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Abstract

We investigate the numbers dk of all (isomorphism classes of) distributive lattices
with k elements, or, equivalently, of (unlabeled) posets with k antichains. Closely
related and useful for combinatorial identities and inequalities are the numbers vk

of vertically indecomposable distributive lattices of size k. We present the explicit
values of the numbers dk and vk for k < 50 and prove the following exponential
bounds:

1.67k < vk < 2.33k and 1.84k < dk < 2.39k (k > k0).

Important tools are (i) an algorithm coding all unlabeled distributive lattices of
height n and size k by certain integer sequences 0 = z1 6 · · · 6 zn 6 k − 2,
and (ii) a “canonical 2-decomposition” of ordinally indecomposable posets into “2-
indecomposable” canonical summands.

1 Vertical decompositions and additive functions

For the enumeration of classes of finite posets or lattices, so-called ordinal resp. vertical
decompositions are of particular use (see, for example, [6, 7]). Roughly speaking, ordinal
and vertical summation consists of placing the posets “above” each other, perhaps identi-
fying extremal elements. As we are mainly interested in unlabeled (i.e. isomorphism classes
of) posets and lattices, it suffices here to give the formal definitions only for sufficiently
disjoint ground sets: The ordinal sum of two posets P1 = (X1,v1) and P2 = (X2,v2)
with (o) X1 ∩X2 = ∅ can be defined as P1 ⊕ P2 = (X1 ∪X2,v), where

x v y ⇐⇒ x v1 y or x v2 y or (x, y) ∈ X1 ×X2.

Although this is also defined for lattices, one rather considers the vertical sum in that
case, where the only difference to the former is that now the top element >1 of the lower
summand and the bottom element ⊥2 of the upper summand are identified instead of
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becoming neighbours: If L1 = (X1,v1) and L2 = (X2,v2) are lattices with (v) X1∩X2 =
{>1} = {⊥2}, their vertical sum can be formally defined as the lattice L = (X1 ∪X2,v)
with v as above. The ordinal [vertical] sum of two isomorphism classes is of course the
isomorphism class of the sum of two representatives that fulfill (o) [(v)].

Now, a poset [lattice] is ordinally [vertically] decomposable if it is either empty [a
singleton] or the ordinal [vertical] sum of two nonempty posets [non-singleton lattices],
otherwise it is ordinally [vertically] indecomposable. The following facts are well known
and easily verified.

Lemma 1 Ordinal and vertical summation are associative (but clearly not commutative).
Every finite poset [lattice] has a unique ordinal [vertical ] decomposition into ordinally
[vertically] indecomposable posets [lattices]. Vertical components of a lattice are intervals
of that lattice.

For graph theorists it may be of interest that the ordinal decomposition of a poset
into indecomposable summands corresponds to the partition of the incomparability graph
into connected components.

By Birkhoff’s Theorem [3], the unlabeled finite posets are in one-to-one correspondence
with the homeomorphism classes of finite T0 spaces [1] and also with the unlabeled finite
distributive lattices, by assigning to each poset P its topology (hence distributive lattice)
A(P ) of all lower sets (also known as downsets, decreasing sets, lower segments, order
ideals). On the other hand, the latter are just the complements of upper sets (also known
as upsets, increasing sets, upper segments, order filters), and each upper, resp. lower set
is generated by a unique antichain (in the finite case). Therefore, the cardinalities of the
following entities are counted by the same number dk:

— unlabeled distributive lattices with k elements,

— non-homeomorphic T0 spaces with k open (closed) sets,

— unlabeled posets with k antichains (upper sets, lower sets).

The above one-to-one correspondence does not preserve ordinal sums, but instead sends
the ordinal sum of P and Q to the vertical sum of A(P ) and A(Q). Therefore, the same
symbol vk may denote the number of all

— vertically indecomposable unlabeled distributive lattices with k elements,

— non-homeomorphic T0 spaces having no nonempty proper open subset comparable
to all other open sets,

— ordinally indecomposable unlabeled posets with k antichains, upper sets, or lower
sets, respectively.

From Lemma 1, we infer immediately (cf. [6, 7]):

Corollary 2 The numbers vk are related to the numbers dk by

d1 = 1, v1 = 0, and dk =

k−1∑
j=1

vk−j+1dj for k > 2.
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2 A useful representation of finite distributive

lattices

We shall use a special case of A. Day’s “doubling construction” [4] , generating larger
lattices from given ones. Let D = (k,v), be a distributive lattice of height n, where we
adopt the usual set-theoretic definition of natural numbers k = {0, 1, . . . , k−1}. Consider
an element z ∈ D and the principal filter I = ↑z := {d ∈ D : z v d}. Let ψ : I↑ → I be the
unique isomorphism from the distributive lattice I↑ with underlying set {k, . . . , k+|I|−1}
onto I such that ψ is strictly increasing with respect to the usual order 6 on the natural
numbers. Define the order relation v↑ on k + |I| by

x v↑ y ⇐⇒
x, y < k and x v y

or x, y > k and ψ(x) v ψ(y)

or x < k 6 y and x v ψ(y).
�����

�����

r

r

r

r

r

D z
D ↑z

I
I↑

Then D ↑z := (k+|I|,v↑) is again a distributive lattice, and D is a retract of D ↑z with
retraction y 7→ y ∧ ∨D ( = ψ(y) for y ∈ I↑). This construction reflects the extensions
of the corresponding poset P of ∨-irreducible (equivalently: ∨-prime) elements by one
new maximal point n (see [5]): the join map from A(P ) to D is an isomorphism, and
for any Z ∈ A(P ), there is a unique poset P ∪ {n} containing P as a subposet such
that n becomes a maximal element generating the principal ideal Z ∪ {n}. Now, the
above isomorphism extends to one between A(P ∪ {n}) and D ↑z where z =

∨
Z. Any

isomorphism ϕ : D → D′ = (k,v′) extends uniquely to an isomorphism ϕ↑ between D ↑z
and D′ ↑ϕ(z) (mapping y ∈ ↑k to ϕ↑(y) = ψ′−1 ◦ ϕ ◦ ψ(y)).

Since every poset of size n + 1 arises from one of size n by the one-point extension
process described above, every finite distributive lattice with more than one element is
isomorphic to one of the formD ↑z. Directly, this can also be seen as follows. Any ∧-prime
element x in a finite distributive lattice E has a unique cover u, and there is a least element
y not dominated by x. This y, henceforth denoted by u \x, in turn is ∨-prime and covers
a unique element z. The intervals [z, x] and [y, u] of E are isomorphic via transposition:
z = x ∧ y, u = x ∨ y. Moreover, E is the disjoint union of ↓x = {e ∈ E : e v x} and
↑y = {e ∈ E : y v e}. Now, it is easy to verify that if x is a coatom in E and D is the
principal ideal ↓x then the whole lattice E is isomorphic to D ↑z.

This observation makes it possible to generate any finite distributive lattice up to
isomorphism by a finite number of “doublings” of principal filters.

Theorem 3 Every distributive lattice (D,v) of finite cardinality k > 1 and height n
is isomorphic to a lattice of the form D0 ↑ z1 ↑ . . . ↑ zn with |D0| = 1 and a sequence
(z1, . . . , zn) ∈ kn with 0 = z1 6 z2 6 · · · 6 zn.
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Figure 1: A handy network of distributive lattices of size 6 8 or height 6 4
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Figure 2: A handy network of distributive lattices (continued)
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Proof. We recursively determine elements xi, yi, zi ∈ D, distributive lattices Di = (ki,vi)
and isomorphisms ϕi : ↓xi → Di, so that x0 @ x1 @ · · · @ xn is a maximal chain in D,
y1, . . . , yn are the ∨-irreducible elements of D, z1, . . . , zn are their unique lower covers,
u v v implies ϕi(u) 6 ϕi(v) (in the natural order), ϕi extends ϕi−1, and Di = Di−1 ↑
ϕi−1(zi) (i > 0).

Let x0 = y0 = z0 be the bottom element andD0 the distributive lattice with underlying
set 1 = {0}. Then ϕ0 : ↓x0 → D0 is uniquely determined. If xi−1, yi−1, zi−1 and ϕi−1 have
been defined and xi−1 is not the top of D, take for xi one element among those covers
u of xi−1 for which ϕi−1(xi−1 ∧ (u \ xi−1)) is minimal in the natural order 6 on Di−1,
and put yi = xi \ xi−1, zi = xi−1 ∧ yi. Then yi is ∨-irreducible and zi is its unique lower
cover. Moreover, the intervals [zi, xi−1] and [yi, xi] are isomorphic via transposition, and
↓xi = ↓xi−1 ∪ [yi, xi]. Hence, there exists an isomorphism ϕi : ↓xi → Di = Di−1 ↑ϕi−1(zi)
satisfying u v v ⇒ ϕi(u) 6 ϕi(v) and extending ϕi−1. Continuing the construction, we
get an isomorphism ϕ = ϕn between D and Dn = D0 ↑ϕ(z1)↑. . .↑ϕ(zn).

Thus, we see that D is uniquely determined, up to isomorphism, by the sequence
ϕ(z1), . . . , ϕ(zn). Without loss of generality, let ϕ be the identity map. Finally, we show
that the sequence 0 = z1, . . . , zn is increasing. Assume i < j but zj < zi. Since zj

is covered by yj and yj 6v xi−1 @ xj−1, it follows that xi−1 = zj ∨ xi−1 is covered by
xi

′ := yj ∨ xi−1. Moreover, in the interval ↓xi,

yi
′ := xi

′ \ xi−1 = min{d ∈ ↓xi
′ : d 6v xi−1} v yj

and zi
′ := xi−1 ∧ yi

′ v xj−1 ∧ yj = zj , whence zi
′ 6 zj < zi, contradicting the choice of xi

(making zi minimal). �

Notice that in the above theorem several different sequences (e.g. (0, 0, 1) and (0, 0, 2))
may describe the same isomorphism type, and that not every increasing sequence
(z1, . . . , zn) ∈ kn corresponds to a distributive lattice. For example, it is not difficult
to see that the construction yields the following inequality:

Corollary 4 If an integer sequence z1 6 · · · 6 zn represents a distributive lattice D0 ↑
z1 ↑. . .↑zn then

j∑
i=1

zi < 2j−1 for 1 6 j 6 n, in particular z1 = 0.

Proof. The lattices Di = ↓ xi = D0 ↑ z1 ↑ . . . ↑ zi have height i and, therefore, size
ki 6 2i. Furthermore, k0 = 1 and ki = |↓xi−1| + |[zi, xi−1]| 6 2ki−1 − zi for i > 0. Hence,
zi 6 2ki−1 − ki and

j∑
i=1

zi 6 2
j∑

i=1

ki−1 −
j∑

i=1

ki = 2 +
j−1∑
i=1

ki − kj 6 1 +
j−2∑
i=1

ki < 2j−1.

�

Another inequality immediately results from doubling one- or two-element intervals
only:
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Corollary 5 The number dk of distributive lattices with k elements is greater than or
equal to the k-th Fibonacci number Fk (with F1 = 0 and F2 = 1).

The previous construction may be used to generate a set of representatives (coded
by finite sequences of natural numbers) for the isomorphism classes of finite distributive
lattices with at least two elements. Define recursively such representative d-sequences as
follows. The empty sequence is a representative d-sequence (for the 2-element chain).
Assume (z2, . . . , zn−1) is a representative d-sequence, representing a distributive lattice
D = D0 ↑ z1 ↑ . . . ↑ zn−1. If k is the size of D then for each integer z with zn−1 6

z 6 k − 1, the sequence (z2, . . . , zn−1, z) codes the distributive lattice D ↑ z. Now, call
(z2, . . . , zn−1, zn) a representative d-sequence if zn is minimal among all z for which D ↑z
is isomorphic to D ↑zn. By our earlier remarks on the doubling construction, this selects
from each isomorphism class of finite distributive lattices one representative which is
coded by the (increasing) sequence (z2, . . . , zn). Indeed, if D is any distributive lattice
of height n and size k then D is isomorphic to D0 ↑z1 ↑ . . . ↑zn for some sequence(s) of
natural numbers z1 = 0, z2, . . . , zn. Taking the lexicographically smallest among these
sequences, one obtains a representative d-sequence (proof by induction, using the unique
extensions of isomorphisms from Di−1 to Di = Di−1 ↑ zi). Similarly, one checks that
different representative d-sequences represent non-isomorphic lattices. Figures 1 and 2
show how all distributive lattices with 6 8 elements or height 6 4 arise in this way, the
vertically indecomposable ones being framed by bold lines.

3 A second ordinal decomposition of a poset

In this section we need a notion of canonicity adopted from [8, 9] which is useful for
various kinds of ordered structures. For the sake of consistency with the forerunners, we
prefer here a downward numbering of elements. Of course, an upward numbering would
work as well.

Here, an n-poset is a poset P with underlying set n = {0, . . . , n− 1}. We write i ≺ j
if j is a cover of i in P and define the weight

wP = (wP (0), . . . , wP (n− 1))

of an n-poset P by setting

wP (i) =
∑
i≺j

2j .

Since a finite poset is uniquely determined by its covering relation, the map P 7→ wP

is injective. Let P,Q be n-posets. Then we say that wP is (lexicographically) smaller
than wQ if there is an i 6 n − 1 such that wP (i) < wQ(i) and wP (k) = wQ(k) for all
k = 0, . . . , i− 1. We call an n-poset C a canonical poset if there is no n-poset isomorphic
to C that has a smaller weight. It was shown in [8, 9] that for every canonical n-poset C
the sequence wC is increasing, i.e. wC(0) 6 · · · 6 wC(n− 1).

The set P1 of all maximal elements in a finite poset P is called the first level of P . One
recursively defines the i-th level Pi of P to be the first level of the subposet P \⋃i−1

j=1 Pj.
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It is well known and easy to see that an element x ∈ P is contained in Pi iff i is the
maximal cardinality of a chain in P with least element x, denoted by dP (x) (the depth of
x). Notice that x @ y implies dP (x) > dP (y). The height of the poset P will be denoted by
h(P ). The last nonempty level {x ∈ P : dP (x) = h(P ) + 1} consists of minimal elements
only, but there may also be minimal elements of P in higher levels. It was proven in
[8, 9] that every canonical poset P is level-monotone (=“levelized” in the cited papers),
i.e. dP (x) 6 dP (y) for all x, y ∈ P with x 6 y.

Let p, q be natural numbers and let P = (p,vP ), Q = (q,vQ) be canonical posets.
Set

p+q = (p+ q) \ q = {q, q + 1, . . . , q + p− 1},

v +q
P = {(x+ q, y + q) : x vP y},

P+q = (p+q,v+q),

v=vQ ∪ v +q
P ∪ (p+q × q),

v2 =v \{(q, q − 1)}.

r r r r r r r

r r r r r
p p
p p
p p
p p
p p
p p
p p
p p
p p
p

q

q − 1

Q

P+q

Since P and Q are level-monotone, the element q−1 is minimal in Q and q is maximal
in P+q. Now, it is easy to verify that v and v2 are order relations on p + q. Also, it is
not hard to see that the “canonical sum” (p+ q,v) is the canonical representative for the
ordinal sum P ⊕Q. More involved is the proof of the following property of the “canonical
2-sum” P +2 Q := (p+ q,v2).

Theorem 6 If P = (p,vP ) and Q = (q,vQ) are ordinally indecomposable canonical
posets then R = P +2 Q is also an ordinally indecomposable canonical poset.

Proof. Let ϕ be a permutation of p+ q such that the poset R′ = (p+ q, {(x, y) : ϕ(x) v2

ϕ(y)}) is canonical. In order to prove that R is canonical, we have to verify that the
vector wR′ = (wR′(0), . . . , wR′(p+ q− 1)) coincides with wR = (wR(0), . . . , wR(p+ q− 1)),
i.e., that ϕ is an automorphism of R.

Let t, . . . , q − 1 be the minimal elements in Q and let q, . . . , q + s be the maximal
elements in P+q. We shall only consider the case t < q − 1, i.e. that Q has at least
two minimal elements. Otherwise, it would follow from the ordinal indecomposability
of Q that it has only one element. In that case some of the weights below have to be
computed in a different way but the reader may easily check that all arguments stay
correct. Since P and Q are canonical, they are level-monotone. Then R is also level-
monotone since dR(x) = dQ(x) for x ∈ q and dR(y) = dP (y) + h(Q) + 1 for y ∈ p+q \ {q},
while dR(q) ∈ {h(Q) + 1, h(Q) + 2}.
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If dR(q) = h(Q) + 2 then the fact that the canonical poset R′ is also level-monotone
implies that ϕ[q] = q and, since Q is canonical, that ϕ|q is an automorphism of Q,
i.e. wR′(x) = wR(x) for x ∈ q. Then

wR′(ϕ−1(q)) =

q−1∑
i=t

2i − 2ϕ−1(q−1) <

q−1∑
i=t

2i
6 wR′(y)

for every element y ∈ p+q\{ϕ−1(q)}. Since R′ is canonical, wR′ is increasing and, therefore,
ϕ(q) = q. Now,

wR′(q) =

q−1∑
i=t

2i − 2ϕ−1(q−1)
>

q−2∑
i=t

2i = wR(q)

implies ϕ(q − 1) = q − 1 and, therefore, wR′(q) = wR(q).
If dR(q) = h(Q) + 1 then ϕ[q + 1] = q + 1. In this case, {q − 1} is the last level of Q

and {q− 1, q} constitutes a whole level in R and in R′. Since all covers of q− 1 dominate
q in R, it follows from the minimality of wR′ that ϕ(q − 1) = q − 1 and ϕ(q) = q. Again,
we see that ϕ|q is an automorphism of Q and wR′(q) =

∑q−2
i=t 2i = wR(q).

Since either {q, . . . , q + s} or X := {q + 1, . . . , q + s} is one level of R and of R′ (or
empty) and since ϕ(q) = q, we have ϕ[X] = X. All elements x ∈ X have the same covers
in R and R′, namely t, . . . , q − 1, i.e. wR′(x) =

∑q−1
i=t 2i = wR(x) for x ∈ X.

Let s + 1, . . . , s + u be those elements in P which are covered by 0 only. Then
wR(y) = 2q−1 + 2q for y ∈ Y := {q + s + 1, . . . , q + s + u} and wR(z) > 2q+1 for
z ∈ Z := {q+ s+ u+ 1, . . . , q+ p− 1}. Notice that for z ∈ Z, every cover of z in R or R′

is contained in p+q. From the lexicographic minimality of wR′ it follows that ϕ[Y ] = Y
and that wR′(y) = wR(y) for y ∈ Y .

Consider the poset P̃ = (p, {(x, y) : ϕ(x+ q) v2 ϕ(y + q)}). If wR′ were lexicographi-
cally smaller than wR then the vector

wP̃ = (wP̃ (0), . . . , wP̃ (s), wP̃ (s+ 1), . . . , wP̃ (s+ u), wP̃ (s+ u+ 1), . . . , wP̃ (p− 1))

= (0, . . . , 0, 1, . . . , 1, 2−qwR′(q + s+ u+ 1), . . . , 2−qwR′(q + p− 1))

would be lexicographically smaller than

wP = (0, . . . , 0, 1, . . . , 1, 2−qwR(q + s+ u+ 1), . . . , wR(q + p− 1)),

contradicting the canonicity of P .
Now, in order to prove that R is ordinally indecomposable, let us assume the contrary.

Then there is a nonempty proper upper set S of R such that the relation ((p+q)\S)×S is
contained in v2. Since q 6v2 q−1, we have S 6= q, whence S 6⊆ q or q 6⊆ S. In the first case,
S ∩ p+q is a nonempty proper upper subset in P+q with (p+q \ S) × (S ∩ p+q) ⊆ vP

+q,
i.e., P+q and P are ordinally decomposable. In the second case, S ∩ q is a nonempty
proper upper set of Q and (q \ S) × (S ∩ q) ⊆ vQ, i.e. Q is ordinally decomposable, a
contradiction. �
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The above theorem says that +2 is an operation on the set of ordinally indecomposable
canonical posets. It is not difficult to check from the definition that this operation is
associative. If the canonical posets P = (p,vP ), Q = (q,vQ) have i and j antichains,
respectively, then P +2Q has i+j antichains because every nonempty antichain of P +2Q
different from {q − 1, q} is either contained in Q or in P+q, while the empty antichain is
contained in both.

An ordinally indecomposable canonical poset R will be called canonically 2-
decomposable if there are ordinally indecomposable canonical posets P,Q with R = P+2Q.
We denote by wk the number of canonically 2-indecomposable posets with k antichains.

If R = (r,vR) is an ordinally indecomposable but canonically 2-decomposable poset
then there is a smallest p < r such that there are ordinally indecomposable posets
P = (p,vP ), Q = (q,vQ) with R = P +2 Q. Then, clearly, P and Q are unique,
and associativity of +2 assures that P is canonically 2-indecomposable. Hence the num-
ber of those posets which are ordinally indecomposable but canonically 2-decomposable,
have k antichains, and whose first canonically 2-indecomposable summand has exactly i
antichains, is wi · vk−i. Since a nonempty poset has at least 2 antichains, it follows that

vk = wk +

k−2∑
i=2

wi · vk−i.

Corollary 7 The numbers wk of canonically 2-indecomposable posets with k antichains
are related to the numbers vk of ordinally indecomposable posets with k antichains by the
identities

v0 = 1, w1 = v1 = 0, and vk =

k−1∑
j=0

wk−j · vj (k > 1).

It would be reasonable to call a poset (ordinally) 2-indecomposable if it is indecomposable
and augmenting the order relation by one arbitrary pair never produces a decomposable
poset. The number of such posets with k antichains is, of course, at most wk. But,
unfortunately, not every 2-decomposable poset is canonically 2-decomposable (consider
the disjoint union of a singleton and a 3-chain) and, what is more important, there is
no formula like that in the previous corollary for 2-indecomposable posets. A poset is
2-indecomposable if its incomparability graph is 2-edge-connected.

4 Exponential estimates for summatorial sequences

This section contains the necessary theoretical background for the intended (partly asymp-
totical) estimates of the numbers dk and vk. In what follows, (ak : k > 1) always designates
a sequence of nonnegative real numbers, and

a(x) =

∞∑
k=1

akx
k and a<m(x) =

m−1∑
k=1

akx
k
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the corresponding (formal) power series and its partial sums, regarded as polynomials.
The “summatorial” sequence (sk) and its partial sums are given by

s(x) =
∞∑

k=0

skx
k = (1 − a(x))−1 =

∞∑
k=0

a(x)k, s<m(x) =
m−1∑
k=0

skx
k

and their coefficients are determined recursively by

s0 = 1, sk =

k−1∑
j=0

ak−jsj =

k∑
j=1

ajsk−j for k > 1.

We say that a proposition holds “eventually” when it holds for all k larger than some k0.

Lemma 8 The following statements are equivalent:

(1) sk > 0 eventually.

(2) There is no integer m > 1 with ak > 0 =⇒ m|k.
(3) gcd(m : am > 0) = 1.

Proof. (1)=⇒(2): If m|k for all k with ak > 0 then the recursion for sk yields sk = 0
whenever m - k.

(2)=⇒(3): Clear.
(3)=⇒(1): There exist indices k1, . . . , ku with gcd(k1, . . . , ku) = 1 and aki

> 0 for
i = 1, . . . , u. Hence, for each natural number k, there are integers l1, . . . , lu with k1l1 +
· · ·+kulu = k, and if k is sufficiently large, then the li can be chosen nonnegative, whence

sk > ak1sk−k1 > a 2
k1
sk−2k1 > · · · >

u∏
i=1

a li
ki
> 0,

where we used the recursion formula l1 + · · · + lu times. �

In the subsequent lemmas, we always assume that (1)–(3) are fulfilled. Lower expo-
nential bounds for sk are provided by

Lemma 9 Suppose m ∈ N and σ > 0 are constants with a<m( 1
σ
) > 1. Then there is a

τ > σ and an n with m 6 n < 2m and skτ
−k > snτ

−n for all k > m. Hence, if sk > 0
for k > m,

τk = O(sk) and σk = o(sk).

Proof. By continuity, there is a τ > σ with a<m( 1
τ
) > 1. Put δ := min{sjτ

−j : m 6 j <
2m}, say δ = snτ

−n. Then sjτ
−j > δ for all j with m 6 j < 2m. Let k > 2m and assume

that sjτ
−j > δ has also been established for all j with m 6 j < k. Then

sk >

m−1∑
j=1

ajsk−j >

m−1∑
j=1

ajδτ
k−j = δτka<m( 1

τ
) > δτk.
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Hence, by induction, skτ
−k > δ = snτ

−n for all k > m. �

Let %s denote the radius of convergence for s(x). If the series 1 − a(x) has a smallest
positive root %, then % = %s, since by nonnegativity of the ak and monotonicity of a(x),
the series s(x) surely converges for 0 6 x < % and diverges for x > %.

The criterion in Lemma 9 is not only sufficient but also necessary for the estimate
σk < τk = O(sk). More precisely:

Corollary 10 For σ > 0, the following statements are equivalent:

(a) a( 1
σ
) > 1 (not excluding a( 1

σ
) = ∞).

(b) a<m( 1
σ
) > 1 for some m.

(c) τk = O(sk) for some τ > σ.

(d) For some τ ′ > σ, eventually k
√
sk > τ ′.

(e) lim sup k
√
sk > σ.

Proof. (a)⇐⇒(b) is clear since supm a<m( 1
σ
) = a( 1

σ
) (at least improperly).

(b)=⇒(c) follows from Lemma 9.
For (c)=⇒(d), choose ε > 0 with τk 6 εsk for all k, a τ ′ with σ < τ ′ < τ , and finally

an n with ε < ( τ
τ ′ )

n; then each k > n satisfies τ 6 k
√
εsk <

τ
τ ′ k
√
sk, hence τ ′ < k

√
sk.

(d)=⇒(e): lim sup k
√
sk > τ ′ > σ.

(e)=⇒(a): Since %s = (lim sup k
√
sk)

−1 < σ−1, there is an x < σ−1 for which s(x)
diverges. Thus, it cannot happen that a(x) converges to a value < 1, because otherwise
s(x) = (1 − a(x))−1 were convergent. It follows that a( 1

σ
) > a(x) > 1. �

Interestingly, the implication (e)=⇒(d) shows that the limes superior of the values
k
√
sk is in fact a proper limit:

Corollary 11 k
√
sk converges to 1

%s
.

As another consequence of Corollary 10, we get

Corollary 12 If a( 1
σ
) > 1 for some σ > 0 then σk = o(sk).

Now we derive upper exponential bounds for sk from those for ak.

Lemma 13 Suppose there are constants m ∈ N , γ > 0, and σ > α > 0 such that

(1) ak 6 γαk for k > m,

(2) a<m( 1
σ
) + γ(α

σ
)m σ

σ−α
< 1.

Then there is a τ with α < τ < σ and
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(3) sk = O(τk), a fortiori sk = o(σk).

If, in addition,

(4) αm−1(σ − α)s<m( 1
α
) 6 sm

then there exists an integer n with m 6 n < 2m and

(5) skτ
−k 6 snτ

−n for all k > m.

Proof. By continuity, there is a τ with α < τ < σ such that (2) holds for τ instead of σ.
Put

δ := max{ τ−α
α

(α
τ
)ms<m( 1

α
), sjτ

−j : m 6 j < 2m}.
Then sj 6 δτ j for m 6 j < 2m. Consider a k > 2m such that sj 6 δτ j for all j with
m 6 j < k. Then, by (1),

sk =

k−1∑
j=0

ak−jsj 6 γ

m−1∑
j=0

αk−jsj + γδ

k−m∑
j=m

αk−jτ j + δ

k−1∑
j=k−m+1

ak−jτ
j

= γαks<m( 1
α
) + γδαmτm

k−2m∑
j=0

αk−2m−jτ j + δ

m−1∑
j=1

ajτ
k−j

= γαks<m( 1
α
) + γδαmτm τ

k−2m+1 − αk−2m+1

τ − α
+ δτka<m( 1

τ
)

= γαk
(
s<m( 1

α
) − δ( τ

α
)m α

τ−α

)
+ δτk

(
a<m( 1

τ
) + γ(α

τ
)m τ

τ−α

)
6 γαk · 0 + δτk · 1 = δτk,

using (2) (with τ for σ) and the definition of δ. Thus sk = O(τk) and sk = o(σk). Under
hypothesis (4), we get δ = snτ

−n for some n with m 6 n < 2m, and sk 6 δτk = snτ
k−n

for k > m. �

Again, it is not hard to see that the bounds provided by Lemma 13 cannot be improved
essentially:

Corollary 14 Assume 0 < α < σ and ak = O(αk). Then the following statements are
equivalent:

(a) a( 1
σ
) < 1.

(b) a<m( 1
σ
) < 1 − γ

(
α
σ

)m σ
σ−α

for some m and γ > supk>m
ak

αk .

(c) sk = O(τk) for some τ < σ.

(d) For some τ ′ < σ, eventually k
√
sk < τ ′.

(e) lim sup k
√
sk < σ.
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Proof. For (a)=⇒(b), first find some γ > 0 so that ak 6 γαk for all k. As lim a<m( 1
σ
) =

a( 1
σ
) < 1, there exists an n such that for all m > n, we have a<m( 1

σ
) < 1

2
(1 + a( 1

σ
)). Now

choose an m > n with γ(α
σ
)m σ

σ−α
6 1

2
(1 − a( 1

σ
)). Then

a<m( 1
σ
) < 1

2
(1 + a( 1

σ
)) = 1 − 1

2
(1 − a( 1

σ
)) 6 1 − γ(α

σ
)m σ

σ−α
.

(b)=⇒(c) follows from Lemma 13.
(c)=⇒(d): Choose ε > 0 with τk > εsk for all k, then τ ′ with σ > τ ′ > τ , and finally

n with ε > ( τ
τ ′ )

n. Then each k > n satisfies τ > k
√
εsk >

τ
τ ′ k
√
sk, hence τ ′ > k

√
sk.

(d)=⇒(e): lim sup k
√
sk 6 τ ′ < σ.

(e)=⇒(a): Cauchy-Hadamard gives 1
σ
< %s 6 %a, hence s( 1

σ
)(1 − a( 1

σ
)) = 1 and

therefore a( 1
σ
) < 1. �

Corollary 15 If 0 < % then a(%)
<
=
>

1 ⇐⇒ %
<
=
>
%s.

The practical application of our lemmas is based on the following

Proposition 16 Let m0 be a natural number so that aki
6= 0 for some k1, . . . , ku < m0

with gcd(k1, . . . , ku) = 1 and ak 6 γαk for all k > m0 (with α, γ > 0 fixed). Let

am(x) = xm−1 −
m−2∑
j=0

am−j−1x
j and

am(x) = am(x)(x− α) − γαm.

Then, for each m > m0, there is a unique solution σm > 0 of the equation am(x) = 0 and
a unique solution σm > α of am(x) = 0. Furthermore,

σ k
m 6 sk 6 σ k

m eventually, and

σm 6 σm+1 6 lim σk = lim k
√
sk = 1

%s
6 σm+1 6 σm.

Proof. For m > m0, the polynomial a<m(x) is not zero. The equation x1−mam(x) =
1 − a<m( 1

x
) = 0 has a unique positive solution σm, as 1 − a<m( 1

x
) is strictly increasing in

x, with 1− a<m( 1
x
) → 1 for x→ ∞ and 1− a<m( 1

x
) → −∞ for x→ 0+. Of course, σm is

then also the unique positive root of am(x). Moreover,

am+1(x) = xm(1 − a<m( 1
x
)) − am

yields am+1(σm) = −am 6 0, and as am+1(x) → ∞ for x → ∞, it follows that σm 6

σm+1. For 0 < σ < σm, we have a( 1
σ
) > 1, so that from Corollary 12 we know that

σk 6 sk eventually. Hence, σ 6 lim sup k
√
sk = 1

%s
and, taking the limit σ → σm, also

σm 6
1
%s

. For the equation limσk = 1
%s

, it remains to show that s(x) converges for
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x < x0 := (lim σk)
−1 = inf 1

σk
. Since a<m(x0) 6 a<m( 1

σm
) = 1 for all m and a(x) is strictly

increasing, we have a(x) < a(x0) 6 1, so that s(x) =
∑
a(x)n converges to (1 − a(x))−1.

Similarly, for x > α, the function

hm(x) =
am(x)

xm − αxm−1
= 1 − a<m( 1

x
) − γ

(α
x

)m x

x− α

is strictly increasing because a<m( 1
x
), γ(α

x
)m and x

x−α
are strictly decreasing functions. As

hm(x) → −∞ for x → α+ and hm(x) → 1 for x→ ∞, there is a unique solution σm > α
of hm(x) = 0, and this is also the unique solution of am(x) = 0 (x > α). Furthermore,
substitution of σm for x in the equation

am+1(x) = xm(1 − a<m( 1
x
) − amx

−m)(x− α) − γαm+1

= xam(x) + (γαm − am)(x− α)

gives am+1(σm) = (γαm −am)(σm −α) > 0 because of am 6 γαm. As before, we conclude
that σm+1 6 σm since am+1(α) = −γαm+1 < 0. Now am(x) → ∞ for x → ∞ implies for
σ > σm:

0 < am(σ) = am(σ)(σ − α) − γαm

= σm−1(1 − a<m( 1
σ
))(σ − α) − γαm,

and as α lies between 0 and σ, the previous inequality is equivalent to (2) in Lemma 13,
whence sk 6 σk eventually. Thus 1

%s
= lim sup k

√
sk 6 σ and finally also 1

%s
6 σm. �

In all, we see that full information about the coefficients aj (j < m) provides a two-
sided asymptotical estimate

σm < lim k
√
sk < σm.

If the numbers aj are known even for j < 2m then so are the numbers sj, and one obtains
from the proofs of Lemmas 9 and 13 concrete estimates

δmσ
k

m 6 sk 6 δmσ
k

m for k > m, with

δm = min{sjσ
−j
m : m 6 j < 2m},

δm = max{sjσ
−j
m : m 6 j < 2m},

the upper bound requiring that αm−1(σm − α)s<m( 1
α
) 6 sm. Note that, for the upper

bound, the hardest part may often be to determine α and γ so that ak 6 γαk at least for
all k > m.

5 Distributive lattices with less than 50 elements

For efficient applications of the theory developed in the previous sections, one needs
sufficiently many of the numbers vk and wk for small k. We determined vk for k 6 49
with the orderly algorithm described in [8, 9]. The numbers dk and wk are then obtained
by Corollaries 2 and 7, the results are shown in Table 1 and Figure 3. Seeking a good fit,
one may approximate these values in the following form:
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Proposition 17 For k < 50,

dk = 1.8439k−4(1 + δk), 0 6 δk < (7/k)3,
vk = 1.7250k−8(1 + (−1)kγk), 0 6 γk < (14/k)3,
wk = 1.6765k−8(1 − βk), 0 6 βk < (23/k)3,

except for k ∈ {2, 8} in the third case.

Figure 3: Growth of dk, vk, and wk
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6 Lower and upper bounds for vk and dk

We are now going to apply the general results established in Section 4 to the two cases
that concern us here, viz.

(1) ak = vk+1, the number of all ordinally indecomposable posets with k nonempty
antichains, or, equivalently, the number of all vertically indecomposable distributive
lattices with k + 1 elements, and

sk = dk+1, the number of all posets with k nonempty antichains, respectively, of all
distributive lattices with k + 1 elements.

(2) ak = wk, the number of all canonically 2-indecomposable posets with k antichains,
and

sk = vk, the number of all ordinally indecomposable posets with k antichains.

Before we turn to numerical evaluation, let us note a few qualitative results that do not
require any concrete calculation of the involved numbers.

We know that, in both cases, (sk) is the summatorial sequence of (ak). Thus, s(x) =
(1 − a(x))−1, and as a(x) = xv(x) and d(x) = 1 + xs(x) in the first case, we get

d(x) = 1 +
x

1 − xv(x)
,

and in the second case,

v(x) =
1

1 − w(x)
.
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Table 1: Numbers of [vertically indecomposable / canonically 2-indecomposable] distribu-
tive lattices

k dk vk wk

1 1 0 0
2 1 1 1
3 1 0 0
4 2 1 0
5 3 0 0
6 5 1 0
7 8 0 0
8 15 3 2
9 26 1 1

10 47 6 1
11 82 2 0
12 151 16 7
13 269 8 5
14 494 42 16
15 891 28 14
16 1 639 112 40
17 2 978 93 41
18 5 483 311 120
19 10 006 295 131
20 18 428 869 321
21 33 749 939 402
22 62 162 2 454 901
23 114 083 2 931 1 210
24 210 189 7 032 2 590
25 386 292 9 036 3 621
26 711 811 20 301 7 371
27 1 309 475 27 701 10 841
28 2 413 144 58 929 21 178
29 4 442 221 84 413 32 222
30 8 186 962 172 104 61 273
31 15 077 454 255 919 95 408
32 27 789 108 504 637 177 384
33 51 193 086 773 511 282 405
34 94 357 143 1 484 392 515 174
35 173 859 936 2 331 180 833 295
36 320 462 062 4 378 773 1 500 030
37 590 555 664 7 009 288 2 455 337
38 1 088 548 290 12 944 347 4 372 535
39 2 006 193 418 21 039 961 7 229 231
40 3 697 997 558 38 328 890 12 761 691
41 6 815 841 849 63 067 623 21 260 746
42 12 563 729 268 113 651 785 37 286 778
43 23 157 428 823 188 831 922 62 483 221
44 42 686 759 863 337 361 112 109 014 426
45 78 682 454 720 564 890 985 183 542 099
46 145 038 561 665 1 002 268 019 318 906 720
47 267 348 052 028 1 688 673 026 538 889 399
48 492 815 778 109 2 979 703 035 933 361 886
49 908 414 736 485 5 045 200 597 1 581 666 042
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Theorem 18 For k > 8, there are at least 1.678k−10 many unlabeled vertically indecom-
posable distributive lattices of size k and dimension 6 3.

Proof. We inductively define systems Vk of k-element subsets of the distributive lattice
(ω,6)3. Let [a, b] = {a, a + 1, . . . , b}, and write (xA, yA, zA) for the pointwise maximum
of a subset A ⊆ ω3 (if it exists). Put

V6 = {[0, 1] × [0, 2] × [0, 0], [0, 2] × [0, 1] × [0, 0]},

and Vk = ∅ for k ∈ {1, 2, 3, 4, 5, 7}. For k > 8, let Vk be the smallest system such that

A(ξ,η,ζ) = A ∪ ([xA − 1, xA + ξ] × [yA − 1, yA + η] × [zA, zA + ζ ]) ∈ Vk

whenever (i) ξ, η, ζ ∈ ω, (ii) (ξ+ η)(η+ ζ)(ζ + ξ) > 0 or ξ+ η+ ζ = 1, and (iii) A ∈ Vk−δ,
where δ = (ξ + 2)(η + 2)(ζ + 1) − 4. In other words, we construct larger subsets from
smaller ones by replacing the top square [xA−1, xA]× [yA−1, yA]×{zA} with some larger
cuboid. As is easily seen, condition (ii) assures that, for each A′ ∈ Vk, there is exactly
one quadruple (A, ξ, η, ζ) with A′ = A(ξ,η,ζ). By construction, each A ∈ Vk is a sublattice
of (ω,6)3, hence distributive (cf. Section 2). The unique other lattice A′ ∈ Vk that is
isomorphic to A is the lattice A′ = {(y, x, z) : (x, y, z) ∈ A}. For δ = 2, 4, 5, 8, 11, or 12,
there are exactly 2, 1, 1, 4, 2, or 6 possibilities for (ξ, η, ζ), respectively, so that

|Vk| > 2|Vk−2| + |Vk−4| + |Vk−5| + 4|Vk−8| + 2|Vk−11| + 6|Vk−12|

for k > 13, and |Vk| > 2 · 1.678k−10 for 14 6 k 6 25. Hence also |Vk| > 2 · 1.678k−10 for
k > 26. For 8 6 k 6 13, the proposition is verified directly. �

The representation of an isomorphism type by an increasing sequence 0 = z1 6 z2 6
· · · 6 zn 6 k − 2 (for k > 2) instantly provides us with an exponential upper bound on
dk. Making the sequences strictly increasing,

1 6 z2 + 1 < z3 + 2 < · · · < zn + (n− 1) 6 (k − 2) + (n− 1),

we get

dk 6

k∑
n=1

(
k + n− 3

n− 1

)
=

(
2k − 2

k − 1

)
< 4k−1.

One can improve this upper bound by considering vertically indecomposable lattices first.
Such lattices don’t have “knots”, i.e. nonextremal elements comparable to all other ele-
ments; thus, each step of the doubling construction must give at least two new elements.
Hence, 2n 6 k, z2 = 0, and zn 6 k − 4. Therefore, putting ` = bk/2c, vk satisfies

vk 6
∑̀
n=2

(
k + n− 6

n− 2

)
=

(
k + `− 5

`− 2

)
(k > 3).
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This easily gives the following exponential bound:

vk 6
αk

25
√
k

= o(αk) for α =
3

2

√
3 < 2.6, k 6= 2.

But we can do better:

Theorem 19 The numbers v6k of vertically indecomposable distributive lattices with at
most k elements satisfy the inequalities

vk 6 v6k 6

bk/2c−1∑
t=1

(
k − 4

t− 1

)(bk/4 + t/2c
t

)
< 2.33k−4,

and v6k = o(2.33k).

Proof. We know that the vertically indecomposable distributive lattices of height n and
size 6 k may be coded by certain integer sequences (z1, . . . , zn) with

0 = z1 = z2 6 · · · 6 zn 6 k − 4.

Moreover, if zi = zi+1 then the interval doubled at step i > 1 is doubled again at step
i+ 1, so that at least four elements must be added in the latter case. (More generally, if
zi = zi+1 = · · · = zi+r then at least 2j+1 elements have to be added at step i+ j, j 6 r).
Denoting by s the number of indices i with zi = zi+1, we finally have generated at least
2 + 2(n− 1) + 2s elements, i.e.

2n+ 2s 6 k. (?)

There are
(

n−2
s

)
possibilities to choose s places i with 1 < i < n and zi = zi + 1.

For the remaining t = n − 1 − s indices i1 < · · · < it, there are
(

k−4
t−1

)
many strictly

increasing sequences 0 = zi1 < · · · < zit 6 k − 4. By (?), we have the inequalities
t < n 6 k

2
− s = k

2
− n+ 1 + t, hence

0 < t < n 6
k

4
+
t

2
+

1

2
.

In all, this gives

vk 6 v6k 6

bk/2c−1∑
t=1

(
k − 4

t− 1

) bk/4+t/2+1c∑
n=t+1

(
n− 2

n− t− 1

)

=

bk/2c−1∑
t=1

(
k − 4

t− 1

)(bk/4 + t/2c
t

)

6

bk/2c−1∑
t=1

1

2

(
k

t

)(bk/4 + t/2c
t

)

<
k

4
max

{(
k

t

)(bk/4 + t/2c
t

)
: 1 6 t 6

k

2
− 1

}
.
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Now, the inequalities(bαtc
t

)
6 min

{
1,

√
α

2π(α− 1)t

}
(αα(α− 1)1−α)t,

which follow from the known estimate n! = (2πn)−1/2(n
e
)ne

1
12n+ε with 0 6 ε 6 1

4
(cf. [10],

p. 355), yield for α = k
t
> 2:(
k

t

)(bk/4 + t/2c
t

)
6 min

{
1,
g(α)

k

}
f(α)k

with

f(α) =

(
αα(α− 1)1−α

(
α

4
+

1

2

)α
4
+ 1

2
(
α

4
− 1

2

) 1
2
−α

4

) 1
α

= α(α− 1)
1
α
−1

(
α

4
+

1

2

) 1
2α

+ 1
4
(
α

4
− 1

2

) 1
2α

− 1
4

and

g(α) = α

√
α

2π(α− 1)

√
α + 2

2π(α− 2)
=

α

2π

√
α(α+ 2)

(α− 1)(α− 2)
.

Numerical evaluation yields

f(α) < 2.3295 < 2.33 for all α > 2,

providing already the asymptotical result

v6k = o(2.33k).

To obtain the explicit estimate v6k 6 2.33k−4 for all k, one has to be more careful. Putting

fl := f(0.27−1) = max{f(α) : α > 0.27−1},
fr := f(0.41−1) = max{f(α) : 2 6 α 6 0.41−1},
fn := max{f(α) : 100

n+1
6 α 6 100

n
} (n < 50),

gn := max{g(α) : 100
n+1

6 α 6 100
n
} (n < 50),

we get

v6k 6
1

2


 ∑

t<0.27k

f k
l +

41∑
n=27

∑
nk
100
6t6

(n+1)k
100

f
k

n gn k
−1 +

∑
0.42k6t<0.5k

f k
r




6 0.135k · 2.267k +
1

200

41∑
n=27

f
k

n gn + 0.04k · 2.262k.
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Hence, for k > 400,

2.33−kv6k 6 54
(

2.267
2.33

)400
+ 1

200

41∑
n=27

(
fn

2.33

)400

· gn + 16
(

2.262
2.33

)400
6 0.001 + 0.031 + 0.001 = 0.033 < 2.33−4.

For k < 400, the upper bound 2.33k−4 may be checked directly. �

With more effort, this upper bound can be improved considerably (at least to 2.28k) by
taking into account the remark about the increment 2j+1 at step i+ j, which restricts the
possibilities for the coding sequences enormously. However, even 2.28k seems to be a very
rough upper bound, since vk < 1.8k for all k < 50 (see also Proposition 17). Nevertheless,
we shall need the bound 2.33k−4 (not only 2.33k) below for an estimate of the dk. We
apply Proposition 16 to the following data:

(1) ak = vk+1, m0 = 2 (v2 = 1), α = 2.33, and γ = 2.33−4.

(2) ak = wk, m0 = 10 (w2 = w9 = 1, gcd(2, 9) = 1).

In case (1), we get:

Theorem 20 Let m be a fixed natural number, and denote by σm and σm the unique
positive roots of the equations

xm−1 −
m∑

j=2

vjx
m−j = 0 resp. (xm−1 −

m∑
j=2

vjx
m−j)(x− α) = γαm.

Then σk
m = O(dk), dk = O(σk

m), and σm 6
k
√
dk 6 σm eventually. Moreover, lim k

√
sk =

lim σk.

More explicitly, put

δm = min{djσ
−j

m : m < j 6 2m} and

δm = max{djσ
−j

m : m < j 6 2m}.
Then dk > δmσ

k
m for k > m, and under the proviso that

dm+1 > αm−1(σm − α)

m∑
j=1

djα
−j+1

(which holds for m 6 4), dk 6 δmσ
k

m . Numerical evaluation yields

σ24 > 1.81, δ24 >
1
4
, hence dk >

1
4
1.81k for k > 24,

σ49 > 1.8388,

σ60 > 1.84 (using vk >
∑k−1

j=k−49wk−jvj for k > 50),

σ4 < 2.46, δ4 < 0.34, hence dk < 0.34 · 2.46k,
σ49 < 2.385 < 2.39, hence dk = o(2.39k).
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Figure 4: Exponential bounds on dk
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Corollary 21 (Fig. 4)
1.81k−4 < dk < 2.46k−1 for all k, and 1.84k < dk < 2.39k eventually.

Similarly, in case (2) we obtain

Theorem 22 Let τm denote the unique positive root of the equation

xm−1 −
m−2∑
j=0

wm−j−1x
j .

and put νm = min{vjτ
−j
m : m 6 j < 2m}. Then vk > νmτ

k
m for k > m. Hence, for fixed

m, τ k
m = O(vk) and k

√
vk > τm eventually.

Numerical evaluation yields

τ 24 > 1.54, hence vk > v24 · 1.54k−24 for k > 26,
τ 50 > 1.66 > τ 49, hence 1.66k = o(vk)

Corollary 23 (Fig. 5)
vk > b1.5k−9c for all k, vk > 1.54k−4 for k > 24, and vk > 1.66k eventually.

As we see, the base of the lower bound obtained here does not exceed the one from
Theorem 18. However, the wk will probably serve for better bounds when more numerical
material will be known.

Corollary 24

(
5

3

)k−10

6 vk 6

(
7

3

)k−4

for all k > 8.

We conclude with some open questions:

(1) Is it true that vk = o(dk) and wk = o(vk)?

(2) Can one even show that lim k
√
wk < lim k

√
vk < lim k

√
dk?

(3) How far can the upper bound be improved, e.g., is dk 6 2k?
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Figure 5: Exponential bounds on vk
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