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Abstract

If we compose sufficiently many random functions on a finite set, then the
composite function will be constant. We determine the number of compositions
that are needed, on average. Choose random functions f1, f2, f3, . . . independently
and uniformly from among the nn functions from [n] into [n]. For t > 1, let
gt = ft ◦ ft−1 ◦ · · · ◦ f1 be the composition of the first t functions. Let T be
the smallest t for which gt is constant(i.e. gt(i) = gt(j) for all i, j). We prove that
E(T ) ∼ 2n as n → ∞, where E(T ) denotes the expected value of T .

1 Introduction

If we compose sufficiently many random functions on a finite set then the composite
function is constant. We ask how long this takes, on average. More precisely, let
Un be the set of nn functions from [n] to [n]. Let An be the n element subset
of Un consisting of the constant functions: g ∈ An iff g(i) = g(j) for all i, j. Let
f1, f2, f3, . . . be a sequence of random functions chosen independently and uniformly
from Un. Let g1 = f1, and for t > 1 let gt = ft ◦ gt−1 be the composition of the first
t random maps. Define T (〈fi〉∞i=1) to be the smallest t for which gt ∈ An. (If no
such t exists, define T = ∞. It is not difficult to show that Pr(T = ∞) = 0.) Our
goal in this paper is to estimate E(T ).

It is natural to restate the problem as a question about a Markov chain. The
state space is S = {s1, s2, . . . , sn}. For t > 0 and r ∈ [n], we are in state sr if and
only if gt has exactly r elements in its range. With the convention that g0 is the
identity permutation, we start in state sn at time t = 0. The question is how long
(i.e. how many compositions) it takes to reach the absorbing state s1.

For m > 1, let τm = |{t : |Range(gt)| = m}| be the amount of time we are in

state sm. Thus T =
n∑

m=2
τm. Let T consist of those states that are actually visited:
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for m > 1, sm ∈ T iff τm > 0. The visited states T are a (non-uniform) random
subset of S that includes at least two elements, namely sn and (with probability 1)
s1. We prove later that T typically contains most of the small numbered states and
relatively few of the large numbered states. This observation forms the basis for our
proof of

Theorem 1 E(T ) = 2n(1 + o(1)) as n → ∞.

We should mention that there is a standard approach to our problem using the
transition matrix P and linear algebra. Let Q be the matrix that is obtained from
P by striking out the first row and column of P . Then E(T ) is exactly the sum of
the entries in the last row of (I − Q)−1. See, for example, chapter 3 of [5]. This
fact is very convenient if one wishes to compute E(T ) for specific small values of n.
An anonymous referee conjectured that E(T ) = 2n − 3 + o(1) after observing that,
for small values of n, |E(T ) − 2n + 3| ≤ 1. This conjecture is plausible, but we are
nowhere near a proof.

2 The Transition Matrix

The n×n transition matrix P can be determined quite explicitly. Suppose gt−1 has
i elements in its range, How many functions f have the property that f ◦ gt−1 has
exactly j elements in its range? There are

(n
j

)
ways to choose the j-element range

of f ◦ gt−1, and S(i, j)j! ways to map the i-element range of gt−1 onto a given j
element set. (Here S(i, j) is the number of ways to partition an i element set into
j disjoint subsets, a Stirling number of the second kind.) Finally, there are n − i
elements in the complement of the range of gt−1, and nn−i ways to map them into
[n]. Thus there are

(n
j

)
S(i, j)j!nn−i functions f with the desired property, and for

1 ≤ i, j ≤ n, the transition matrix for the chain has i, j’th entry

P (i, j) =

(
n

j

)
S(i, j)j!

ni
. (1)

The stationary distribution π assigns probability 1 to s1. The transition matrix
has some nice properties. It is lower triangular, which means the eigenvalues are
just the diagonal entries: for 1 ≤ m ≤ n,

λm = P (m,m) =
m−1∏
k=0

(1 − k

n
). (2)

For future reference we record two simple estimates for the eigenvalues, both of
which follow easily from (2).

Lemma 2

λm = 1 −
(m

2

)
n

+ O(
m4

n2
)

and

λm ≤ exp(−
(

m

2

)
/n).
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3 Lower Bound

The proof of the lower bound requires an estimate for the Stirling numbers S(m,k).
The literature contains many precise but complicated estimates for these numbers.
Here we prove a crude inequality whose simplicity makes it convenient for our pur-
poses.

Lemma 3 For all positive integers m and k, S(m,k) ≤ (2k)m.

Proof: The proof of this lemma will be done by induction using the recurrence
S(m,k) = S(m − 1, k − 1) + kS(m − 1, k). When k = 1, we know that S(m, 1) = 1
and (2k)m = 2m. So clearly the inequality holds true for k = 1 (for all positive
integers m).

Now let φm denote the following statement: for all k > 1, S(m,k) ≤ (2k)m. It
suffices to prove that φm is true for all m. For m = 1, S(1, k) = 0 ≤ 2k for all k > 1.
Now let k > 1 and assume, inductively, that φm−1 is true (i.e. S(m−1, k) ≤ (2k)m−1

for k > 1.) Then we have

S(m,k) = S(m − 1, k − 1) + kS(m − 1, k) ≤ (2(k − 1))m−1 + k(2k)m−1

= (2k)m
{

1
2

+
(k − 1)m−1

2km

}
.

Realize that the quantity inside the large braces is less than one.

With lemma 3 available, we can proceed with the proof that E(T ) ≥ 2n(1+o(1)).

Since T =
n∑

m=2
τm, we have

E(T ) =
n∑

m=2

Pr(sm ∈ T )E(τm|sm ∈ T ). (3)

Obviously a lower bound is obtained by truncating this sum. To simplify notation,
let ` = blog log nc. Then

E(T ) ≥
∑̀
m=2

Pr(sm ∈ T )E(τm|sm ∈ T ). (4)

To estimate the second factor in each term of (4), note that

E(τm|sm ∈ T ) =
∞∑

t=1

tλt−1
m (1 − λm) =

1
1 − λm

. (5)

Applying lemma 2, we get

E(τm|sm ∈ T ) =
n(m
2

)(1 + O(
m2

n
)). (6)

To estimate the first factor of each term in (4), we make the following observation:
if sm 6∈ T , then there is a transition from sm+d to sm−j for some positive integers
d and j. Hence,
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Pr(sm 6∈ T ) =
n−m∑
d=1

m−1∑
j=1

Pr(sm+d ∈ T )
P (m + d,m − j)

(1 − λm+d)
. (7)

(The factor (1 − λm+d)−1 =
∑∞

i=0 P (m + d,m + d)i is there because we remain in
state sm+d for some number of transitions i ≥ 0 before moving on to state sm−j .)

Let σ :=
n−m∑
d=1

m−1∑
j=1

S(m+d,m−j)
nj+d

λm−j

1−λm+d
. Putting (1) and Pr(sm+d ∈ T ) ≤ 1 into

(7), we get

Pr(sm 6∈ T ) ≤
n−m∑
d=1

m−1∑
j=1

1 ·
(

n

m − j

)
S(m + d,m − j)(m − j)!

nm+d(1 − λm+d)
= σ. (8)

A first step in bounding σ is to note that 1 > (1− 1
n) = λ2 ≥ λ3 ≥ λ4 ≥ . . . ≥ λn > 0,

and therefore
λm−j

1 − λm+d
≤ 1

1 − λm+d
≤ 1

1 − λ2
= n − 1.

Hence

σ ≤ (n − 1)
n−m∑
d=1

1
nd

m−1∑
j=1

S(m + d,m − j)
nj

.

Applying lemma 3 to each term of the inside sum, we get

m−1∑
j=1

S(m + d,m − j)
nj

≤
m−1∑
j=1

(2(m − j))m+d

nj

≤ m(2m − 2)m+d

n
<

`(2`)`+d

n
.

Hence

σ ≤ (n − 1)
`(2`)`

n

n−m∑
d=1

(
2`
n

)d = O(
(2`)`+2

n
) = o(1).

Thus Pr(sm ∈ T ) ≥ 1 − o(1) for all m ≤ `, Putting this and (6) back into (4),

and using the fact that
∑̀

m=2

1

(m
2 )

=
∑̀

m=2
( 2

m−1 − 2
m) = 2 − 2

` , we get the lower bound

E(T ) ≥ 2n(1 + o(1)).

4 Upper Bound

If |Range(gt−1)| = m, then the restriction of ft to Range(gt−1) is a random function
from an m element set to [n]. Before proving that E(T ) ≤ 2n(1 + o(1)), we gather
a simple lemma about the size of the size of the range for such random maps.

Lemma 4 Suppose h : [m] → [n] is selected uniformly at random from among
the nm functions from [m] into [n],and let R be the cardinality of the range of h.
Then the mean and variance of R are respectively E(R) = n − n(1 − 1

n)m and
V ar(R) = n2{(1 − 2

n)m − (1 − 1
n)2m} + n{(1 − 1

n)m − (1 − 2
n)m}.
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Proof: Let U = n − R =
n∑

i=1
Ii, where Ii is 1 if i is not in the range of h, and

otherwise Ii is zero. Then E(R) = n − E(U), and V ar(R) = V ar(U).

E(U) = nE(I1) = n(1 − 1
n

)m. (9)

E(U2) =
∑
i6=j

E(IiIj) + E(U)

= n(n − 1)(1 − 2
n

)m + E(U).

Therefore

V ar(U) = n2
{

(1 − 2
n

)m − (1 − 1
n

)2m
}

+ n

{
(1 − 1

n
)m − (1 − 2

n
)m
}

.

The next corollary shows that there are gaps between the large states in T . Let
ξ2 = b n

log2 n
c, and let β = β(n) = 1

2 (ξ2 − n + n(1 − 1
n)ξ2). Although β is quite large

(β � n
log4 n

) all we really need for our purposes is that β → ∞ as n → ∞.

Corollary 5 Pr(sm−δ 6∈ T for 1 ≤ δ ≤ β | sm ∈ T ) = 1 − o(1) uniformly for
ξ2 ≤ m ≤ n.

Proof: Suppose we are in state sm at time t − 1 and select the next function ft.
Let h be the restriction of ft to the range of gt−1, and let R be the cardinality of
the range of h, and let B = m − R. Observe that if B > β then the next β states
are missed: sm−δ 6∈ T for 1 ≤ δ ≤ β. Note that E(B) = m − n + n(1 − 1

n)m > 2β.
Applying Chebyshev’s inequality to the random variable B, we get

Pr(B ≤ β) ≤ Pr(B ≤ 1
2
E(B)) ≤ 4V ar(B)

(E(B))2
. (10)

For ξ2 ≤ m ≤ n, we have E(B) = m−n+n(1− 1
n)m ≥ ξ2−n+n(1− 1

n)ξ2 � n
log4 n

.

(A calculus exercise shows that E(B) is an increasing function of m.) To bound
V ar(B) note that,

(1 − 2
n

)m − (1 − 1
n

)2m = O(
m

n2
).

Therefore (10) yields

Pr(B ≤ β) = O(
m log8 n

n2
) = o(1).

Now we proceed with the proof of the upper bound E(T ) ≤ 2n(1 + o(1)). Split the
sum (3) into three separate sums as follows. Let ξ1 = b

√
n

log nc, and let ξ2 = b n
log2 n

c,
so that (3) becomes
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E(T ) =
ξ1∑

m=2

+
ξ2∑

m=ξ1+1

+
n∑

m=ξ2+1

(11)

The first sum in (11) is estimated using (5), lemma 2, and the fact that Pr(sm ∈
T ) ≤ 1:

ξ1∑
m=2

Pr(sm ∈ T )E(τm|sm ∈ T ) ≤
ξ1∑

m=2

1
1 − λm

=
ξ1∑

m=2

1
(m

2 )
n + O(m4

n2 )

= (1 + O(
ξ2
1

n
))n

ξ1∑
m=2

1(m
2

) = 2n(1 + o(1)).

The second sum in (11) is estimated using a crude bound on the eigenvalues.
For ξ1 < m ≤ ξ2, we have λm ≤ λξ1 = 1 − 1

2 log n + O( 1√
n log n

). Hence the second

sum in (11) is at most

ξ2∑
m=ξ1+1

1
1 − λm

≤ 1
1 − λξ1

ξ2∑
m=ξ1

1

= O(ξ2 log n) = O(
n

log n
).

For the last sum in (11), we can no longer get away with the trivial estimate
Pr(sm ∈ T ) ≤ 1. However now the size of the eigenvalues can be handled less
carefully:

n∑
m=ξ2+1

Pr(sm ∈ T )
1

1 − λm
≤
(
max
m≥ξ2

1
1 − λm

)( n∑
m=ξ2

Pr(sm ∈ T )
)
. (12)

The first factor in (12) is easily estimated using (2):

max
m≥ξ2

1
1 − λm

=
1

1 − λξ2

≤ 1
1 − exp(−

(ξ2
2

)
/n)

≤ 2

for all sufficiently large n.
To deal with the second factor in (12) we use Corollary 5. The idea is that there

cannot be too many “hits”(visited states) simply because every time there is a hit

it is followed by β “misses”. To make this precise, define V =
n∑

m=ξ2

χm, where χm

is 1 if sm ∈ T and 0 otherwise. Thus the second factor in (12) is just E(V ). Also

count large numbered states that are not in T with W =
n∑

m=ξ2

(1 − χm) so that

W + V = n + 1 − ξ2 and E(V ) = n + 1 − ξ2 − E(W ). If a state sm is in T , and if
the next β possible states sm−1, sm−2, . . . , sm−β are not in T , then those β missed
states together contribute exactly β to W .
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If we let Jm = χm ·
β∏

δ=1
(1 − χm−δ), then W ≥ β

∑
m≥ξ2

Jm. But then

E(W ) ≥ β
∑

m≥ξ2

E(Jm) =

β
∑

m≥ξ2

Pr(sm ∈ T ) Pr(sm−1, sm−2, . . . sm−β 6∈ T |sm ∈ T ).

By Corollary 5,

Pr(sm−1, sm−2, . . . sm−β 6∈ T |sm ∈ T ) = 1 − o(1).

Hence

E(W ) ≥ β(1 + o(1))
n∑

m=ξ2

Pr(sm ∈ T ) = (1 + o(1))βE(V ).

But then

E(V ) = n + 1 − ξ2 − E(W ) ≤ n + 1 − ξ2 − β(1 + o(1)))E(V ),

which implies that

E(V ) ≤ n + 1 − ξ2

1 + β(1 + o(1))
= O(log4 n).

Thus the second factor of (12) is o(n), which means that the third sum in (11) is
negligible.
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