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Abstract

In this paper we introduce the recursively directed hypercubes, and analyze some
of their structural properties. We show that every recursively directed hypercube is
acyclic, and has a unique pair of source and sink nodes. The main contribution of
the paper is an analysis of distances between the nodes in such a graph. We show
that the distance from the source node to any other node, and from any node to
the sink node is bounded by n + 1, where n is the dimension of the hypercube, but
the diameter of a recursively directed hypercube may be exponential in n.

1 Introduction

An n-dimensional hypercube Hn, or a Hamming cube, is a graph with 2n nodes each
labeled by an n-bit binary number. Edges occur between nodes whose labels differ in
precisely one bit. Recursively, hypercubes can be defined as follows: A 1-dimensional
hypercube is an edge with one node labeled 0 and the other node labeled 1. An (n + 1)-
dimensional hypercube is constructed from two n-dimensional hypercubes, H0

n and H1
n,

by adding edges from each node in H0
n to the node in H1

n that has the same label and
then by prefixing all of the labels in H0

n with a 0 and all of the labels in H1
n with a 1.

A directed n-dimensional hypercube ~Hn, as discussed in [7, 12], is obtained by an
arbitrary orientation of the undirected hypercube Hn. The motivation for investigating
structural properties of the directed hypercubes is given in [1] with respect to the configu-
ration graph of a Hopfield Net [10]. In [7, 12] it is shown that acyclic directed hypercubes
may have exponential diameter. More precisely, it was proved that for every n ≥ 1 there
is an acyclic oriented hypercube ~Hn with diameter ≥ Fn+1, where Fn is the nth Fibonacci
number.

In turn, design of special-purpose orientations of graphs [4] in general, and of the
hypercubes in particular [3, 8, 9, 11], appear in literature as well. These orientations
were developed, mainly in the context of computer networks, to offer some important
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Figure 1: Recursive construction of a directed hypercube.

properties, e.g. high connectivity [3, 9], small diameter [11], both these properties [8], etc.
In this paper we take a somewhat opposite direction – we introduce a family of directed
hypercubes, and analyze its structural properties.

Observe, that the two components of Hn, H0
n−1 and H1

n−1, are trivially identical, while,

in most of the cases, an oriented ~Hn cannot be disassembled into two identically oriented
components ~H0

n−1 and ~H1
n−1. Now, lets define the directed n-dimensional hypercube

differently, such that its definition will, in some sense, correlate to the recursive definition
of its undirected predecessor:

1. A 1-dimensional directed hypercube is an edge with one node labeled 0 and the
other node labeled 1.

2. An (n + 1)-dimensional directed hypercube is constructed from two identical

n-dimensional directed hypercubes, ~H0
n and ~H1

n, by adding arbitrarily directed edges

between each node in ~H0
n and the node in ~H1

n that has the same label and then by

prefixing all of the labels in ~H0
n with a 0 and all of the labels in ~H1

n with a 1.

In what follows, a pair of identically labeled nodes in ~H0
n and ~H1

n are called twin
nodes.

An example of such a recursive construction is presented in Figure 1. As far as we know,
such a definition of the directed n-dimensional hypercube is novel, and thus the properties
of this structure were not previously investigated. In order to distinguish between the
two definitions of the directed hypercube in what follows, we denote such a structure by
recursively directed hypercube.

In Artificial Intelligence, recursively directed hypercubes represent a preference order
over the outcomes, defined by a Conditional Preference Network (CP-net) [2, 6]. As
such, the diameter of the hypercube gives a lower bound on any algorithm for preferential
dominance testing for a pair of outcomes, therefore, we are motivated to consider the
structural properties of such directed hypercubes, and especially their diameter.

In this paper, we first show that each recursively directed hypercube is acyclic and
have a unique pair of source and sink nodes. Second, we show that the distances from
the source node to any other node, and from any node to the sink node in any ~Hn are
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bounded by n. However, in spite of such a strong property, we show that recursively
directed hypercube may have exponential diameter.

The rest of the paper is organized as follows: Section 2 presents some general properties
of the recursively directed hypercubes, e.g. its acyclicity. Section 3 is devoted to an
analysis of the distance between the nodes in recursively directed hypercubes. Section 4
provides an additional way to define recursively directed hypercubes, which allows us to
pose an open question. In Section 5 we conclude.

2 General Properties

In this section we show that any recursively directed hypercube is acyclic, and that it has
a unique pair of source and sink nodes. Denote the nodes of ~H0

n and ~H1
n by v1, . . . , v2n

and v1′, . . . , v2n ′
respectively. In what follows, we use a subscript index for the nodes, e.g.

vi, in order to specify nodes not according to their actual labels.

Theorem 1 Every recursively directed hypercube is acyclic.

Proof: The proof is by induction on the dimension of the hypercube. Obviously, any
~H1 is acyclic since it consists of only one edge. Under the assumption that any ~Hn is
acyclic we prove that any ~Hn+1 is acyclic.
Assume to the contrary that there exist some recursively directed hypercube ~Hn+1 that is
not acyclic, and consider an arbitrary cycle in it. Since both ~H0

n and ~H1
n are acyclic, this

cycle contains some edges e1, . . . , em (in this order) connecting pairs of twin nodes in ~H0
n

and ~H1
n, where m = 2k, for some k ∈ N . Let e1 be an edge connecting a node in ~H0

n with

its twin in ~H1
n. Then, for 1 ≤ i ≤ m, if i is odd then ei = (vi, v

′
i), otherwise ei = (v′

i, vi).

Now, for 1 ≤ i ≤ m
2
− 1, there is a path from v(2i−1)

′ to v(2i)
′ in ~H1

n, and a path from v(2i)

to v(2i+1) in ~H0
n. Likewise, there is a path from vm to v1 in ~H0

n. However, ~H0
n and ~H1

n

are identical, thus, for 1 ≤ i ≤ m
2
− 1, there is a path from v(2i−1) to v(2i) in ~H0

n, which

contradicts our assumption that ~H0
n is acyclic. �

Now, consider a directed hypercube ~Hn, and a node v ∈ ~Hn. The node v is a source
of ~Hn if there is no edge (v′, v) ∈ ~Hn. Similarly, the node v is a sink of ~Hn if there is no

edge (v, v′) ∈ ~Hn.
Note that, in general, there is no particular limitations on the number of the sources

and/or the sinks for directed hypercubes. For example, the directed hypercube in Fig-
ure 2(a) has two sources and two sinks, while the directed hypercube in Figure 2(b) has
neither sources, nor sinks. The only observation is that any acyclic directed hypercube
should contain at least one source and one sink.

Theorem 2 Every recursively directed hypercube has exactly one source and one sink.

Proof: The proof is by induction on the dimension of the hypercube. Obviously, any
~H1 has a unique source and a unique sink since it consists of only one edge. Under the
assumption that any ~Hn has a unique source and a unique sink, we prove it for any ~Hn+1.
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Figure 2: Examples of general directed hypercubes.

Consider a recursively directed hypercube ~Hn+1, and its identical components ~H0
n and

~H1
n. Denote the sources and sinks of ~H0

n and ~H1
n by {s, t} and {s′, t′}, respectively. The

only candidates for sources of ~Hn+1 are the twin nodes s and s′. However, by definition of
the directed hypercube, either s has an incoming edge (s′, s) or s′ has an incoming edge

(s, s′), thus exactly one of them becomes the source of ~Hn+1. Hence, we proved that ~Hn+1

has exactly one source. Similarly we can show that only one of the twin nodes t and t′ is
the sink of ~Hn+1. �

3 Diameter of Recursively Directed Hypercubes

In this section we analyze distances between the nodes in a recursively directed hypercube.
We show that the distance from the source node to any other node, and the distance from
any node to the sink node is less or equal to n+1, where n is the degree of the hypercube.
However, we show that the distance between two arbitrary nodes in a recursively directed
hypercube may be exponential in its degree.

We measure the length of a path in a directed graph by the number of nodes on the
path, and we denote the length of the shortest path from a node v to a node u by l(v, u).
If there is no path from v to u, then we define l(v, u) = 0. Observe that if there is a path
from v to u, then l(v, u) > 0.

Note that the customary choice for the case that u is not reachable from v, is to define
l(v, u) = ∞ [5]. In our case, such a decision will affect the simplicity of some of the
forthcoming definitions, e.g. Eq. 1 and Eq. 2. From the same reasons, in [7], where the
length of a path was measured by the number of edges on the path, l(v, u) for the case
that u is not reachable from v was defined to be −1.

Theorem 3 Let s and t be the source and the sink nodes of a recursively directed hyper-
cube ~Hn. Then, for any node v in ~Hn, 1 ≤ l(s, v) ≤ n + 1 and 1 ≤ l(v, t) ≤ n + 1.

Proof: An immediate implication of theorem 2 is that any node in a recursively directed
hypercube is accessible from the source node, and that the sink node is accessible from
any node. Therefore, for any node v ∈ ~Hn, both l(s, v) ≥ 1 and l(v, t) ≥ 1. The proof of

l(s, v) ≤ n + 1 is by induction on the the dimension of the hypercube. In any ~H1 there is

only one edge, thus the length of any path in ~H1 cannot exceed 2. Under the assumption
that the claim is true for any ~Hn, we prove that it remains true for any ~Hn+1.
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The proof is simple: Consider the source node s and any other node v of ~Hn+1. Without
loss of generality, suppose that s ∈ ~H0

n, where ~H0
n is one of the two recursive components

of ~Hn+1. If v ∈ ~H0
n, then, from the induction hypothesis, l(s, v) ≤ n + 1, since s is also

the source node of ~H0
n. Alternatively, if v ∈ ~H1

n, consider the twin node s′ of s, which is

also the source node of ~H1
n. From the induction hypothesis, l(s′, v) ≤ n + 1. Now, since

the edge (s, s′) belongs to ~Hn+1, we proved that l(s, v) ≤ n + 2. Similarly we can show
that l(v, t) ≤ n + 1. �

Note that theorem 3 trivially implies that the length of a shortest path from s to t
via any specified node x is bounded by 2n + 1. However, the following theorem shows
that, in spite of such a nice property, recursively directed hypercube may have exponential
diameter.

Theorem 4 For every n ≥ 1 there is a recursively directed hypercube ~Hn with diameter

d( ~Hn) ≥

2

3

b0.63nc−1∑
j=1

aj


+ ab0.63nc−1 − n

where {a0 = 2; am = b3
2
am−1c, m ≥ 1}.

The proof of theorem 4 is constructive and is based on the two following lemmata.
Informally, the construction of such ~Hn in performed in two subsequent, differently defined,
recursive processes. First, a recursively directed hypercube of a particular dimension i
is created from ~H1 according to the construction from the proof of lemma 1. Second, a
recursively directed hypercube ~Hn is created from ~Hi according to the construction from
the proof of lemma 2. The obtained ~Hn is then shown to have the diameter with the
above lower bound.

Lemma 1 For every n ≥ 1 there is a recursively directed hypercube ~Hn with a path
through its all 2n nodes.

Proof: The proof is by inductive construction of such an hypercube. In any ~H1,
its unique edge represents the path of length 2. Under the assumption that there exist a
recursively directed hypercube ~Hn that contains a path through its 2n nodes, we construct
a recursively directed hypercube ~Hn+1 that contains a path of length 2n+1.

For the simplicity of notation, we number the nodes of the corresponding ~Hn according
to their appearance on the path of length 2n, and not according to their actual labels.
First, the (n−1)-dimensional components of the required ~Hn+1 are created by duplicating
~Hn into ~H0

n and ~H1
n. Then, the twin nodes of ~H0

n and ~H1
n are connected as follows. For

1 ≤ i ≤ 2n, if i is odd then (vi, v
′
i) ∈ ~Hn+1, otherwise (v′

i, vi) ∈ ~Hn+1. Clearly, the

constructed ~Hn+1 contains the path:

1 · 1′ · 2′ · 2 · 3 · 3′ · . . . · (2j − 1) · (2j − 1)′ · (2j)′ · (2j) · (2j + 1) · (2j + 1)′ . . . · (2n − 1)′ · (2n)′ · (2n)

which is of length 2n+1.
�
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The diameter of ~Hn = (Vn, En), denoted by d( ~Hn), is given by

d( ~Hn) = max{l(vi, vj)|vi, vj ∈ Vn} (1)

Let us extend the notion of diameter as follows. The k-nodes constrained diameter of ~Hn,
denoted by δ( ~Hn, k) is given by

δ( ~Hn, k) = max{
k−1∑
i=1

l(vi, vi+1) | {v1, . . . , vk} ⊆ Vn} (2)

In particular, δ( ~Hn, 2) = d( ~Hn). The actual k nodes defining a k-nodes restricted path ρ

are called the skeleton of ρ. We make a convention that if there is no path in ~Hn through
a set of k nodes then δ( ~Hn, k) = 0.

Lemma 2 Given a recursively directed hypercube ~Hn with δ( ~Hn, k) > 0, we can create a

recursively directed hypercube ~Hn+1 with

δ( ~Hn+1, d2

3
ke) ≥ δ( ~Hn, k) + d2

3
ke − 1

Proof: Suppose that δ( ~Hn, k) is obtained on a path ρn with a skeleton {v1, . . . , vk} ⊆ Vn.
In what follows, by the set of nodes between the nodes v and u we refer to the nodes that
are reachable from v and that u is reachable from them (trivially, if this set is not empty
then it contains the nodes v and u).
Lets assume that k = 3j for some j ∈ N . The construction of the required hypercube
~Hn+1 from the duplicates ~H0

n and ~H1
n of ~Hn is as follows. For each node vi from the

skeleton of ρn, such that i = 3m − 1 for some m ∈ N , we add to ~Hn+1 the edge (vi, v
′
i).

For each remaining node x in ~Hn we add to ~Hn+1 the edge (x′, x). Informally, the former

edges are the only “bridges” from ~H0
n to ~H1

n.

Now consider the shortest path ρn+1 in ~Hn+1 from v1 to v′
k via the following nodes:

v1, v3
′, v4, v6

′, v7, . . . , v3i−2, v
′
3i, v3(i+1)−2, . . . , v

′
k , 1 ≤ i ≤ j

Informally, the skeleton of this path is obtained from the skeleton of ρn by (i) removing

all the nodes v3i−1; (ii) using the nodes v3i−2 from ρn in ~H0
n; (iii) using the twin nodes v′

3i

in ~H1
n, for 1 ≤ i ≤ j. Such a construction of ~Hn+1 is illustrated in Figure 3(a), while the

corresponding ρn+1 is presented in Figure 3(b). In this figure, the thin arrows stand for
paths, while the thick arrows (both solid and dashed) stands for edges.
First, observe that for 1 ≤ i ≤ j,

l(v3i
′, v3(i+1)−2, ~Hn+1) = l(v3i, v3(i+1)−2, ~Hn) + 1 (3)

since we can use the edge (v3i
′, v3i) in order to move from ~H1

n to ~H0
n, and then to use the

shortest path from v3i to v3(i+1)−2 (v3(i+1)−2 ≡ v3i+1). On the other hand, for 1 ≤ i ≤ j,

l(v3i−2, v3i
′, ~Hn+1) = l(v3i−2, v3i−1, ~Hn) + l(v3i−1, v3i, ~Hn) + 1 (4)
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Figure 3: (a) ~Hn+1; (b) ρn+1.

since v3i−1 is the only bridge from ~H0
n to ~H1

n between v3i−2 and v3i. Thus, first we take

the shortest path in ~H0
n from v3i−2 to v3i−1, then we use the edge (v3i−1, v

′
3i−1), and then

we take the shortest path in ~H1
n from v′

3i−1 to v′
3i. Since k = 3j, the path ρn+1 is defined

by 2
3
k nodes in ~Hn+1, and from Eq. 3, and Eq. 4 follows that:

|ρn+1| = |ρn| + 2

3
k − 1

because there are 2
3
k − 1 traversals between ~H0

n and ~H1
n. Recall that ρn was chosen such

that |ρn| = δ( ~Hn, k), thus

δ( ~Hn+1,
2

3
k) ≥ δ( ~Hn, k) +

2

3
k − 1

The analysis of the remaining cases of k = 3j − 1 and k = 3j − 2 is similar except for the
following details. If k = 3j − 1, then we consider the shortest path ρn+1 in ~Hn+1 from v1

to v′
k via the nodes:

v1, v3
′, v4, v6

′, v7, . . . , v3i−2, v
′
3i, v3(i+1)−2 . . . , vk

′ , 1 ≤ i ≤ j

The only difference between this ρn+1 and the one for the case of k = 3j is that we remove
the nodes v3i−1 from its skeleton, but for 1 ≤ i ≤ j − 1. For the last node v3j−1 = vk we
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use its representative vk
′ in ~H1

n. Here the path ρn+1 is defined by d2
3
ke nodes in ~Hn+1,

and thus

δ( ~Hn+1, d2

3
ke) ≥ δ( ~Hn, k) + d2

3
ke − 1

Alternatively, if k = 3j − 2, then we consider the shortest path ρn+1 in ~Hn+1 from v1 to
v′

k via the nodes:

v1, v3
′, v4, v6

′, v7, . . . , v3i−2, v
′
3i, v3(i+1)−2 . . . , vk , 1 ≤ i ≤ j

where the construction of ρn+1 is similar to the one for the case of k = 3j. Here the path
ρn+1 is also defined by d2

3
ke nodes in ~Hn+1, and thus

δ( ~Hn+1, d2

3
ke) ≥ δ( ~Hn, k) + d2

3
ke − 1

�

Proof of Theorem 4: Consider the sequence:

a0 = 2; am = b3

2
am−1c, m ≥ 1

From lemma 2 follows that if we can construct a recursively directed hypercube ~Hi that
contains a path through an−i nodes, then, using the construction from the proof of lemma 2
recursively (starting from ~Hi), we can construct a recursively directed hypercube ~Hn with

d( ~Hn) ≥ an−i +

n−i∑
j=1

(d2

3
aje − 1) = an−i +

(
n−i∑
j=1

d2

3
aje
)

− (n − i)

≥ an−i +

(
2

3

n−i∑
j=1

aj

)
− (n − i)

(5)

Lemma 1 claims that for any m ≥ 1 we can create a recursively directed hypercube ~Hm

with a path through all its 2m nodes. Suppose that for a given n we have some 1 ≤ i ≤ n
such that an−i ≤ 2i. If so, then we can (i) recursively construct ~Hi using the construction

from the proof of lemma 1; (ii) choose a path in ~Hi through an−i nodes, which serve us

a basis to the next step; (iii) recursively construct ~Hn using the construction from the
proof of lemma 1. Note that, by construction, the lower bound for the diameter of the
obtained ~Hn is presented by Eq. 5.

Now we want to determine the minimal appropriate i (providing us the maximal

appropriate an−i), which will give us the highest lower bound for d( ~Hn). Instead of
analyzing the inequality an−i ≤ 2i, we analyze the inequality

2 ·
(

3

2

)n−i

≤ 2i (6)
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Since 2
(

3
2

)j ≥ aj for all j ≥ 0, the minimal i satisfying Eq. 6 will provide an upper bound
for the minimal i satisfying an−i ≤ 2i. Solving Eq. 6 for i brings us to

i ≥ n − (n − 1) log3 2 = 0.37n + 0.63

thus the required, minimal integer value of i is

i = d0.37n + 0.63e (7)

From Eq. 5 and Eq. 7 follows that

d( ~Hn) ≥

2

3

n−d0.37n+0.63e∑
j=1

aj


+ an−d0.37n+0.63e − (n − i)

≥

2

3

b0.63nc−1∑
j=1

aj


+ ab0.63nc−1 − n

�

4 Alternative View on Recursively Directed Hyper-

cubes

The recursively directed hypercube can be defined in a non-recursive manner. Recall that
each node in an n-dimensional hypercube is uniquely specified by some assignment on n
ordered bits. In what follows, the assignment provided by the label of a node v to the bit
i and to the first i bits, are referred to as v[i] and v|i, respectively.

Proposition 1 A directed hypercube ~Hn is recursively directed if and only if there exists
an ordering x1, . . . , xn of the label bits, and a set of boolean orientation functions

F = {ϕ1(), ϕ2(x1), . . . , ϕi(x1, . . . , xi−1), . . . , ϕn(x1, . . . , xn−1)}

such that, for each edge (v, u) ∈ Hn, if the labels of v and u disagree on xi and v[i] = 0
(u[i] = 1), then

ϕi(v|i−1) = 0 → (v, u) ∈ ~Hn

ϕi(v|i−1) = 1 → (u, v) ∈ ~Hn

Note that, v|i−1 = u|i−1, thus we can use ϕi(v|i−1) and ϕi(u|i−1) interchangeably.

Proposition 1 actually provides an alternative definition for the recursively directed
hypercubes. By itself, such a definition is less intuitive than the original one, but it
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provides an additional view on the nature of this structure. Likewise, such a view on
the recursively directed hypercubes allows us to pose a following open question, which is
important in the scope of the CP-nets.

By definition, for 1 ≤ i ≤ n, the arity of the orientation function ϕi is i−1. Intuitively
it means that during the construction of the recursively directed hypercube ~Hi, we may
be required to specify explicitly the direction of each one of the edges connecting ~H0

i−1 and
~H1

i−1. In turn, if the arity of ϕi is less than i−1, it is possible to specify the direction of the

edges connecting ~H0
i−1 and ~H1

i−1 in ”bulks”. If so, what can be said about the diameter
of a recursively directed hypercube that is defined by a set of orientation functions with
arities bounded by a constant k?

5 Summary

In this paper we presented recursively directed hypercubes, and analyzed their structural
properties. We showed that every recursively directed hypercube is acyclic, and has a
unique pair of the source and sink nodes. The main contribution of the paper is an
analysis of distances between the nodes in such a graph. In particular we showed that
the distance from the source node to any other node, and from any node to the sink node
is bounded by n + 1, where n is the dimension of the hypercube, but the diameter of a
recursively directed hypercube may be exponential in n. Finally, we presented an an open
question in respect to a diameter of a subclass of recursively directed hypercubes.
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