
On counting permutations by pairs of congruence
classes of major index

Hélène Barcelo and Robert Maule Sheila Sundaram

Department of Mathematics 240 Franklin St. Ext.
Arizona State University, Tempe, AZ Danbury, CT 06811
barcelo@asu.edu, rgmaule@msn.com sheila@claude.math.wesleyan.edu

Submitted August 16, 2001; Accepted March 19, 2002.
MR Subject Classification: Primary 05E25

Abstract

For a fixed positive integer n, let Sn denote the symmetric group of n! permuta-
tions on n symbols, and let maj(σ) denote the major index of a permutation σ. Fix
positive integers k < ` ≤ n, and nonnegative integers i, j. Let mn(i\k; j\`) denote
the cardinality of the set {σ ∈ Sn : maj(σ) ≡ i (mod k),maj(σ−1) ≡ j (mod `)}.
In this paper we use combinatorial methods to investigate these numbers. Results
of Gordon and Roselle imply that when k, ` are relatively prime,

mn(i\k; j\`) =
n!

k · ` .

We give a combinatorial proof of this in the case when ` divides n−1 and k divides n.

1 Introduction

Denote by Sn the symmetric group of all n! permutations on the n symbols 1, . . . , n. First
recall some combinatorial definitions pertaining to permutations. See, e.g., [St].

Definition 1.1 Let σ ∈ Sn. For 1 ≤ i ≤ n − 1, i is said to be a descent of σ if
σ(i) > σ(i + 1).

Definition 1.2 The major index of σ, denoted maj(σ), is the sum of the descents of
σ.

The values of the statistic maj range from 0 (for the identity) to
(

n
2

)
.

In [BS], the following result was discovered using certain representations of the sym-
metric group Sn, and then proved by means of a bijection as well.

Proposition 1.3 ([BS], Theorem 2.6) Fix an integer 0 ≤ i ≤ n − 1. Then

(n − 1)! = |{σ ∈ Sn : maj(σ) ≡ i (mod n)}|.

This paper is similarly motivated by the following algebraic discovery. By considering
characters of the symmetric group that are induced from irreducible characters of the
cyclic subgroup of order n, and computing intertwining numbers, the following identity
was discovered, for fixed nonnegative integers i and j ([Su]).

(n − 2)! = |{σ ∈ Sn : maj(σ) ≡ i (mod n), maj(σ−1) ≡ j (mod n − 1)}|, (A)
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Let mn(i\k; j\l) be the number of permutations σ in the symmetric group Sn such that
maj(σ) ≡ i (mod k) and maj(σ−1) ≡ j (mod l). In this paper we give a combinatorial
proof that if l divides n − 1 and k divides n then mn(i\k; j\l) = n!/(kl). We also give a
completely bijective proof of the special case (A) of the main result.

We are very grateful to the first referee for providing the following information. It
turns out that our main result is an easy consequence of some results of Basil Gordon
[Go]. In fact, Gordon’s work implies a more general result: if k and l are relatively
prime and at most n then mn(i\k; j\l) = n!/(kl). Gordon gives a formula determining
a certain generating function, whose identification with the major index statistic is not
made clear in his paper, but is made explicit in yet another paper [R]. Gordon evaluates
his generating function at roots of unity, from which the result of this paper is easily
derived by algebraic manipulation, as well as the more general result stated above. For
the sake of completeness, we will present this proof in the next section. The methods of
the present paper, however, are purely combinatorial.

As pointed out by the second referee, the numbers mn(i\k; j\l) also count the number
of permutations in Sn whose major index is congruent to i modulo k, and whose inversion
number is congruent to j modulo `. This follows from a result of Foata and Schützenberger
[FS] which states that major index and inversion number are equidistributed on descent
sets. However in this paper our investigations focus exclusively on the major index.

The paper is organised as follows. In Section 2 the main technical lemmas are pre-
sented. In Section 3 we derive the main enumerative formulas of the paper, and in Section
4 we give some bijective proofs, including a bijective proof of the identity (A) above.

2 Preliminaries

This section contains the main lemmas that are needed for the rest of the paper.
Let γ ∈ Sn be the n-cycle which takes i to i+1 modulo n, for all i. We will sometimes

write γn for clarity. The circular class of σ is the set of permutations [σ] = {σγi, 0 ≤ i ≤
n − 1}. The following observation is due to Klaychko [K]. For our purposes it is more
convenient to state the result in terms of the inverse permutation. This formulation also
admits an easy proof, which we give below for the sake of completeness.

Lemma 2.1 ([K], [Ga], Lemma 4.1) Let σ ∈ Sn. Then the function τ 7→ maj(τ−1)
takes on all n possible values modulo n in the circular class of σ. More precisely, we have
that maj(σγi)−1 ≡ maj(σ−1) + i (mod n), 0 ≤ i ≤ n − 1.

Proof. Let τ = a1 . . . an (written as a word). Then τγ = a2 . . . ana1. Note that i is a
descent of τ−1 if and only if i appears to the right of i + 1 when τ is written as a word in
{1, 2, . . . , n}.

By looking at occurrences of i to the right of i + 1, it is easy to see that maj(τγ)−1 −
maj(τ−1) = a1 − (a1 − 1) = +1, if a1 6= 1, a1 6= n. If a1 = 1, then clearly maj(τγ)−1 −
maj(τ−1) = +1, while if a1 = n, then the difference is −(n − 1).

Hence in all cases the difference is +1 modulo n. �
The basic idea of the next lemma is also to be found in [Gu]. We are again grateful

to the first referee for bringing this reference to our attention.
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Lemma 2.2 Let σ ∈ Sn−1, and let σi denote the permutation in Sn obtained by
inserting n in position i of σ, 1 ≤ i ≤ n. Then for each k between 1 and n, the values of the
major index on the set {σ1, . . . , σk} form a consecutive segment of integers [m+1, m+k],
and the value of maj(σk+1) is either m or m + k + 1 according as k is a descent of σ or
not, respectively. Note that maj(σn) = maj(σ).

In particular, on the set {σ1, . . . , σn}, the function maj takes on each of the n values
in the interval [maj(σ), maj(σ) + n − 1].

Proof. Let σ′ = a1 . . . an−1, with descents in positions i1, . . . id. Let σ be the permuta-
tion in Sn obtained by appending n to σ′. Hence maj(σ) = maj(σ′). We shall show that
the value of maj(σ′) increases successively by 1 as n is inserted into σ′ in the following
order:

1. first in the positions immediately following a descent, starting with the right-most
descent and moving to the left;

2. then in the remaining positions, beginning with position 1, from left to right.

For instance, if σ′ = 14253, then the resulting permutations, beginning with σ and
then in the order specified above, are

142536, 142563, 146253, 614253, 164253, 142653,

with respective major indices 6,7,8,9,10,11.
Let σk denote the permutation in Sn obtained from σ′ by inserting n in position k.

Thus σk = a1 . . . ak−1 n akak+1 . . . an−1 for k = 2, . . . , n − 1, and σ1 = n a1 . . . an−1,
σn = a1, . . . an−1 n. Let ∆k denote the difference maj(σk) − maj(σ′).

The following facts are easily verified:

1. If n is inserted immediately after a descent of σ′, i.e., if k = ij + 1, 1 ≤ j ≤ d,
then n contributes a descent in position ij + 1, but the ijth element ceases to be a
descent. Also the (d − j) descents to the right of n are shifted further to the right
by one. Thus

∆k = (d − j) + (ij + 1) − ij = d − j + 1,

and hence the difference ∆k ranges from 1 through d.

2. If 1 ≤ k ≤ i1, then the d descents to the right are shifted over by 1, and thus

∆k = d + k,

and hence ∆k ranges from d + 1 through d + i1.

3. If n is inserted in position k between two descents, but not immediately following a
descent, i.e., if 1 + ij < k ≤ ij+1, j ≤ d − 1, then

∆k = (d − j) + k,

and hence ∆k ranges from (d − j + 2) + ij through d − j + ij+1.
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4. Finally when id + 2 ≤ k ≤ n − 1,

∆k = k,

and hence ∆k ranges from id + 2 through n − 1.

This establishes the claim. It also shows that as n is inserted into σ′ from left to
right, the difference in major index goes up (from maj(σ′)) first by (d + 1), then up by
one at each step, except when it is inserted immediately after the jth descent, in which
case it goes down to (d− j + 1). Since when n is in position n, maj(σ′) is unchanged, this
establishes the statement of the lemma. �

Remark 2.3 Note that in Lemma 2.2, it need not be true that the values of maj on
an arbitrary set {σj, . . . , σj+r}, j > 1, form a consecutive set of integers.

Lemma 2.4 Let σ ∈ Sn−1, and let σi denote the permutation in Sn obtained by
inserting n in position i of σ, for 1 ≤ i ≤ n. Then maj(σ−1

i ) ≡ maj(σ−1) (mod n − 1).
Proof. Consider the effect of inserting n on the set of descents of σ−1. If n is inserted

to the right of n − 1, there is no change; if n is inserted to the left of n − 1, then n − 1
becomes a descent of σ−1

i . In either case, the major index of the inverse permutation is
unchanged modulo n − 1. �

Finally we shall need the following result, which generalises Proposition 1.3. It is per-
haps known, although we do not know of a precise reference. There is an easy generating
function proof which we include for the sake of completeness. In Section 4 we will give a
constructive proof of the equivalent statement for inverse permutations.

Proposition 2.5 Let 1 ≤ k ≤ n. Then

n!

k
= |{σ ∈ Sn : maj(σ) ≡ j (mod k)}|.

Proof. Recall the well-known formula due to MacMahon (see [St], p. 216, Corollary
4.5.9)

∑

σ∈Sn

qmaj(σ) =

n−1∏

i=1

(1 + q + . . . + qi) (B)

Note that Lemma 2.2 gives an immediate inductive proof of formula (B).
Now fix integers 1 ≤ k ≤ n and 0 ≤ j ≤ k − 1. To show that the number of

permutations in Sn with major index congruent to j (mod k) is n!/k, it suffices to show
that, modulo the polynomial (1 − qk), the left-hand side of (B) equals (n!/k) · (1 + q +
. . . qk−1).

Since 1 + q + . . . + qi = (1− qi+1)/(1− q), it follows from the generating function that
for fixed k ≤ n, the sum on the left-hand side vanishes at all kth roots of unity not equal
to 1. Hence, modulo (1 − qk), there is a constant c such that

∑

σ∈Sn

qmaj(σ) = c(1 + q + . . . + qk−1).
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Putting q = 1 yields c = n!/k, as required. �
We end this section with the result pointed out by the first referee, mentioned in the

introduction, which is proved along the same lines as Proposition 2.5 by using crucial
results of Gordon [Go] and Roselle[R].

Theorem 2.6 Let k, ` ≤ n, and assume k, `, are relatively prime. Then

mn(i\k; j\`) =
n!

k`
.

Proof. Let Hn(q1, q2) =
∑

σ∈Sn
q
maj(σ)
1 q

maj(σ−1)
2 . Let ωk denote a primitive kth root of

unity. It follows from results of Gordon [Go] and Roselle [R] that if 1 < g 6= h ≤ n, then
Hn(ωg, ωh) = 0.

Now apply this result with g = k, h = `. Let

Rn(q1, q2) =
∑

0≤i≤k−1,0≤j≤`−1

mn(i\k; j\`)qi
1q

j
2.

By the result mentioned above, this vanishes for q1 = ωk, q2 = ω`. But ωi
kω

j
` = ωi`+jk

k` . It
is easy to verify that because k and ` are relatively prime, the exponent i` + jk runs over
all k` distinct residue classes modulo k`, for 0 ≤ i ≤ k − 1 and 0 ≤ ` ≤ j − 1. Hence
Rn(ωk, ω`) is a linear combination of all k` roots of unity which vanishes. This implies
that the polynomial

Pn(q) =
∑

0≤i≤k−1,0≤j≤`−1

mn(i\k; j\`)qα(i,j),

where α(i, j) is some fixed permutation of the k` integers {0, . . . , k` − 1}, vanishes at a
primitive k`-th root of unity. Hence there is a constant c such that

Pn(q) = c(1 + q + . . . + qk`−1).

It follows immediately that mn(i\k; j\`) = c. Putting q = 1 gives c = n!
k`

. �

3 Enumerative Results

Recall that mn(i\k; j\`) denotes the number of permutations σ ∈ Sn with maj(σ) ≡ i
(mod k) and maj(σ−1) ≡ j (mod `). We give a combinatorial proof of:

Theorem 3.1 Let ` be a divisor of n − 1, ` 6= 1, and let k be a divisor of n, k 6= 1.
Fix 0 ≤ i ≤ k − 1, 0 ≤ j ≤ ` − 1. Then

mn(i\k; j\`) =
n!

k · `.
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Proof. Let σ ∈ Sn−1, and construct σi, i = 1, . . . , n in Sn as in Lemma 2.2, by inserting
n in position i. Since `|n − 1, we have by Lemma 2.4 that for all i,

maj(σ−1) ≡ maj(σ−1
i ) (mod `).

By Lemma 2.2, since the set {maj(σi) : i = 1, . . . , n} consists of n consecutive integers,
each congruence class modulo k appears exactly n

k
times. Hence we have

mn(i\k; j\`) =
n

k
· |{σ ∈ Sn−1 : maj(σ−1) ≡ j (mod `)}|

and the result now follows from Proposition 2.5. �
By examining Lemma 2.2 more closely, we obtain the following recurrence on n for

these numbers in the case when k and ` are divisors of n − 1.
Proposition 3.2 Let `, k be divisors of n − 1, ` 6= 1, k 6= 1. Then

mn(i\k; j\`) = (n − 2)!
(n − 1)2

k · ` + mn−1(i\k; j\`).

Proof. Let σ ∈ Sn−1, and construct σi, i = 1, . . . , n in Sn as in Lemma 2.2, by inserting
n in position i. Since `|n − 1, we have by Lemma 2.4 that for all i,

maj(σ−1) ≡ maj(σ−1
i ) (mod `).

Now let k|n − 1. By Lemma 2.2, the major indices of the first n − 1 elements σi,
i = 1, . . . , n− 1, form a segment of n− 1 consecutive integers, and hence the residue class
i modulo k appears exactly n−1

k
times among them. Also note that maj(σ) = maj(σn).

Hence we have

mn(i\k; j\`) =
n − 1

k
|{σ ∈ Sn−1 : maj(σ−1) ≡ j (mod `)}|

+|{σ ∈ Sn−1 : maj(σ−1) ≡ j (mod `), maj(σ) ≡ i (mod k)}|.
Collecting terms and using Proposition 2.5, we obtain

mn(i\k; j\`) =
n − 1

k

(n − 1)!

`
+ mn−1(i\k; j\`),

as required. �
We note that while the above arguments are not symmetric in k and `, the numbers

mn(i\k; j\`) satisfy

mn(i\k; j\`) = mn(j\`; i\k). (C)

This follows by applying the involution τ 7→ τ−1.
For arbitrary choices of k, `, these numbers usually depend on the values of i and j.

For example for n = 4, we have m4(0\2; 0\2) = 8 = m4(1\2; 1\2), and m4(1\2; 0\2) =
4 = m4(0\2; 1\2). When k = ` = 3, we have m4(0\3; 0\3) = 4, m4(0\3; 1\3) = 2 =
m4(0\3; 2\3); and m4(1\3; 1\3) = 3 = m4(1\3; 2\3). The other values follow by symmetry
from (C).

Note that in view of Proposition 2.5, we know that, for fixed `, the sum over i =
0, 1, . . . , k − 1 of the numbers mn(i\k; j\`) is n!

`
.
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4 Some bijections

In this section we present bijective proofs for some of the results derived in Sections 3
and 2. Recall that this paper was originally motivated by the algebraic discovery of the
formula (A). We now give a bijective proof of (A), which is the special case k = n, ` = n−1
of Theorem 3.1, namely

mn(i\n; j\n − 1) = (n − 2)!

Proposition 4.1 (Bijection for the case k = n, ` = n − 1 of Theorem 3.1.) Fix
integers 0 ≤ i ≤ n−1, 0 ≤ j ≤ n−2. Then the number of permutations σ in Sn such that
maj(σ) ≡ i (mod n) and maj(σ−1) ≡ j (mod n − 1), equals (n − 2)!

Proof. First note that (n − 2)! counts the number of permutations in Sn−1 having
n − 1 as a fixed point. Let An−1 be this set of permutations, and let Bn be the subset of
Sn with major indices as prescribed in the statement of the theorem. Given σ ∈ An−1, by
Lemma 2.1 there is a unique circular rearrangement σ′ in Sn−1 whose inverse has major
index congruent to j (mod n−1). Lemma 2.2 then shows that, for each i = 0, 1, . . . , n−1,
there is a unique position in σ′ in which to insert n, in order to obtain a permutation
σ′′ ∈ Sn such that maj(σ′′) ≡ i (mod n). By Lemma 2.4, the passage from σ′ to σ′′ does not
change the major index of the inverses modulo n−1, and thus maj(σ′′−1) = maj(σ′−1) ≡ j
(mod n − 1). Hence σ 7→ σ′′ gives a well-defined map from An−1 to Bn. To see that this
is a bijection, given σ′′ ∈ Bn, erase the n to obtain σ′ ∈ Sn−1, and let σ be the unique
circular rearrangement of σ′ such that σ(n − 1) = n − 1. Then σ ∈ An−1, and clearly the
map is a bijection. �

Example 4.1.1 Let n = 6, i = 2, j = 3. Take σ = 21345 ∈ A5. Note that maj(σ−1) =
1. The unique circular rearrangement whose inverse has major index equal to 3(≡ 3
(mod 5)) is σ′ = 34521. Now maj(σ′) = 7, since the descents are in positions 3 and
4. Now use the proof of Lemma 2.2. To obtain a permutation with major index 8 (≡ 2
(mod 6)), insert 6 into position 5, immediately after the right-most descent. This gives
σ′′ = 345261 ∈ B6.

The remainder of this section is devoted to giving a constructive proof of Proposition
2.5. A bijection for the case k = n was given in [BS], using Lemma 2.1. We do not know
of a bijection for arbitrary k, but a bijection for the case k = n − 1 is given in the proof
which follows.

Proposition 4.2 (Bijection for the case k = n−1 of Proposition 2.5.) Fix an integer
0 ≤ j ≤ n − 2. The number of permutations in Sn with major index congruent to j
(mod n − 1) is n(n − 2)! = n!/(n − 1).

Proof. Let Bn denote the set {σ ∈ Sn : maj(σ−1) ≡ j (mod n − 1)}. It suffices to
show that this set has cardinality n(n−2)!. Let Cn denote the set of permutations τ ∈ Sn

such that, when n is erased, n− 1 is a fixed point of the resulting permutation τ ′ in Sn−1.
Observe that Cn has cardinality n(n−2)!, since the number of permutations in Sn−1 which
fix n − 1 is (n − 2)!, and there are n positions in which n can be inserted.

We describe a bijection between Cn and Bn. If τ ∈ Cn, let τ ′ be the permutation
in Sn−1 obtained by erasing n. By definition of Cn, τ ′(n − 1) = n − 1. By Lemma 2.1,
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there is a unique circular rearrangement τ ′′ ∈ Sn−1 of τ ′ such that the major index of
the inverse of τ ′′ is congruent to j (mod n − 1). Now construct τ̃ ∈ Sn by inserting n
into τ ′′ in the same position that it occupied in τ, i.e., τ̃−1(n) = τ−1(n). By Lemma 2.4,
maj(τ̃−1) = maj(τ ′′−1) ≡ j (mod n − 1). Hence we have a map τ 7→ τ̃ ∈ Bn. It is easy to
see that this construction can be reversed exactly as in the proof of Proposition 4.1, and
hence we have the desired bijection. �

Example 4.2.1 Let n = 5, j = 2. Take τ = 32154. Then τ belongs to the set C5 of
the preceding proof. Erasing 5 yields τ ′ = 3214, whose inverse major index is 3. The
third cyclic rearrangement τ ′′ = 4321 then has inverse major index 6 ≡ 2 (mod 4), and
τ 7→ τ̃ = 43251.

Now we examine Klyachko’s Lemma 2.1 more closely. We obtain the following result,
which specialises, in the case k = n, to Proposition 1.3.

Lemma 4.3 Fix integers 1 ≤ k ≤ n, 0 ≤ j ≤ k − 1 and 1 ≤ a ≤ n − k + 1.

1. Then

(n− 1)! = |{σ ∈ Sn : maj(σ−1) ≡ j (mod k), σ−1(n) ∈ [n− a− k + 2, n− a + 1]}|.

2. Let n = qk + r, 0 ≤ r ≤ k − 1. Fix an integer s between 1 and q. Then

s(n − 1)! = |{σ ∈ Sn : maj(σ−1) ≡ j (mod k), σ−1(n) ∈ [n − sk + 1, n]}|.

Proof. Let An denote the set of permutations in Sn which fix n, and let Bn denote the
subset of Sn subject to the conditions in the statement of part (1). Let τ ∈ An. Consider
the circular class of τ consisting of the set {τ, τγ, . . . , τγn−1}. The proof of Lemma 2.1
shows that because τ(n) = n, we have the exact equality maj(τγi) = maj(τ) + i, for
0 ≤ i ≤ n − 1. In particular, for any 1 ≤ k ≤ n, the first k circular rearrangements
τγi, 0 ≤ i ≤ k − 1, have the property that the major indices of their inverses form
a complete residue system modulo k. More generally, this observation holds for any k
consecutive circular rearrangements τγi, a ≤ i ≤ a + k − 1, where a is any fixed integer
1 ≤ a ≤ n − k + 1.

Hence for every τ ∈ An, there is a unique i, a ≤ i ≤ a + k − 1 such σ = τγi has
maj(σ−1) ≡ j (mod k). Since n is in position n − i in τγi, clearly n − a − k + 2 ≤
σ−1(n) ≤ n − a + 1. Thus τ 7→ σ gives a well-defined map from An to Bn. Conversely
given σ ∈ Bn, with σ−1(n) = n − i + 1, a ≤ i ≤ a + k − 1, let τ ∈ Sn be defined by
τγi = σ. Then clearly τ(n) = n, and τ ∈ An. This shows that our map is a bijection, and
(1) is proved.

For (2), again we start with the set An of the (n − 1)! permutations in Sn which
fix n. Let τ ∈ An. Then as in the preceding proof, for i = 0, 1, . . . , sk − 1, the first sk
circular rearrangements τγi have n in position (n − i), and maj((τγi)−1) = maj(τ) + i.
In particular, for each J = 1, . . . , s, the major index of the inverse permutations in the
subset {τγ(J−1)k+i : 0 ≤ i ≤ k−1} is a complete residue system modulo k. Hence the first
sk rearrangements contain exactly s permutations with inverse major index congruent to
j (mod k). This establishes (2). �
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We are now ready to give a constructive proof of an equivalent restatement of Propo-
sition 2.5, by looking at the circular classes of permutations τ ∈ Sn which fix n. Note
that the statement of Proposition 4.4 ( or Proposition 2.5) is invariant with respect to
taking inverses, i.e., it says that n!

k
is also the number of permutations in Sn with con-

stant major index modulo k. Our constructive proof, however, works only for the inverse
permutations.

Proposition 4.4 (Constructive proof)

n!

k
= |{σ ∈ Sn : maj(σ−1) ≡ j (mod k)}|.

Proof. We proceed inductively. We assume k ≤ n − 1, since the case k = n was
dealt with in Proposition 1.3. It is easy to verify directly that the statement holds for
n = 3. Assume we have constructed the permutations in Sn−1 with inverse major index
congruent to j (mod k). Note that this means we can identify these permutations in the
subset An of Sn. Let τ ∈ An. We show how to pick out the permutations in the circular
class of τ with inverse major index congruent to j (mod k). Let n = qk + r. Taking
s = q in Lemma 4.3 (2), the proof shows how to pick out the q permutations in the first
qk circular rearrangements τγi, 0 ≤ i ≤ qk − 1. Now consider the remaining r (recall
r < k) rearrangements τγi, qk ≤ i ≤ qk + r − 1. These will contain a (necessarily unique)
permutation with inverse major index congruent to j (mod k), iff maj(τ−1) ≡ j − i
(mod k), for qk ≤ i ≤ qk + r − 1, i.e., iff maj(τ−1) ≡ j − t (mod k), for t = 0, . . . , r − 1.
By induction hypothesis for each t = 0, . . . , r − 1, there are exactly (n − 1)!/k such
permutations in An. Hence there are r(n− 1)!/k permutations in An whose circular class
is such that, among the last r rearrangements, there is a permutation with inverse maj
congruent to j (mod k).

We have thus accounted for exactly q(n−1)!+r(n−1)!/k = n!/k permutations σ ∈ Sn

with maj(σ−1) ≡ j (mod k). �
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