the modified jeu de taquin slide ⇒©.

Hence it is certain that the right-most cell containing a minimal entry as selected before
the modified jeu de taquin slide of ⇐© is ρ′. It is easy to check, that the replacements done
in ⇐© are exactly inverse to those in ⇒©. For example, suppose the following replacement
is performed in ⇒©:

z

e x

y

is replaced by

z

x−1 e

y

.

Then we had x − 1 > y and, because of strictly decreasing columns, z > x. Therefore, in
⇐©, this is reversed and we end up with the original situation.

Similarly, we can show that ⇒© is inverse to ⇐©, too.
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Appendix A: Step by step example

This appendix contains a complete example for the algorithms described above for a SSYT
of shape (4, 4, 4, 3)/(2, 2, 1) and a = 6.

First the SSYT P on the left of Figure 2 is transformed into the reverse SSYT Q in the
middle of Figure 2 using Algorithm 2.1.⇒©. The example has to be read in the following
way: Each pair (P, Q) in the table depicts an intermediate result of the algorithm. The
cell of P containing the encircled entry is the cell into which the next jeu de taquin slide
is performed. The jeu de taquin path is indicated by the dotted line in Q.

P Q P Q

0 1

1 7

1 4 9

2 9 9

7 9

9

9

4

1 1

2 1 0

1 1

4 7

1 9 9

2 9 0

9 9

9

7 4

1 1

2 1 0

1 7

4 9

1 9

2 9

1

0

9

9

9

7 4

1 1

2 1 0

4 7

9 9

1

2 9

1 1

0

9

9 9

7 4

1 1

2 1 0

4 7

9 9

9

2

1 1

1 0

9 9

7 4

9 1 1

2 1 0

4 7

9 9

9 1 1

2 1 0

The inverse transformation ⇐© of the reverse SSYT Q into the SSYT P can be traced in
the same table, we only have to start at the right bottom, where the tableau P is empty,
and work our way upwards to the top left of the table. Note that the jeu de taquin paths
are the same.

In the second step of the bijection, this reverse SSYT Q is mapped onto a pair (R, T ),
where R is a reverse SSYT with Rij ≤ a+µi− i, T is a tabloid and n(Q) = n(R)+wc(T ).

First, the algorithm initialises R to Q and sets all entries of T to zero. Using modified
jeu de taquin slides, R is then transformed into a reverse SSYT where the entries are
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7
6
4
2

8 9
7 8

5 6 7
3 4 5

a. a + µi − i b. The tabloid with
entries a + c(ρ)

Figure 5.

bounded as required. First the algorithm checks whether there are still cells in R which
are too large. For reference, we give the relevant bounds in Figure 5.a. Then, for selecting
the cell into which the modified jeu de taquin slide is performed, we need to calculate
Rρ − (a + c(ρ)). Again, for reference we display these values for each cell in Figure 5.b.

Each row of the table below depicts an intermediate result of Algorithm 2.2.⇒©. The
cells containing the encircled entry are the cells into which the modified jeu de taquin slide
will be performed, the cells containing the boxed entry indicate, where the last modified
jeu de taquin slide stopped. In the third column the jeu de taquin path for the selected
cell is indicated.

R T

9 9
7 4

9 1 1
2 1 0

0 0
0 0

0 0 0
0 0 0

9 9
7 4

4 1 1
2 1 0

0 0
0 0

1 0 0
0 0 0

8 5

7 2
4 1 1

2 1 0

0 0

0 0
1 0 1

0 0 0

8 5

2 2
4 1 1

2 1 0

0 0

0 0
1 0 1

0 0 1

4 3
2 2

4 1 0
2 1 0

0 0
0 0

1 0 2
0 0 1

jeu de taquin path

Again, the inverse transformation ⇐© can be traced in the same table, starting at the
bottom, moving upwards. Now the cells containing the boxed entry are the cells into
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which the next modified jeu de taquin slide will be performed, the cells containing the
encircled entry indicate where the last slide stopped. Of course, the jeu de taquin paths
are the same as for ⇒©.

Appendix B: A complete matchup for SSYT’x of

shape (3, 2)/(1) with norm 5, where a = 2

In the table below you find a complete matchup for SSYT’x of shape (3, 2)/(1) with norm 5
where a = 2. The first column contains all SSYT’x of shape (3, 2)/(1) and norm 5. In the
second column, the corresponding reverse SSYT’x obtained by evacuation are displayed.
Finally, in columns three and four, the results of Algorithm 2.2.⇒© can be found.

This table was produced with a Common-LISP-implementation of the algorithms
above, which can be found on the author’s homepage.2

P Q R T

0 0
0 5

5 0
0 0

2 0
0 0

1 0
0 0

0 0
1 4

4 0
1 0

1 0
0 0

1 0
1 0

0 0
2 3

3 0
2 0

1 0
0 0

0 0
2 1

0 1
0 4

1 0
4 0

1 0
0 0

0 0
4 0

0 1
1 3

3 0
1 1

2 0
0 0

0 0
1 1

0 1
2 2

2 0
2 1

2 0
0 0

0 0
1 1

0 2
0 3

2 0
3 0

2 0
0 0

0 0
3 0

0 2
1 2

2 2
1 0

2 2
0 0

0 0
1 0

2http://www.mat.univie.ac.at/~rubey/biject.lisp
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P Q R T

1 1
0 3

1 1
3 0

1 1
0 0

0 0
3 0

1 1
1 2

2 1
1 1

2 1
0 0

0 0
0 1

0 3
0 2

3 2
0 0

1 0
0 0

0 1
0 0

0 3
1 1

3 1
1 0

1 1
0 0

0 0
1 1

1 2
0 2

2 1
2 0

2 1
0 0

0 0
2 0

0 4
0 1

4 1
0 0

1 1
0 0

1 0
0 0
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