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Abstract

In a previous work [26], by considering paths that are partially weighted, the
generating function of Dyck paths was shown to possess a type of symmetry, called
an exchange relation, derived from the exchange of a portion of the path between
weighted and unweighted halves. This relation is particularly useful in solving for
the generating functions of certain models of vertex-coloured Dyck paths; this is a
directed model of copolymer adsorption, and in a particular case it is possible to find
an asymptotic expression for the adsorption critical point of the model as a function
of the colouring. In this paper we examine Motzkin path and partially directed walk
models of the same adsorbing directed copolymer problem. These problems are an
interesting generalisation of previous results since the colouring can be of either the
edges, or the vertices, of the paths.

We are able to find asymptotic expressions for the adsorption critical point in
the Motzkin path model for both edge and vertex colourings, and for the partially
directed walk only for edge colourings. The vertex colouring problem in partially
directed walks seems to be beyond the scope of the methods of this paper, and
remains an open question. In both these cases we first find exchange relations for
the generating functions, and use those to find the asymptotic expression for the
adsorption critical point.

1 Introduction

Lattice models of adsorbing polymers have received significant attention in the physics
literature over the last two decades [8, 13, 14, 29]. These models are primarily based on the
self-avoiding walk, a model which is known to pose formidable problems in combinatorics
and probability theory [21]. Directed versions of lattice models of absorbing polymers
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are mathematically more tractable, while they also retain some of the rich combinatorial
content so evident in more general models. The most well-known directed model of
polymer adsorption is a model of Dyck paths [15, 16, 23] and this model has also been
considered in directed models of copolymer adsorption [16, 26].

Dyck paths are enumerated by the Catalan numbers and are connected to a myriad of
other combinatorial objects; these are perhaps some of the most studied and best under-
stood objects in combinatorics [27]. For example, an explicit solution for the generating
function of Dyck paths enumerated according to their length and number of visits is known
(see [15, 23] amongst many others); this is a directed model of adsorbing homopolymers.
However, not all Dyck path problems have been solved; no similar explicit general ex-
pressions are known for coloured Dyck paths (these are models of adsorbing copolymers),
except in the simplest of cases [16]. Further investigation of these models [26] suggests
instead that a general solution would be unlikely, and only asymptotic expressions are
known for critical points in these models. In particular, the asymptotic expression up to
decaying terms for the critical point in a {ABp−1}∗A-copolymer1 model of Dyck paths
adsorbing in the main diagonal is

ac(p) ∼
√

π

ζ(3/2)
p3/2 +

9
√

πζ(5/2)

8ζ(3/2)2
p1/2 + 1 + O(p−1/2) (1)

where only vertices coloured by A are attracted by the main diagonal. It is also known
that ac(1) = 2 [13], and that ac(2) = 2+

√
2 [16]. This family of coloured Dyck paths is a

directed model of a copolymer with two distinct comonomers arranged periodically. The
majority of the polymer consists of a comonomer (represented by B-vertices) that does
not interact with the adsorbing surface, while the periodic inhomogeneity (represented
by A-vertices) are attracted onto the adsorbing surface. The length of the period of the
colouring changes the behaviour of the system.

There are also other directed path models of polymer adsorption which could be stud-
ied. These include models of partially directed walks [23, 30], a special case of which is
a model of bargraphs or histograms [24]. Alternatively, one may instead consider models
of directed paths in other lattices. An example would be Motzkin paths [9], which is a
model of (fully) directed paths on a triangular lattice, and confined to step only above
the main diagonal. In both models of bargraphs and Motzkin paths, a two dimensional
lattice model of an adsorbing polymer can be defined by letting the path be attracted
to an adsorbing line. In models of Motzkin paths, the adsorbing line will be the main
diagonal of the lattice, and it is possible for both vertices and edges to lie on this line,
and so one may define two models in which vertices or edges interact with the adsorbing
line. A similar situation is true for models of bargraphs, since both edges and vertices
may lie in the adsorbing line (which is the X-axis). See figure 1. This distinguishes these
models from Dyck path models of directed polymer adsorption, where only vertices can
be attracted into the main diagonal.

1In which the even numbered vertices are coloured periodically by repetitions of the block consisting
of one A followed by p − 1 B’s, and terminating in a single A.
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Figure 1: (top): A Motzkin path of length 11, with 1 edge-visit and 5 vertex-visits.
(bottom): A bargraph of length 31, with 3 edge-visits and 7 vertex-visits.

In this paper we shall turn our attention first to models of adsorbing Motzkin paths,
both with edges, and with vertices, interacting with the adsorbing line. This model can be
turned into a model of copolymer adsorption by colouring the vertices with two colours,
say A and B, and where only colour A will interact with the adsorbing line. The problem
is unsolved for general colourings [26], and in this paper we only focus on the colouring
{ABp−1}∗A with period p. Even in this case the model is unsolved - and we focus only on
finding an asymptotic expression for the critical adsorption point in terms of p, similar to
equation (1). The starting point is an exchange symmetry for Motzkin paths, analogous
to the exchange symmetry for Dyck paths discussed in [26].

Models of adsorbing bargraphs are more difficult to analyse, and in this paper we only
succeeded in solving a model where edges interact with the adsorbing line. We shall also
briefly consider the model with vertices interacting with adsorbing line; while this model
does exhibit an exchange-symmetry it is not as simple as that of Dyck paths or Motzkin
paths and we have been unable to use it to find a solution.

A directed path in the square lattice (rotated by 45◦) is a sequence of north-east and
south-east steps. Such a path consists of edges and vertices, the first vertex is ordinarily
placed on the origin, and the number of such paths with n steps is 2n. A Dyck path is a
directed path constrained to remain on or above the horizontal line y = 0. The number
of Dyck paths of 2n edges is given by the Catalan numbers.

Motzkin paths are generalised Dyck paths which are able to step north-east, south-east
and east. Like Dyck paths, Motzkin paths are constrained to remain on or above the line
y = 0. A vertex-visit in a Motzkin path is a vertex in the line y = 0 which is also a vertex
in the path. An edge-visit is an edge in the Motzkin path which is also an edge in the line
y = 0.

A second type of walk, called a partially directed walk, is a directed path in the square
lattice that is only allowed to step north, south and east (while remaining self-avoiding).
This means that a north step cannot be followed by a south step or vice-versa. If both the
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initial and final vertices of a partially directed walk are fixed in the line y = 0, and the
path is excluded from visiting vertices below the line y = 0, then a bargraph is obtained
(see Figure 1). Bargraphs are also models of adsorbing polymers: the X-axis is a natural
adsorbing line and, much like Motzkin paths, both vertices or edges may be considered
as visits in the adsorbing line.

The key object in this paper will be the generating function G(z, v) of a generic model
of directed or partially directed paths with v the generating variable for vertex-visits in
the adsorbing line (we shall use w for edges-visits). In the thermodynamic sense, v is
an activity2 conjugate to the number of visits in the model. By increasing the numerical
value of the activity, paths with larger numbers of visits will contribute more to the
generating function and determine the thermodynamic phase of the model. We introduce
the generating variable z conjugate to the length of the walks, and if cn,k is the number
of paths of length n, with k visits, then the generating function is given by:

G(z, v) =
∑
n≥0

(∑
k≥2

cn,kv
k

)
zn =

∑
n≥0

Zn(v)zn, (2)

where Zn(v) is the partition function of the model and it is related to the radius of
convergence (and hence the growth constant) of G(z, v) with respect to z by

zc(v) = lim
n→∞

(
Zn(v)−1/n

)
= e−F(v), (3)

where zc(v) is the radius of convergence, and F(v) is the canonical limiting free-energy
density [16]. It is worth noting that the derivative of the free energy (w.r.t. log(v)) is
the density of visits (or the energy density), and the second derivative of the limiting free
energy is the specific heat which is a measure of the fluctations in the energy density. This
relation between zc(v) and F(v) gives an explicit connection between the combinatorics
and the thermodynamics of the model, and it is indeed possible to find the values of
critical exponents associated with the adsorption transition from zc(v) [5].

Motzkin paths may be factored recursively into shorter Motzkin paths (see Figure 2),
and consequently the generating function satisfies the following algebraic equation:

M(z) = 1 + zM(z) + zM(z)zM(z), (4)

where z is the generating variable for edges. Solving gives

M(z) = [1 − z −
√

(1 − 3z)(1 + z)]/2z2. (5)

Motzkin paths are widely studied combinatorial objects; there is a bijection from these
paths to the words in a one-coloured Motzkin algebraic language [9, 16]. In our case, we
will be interested in a modified version of the above. In particular, we shall introduce

2If we write v = eβ , then in the language of statistical mechanics β can be called a fugacity, and v is
an activity. In these models the activity is a parameter which controls the strength of interaction of the
paths with the wall.
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generating variables v for vertex-visits and w for edge-visits respectively, and reconsider
the model. In these cases, we obtain generating functions M(z, v) and M(z, w) instead,
and the key property of these will be their radii of convergence zc(v) and zc(w). In partic-
ular, these curves have a non-analytic point vc (and wc respectively) which corresponds to
an adsorption transition in this model [2, 16, 19, 26]. We are interested in the numerical
values of these critical points; in particular how the position of the critical point depends
upon the colouring of the path.

In Section 2 we first consider a Motzkin path model with vertex-visits. We show that
the generating function of this model satisfies an exchange relation [26] which can be used
to determine an asymptotic expression for the adsorption critical point ac(p) in a Motzkin
path model of adsorbing directed copolymers whose vertices are coloured {ABp−1}∗A with
a the generating variable of A-vertex-visits:

ac(p) =
2
√

3π

9ζ(3/2)
p3/2 +

13
√

3πζ(5/2)

24ζ(3/2)2
p1/2 + 1 + O(p−1/2). (6)

A similar analysis is done for an edge-coloured model with A-edge-visits weighted by α;
the dependence of the location of the critical point on the period of the colouring in that
case is

αc(p) ∼ 2
√

3π

3ζ(3/2)
p3/2 +

5ζ(5/2)
√

3π

8ζ(3/2)2
p1/2 + 1 + O(p−1/2). (7)

Bargraphs are considered in Section 3. The basic quantity is bn, the number of bar-
graphs of length n steps, and the generating function associated with this model is

B(z) = [1 − z − z2 − z3 −
√

(1 − z4)(1 − 2z − z2)]/2z3. (8)

More generally, we introduce generating variables v for vertex-visits and w for edge-visits
to obtain the generating functions B(z, v) and B(z, w). In both these cases we may again
colour the vertices or the edges by {ABp−1}∗A to obtain a bargraph model of adsorbing
copolymers, with a or α being the generating variables for vertex-A-visits and edge-A-
visits respectively. In the case that edge-A-visits are considered, it is possible to find an
asymptotic form for the location of the adsorption critical point with respect to p:

αc(p) =
2
√

π
√√

2 − 1

ζ(3/2)
p3/2 +

3 ζ(5/2)
√

π
√

58
√

2 − 2

ζ(3/2)2
p1/2 + 1 + O(p−1/2). (9)

but the model with vertex-A-visits remains seemingly intractable; our methods seem not
able to allow the determination of an asymptotic expression for ac(p). The case of edge-
A-visits are considered fully in Section 3.2 with its asymptotic analysis in Section 3.4.
We also indicate in Section 3.3 why the case of vertex-A-visits is not treatable by the
techniques in this paper.

2 Adsorbing Motzkin Paths

We first review a model of adsorbing Motzkin paths with vertex-visits. The most fun-
damental quantity in this model is mn,l, the number of Motzkin paths with n steps and
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l vertex-visits. The two variable generating function is M(z, v) =
∑∞

n=0

∑n
l=0 mn,lv

lzn,
and we show how it may be derived in Section 2.1. The edge-visit model is examined in
Section 2.2. In both these models we show that the two variable generating function satis-
fies an exchange relation, which shall be useful in analysing models of coloured adsorbing
Motzkin paths.

each is oror M(z, v)M(z, v)M(z, v)

M(z, 1)

Figure 2: The canonical factorisation of Motzkin paths.

2.1 Motzkin Paths with Vertex-visits

Motzkin paths may be factored recursively in terms of shorter Motzkin paths. In particu-
lar, every adsorbing Motzkin path is either a single vertex or is a horizontal edge followed
by another adsorbing Motzkin path, or may be factored into a north-east edge, a Motzkin
path, a south-east edge (terminating on the axis) and then an adsorbing Motzkin path
— this is illustrated in Figure 2. The factorisation in Figure 2 may be translated into the
following algebraic equation satisfied by the generating function:

M(z, v) = v + vzM(z, v) + vz2M(z, 1)M(z, v). (10)

Solving first for M(z, 1) gives equation (5), and then equation (10) can be used to find
M(z, v):

M(z, v) =
v

1 − vz − vz2M(z, 1)
(11)

The radius of convergence of M(z, v) can be found by examining the function’s singular-
ities. There is a line of square root branch points along z = 1/3 in the vz-plane, and a
curve of simple poles along z = [1 − v +

√
(v + 3)(v − 1)]/2v. The limiting free energy

F(z) in equation (3) is determined by the radius of convergence, and there is exactly one
non-analytic point in it at vc = 3/2. Further examination of the model shows that this
is the adsorption critical point. The critical curve is a plot of the radius of convergence,
and is given by

zc(v) =

{
1/3, w ≤ 3/2;

1−v+
√

(v+3)(v−1)

2v
, w > 3/2;

, (12)

An exchange relation which is satisfied by M(z, v) may be found using the approach
described in Figure 3. This relation is very similar to the exchange relation found for
Dyck paths in [26]:
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Theorem 1. Motzkin paths with vertex-visits weighted by v satisfies the exchange relation

vM(z, v)(M(z, 1) − 1) = (M(z, v) − v)M(z, 1). (13)

Solving this relation gives:

M(z, v) =
vM(z, 1)

v + (1 − v)M(z, 1)
. (14)

Proof. Consider a Motzkin path consisting of more than one vertex, in which no visit-
vertices are (yet) weighted. Then, starting from the left and working towards the right
weigh the visit vertices by v, stopping somewhere before the last vertex of the path is
reached. This path is the union of a Motzkin path (in which all the visits are weighted by
v) and an unweighted Motzkin path (in which the visits are not weighted). The situation
is depicted in the top half of Figure 3.

If we now weight the next vertex visit, then the situation is now depicted by the bottom
half of Figure 3. Further, since the unweighted path becomes shorter and the weighted
path longer, the initial unweighted path and the final weighted path must both consist of
more than a single vertex. Summing over all possible conformations gives equation (13).
We note that “−1” and “−v” are present in the equation due to the condition on the
lengths of the initial unweighted and the final weighted Motzkin paths.

Weighted

Weighted

Unweighted

Unweighted

Figure 3: The vertex-visit exchange relation. The top diagram shows a (possibly empty)
weighted Motzkin path attached to a non-empty unweighted path. By weighting the next
vertex-visit one arrives at the bottom diagram which shows a non-empty weighted path
attached to a (possibly empty) unweighted path.

This exchange relation may be generalised to a Motzkin path model of {ABp−1}∗A
copolymer adsorption, using arguments similar to those in a Dyck path model [26]. Con-
sider a Motzkin path of length 0 mod p and colour its vertices from left to right by
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{ABp−1}∗A, and let va generate vertex-visits of colour A and let v generate vertex-visits
of colour B.

Definition 1. Fix the period of the colouring {ABp−1}∗A to be p. We define M(z, v, a|p)
to be the generating function of this model of Motzkin paths of length 0 mod p with
vertices labelled by {ABp−1}∗A, with all B-vertex-visits generated by v and A-vertex-visits
generated by va.

Theorem 2. The generating function M(z, v, a|p) satisfies the following exchange rela-
tion:

aM(z, v, a|p)(M(z, v, 1|p) − v) = (M(z, v, a|p) − va)M(z, v, 1|p). (15)

Solving for M(z, v, a|p) then gives

M(z, v, a|p) =
vaM(z, v, 1|p)

va + (1 − a)M(z, v, 1|p)
. (16)

Proof. Consider Figure 3 again. The top picture consists of a coloured part with B-vertex-
visits weighted by v and A-vertex-visits weighted by va (and this path may be empty),
followed by an uncoloured path with all vertex-visits weighted by v (this path is not
empty). Thus, conformations of this type are generated by M(z, v, a|p) (M(z, v, 1|p) − v)).
Now, starting at the last vertex in the coloured path (which is always an A-vertex-
visit) and continue to colour the path until the next A-vertex-visit is reached. This
visit will now contribute weight va to the generating function, instead of v. Such a visit
always exists since the path has length 0 mod p, and the second part of the path is non-
empty. In this case, the bottom picture in Figure 3 is obtained, and it is generated by
(M(z, v, a|p) − va) M(z, v, 1|p) (since the first part of the path that may not be empty).
Finally, notice that the only difference between the two paths in the top and bottom of
Figure 3 is a factor of a introduced to account for the colour of the new A-vertex-visit.
Thus, the identity follows.

If v = 1, then a Motzkin path model coloured by {ABp−1}∗A with only the A-vertex-
visits weighted by a is obtained. A second interesting model is obtained if one first puts
a → 1/a and then v = a: This gives a model of Motzkin paths coloured by {BAp−1}∗B
with A-vertex-visits weighted by a.

Observe that the full generating function of all Motzkin paths (of any length) coloured
by {ABp−1}∗A cannot be obtained from Theorem 2. On the other hand, this generating
function is known for a Dyck path version of this model [26], and following similar argu-
ments, one may in fact write down the full generating function for Motzkin paths. Define
F (z, v, a|p) to be the full generating function of all Motzkin paths (of any length) whose
vertices are coloured by {ABp−1}∗A. Then F (z, v, a|p) may be found as follows.

Theorem 3. Let F̄ (z, v|p) be the generating function of the subset of Motzkin paths
counted by F (z, v, 1|p), but with exactly one A-vertex-visit (their first vertices). Then

F (z, v, a|p) = M(z, v, a|p)F̄ (z, v|p)/v, (17)
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from which follows
F̄ (z, v|p) = vF (z, v, 1|p)/M(z, v, 1|p). (18)

Thus, the full generating function is given by the following expression:

F (z, v, a, |p) =
vaF (z, v, 1|p)

va + (1 − a)M(z, v, 1|p)
(19)

Proof. Cutting any path at its last A-visit factors it into a vertex-coloured path of length
0 mod p and a path of arbitrary length that contains only a single A-visit being its first
vertex. Setting a = 1 in this equation then gives the expression for F̄ . Substituting the
result of the previous theorem gives the final expression.

2.2 Motzkin Paths with Edge-visits

An alternative Motzkin path model of polymer adsorption is obtained if one considers
the adsorption of edges (rather than vertices) onto the adsorbing axis. The generating
function as M(z, w), where w is conjugate to the number of edge-visits may be found using
similar arguments to the vertex-visits case discussed in the last section. The factorisation
in Figure 2 can be used to write down a functional relation for M(z, w):

M(z, w) = 1 + wzM(z, w) + z2M(z, 1)M(z, w), (20)

and one may solve explicitly for M(z, 1) to obtain equation (5), and then solve again for
M(z, w): The result is

M(z, w) =
2

1 + z − 2wz +
√

(1 + z)(1 − 3z)
. (21)

M(z, w) has a line of square root branch points along z = 1/3 in the wz-plane, and a
curve of simple poles along z = (w − 1)/(w2 − w + 1); these singularities determine the
radius of convergence of M(z, w): which is

zc(w) =

{
1/3 w ≤ 2;
w−1

w2−w+1
w > 2.

(22)

The limiting free energy is F(w) = − log zc(w) [16] and this determines the thermody-
namic properties of this model. There is a non-analytic point in F(w) at the intersection
of the line of branch points z = 1/3 with the curve of poles at wc = 2.

M(z, w) also satisfies an exchange relation, but its form is somewhat more complicated
than the exchange relation for M(z, v) in Theorem 2. More careful arguments are also
needed to find it. Let H(z, w) be the generating function of all Motzkin paths with first
edge horizontally in the adsorbing line. Paths counted by H(z, w) can be obtained from
M(z, w) by appending a single horizontal edge on the leading vertex of every path; this
shows that

H(z, w) = wzM(z, w). (23)
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Weighted

Weighted

Unweighted

Unweighted

Figure 4: Edge-visit exchange relation.

Motzkin paths counted by H(z, w) are called anchored. The important observation is that
every Motzkin path with at least one edge-visit can be decomposed into a Motzkin path,
and an anchored Motzkin path. Together with the techniques developed in reference [26]
this observation gives the following theorem.

Theorem 4. Motzkin paths with edge-visits weighted by w satisfies the exchange relation

wM(z, w)H(z, 1) =
(
M(z, w) − M(z, 0)

)(
H(z, 1) + 1

)
. (24)

Solving for M(z, w) from this exchange relation then shows that

M(z, w) =
M(z, 0)

(
1 + H(z, 1)

)
1 + (1 − w)H(z, 1)

=
M(z, 1)

1 + (1 − w)H(z, 1)
. (25)

Proof. The exchange relation is found by first considering a partially weighted Motzkin
path, as in Figure 4. The path consists first of a weighted Motzkin path, followed by
a non-empty, but unweighted anchored Motzkin path (generated by H(z, 1)). These
partially weighted paths are then generated by M(z, w)H(z, 1). If the next edge-visit is
assigned the weight w, then the walks consists first of a weighted Motzkin path with at
least one edge-visit which is counted by M(z, w) − M(z, 0), followed by the empty path
or an unweighted anchored Motzkin path; all generated by 1 + H(z, 1). In other words,
wM(z, w)H(z, 1) = (M(z, w) − M(z, 0))(1 + H(z, 1)).

The generating function M(z, 0) may be replaced in equation (14) by setting w = 1 in
the exchange relation which gives M(z, 1) = M(z, 0)

(
1 + H(z, 1)

)
, or by noting the more

general relation M(z, w) = M(z, 0)
(
1+H(z, w)

)
. Making this substitution completes the

proof.
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As was the case for Dyck paths and the previous Motzkin path model, we see that the
exchange relation (24) is not particularly useful for the homopolymer case, but it is very
useful when applied to Motzkin paths of length 0 mod p with edges coloured in sequence
by {ABp−1}∗. We define the following generating variables in this model: z will generate
edges; w generates edge-visits, whether coloured A or B, and α generates only A-edge-
visits. As before, we shall also be interested in Motzkin paths with first edge horizontally
in the adsorbing line; these will again be called anchored Motzkin paths.

Define the following generating functions of Motzkin paths:

Definition 2. Fix the period of the colouring {ABp−1}∗ to be p. Define the following:

• M(z, w, α|p) is the generating function of Motzkin paths of length 0 mod p with
edges labeled by {ABp−1}∗ and wα generates A-edge-visits and w generates B-edge-
visits;

• H(z, w, α|p) is the generating function of all anchored Motzkin paths of length 0
mod p with edges labeled by {ABp−1}∗ and wα generates A-edge-visits and w gen-
erates B-edge-visits;

We first find an exchange relation for H(z, w, α|p) and M(z, w, α|p), using arguments
similar to those in Theorem 4 above. All edge-visits are weighted by w, but we shall now
proceed by weighing A-edge-visits with α.

Theorem 5. The generating function M(z, w, α|p) satisfies the exchange relation

αM(z, w, α|p)H(z, w, 1|p) =
(
M(z, w, α|p) − M(z, w, 0|p)

)(
1 + H(z, w, 1|p)

)
. (26)

It follows that

M(z, w, 1|p) = M(z, w, 0|p)
(
1 + H(z, w, 1|p)

)
, (27)

and so

M(z, w, α|p) =
M(z, w, 1|p)

1 + (1 − α)H(z, w, 1|p)
. (28)

Proof. The argument is similar to the proof of Theorem 5. Consider again Figure 4
and observe that the top conformation consists of a coloured Motzkin path generated
by M(z, w, α|p) followed by an anchored Motzkin path with edge-visits weighted by w,
but with all A-edge-visits weighted by w (so that α = 1, and these are generated by
H(z, w, 1|p)). In other words, these conformations are generated by M(z, w, α|p)H(z, w, 1|p).
Find the next A-edge-visit in these conformations, and weight it with an extra factor α.
The result is a fully weighted coloured Motzkin path with at least one A-edge-visit, gen-
erated by M(z, w, α|p) − M(z, w, 0|p); followed by either the empty path or an anchored
Motzkin path, together generated by 1 + H(z, w, 1|p). It is important to note that this
construction leaves all paths with length 0 mod p, consistent with the restriction on
path-length in this model. The result is the claimed identity.
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If w = 1, then a model of {ABp−1}∗ coloured Motzkin paths are obtained, with the
A-edge-visits weighted by α. Other models can also be found; if we first let α → 1/α,
followed by w = α, then a {BAp−1}∗ coloured Motzkin path is obtained, with only the
A-edge-visits weighted by α.

Observe also that M(z, w, α|p) is the generating function of only those Motzkin paths
of length 0 mod p, and coloured by {ABp−1}∗. From a combinatorial point of view,
one is really interested in the full generating function of this model, G(z, w, α|p). In the
case of vertex-visits discussed in the Section 2.1 we were able to find the full generating
function F (z, w, a|p), but in the edge-visit model we are unable to solve for G(z, w, α|p)
in terms of M(z, w, α|p). On the other hand, from the physical point of view we are more
interested in the location of a non-analytic point in the radius of convergence zc(w, α|p) of
G(z, w, α|p). We can show that zc(w, α|p) is also the radius of convergence of M(z, w, α|p),
and so information about G(z, w, α|p) can be obtained by studying M(z, w, α|p) instead.

Theorem 6. The radius of convergence of the generating functions G(z, w, α|p) and
M(z, w, α|p) are both given by zc(w, α|p).

Proof. Suppose that zc(w, α|p) is the radius of convergence of G(z, w, α|p). Suppose that

G(z, w, α|p) =

∞∑
n=0

Zn(w, α|p)zn (29)

where Zn(w, α|p) is the canonical partition function of Motzkin paths coloured in sequence
by {ABp−1}∗ and of arbitrary length n. We remind the reader (see equation (3)) that

zc(w, α|p) = lim
n→∞

(
Zn(w, α|p)

)−1/n

,

and so the radius of convergence of M(z, w, α|p) is given by taking this last limit along a
subsequence {p, 2p, 3p, . . . , mp, . . . }, and so all we need to prove is that the limit exists.
We do this by demonstrating that Zn satisfies a super-multiplicative relation. This implies
the existence of the limit (see [31]) and so will complete the proof.

Let
Zn(w, α|p) =

∑
V,U

mn(V, U)wV αU (30)

where mn(V, U) is the number of Motzkin paths coloured in sequence by {ABp−1}∗ and
of length n with V edge-visits of which U are A-edge-visits. Fix integers n1, V1, U1. Paths
counted by mn1(V1, U1) can be concatenated with paths counted by mn2(V − V1, U −U1)
as follows: Let q be the smallest integer so that n1 ≤ qp, and append B-edge-visits after
the last vertex of the paths counted by mn1(V1, U1) until paths of length qp are obtained
with V1 + qp− n1 B-edge-visits. Since the number of edges in these paths is a multiple of
p, we can concatenate paths counted by mn2(V − V1, U −U1) to the last vertex to obtain
new paths of length qp + n2 consistently coloured by {ABp−1}∗. These paths have length
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qp + n2, V + qp − n1 with B-edge-visits and U edge-visits of colour A. Summing over V1

and U1 shows that

V∑
V1=0

U∑
U1=0

mn1(V1, U1)mn2(V − V1, U − U1) ≤ mqp+n2(V + qp − n1, U) (31)

since there are mn1(V1, U1) choices for the first path, and mn2(V − V1, U −U1) choices for
the second path. The inequality follows from the fact that this operation is an injection
into the set of paths of length qp + n2 and with V + qp− n1 B-edge-visits and U A-edge-
visits. Multiply this inequality by wV αU and sum over V and over U . Since |qp−n1| < p,
this shows that

Zn1(w, α|p)Zn2(w, α|p) ≤ [max{1, w−p}]Zn1+n2+(qp−n1)(w, α|p). (32)

This relation is enough to show that the limit in equation (2.2) exists ([31]).
In other words, to find the critical point in the complete model with generating func-

tion G(z, w, α|p), one only needs to consider a model of anchored Motzkin paths (see
Theorem 5), and solve the equation 1 + (1 − α)H(z, w, 1|p) = 0. We cannot do this for
general w, but in the case that w = 1 we shall be able to find an asymptotic formula for
the solution.

2.3 Asymptotics for H(1/3, 1, 1|p) and M(1/3, 1, 1|p).

In this section we find an asymptotic expression up to decaying terms for the location of
the adsorption critical point in a Motzkin path model of {ABp−1}∗ copolymer adsorption.
Unfortunately, we have not been able to find this expression in its full generality, and
instead we have been restricted to the case in which only A-interactions are considered —
i.e. when v = 1 (for vertex colourings), and w = 1 (for edge colourings). The proof will
be based on the exchange relations in Theorems 2 and 5. In addition, an asymptotic ex-
pression for M(zc, 1, 1|p) will be needed, where zc = zc(1, 1|p) is the radius of convergence
of M(z, 1, 1|p), and we pay attention first to this issue.

Let mn be the number of Motzkin paths of length n, and define the generating function

M(z, 1) = M(z, 1, 1|1) =

∞∑
n=0

mnzn (33)

of Motzkin paths in a homopolymer model of polymer adsorption. In principle, mn can
be computed from equation (21) using the contour integral

mn =
1

2πi

∮
M(z, 1)

dz

zn+1
. (34)

There are established techniques for evaluating integrals of this type; for a general discus-
sion of such techniques see, for example, [10]. In fact, the asymptotic evaluation of such
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integrals has been automated (see Bruno Salvy’s gdev package3, which may be found at
http://algo.inria.fr/salvy). For the above integral we summarise the application of
these techniques. This is somewhat redundant but not lengthy and we do so to illustrate
the ideas underlying the uniform asymptotic expansion of mn.

This integral has two square root branch points at z = −1 and z = 1/3, and by
expanding the contour around the origin, one must only compute two integrals along
branch cuts starting at these branch points. The contribution of the integral along the
branch cut at z = 1/3 grows as 3n, while the contribution of the integral along the
branch cut at z = −1 has exponential behaviour (−1)n, and both have sub-exponential
dependence on n otherwise. Asymptotically, this second contribution only gives a parity
correction to mn, it is dominated (in an exponential sense) by the first integral. Thus,
after some simplification we obtain

mn =
1

2πi

∫ ∞

1/3

√
(1 + z)(1 − 3z)

zn+3
dz + O((−1)n). (35)

Lemma 7. There exists an M such that for sufficiently large n,∣∣∣∣mn 2n
√

nπ

3n+3/2
−
(

1 − 39

16n
+

2665

512n2

)∣∣∣∣ < M

n3
. (36)

Proof: We follow the techniques outlined in the proof of Theorem 5.2 in Chapter 5 of
Flajolet and Sedgewick [10]. We must evaluate the integral in equation (35). Substitute
z = (1 + s/n)/3, and expand the resulting integrand asymptotically (and uniformly) in n
to obtain

3n+3
√

s

πe3s
√

n3

(
1 +

(72s − 69)s

8n
+

(1296s2 − 6120s + 6471)s2

128n2
+ O(n−3)

)
. (37)

Using the arguments in Flajolet and Sedgewick, one may now integrate with respect to s
term by term. This completes the proof.

Asymptotics for M(1/3, 1, 1|p) can be obtained from lemma 7. Since H(1/3, 1, 1|p) is
closely related to M(1/3, 1, 1|p), its asymptotic expansion can also be derived.

Theorem 8. M(1/3, 1, 1|p) is asymptotic in p to:

M(1/3, 1, 1|p) ∼ 1 +
3
√

3

2
√

πp3

(
ζ(3/2) − 39ζ(5/2)

16p
+

2665ζ(7/2)

512p2
+ O(1/p3)

)
, (38)

while the H(1/3, 1, 1|p) is asymptotic to:

H(1/3, 1, 1|p) ∼
√

3

2
√

πp3

(
ζ(3/2)− 15ζ(5/2)

16p
+

505ζ(7/2)

512p2
+ O(1/p3)

)
. (39)

3We thank a referee for this reference.
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Proof: By lemma 7 there exists an M > 0 such that for sufficiently large p we have∣∣∣∣∣mp 3−p − 3
√

3

2
√

π

(
1

p3/2
− 39

16p5/2
+

2665

512p7/2

)∣∣∣∣∣ ≤ M

p9/2
. (40)

Replace p by np to find an asymptotic expression for the number of Motzkin paths of
length 0 mod p. Multiply this by 3−np and sum over n ≥ 1. This shows that∣∣∣∣∣

∞∑
n=1

mnp3
−np − 3

√
3

2
√

π

(
ζ(3/2)

p3/2
− 39ζ(5/2)

16p5/2
+

2665ζ(7/2)

512p7/2

)∣∣∣∣∣ ≤ Mζ(9/2)

p9/2
. (41)

Since M(1/3, 1, 1|p) = 1 +
∑

n≥1 mnp3
−np this gives the asymptotic expression for

M(1/3, 1, 1|p). We find the asymptotic expression for H(1/3, 1, 1|p) =
∑

n≥1 mnp−13
−np

using similar reasoning to the above.

The expressions in this theorem can now be used to find an asymptotic expression for
the adsorption critical points in the case that w = 1.

Corollary 9. Consider the model of Motzkin paths with vertex-visits and generating func-
tion M(z, v, a|p), and suppose that v = 1. The critical point in this model is approximated
asymptotically up to decaying terms by

ac(p) =
2
√

3π

9ζ(3/2)
p3/2 +

13
√

3πζ(5/2)

24ζ(3/2)2
p1/2 + 1 + O(p−1/2). (42)

The Motzkin path model with edge-visits and generating function M(z, w, α|p), where
w = 1, has adsorption critical point approximated asymptotically in p by

αc(p) ∼ 2
√

3π

3ζ(3/2)
p3/2 +

5ζ(5/2)
√

3π

8ζ(3/2)2
p1/2 + 1 + O(p−1/2). (43)

Proof. Let us first consider the vertex-visit case; the edge-visit case follows similarly. By
examination of the structure of the generating function given in Theorem 3 we see that
the singularities of F (z, 1, a|p) are the singularities of F (z, 1, 1|p), M(z, 1, 1|p) and the
zero of the denominator. One can show that F (z, 1, 1|p) has square root singularities at
z = 1

3
,−1, and that M(z, 1, 1|p) has square-root singularities at z = 1

3
βk and z = −βk,

with β a pth root of unity, k = 0, 1, . . . , (p − 1). The zero of the denominator is given by

M(z, 1, 1|p) =
a

a − 1
or a =

M(z, 1, 1|p)

M(z, 1, 1|p) − 1
.

For small values of a, the dominant singularity is the square root singularity of F and
M at z = 1/3. For large values of a, the dominant singularity is the simple pole arising
from the zero of the denominator. These two lines of singularities meet when z = 1/3,
and so there is a non-analytic point in the radius of convergence at

ac(p) =
M(1/3, 1, 1|p)

M(1/3, 1, 1|p) − 1
,
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which is interpreted as the location of the adsorption transition. Substituting the asymp-
totic expression for M(1/3, 1, 1|p) from Theorem 8 completes the proof.

It is interesting to note that

lim
p→∞

αc(p)/ac(p) = 3; (44)

and that asymptotically, αc(p) ≈ 3ac(p), but there seems to be no simple explanation for
this. It is in principle also possible to consider other models of copolymer adsorption.
In the case here it is possible to immediately extend the results to a model of {BAp−1}∗
copolymer adsorption by suitable choices for v and a (or w and α). However, we can-
not solve this case explicitly; that would require uniform (in v or in w) asymptotics for
M(z, v, 1|p) and M(z, w, 1|p) outside its radius of convergence, see [26].

3 Adsorbing Bargraphs

The techniques of Section 3 may be applied to other models, and in this section we
consider a model of adsorbing bargraphs. There are also two possible models; the first
a model of vertex-visit bargraphs, and the second a model of edge-visit bargraphs. The
generating functions of these models can be obtained using standard techniques, at least
in the homopolymer case. On the other hand, the copolymer cases are challenging, and
we are only able to solve for the critical point in the case of a {ABp−1}∗-copolymer with
edge-visits: there are technical difficulties in the vertex-visit version of this model which
makes the model (seemingly) intractable. We note that a number of periodic copolymer
models have been solved for very short periods [22].

3.1 The Vertex- and Edge-Adsorption Problem for Bargraphs

As in the case of Motzkin paths, there is a canonical factorisation of bargraphs4 with
edge-visits generated by w, and which can be implemented as follows:

4Note that the generating function B(z, w) does not include the empty walk (a single vertex, having
weight 1). This is deliberate; the inclusion of this term leads to a more complicated factorisation and
more terms in the functional recurrence.
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B(z, 1)B(z, 1)

B(z, 1)

B(z, w)

B(z, w)B(z, w)

or or

ororiseach

The factorization above leads to the following functional recurrence equation for B(z, w):

B(z, w) = wz + z2B(z, 1) + wz3B(z, 1) + wzB(z, w) + wz3B(z, 1)B(z, w). (45)

This equation is solved by first finding a solution when w = 1, which gives equation (8),
and using this the full generating function can be written down from equation (45).

B(z, w) =
z (w + zB(z, 1) + z2wB(z, 1))

1 − wz − wz3B(z, 1)
. (46)

The structure of this generating function is similar to that of Dyck paths; its radius
of convergence is determined by a locus of square root singularities, and by a curve of
simple poles when 1 − wz − wz3B(z, 1) = 0. The meeting of these is the adsorption
critical point; for small values of w the square root singularity determines the radius of
convergence, while for large values of w the curve of simple poles determine the radius of
convergence. Consequently the asymptotic behaviour of B(z, w) is similar to that of the
Dyck path generating function D(z, w) in that for small w it is dominated by a square root
singularity, while for large w it is dominated by a simple pole, and the critical curve is a
more complicated function of w (it is the root of a degree six polynomial with coefficients
that are polynomials in w). In spite of this, it is relatively simple to find the critical point
by locating that value of w where the square root singularity is replaced by the simple
pole along the critical curve:

wc =
2 +

√
2

2
, for bargraphs with edge-visits. (47)

If a model of bargraphs with vertex-visits5 generated by v is instead considered, then
the recurrence equation is obtained from the factorisation in the figure above, and is
explicitly given by

B(z, v) = v2z + v2z2B(z, 1) + v3z3B(z, 1) + vzB(z, v) + v2z3B(z, 1)B(z, v). (48)
5The generating function B(z, v) of these objects will not include the trivial walk consisting of one

vertex and weight v; it can be added to B(z, v) after the fact.
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Solving first for B(z, 1) gives equation (8), but the generating function is in this case given
by

B(z, v) =
v2z (1 + zB(z, 1) + vz2B(z, 1))

1 − vz − v2z3B(z, 1)
(49)

and the critical adsorption activity has numerical value

vc = (
√

10 +
√

5 −
√

2 − 1)/2. (50)

3.2 Exchange Symmetry in Adsorbing Bargraphs with Edge-
Visits

A model of bargraph paths with edge-visits is similar to the model of Motzkin paths with
edge-visits. The exchange relation in this model is identical to that of the corresponding
Motzkin path model in equation (24), with appropriate reinterpretation of the generating
functions. As before, it is necessary to define a model of anchored bargraphs, whose first
edge lies horizontally in the adsorbing line.

Definition 3. Fix the period of the colouring {ABp−1}∗ to be p. Define the following:

• B(z, w, α|p) is the generating function of bargraphs with edges labeled by {ABp−1}∗
and of length 0 mod p, edge-visits are generated by w, and wα generates A-edge-
visits;

• C(z, w, α|p) is the generating function of all anchored bargraphs with edges labeled
by {ABp−1}∗ of length 0 mod p with all edge-visits generated by w, and A-visits
generated by wα.

An exchange relation satisfied by both B(z, w, α|p) and C(z, w, α|p) can be obtained
using similar arguments to those leading to Theorem 5:

Theorem 10. The generating function B(z, w, α|p) satisfies the following exchange rela-
tion:

αB(z, w, α|p)C(z, w, 1|p)−
(
B(z, w, α|p) − B(z, w, 0|p)

)
=
(
B(z, w, α|p) − B(z, w, 0|p)

)
C(z, w, 1|p)

(51)

It follows that

B(z, w, 1|p) = B(z, w, 0|p)
(
1 + C(z, w, 1|p)

)
(52)

and so

B(z, w, α|p) =
B(z, w, 1|p)

1 + (1 − α)C(z, w, 1|p)
. (53)
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Proof. The proof of this theorem can be found by examining Figure 5. In the top figure
a shaded and weighted (by α) bargraph is followed by an unshaded and unweighted (by
α), anchored bargraph. The weighted path may be empty, but the unweighted path is
non-empty. If the next A-edge-visit is weighted by an α, then the bottom part of the
figure is obtained, where the shaded and weighted path is non-empty, while the unshaded
path may be empty. As for Motzkin and Dyck paths, the statistics of the top and bottom
conformations only differ by one factor of α, and the exchange relation follows.

Weighted

Weighted

Unweighted

Unweighted

Figure 5: Edge-visit exchange relation.

The critical adsorption point is again located at the intersection of a curve of poles in
B(z, w, α|p) in Theorem 10 given by

1 + (1 − α)C(z, w, 1|p) = 0 (54)

and a line of branch points in B(z, w, α|p) along z =
√

2−1. Thus, the critical adsorption
point in this model is located at αc(p), which is the solution of

1 + (1 − α)C(
√

2 − 1, w, 1|p) = 0 (55)

and we shall examine this below in the case that w = 1.

3.3 Vertex-coloured bargraphs

In all the models we discussed previously, including vertex-coloured Dyck paths [26] and
vertex-coloured Motzkin paths, the exchange relations express the fact that any coloured
path ending in an A-visit may be concatenated with any unweighted path. Unfortunately
this is not the case for the vertex-coloured bargraph model; in particular if the last edge
in a bargraph is vertical, then it may not be concatenated with a bargraph whose first

the electronic journal of combinatorics 9 (2002), #R20 19



edge is vertical. This observation suggests that it will be challenging to find a simple
exchange relation in this model; if we separate bargraphs into sets with last edge vertical
or horizontal, then an exchange relation can be found, but it will involve two unknowns
and cannot be solved to find either the generating function, nor the location of the critical
adsorption point.

Weighted Unweighted

Figure 6: Permitted pairs of bargraphs. A bargraph that ends in a vertical edge may be
joined to one that starts with a horizontal edge, but not a vertical edge. While a bargraph
that ends in a horizontal step may be joined to any bargraph.

Definition 4. Define the following two generating functions of {ABp−1}∗A coloured bar-
graphs whose last edge is either vertical or horizontal (and where z generates edges, v
generates vertex-visits (or either colour A or B), and av generates A-vertex-visits.

• X(z, v, a) is the generating function of vertex-coloured bargraphs that either consist
of a single vertex or end in a horizontal edge and have length 0 mod p.

• Y (z, v, a|p) is the generating function of vertex-coloured bargraphs that end in a
vertical edge and have length 0 mod p.

Thus the generating function of all bargraphs is B(z, v, a|p) = X(z, v, a|p) + Y (z, v, a|p),
and the coefficient of z0 in X(z, v, a|p) is av.
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The following theorem follows by using similar reasoning to the proofs of other ex-
change relations.

Theorem 11. The generating functions X(z, v, a|p) and Y (z, v, a|p) satisfy the following
exchange relation:

a
(
X(a)

(
X(1) − v

)
+ X(a)Y (1)+Y (a)

(
X(1) − v

))
=(

X(a) − va
)
X(1)+

(
X(a) − va

)
Y (1) + Y (a)X(1),

(56)

where we have used X(a) and Y (a) as shorthand for X(z, v, a|p) and Y (z, v, a|p).

Unfortunately this exchange relation involves two unknowns, namely X(z, v, a|p) and
Y (z, v, a|p), and so may not be solved, nor have we been able to extract the location of
the critical adsorption point from it.

3.4 Asymptotics of C(
√

2 − 1, 1, 1|p).

In this section we develop asymptotics of C(
√

2 − 1, 1, 1|p) which can be used to find an
asymptotic expression for the location of the adsorption critical point in {ABp−1}∗-edge-
coloured copolymers. In this model we only consider the case that w = 1, and we find
the asymptotics for αc(p) only as a function of p.

Let bn be the number of bargraphs of length n. Then

B(z, 1, 1|p) =
∞∑

n=0

bnpz
np. (57)

Anchored bargraphs are counted by bnp−1, and by adding one extra factor of z to generate
the first horizontal edge, one obtains

C(z, 1, 1|p) =

∞∑
n=0

bnp−1z
np. (58)

Hence, only the asymptotics of bn are needed in order to find the asymptotics of C(z, 1, 1|p).
The radii of convergence of B(z, 1, 1|p) and C(z, 1, 1|p) are both given by zc =

√
2 − 1;

this defines part of the critical curve of C(z, 1, a|p) in Theorem 10.

Lemma 12. There exists a finite constant M , such that for sufficiently large n0 > 0, and
for every n ≥ n0,∣∣∣∣∣bn

√
πn3(

√
2 − 1)n+3/2 −

(
1 − 21

√
2 + 36

16n
+

5(252
√

2 + 349)

256n2

)∣∣∣∣∣ < M

n3
. (59)

Proof. The proof of the above is similar to that of Lemma 7.
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Theorem 13. The function C(
√

2 − 1, 1, 1|p) is asymptotic to

C(
√

2 − 1, 1, 1|p) ∼
√

1 +
√

2

π
×(

ζ(3/2)

p3/2
− (12 + 21

√
2)ζ(5/2)

16p5/2
+

5(157 + 357
√

2)ζ(7/2)

256p7/2
+ O(p−9/2)

)
. (60)

Consider first equation (58). Replace bnp−1 by its asymptotic expression from lemma 12,
and expand it asymptotically in p. If z =

√
2− 1, then the sum over n can be done term-

by-term. This proves the theorem.
An immediate consequence of this theorem is an asymptotic formula for αc(p).

Corollary 14. The critical adsorption point for adsorbing bargraphs with edge-visits has
the following asymptotic expression:

αc(p) =
2
√

π
√√

2 − 1

ζ(3/2)
p3/2 +

3 ζ(5/2)
√

π
√

58
√

2 − 2

ζ(3/2)2
p1/2 + 1 + O(p−1/2). (61)

Proof. The critical point is given by the solution of equation (55); substitute the asymp-
totic formula for C(

√
2 − 1, 1, 1|p) from Theorem 13 and solve for a.

Acknowledgements
The authors would like to thank C. Chauve, M. Zabrocki, M. Bousquet-Mélou and

S. G. Whittington for their helpful discussions. E. J. Janse van Rensburg is supported by
an operating grant from NSERC (Canada).

References

[1] C. Banderier and P. Flajolet, 2001, Basic Analytic Combinatorics of Directed Lattice
Paths. To appear in Theo. Comp. Sci.

[2] R. Brak, A.L. Owczarek and T. Prellberg, 1993, A Scaling Theorey of the Collapse
Transition in Geometric Cluster Models of Polymers and Vesicles. J. Phys. A: Math.
Gen. 26, 4565–4579.

[3] M. Bousquet-Mélou, 1996, A Method for the Enumeration of Various Classes of
Column-Convex Polygons, Discrete Math., 154, 1–25.

[4] R. Brak, A.J. Guttmann and S.G. Whittington, 1991, On the Behaviour of Collapsing
Linear and Branched Polymers, J. Math. Chem. 8, 255–68.

[5] R. Brak, A.J. Guttmann and S.G. Whittington, 1992, A Collapse Transition in a
Directed Walk Model, J. Phys. A: Math Gen. 25, 2437–46.

the electronic journal of combinatorics 9 (2002), #R20 22



[6] R. Brak, J.M. Essam and A.L. Owczarek, 1998, New Results for Directed Vesicles
and Chains near an Attractive Wall. J. Stat. Phys. 93, 155–192.

[7] A. R. Conway and A. J. Guttmann, 1996, Square Lattice Self-Avoiding Walks and
Corrections to Scaling. Phys. Rev. Lett., 77, 5284–5287.

[8] K. De’Bell and T. Lookman, 1993, Surface Phase Transitions in Polymer Systems.
Rev. Mod. Phys. 65, 87–114.

[9] M.-P. Delest and X.G. Viennot, 1984, Algebraic Languages and Polyominoe Enu-
meration. Theo. Comp. Sci. 34, 169–206.

[10] P. Flajolet and R. Sedgewick, 2001, Analytic Combinatorics: Singularity Analysis of
Generating Functions. INRIA Rapport de Recherche No. 4103, January 2001, chapter
5.

[11] I.M. Gessel, 1986, A Probabilistic Method for Lattice Path Enumeration. J. Stat.
Plan. and Infer. 14, 49–58.

[12] A. J. Guttmann, I. Jensen, L. H. Wong and I. G. Enting, 2000, Punctured Polygons
and Polyominoes on the Square Lattice. J. Phys. A: Math. Gen. 33, 1735–1764.

[13] J.M. Hammersley, G.M. Torrie and S.G. Whittington, 1982, Self-Avoiding Walks
Interacting with a Surface. J. Phys. A: Math. Gen. 15, 539–571.

[14] E.J. Janse van Rensburg, 1998, Collapsing and Adsorbing Polygons. J. Phys. A:
Math. Gen. 31, 8295–8306.

[15] E.J. Janse van Rensburg, 1999, Adsorbing Staircase Walks and Staircase Polygons.
Ann. Comb. 3, 451–473.

[16] E.J. Janse van Rensburg, 2000, The Statistical Mechanics of Interacting Walks, Poly-
gons, Animals and Vesicles. Oxford Lecture Series in Mathematics and its Applica-
tions 18 (OUP Inc., New York).

[17] P. Larcombe and P. D. C. Wilson, 1998, On the trail of the Catalan sequence. Math-
ematics Today 34, 114–117.

[18] P. Larcombe, 1999, On the history of the Catalan numbers: a first record in China,
Mathematics Today 35, 89.

[19] I.D. Lawrie and S. Sarlbach, 1984, Tricriticality. In Phase Transitions and Critical
Phenomena 9, 65–161. Eds.: C. Domb and J.L. Lebowitz (Academic Press, London).

[20] J. J. Luo, 1993, Catalan numbers in the history of mathematics in China. In Combina-
torics and graph theory: proceedings of the spring school and international conference
on combinatorics, Hefei, 6–27 April 1992, 68–70. Eds.: H. P. Yap, T. H. Ku, E. K.
Lloyd and Z. M. Wang (World Scientific).

the electronic journal of combinatorics 9 (2002), #R20 23



[21] N. Madras and G. Slade, 1993, The Self-Avoiding Walk. Probability and its Appli-
cations (Birkhäuser, Boston).
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