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Abstract

We consider Kasteleyn and Kasteleyn-Percus matrices, which arise in enumerat-
ing matchings of planar graphs, up to matrix operations on their rows and columns.
If such a matrix is defined over a principal ideal domain, this is equivalent to con-
sidering its Smith normal form or its cokernel. Many variations of the enumeration
methods result in equivalent matrices. In particular, Gessel-Viennot matrices are
equivalent to Kasteleyn-Percus matrices.

We apply these ideas to plane partitions and related planar of tilings. We list
a number of conjectures, supported by experiments in Maple, about the forms of
matrices associated to enumerations of plane partitions and other lozenge tilings
of planar regions and their symmetry classes. We focus on the case where the
enumerations are round or q-round, and we conjecture that cokernels remain round
or q-round for related “impossible enumerations” in which there are no tilings. Our
conjectures provide a new view of the topic of enumerating symmetry classes of
plane partitions and their generalizations. In particular we conjecture that a q-
specialization of a Jacobi-Trudi matrix has a Smith normal form. If so it could be
an interesting structure associated to the corresponding irreducible representation
of SL(n, C ). Finally we find, with proof, the normal form of the matrix that appears
in the enumeration of domino tilings of an Aztec diamond.

1 Introduction

The permanent-determinant and Hafnian-Pfaffian methods of Kasteleyn and Percus give
determinant and Pfaffian expressions for the number of perfect matchings of a planar
graph (11; 21). Although the methods originated in mathematical physics, they have
enjoyed new attention in enumerative combinatorics in the past ten years (10; 15; 16;
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12; 34), in particular for enumerating lozenge and domino tilings of various regions in
the plane. These successes suggest looking at further properties of the matrices that the
methods produce beyond just their determinants or Pfaffians.

In this article we investigate the cokernel, or equivalently the Smith normal form, of
a Kasteleyn or Kasteleyn-Percus matrix M arising from a planar graph G. One theme
of our general results in Sections 3.3 and 4.1 is that the cokernel is a canonical object
that can be defined in several different ways. More generally for weighted enumerations
we consider M up to the equivalence relation of general row and column operations. If G
has at least one matching, then the set of matchings is equinumerous with coker M . (In
Section 4.2, we conjecture an interpretation of this fact in the spirit of a bijection.) The
cokernel of M is also interesting even when the graph G has no matchings, a situation
which we call an impossible enumeration. Propp proposed another invariant of M that
generalizes to impossible enumerations and that was studied by Saldanha (22; 25), namely
the spectrum of M∗M .

The idea of computing cokernels as a refinement of enumeration also arose in the con-
text of Kirchoff’s determinant formula for the number of spanning trees of a connected
graph. In this context the cokernels are called tree groups and they were proposed in-
dependently by Biggs, Lorenzini, and Merris (2; 18; 19). Indeed, Kenyon, Propp, and
Wilson (13), generalizing an idea due to Fisher (7), found a bijection between spanning
trees of a certain type of planar graph G and the perfect matchings of another planar
graph G′. We conjecture that the tree group of G is isomorphic to the Kasteleyn-Percus
cokernel of G′.

In Section 5.1 we study cokernels for the special case of enumeration of plane partitions
in a box, as well as related lozenge tilings. We previously asked what is the cokernel of
a Carlitz matrix, which is equivalent to the Kasteleyn-Percus matrix for plane partitions
in a box with no symmetry imposed (22). We give two conjectures that together imply
an answer. Finally in Section 5.3 we derive, with proof, the cokernel for the enumeration
of domino tilings of an Aztec diamond.
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2 Preliminaries

2.1 Graph conventions

In general by a planar graph we mean a graph embedded in the sphere S2. We mark one
point of S2 outside of the graph as the infinite point; the face containing it is the infinite
face. Our graphs may have both self-loops and multiple edges, although self-loops cannot
participate in matchings.
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2.2 Matrix algebra

Let R be a commutative ring with unit. We consider matrices M over R, not necessarily
square, up to three kinds of equivalence: general row operations,

M 7→ AM

with A invertible; general column operations,

M 7→ MA

with A invertible; and stabilization,

M 7→
(

1 0
0 M

)

and its inverse. Any matrix M ′ which is equivalent to M under these operations is a
stably equivalent form of M .

A matrix A over R is alternating if it is antisymmetric and has null diagonal. (An-
tisymmetric implies alternating unless 2 is a zero divisor in R.) We consider alternating
matrices up to two kinds of equivalence: general symmetric operations,

A 7→ BABT

with B invertible; and stabilization,

A 7→

 0 1

−1 0
0

0 M




and its inverse. A matrix A′ which is equivalent to A is also called a stably equivalent
form of A.

As a special case of these notions, elementary row operation on a matrix M consists of
either multiplying some row i by a unit in R, or adding some multiple of some row i to row
j 6= i. Elementary column operations are defined likewise. We define a pivot on a matrix
M at the (i, j) position as subtracting Mk,j/Mi,j times row i from row k for all k 6= i,
then subtracting Mi,k/Mi,j times column j from column k for all j 6= k. This operation is
possible when Mi,j divides every entry in the same row and column. In matrix notation,
if M1,1 = 1, the pivot at (1, 1) looks like this:

M =

(
1 Y T

X M ′

)
7→
(

1 0
0 M ′ − XY T

)
.

A deleted pivot consists of a pivot at (i, j) followed by deleting row i and column j from
the matrix. The deleted pivot at (1, 1) on our example M looks like this:

M =

(
1 Y T

X M ′

)
7→ M ′ − XY T .
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If A is an alternating matrix, we define an elementary symmetric operation as an
elementary row operation followed by the same operation in transpose on columns. We
can similarly define a symmetric pivot and a symmetric deleted pivot. All of these opera-
tions are special cases of general symmetric matrix operations, and therefore preserve the
alternating property.

If R is a principal ideal domain (PID), then an n × k matrix M is equivalent to
one called its Smith normal form and denoted Sm(M). We define Sm(M) and prove
its existence in Section 6. Note that if M ′ is a stabilization of M , then Sm(M ′) is a
stabilization of Sm(M).

If R is arbitrary, then we can interpret M as a homomorphism from Rk to Rn. In this
interpretation M has a kernel ker M , an image im M , and a cokernel

coker M = Rn/ imM.

If R is a PID, the cokernel carries the same information as the Smith normal form. Over
a general ring R, only very special matrices admit a Smith normal form. Determining
equivalence of those that do not is much more complicated than for those that do. In
particular inequivalent matrices may have the same cokernel. However, over any ring R
the cokernel is invariant under stable equivalence and it does determine the determinant
det M up to a unit factor. A special motivation for considering cokernels appears when
R = Z and M is square. In this case the absolute determinant (i.e., absolute value of the
determinant) is the number of elements in the cokernel,

| detM | = | coker M |,
when the cokernel is finite, while

det M = 0

if the cokernel is infinite.
An alternating matrix A over a PID is also equivalent to its antisymmetric Smith

normal form Sma(A), which we also discuss in Section 6. Again coker A determines
Sma(A).

Remark. If M is a matrix over the polynomial ring F[x] over an algebraically closed field
F, which is a PID, then the factor exhaustion method for computing det M (14) actually
computes the Smith normal form (or cokernel) of M . Thus the Smith normal form plays a
hidden role in a computational method which is widely used in enumerative combinatorics.

The basic version of the factor exhaustion method computes the rank of the reduction

M ⊗ F[x]/(x − r)

for all r ∈ F. These ranks determine det M up to a constant factor if the Smith normal
form of M is square free. It is tempting to conclude that the factor exhaustion method
“fails” if the Smith normal form is not square free. But sometimes one can compute the
cokernel of

M ⊗ F[x]/(x − r)k,
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for all r and k. This information determines coker M , as well as det M up to a constant
factor, regardless of its structure. Thus the factor exhaustion method always succeeds in
principle.

3 Counting matchings

Most of this section is a review of Reference 16.

3.1 Kasteleyn and Percus

Let G be a connected finite graph. If we orient the edges of G, then we define the
alternating adjacency matrix A of G by letting Ai,j be the number of edges from vertex i
to vertex j minus the number of edges from vertex j to vertex i. If G is simple, then the
Pfaffian Pf A has one non-zero term for every perfect matching of G, but in general the
terms may not have the same sign.

Theorem 1 (Kasteleyn). If G is a simple, planar graph, then it admits an orientation
such that all terms in Pf A have the same sign, where A is the alternating adjacency
matrix of G (11).

In general an orientation of G such that all terms in Pf A have the same sign is called
a Pfaffian orientation of G. If an orientation of G is Pfaffian, then the absolute Pfaffian
|Pf A| is the number of perfect matchings of G. Kasteleyn’s rule for a Pfaffian orientation
is that an odd number of edges of each (finite) face of G should point clockwise. We
call such an orientation Kasteleyn flat and the resulting matrix A a Kasteleyn matrix
for the graph G. Likewise an orientation may be Kasteleyn flat at a particular face
if it satisfies Kasteleyn’s rule at that face. Every planar graph has a Kasteleyn-flat
orientation, although it is only flat at the infinite face of G if G has an even number
of vertices. Forming a Kasteleyn matrix to count matchings of a planar graph is also
called the Hafnian-Pfaffian method (15).

Percus (21) found a simplification of the Hafnian-Pfaffian method when G is bipartite.
Suppose that G is a bipartite graph with the vertices colored black and white, and suppose
that each edge has a sign + or −, interpreted as the weight 1 or −1. Then we define the
bipartite adjacency matrix M of G by letting Mi,j be the total weight of all edges from
the black vertex i to the white vertex j. If G is simple, then the determinant det M has
a non-zero term for each perfect matching of G, but in general with both signs.

Theorem 2 (Percus). If G is a simple, planar, bipartite graph, then it admits a sign
decoration such that all terms in det M have the same sign, where M is the bipartite
adjacency matrix of G.

In the rule given by Percus, the edges of each face of G should have an odd number of
− signs if and only if the face has 4k sides. We call such a sign decoration of G Kasteleyn
flat and the corresponding matrix M a Kasteleyn-Percus matrix. Every planar graph
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has a Kasteleyn-flat signing, although it is only flat at the infinite face if G has an even
number of vertices. Forming a Kasteleyn-Percus matrix M is also called the permanent-
determinant method. A Kasteleyn matrix A for a bipartite graph G can be viewed as two
copies of a Kasteleyn-Percus matrix M :

A =

(
0 M

−M 0

)
.

Figure 1: Tripling an edge in a graph.

If the graph G is not simple, then we may make it simple by tripling edges, as shown
in Figure 1. The set of matchings of the new graph G′ is naturally bijective with the set
of matchings of G. A more economical approach is to define a Kasteleyn matrix A or a
Kasteleyn-Percus matrix M for G directly. In this case Aij is the number of edges from
vertex i to vertex j minus the number from j to i, while Mij is the number of positive
edges minus the number of negative edges connecting i and j.

A variant of the Hafnian-Pfaffian method applies to a projectively planar graph G
which is locally but not globally bipartite. This means that G is embedded in the projective
plane and that all faces have an even number of sides, but that G is not bipartite. An
equivalent condition is that all contractible cycles in G have even length and all non-
contractible cycles have odd length.

Theorem 3. If a projectively planar graph G is locally but not globally bipartite, then it
admits a Pfaffian orientation. (16)

The orientation constructed in the proof of Theorem 3 is one with the property that
each face has an odd number of edges pointing in each direction. We call such an ori-
entation Kasteleyn flat; it exists if G has an even number of vertices. (If G has an odd
number of vertices, then every orientation is trivially Pfaffian.) We call the corresponding
alternating adjacency matrix A the Kasteleyn matrix of G as usual.

The constructions of this section, in particular Theorems 1 and 2, generalize to
weighted enumerations of the matchings of G, where each edge of G is assigned a weight
and the weight of a matching is the product of the weights of its edges. We separately
assign signs or orientations to G using the Kasteleyn rule (in the general case) or the
Percus rule (in the bipartite case). The weighted alternating adjacency matrix A is called
a Kasteleyn matrix of G. If G is bipartite, the weighted bipartite adjacency matrix M ,
with the weights multiplied by the signs, is a Kasteleyn-Percus matrix of G. Then Pf A
or det M is the total weight of all matchings in G.
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3.2 Polygamy and reflections

We can use the Hafnian-Pfaffian method to count certain generalized matchings among
the vertices of a planar graph G using an idea originally due to Fisher (7). We arbitrarily
divide the vertices of G into three types: Monogamous vertices, odd-polygamous vertices,
and even-polygamous vertices. An odd-polygamous vertex is one that can be connected
to any odd number of other vertices in a matching, while an even-polygamous vertex can
be connected to any even number of other vertices (including none).

Figure 2: Resolving polygamy into monogamy.

If G is a graph with polygamous vertices, we can find a new graph G′ such that the
ordinary perfect matchings of G′ are bijective with the generalized matchings of G. The
graph G′ defined from G using a series of local moves that are shown in Figure 2. (In
this figure and later, an open circle is an even-polygamous vertex and a dotted circle is
an odd-polygamous vertex.) We also describe the moves in words. First, if a polygamous
vertex of G has valence greater than 3, we can split it into two polygamous vertices of
lower valence with the same total parity. This leaves polygamous vertices of both parities
of valence 1, 2, and 3. If a polygamous vertex v is even and has valence 1, we can delete
it. If it is odd and has valence 1 or 2, it is the same as an ordinary monogamous vertex.
If it is even and has valence 2, we can replace it with two monogamous vertices. If it
is even and has valence 3, we can split it into an odd-polygamous divalent vertex and
an odd-polygamous trivalent vertex. Finally, if it odd and has valence 3, we can replace
it with a triangle. Each of these moves comes with an obvious bijection between the
matchings before and after. Thus these moves establish the following:

Proposition 4 (Fisher). Given a graph G with odd- and even-polygamous vertices, the
polygamous vertices can be replaced by monogamous subgraphs so that the matchings of
the new graph G′ are bijective with those of G. If G is planar, then G′ can be planar.

We call the resulting graph G′ a monogamous resolution of G. If G is planar, then G′

admits Kasteleyn matrices, and we call any such matrix a Kasteleyn matrix of G as well.
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Figure 3: Moves on monogamous resolutions of a polygamous graph.

The monogamous resolution of a polygamous graph is far from unique. But we can
consider moves that connect different monogamous resolutions of a polygamous graph.
The moves are as shown in Figure 3: Doubly splitting a vertex, rotating a pair of triangles,
and switching a triangle with an edge. Each of these moves comes with a bijection between
the matchings of the two graphs that it connects.

Proposition 5. Any two monogamous resolutions of a graph G are connected by the
moves of vertex splitting and its inverse, switching triangles, and switching a triangle
with an edge. The moves also connect any two planar resolutions of a planar graph G
through intermediate planar resolutions.

The proof of Proposition 5 is routine.

Figure 4: Removing a self-connected triangle.

Another interesting move is removing a self-connected triangle, as shown in Figure 4.
This move induces a 2-to-1 map on the set of matchings before and after.

Polygamous matchings have two common applications. If a graph G is entirely polyg-
amous, then we can denote the presence or absence of each edge by an element of Z/2.
Each vertex then imposes a linear constraint on the variables, so the number of matchings
is therefore either 0 or 2n for some n. The corresponding weighted enumerations are re-
lated to the Ising model (16; 33; 7). Another way to see that the number of matchings is
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a power of two is to use the moves in Figures 3 and 4 to reduce a monogamous resolution
of G to a tree, which has at most one matching.

Figure 5: Using polygamy to count reflection-invariant matchings.

Another application is counting matchings invariant under reflections (15; 16). Sup-
pose that a planar graph G has a reflection symmetry σ, and suppose that the line of
reflection bisects some of the edges of G. Then the σ-invariant matchings of G are bijective
with a modified quotient graph G//σ in which the bisected edges are tied to a polygamous
vertex, as in Figure 5. The parity of the polygamous vertex should be set so that the
total parity (odd-polygamous plus monogamous vertices) is even. The same construction
works if we divide G by any group acting on the sphere that includes reflections, since all
of the reflective boundary can be reached by a single polygamous vertex.

3.3 Gessel-Viennot

The Gessel-Viennot method (9; 8) yields another determinant expression for a certain
sum over the sets of disjoint paths in an acyclic, directed graph G. (Theorem 6 below,
which is the basic result of the method, was independently found by Lindström (17).
Gessel and Viennot were the first to use it for unweighted enumeration.) The graph G
need not be planar. We label some of the vertices of G as left endpoints and some as
right endpoints, and we separately order the left endpoints and the right endpoints. Let
P be the set of collections of vertex-disjoint paths in G connecting the left endpoints
to the right endpoints. If P is non-empty then there are the same number of left and
right endpoints on left and right; if there are n of each we call the elements of P disjoint
n-paths. The Gessel-Viennot matrix V is defined by setting Vi,j to the number of paths
in G from left endpoint i to right endpoint j.
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Theorem 6 (Lindström, Gessel-Viennot). Let G be a directed, acyclic, weighted graph
with n ordered left endpoints and n ordered right endpoints. Let P be the set of disjoint
n-paths in G connecting left to right. If V is the Gessel-Viennot matrix of G, then

det V =
∑
`∈P

w(`)(−1)`. (1)

Here (−1)` is the sign of the bijection from the left to the right endpoints induced by the
paths in the collection `, and w(`) is the product of the weights of the edges of G that
appear in `.

Proof. We outline a non-traditional proof that will be useful later. We first suppose
that the left endpoints are the sources in G (the vertices with in-degree 0) and the right
endpoints are the sinks (the vertices with out-degree 0). We argue by induction on the
number of transit vertices, meaning vertices that are neither sources nor sinks.

p q r

Figure 6: Splitting a transit vertex.

If G has no transit vertices, every path in G has length one. Consequently the n-
paths in G are perfect matchings, and equation (1) is equivalent to the definition of the
determinant. Suppose then that p is a transit vertex in G. We form a new graph G′ by
splitting p into two vertices q and r, with q a sink and r a source, as shown in Figure 6.
We number q and r as the n + 1st (last) source and sink in G′. We give the new edge
between q and r a weight of −1. There is a natural bijection between disjoint n-paths `
in G and disjoint n + 1-paths `′ in G′: Every path in ` which avoids p is included in `′.
If some path in ` meets p, we break it into two paths ending at q and starting again at
r. If ` is disjoint from p, we include the edge from r to q in `′. In order to argue that the
right side of equation (1) are the same for G and G′, we check that

(−1)`w(`) = (−1)`′w(`′).

If ` avoids p, the two sides are immediately the same. If ` meets p, then (−1)` and (−1)`′

have opposite sign and so do w(`) and w(`′). The left side of equation (1) is also the
same: If V and V ′ are the Gessel-Viennot matrices of G and G′, V is obtained from V ′

by a deleted pivot at (n + 1, n + 1).
Now suppose that the left and right endpoints do not coincide with the sources and

sinks. If G has a left endpoint q which is not a source, then there is an edge e from a vertex
p to the vertex q. Let G′ be G with e removed and let V ′ be its Gessel-Viennot matrix.
Since the edge e is not in any n-path in G, the graph G′ has the same n-paths with the
same weights. If p is the ith left endpoint, we can obtain V ′ from V by subtracting w(i, j)
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times row i from j, where w(i, j) is the total weight in G of all paths from i to j. These
row operations do not change the determinant. The same argument applies if G has a
right endpoint which is not a sink.

Finally if G has a right endpoint source or a left endpoint sink, then it has no n-paths
and some row or column of V is 0. If G has a source or a sink which is not an endpoint,
we can delete it without changing the Gessel-Viennot matrix V or the set of n-paths.

We call the graph G′ constructed in our proof of Theorem 6 the transit-free resolution
of G. The transit-free resolution is a connection between the Gessel-Viennot method and
the permanent-determinant method:

Corollary 7. Let G be a connected, planar, directed, acyclic graph with n left and right
endpoints on the outside face. Suppose that the left endpoints are segregated from the right
endpoints on this face. If the left endpoints are the sources and the right endpoints are the
sinks, then the Gessel-Viennot matrix V of G is obtained from a Kasteleyn-Percus matrix
M of the transit-free resolution G′ of G by deleted pivots. If not every left endpoint is
a source or not every right endpoint is a sink, V is obtained by deleted pivots and other
matrix operations.

Note that by construction the matchings of the transit-free resolution G′ of G are
bijective with the n-paths in G. The planarity of G together with the position of its
endpoints imply that all n-paths induce the same bijection and therefore have the same
sign.

Proof. The Gessel-Viennot matrix V ′ of the graph G′ is obtained from V by the stated
operations. Thus it suffices to show that G′ is planar and that V ′ is also a Kasteleyn-
Percus matrix of G′.

Figure 7: Left-to-right orientation implied by segregation of sources and sinks (circled).

We first establish that the orientation of G is qualitatively like that of the example in
Figure 7: the orientations all point from left to right. More precisely, the edges incident
to each transit vertex are segregated, in the sense that all incoming edges are adjacent
and all outgoing edges are adjacent. The edges of each internal face are also segregated,
in the sense that the clockwise edges are adjacent and the counterclockwise edges are
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adjacent. To prove that G has this structure, we reallocate the Euler characteristic of the
sphere, 2, expressed as a sum over elements of G. In this sum, each vertex and face has
Euler characteristic 1 and each edge has Euler characteristic −1. If a pair of edges shares
both a vertex v and a face f , we deduct 1

2
from the Euler characteristic of f if the edges

both point to or both point from v, and otherwise we deduct 1
2

from v. Since each edge
participates in 4 such pairs, these deductions absorb the total Euler characteristic of all
edges.

The reallocated characteristic of a vertex is 1 if it is a source or sink, 0 if it is a
segregated transit vertex, and negative otherwise. The reallocated characteristic of a
face is at most 2 − 2n if it is the outside face (since orientations must switch between
clockwise and counterclockwise both at the sources and sinks and between them), 0 if it
is a segregated internal face, and negative otherwise. (No face has positive reallocated
characteristic since G is acyclic.) Thus the only way that the total can be 2 is if all
internal faces and all transit vertices are segregated.

That the transit vertices of G are segregated implies that G′ is planar. That each
internal face f is segregated implies that if f has k sides, the corresponding face f ′ of
G′ has 2k − 2 sides. Moreover the k − 2 new edges of f ′ have weight −1 in the proof of
Theorem 6, which agrees with the Kasteleyn-Percus rule. Thus V ′ is a Kasteleyn-Percus
matrix of G′, as desired.

Finally we have not discussed a Pfaffian version of the Gessel-Viennot method defined
by Stembridge (29). We believe that this method can be generalized further, and that it
admits an analogue of Corollary 7.

4 Matchings and Smith normal form

4.1 Equivalences of Kasteleyn and Kasteleyn-Percus matrices

If M is a Kasteleyn-Percus matrix of a bipartite, planar graph G, then we can consider
its cokernel, which by Section 2.2 is equinumerous with the number of matchings of M
if it has any matchings. Furthermore, if coker M is infinite or if M isn’t square, we can
think of coker M as a way to “count” matchings in a graph that has none. We call such a
computation an impossible enumeration. Both observations are reasons to study coker M
as part of enumerative combinatorics.

If G is weighted by elements of some ring R, then we can consider M up to stable
equivalence, whether or not it has a Smith normal form.

Suppose that M and M ′ are two Kasteleyn-Percus matrices for the same planar graph
G. Then the signs on G given by M ′ and M differ by a 1-cocycle c with coefficients
in the group {+,−} (16). Since the sphere has no first homology, c = δd, where d is
a 0-cochain. More explicitly d is a function from the vertices of G to {+,−}. We can
use d to form two diagonal matrices A and B with diagonal entries ±1 and such that
M ′ = AMB. Evidently A and B are invertible over Z, so M ′ and M have the same
cokernel. In conclusion:
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Proposition 8. If G be a weighted bipartite planar graph, then all of its Kasteleyn-Percus
matrices M are stably equivalent forms. In particular coker M is an invariant of G.

3 3

Z/9

3 3

Z/3⊕ Z/3

3

Z

3

Z⊕ Z/3

Figure 8: Embedding-dependent Kasteleyn-Percus cokernels.

Example 9. The Smith normal form or cokernel of M can depend on the embedding of
G in the plane. The top two graphs in Figure 8 have cokernels Z/9 and Z/3⊕Z/3 in the
two embeddings shown. If G has an odd number of vertices, then it cannot be Kasteleyn
flat on its outside face. In this case changing which face is on the outside can change the
cokernel as well. The bottom two graphs in Figure 8 are an example.

Our analysis generalizes to the non-bipartite case. If G is a planar graph with a
Kasteleyn matrix A, then we can consider A up to equivalence.

Again all Kasteleyn matrices we choose for the planar graph G are equivalent, because
any two Kasteleyn-flat orientations of G differ by the coboundary of a 0-cochain on G with
values in {+,−}. The matrices are consequently equivalent under the transformation

A 7→ BT AB

for some diagonal matrix B whose non-zero entries are ±1. We can also pass from the
usual clockwise-odd Kasteleyn rule to the counterclockwise-odd rule by negating A. We
have no reason to believe that A and −A are equivalent over a general ground ring R,
but they do have the same cokernel and are therefore equivalent if R is a PID.

If G is projectively planar and locally but not globally bipartite, the argument is
slightly different while the conclusion is the same. In this case the cohomology group

H1(RP 2 ,Z/2) ∼= Z/2
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is non-trivial. Suppose that we have two Kasteleyn-flat orientations of G whose matrices
are A and A′. Their discrepancy is a 1-cocycle c which could represent either the trivial
or the non-trivial class in H1(RP 2 ,Z/2). If c is trivial, then

A′ = BT AB

for some diagonal B. I.e., A and A′ are equivalent. If c is non-trivial, then

A′ = −BT AB,

i.e., A′ is equivalent to −A.

Figure 9: Preserving Kasteleyn flatness.

Kasteleyn and Kasteleyn-Percus matrices remain equivalent under more operations
than just the choices of signs or orientations. In particular they remain equivalent under
the moves in Section 3.2. In each move we make a graph G′ from the graph G, and we
need to choose related Kasteleyn-flat orientations of both graphs. For example consider
a double vertex splitting. If G is Kasteleyn-flat, and if we orient the two new edges in the
splitting in opposite directions as in Figure 9, then G′ is also Kasteleyn flat. If the three
vertices are numbered 1, 2, and 3, then the matrix A′ of G′ has a submatrix of the form

 0 1 0
−1 0 −1
0 1 0


 .

If we perform a deleted pivot at (1, 2) and (2, 1), we reduce A′ to the matrix A of G.

4.2 Is it bijective?

Whenever two sets are known to have the same size, a traditional question in combinatorics
is whether or not there is a bijection between them. In this section we conjecture a
relationship between cokernels and matching sets which is similar to a bijection.

If M is a Kasteleyn-Percus matrix for an unweighted bipartite, planar graph G with
at least one perfect matching, then two such sets to consider are coker M and P , the set
of perfect matchings of G. To this pair we must add a third set, coker MT , since the
choice between M and MT is arbitrary. As explained in Section 6, coker M and coker MT

are isomorphic, but there is no canonical isomorphism. This is evidence against a natural
bijection between coker M and coker MT , and therefore a natural bijection between either
of them and P . On the other hand, the special planar structure of M might yield such
bijections.

the electronic journal of combinatorics 9 (2002), #R29 14



It may be better to consider quantum bijections or linearized bijections instead of tra-
ditional ones. If A and B are two finite sets, a quantum bijection is a unitary isomorphism

C [A] ∼= C [B]

between the formal linear spans of A and B. A quantum bijection can be implemented
by a quantum computer algorithm just as a traditional bijection can be implemented on
a standard computer (28). A linear bijection is a linear isomorphism

F[A] ∼= F[B],

not necessarily unitary, for some field F. A linear bijection does not have the empirical
computational interpretation that a traditional bijection or a quantum bijection does, but
as a means of proving that A and B are equinumerous, it can be considered constructive.

If M is a non-singular n× n matrix over Z, then there is a natural quantum bijection
between coker M and coker MT , namely the discrete Fourier transform. (It is also a special
case of Pontryagin duality (23)). We express it by defining a unitary matrix U whose rows
are indexed by x ∈ coker M and whose columns are indexed by y ∈ coker MT . Given such
x and y, we let X and Y be lifts in Zn. We then define

Ux,y =
exp(2πiY T M−1X)√| detM | .

It is easy to check that Y T M−1X changes by an integer if we change the lift X of x,
because two such lifts differ by an element in im M .

Given M , G, and P as above, it might be possible to factor the unitary map U into
maps to and from C [P ]. However we may need to further relax the notion of a bijection.
Sometimes when G is a finite group equinumerous with a finite set S, there is no natural
bijection between them, but instead there is a natural, freely transitive group action of
G on S. Having introduced quantum bijections, we can try to make C [P ] a free unitary
module over the group algebras C [coker M ] and C [coker MT ]. We can even ask that the
two group actions be compatible with U by requiring the commutation relations

αyαx = exp(2πiY T M−1X)αxαy,

where x ∈ coker M and y ∈ coker MT and αx and αy are their hypothetical actions on
C [P ]. A standard theorem in representation theory says that for any M the algebra

D = C [coker M ] ⊗ C [coker MT ]

twisted by this commutation relation is isomorphic to a matrix algebra. This means that
D has only one irreducible representation, and we conjecture that C [P ] has the structure
of this representation.

If A is a non-singular alternating matrix, then we can define a similar algebra D as
a deformation of the group algebra C [coker A]. We let D be the formal complex span

the electronic journal of combinatorics 9 (2002), #R29 15



of elements αx with x ∈ coker A, and we arbitrarily order the elements in coker A. For
x ≤ y ∈ coker A, we define

αxαy = αx+y,

and for arbitrary x and y, we impose the relation

αyαx = exp(2πiY T A−1X)αxαy.

The algebra D is again isomorphic to a matrix algebra, since Theorem 18 allows us to
put A into

A =

(
0 M

−M 0

)
.

If we do so then algebra D then has the form previously described.

Conjecture 10. If A is a Kasteleyn matrix of a planar graph G with non-empty matching
set P , then there is a natural action of the algebra D on C [P ], possibly depending on the
way that G is embedded in the plane.

5 Lozenge and domino tilings

5.1 Plane partitions and lozenge tilings

Plane partitions are an interesting source of enumerative planar matching problems. We
consider the cokernels and Smith normal forms that arise in these problems, relying on
the material in References 15 and 16.

c

b a

c

b a

Figure 10: A plane partition and a tiling.

A plane partition in an a × b × c box is equivalent to a lozenge tiling of an (a, b, c)-
semiregular hexagon (Figure 10), which in turn is equivalent to a perfect matching of the
dual hexagonal graph Z(a, b, c) (Figure 11).

If a group G acts on the box and the plane partitions inside it, it also acts on the graph
Z(a, b, c). The G-invariant matchings correspond to matchings of a modified quotient
graph ZG(a, b, c). To understand these graphs we recall the three generators of G:

• ρ, cyclic symmetry for plane partitions or rotation by 120 degrees for lozenge tilings,
defined when a = b = c.
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Figure 11: The graph Z(2, 2, 3).

• τ , symmetry for plane partitions or diagonal reflection for lozenge tilings, defined when
b = c.

• κ, complementation for plane partitions or rotation by 180 degrees for lozenge tilings.

We describe ZG(a, b, c) case by case:

• If G = 〈ρ〉 or 〈ρ, κ〉, or if a, b, and c are all even and G is 〈κ〉, then ZG(a, b, c) is the
usual quotient graph Z(a, b, c)/G.

• If G = 〈κτ〉 or G = 〈κτ, ρ〉, then we delete the edges and vertices of Z(a, b, c) along the
lines of reflection and let ZG(a, b, c) be a connected component of the remainder.

• If G = 〈κ〉 and only one or two of a, b, and c is even, then Z(a, b, c) has a central edge
e invariant under κ. If one dimension is even, we define Zκ(a, b, c) by deleting e
and its vertices and then quotienting by κ. If two dimensions are even, we define
Zκ(a, b, c) by deleting e but not its vertices, and then quotienting by κ.

• If G = 〈τ〉, 〈τ, κ〉, or 〈τ, ρ, κ〉, we start with ZH(a, b, c), where H is, respectively, 〈1〉,
〈τκ〉, or 〈ρ, τκ〉. We cut ZH(a, b, c) by the line of reflection, and tie the cut edges of
one region to a polygamous vertex to define ZG(a, b, c).

• If G = 〈τ, ρ〉, we cut Z(a, a, a) by three lines of reflection and tie the cut edges of one
region (lying along two of the three lines) to a polygamous vertex to form ZG(a, a, a).

For every symmetry group G, the number of G-invariant plane partitions NG(a, b, c)
is round, meaning a product of small factors. (This is not a completely rigorous notion.
In this case NG(a, b, c) grows exponentially in ab + ac + bc while its prime factors grow
linearly in a+b+c.) In addition if G is a subgroup of 〈ρ, τ〉, the G-invariant partitions have
round q-enumerations, where the q-weight of a plane partition is sometimes the number
of cubes and sometimes the number of G-orbits of cubes. (To say that a polynomial P (q)
is round means not only that it is a product of small factors, but also that the factors
are cyclotomic. Equivalently P (q) is a ratio of products of differences of monomials.)
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Figure 12: The graph Z(2, 2, 3) weighted for q-enumeration.

All of these enumerations are proven (26; 15; 1; 31) except for the conjectured orbit q-
enumeration of totally symmetric plane partitions. Both orbit and cube q-enumerations
can be realized by weighted enumerations of matchings in ZG(a, b, c) (15; 16). Figure 12
shows an example where G is trivial (so that there is no distinction between cube and orbit
q-enumeration in this case). Also the weight of a matching in the example only agrees
with the q-weight of the corresponding plane partition up to a (matching-independent)
factor of q. We will therefore consider q-enumerations over the ring Z[q, q−1] and absorb
powers of q in normalization.

We let ZG(a, b, c; q) be ZG(a, b, c) with weights chosen for cube q-enumeration, and we
let Z̃G(a, b, c; q) be ZG(a, b, c) with weights chosen for orbit q-enumeration.

λ

µ

a

Figure 13: A lozenge tiling of a region with a = 4, λ = (2, 2), and µ = (1).

The problem of counting matchings in Z(a, b, c) has two other interesting general-
izations. The lozenge tilings of a parallelogram strip with notches on both sides (see
Figure 13) are naturally bijective with the semi-standard skew tableaux of shape λ/µ and
parts bounded by some a (27, §7.10), where λ and µ are two partitions with λ containing
µ. If λ has b nonzero parts, the parallelogram then has dimensions a by λ1 + b. On the
bottom row it has notches at positions λi + b + 1 − i, counting from the left. On the
top row it has notches at positions µi + b + 1− i, counting from the left and extending µ
by 0 so that it also has b parts. We leave the proof of the bijection between tilings and
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x4 x4

x3 x3 x3

x2 x2 x2

x1 x1

Figure 14: Weights of Z(λ/µ; ~x).

tableaux to the reader since it is similar to existing arguments in the literature. We let
Z(λ/µ, a) be the graph dual to the tiling of this region by triangles, so that the lozenge
tilings correspond to the matchings of Z(λ/µ, a). In an important weighted enumeration
we assign the weight xi to the northeast-pointing edges in the ith row, as in Figure 14.
Call the weighted graph Z(λ/µ; ~x) The total weight of its matchings is the skew Schur
function sλ/µ(~x) (in finitely many variables). If we let

~qa = (1, q, . . . , qa−1),

then the specialization sλ/µ(~qa) is the standard q-enumeration of skew tableaux. In par-
ticular, if we omit µ (by setting it to the empty partition), then sλ(~x) is the character
of an irreducible representation V (λ) of GL(a, C ), while sλ(~qa) is round by the q-Weyl
dimension formula.

A second generalization is to count tilings of a semiregular hexagon with side lengths
a, b + d, c, a + d, b, c + d and with a triangle of size d removed (3). We do not know of
a q-enumeration of these, although the symmetry κτ (corresponding to TCPPs) appears
when b = c and the symmetry ρ (corresponding to CSPPs) appears when a = b = c. We
let Z(a, b, c, d, d) be the dual graph and we analogously define ZG(a, b, c, d, d) if G is a
subgroup of 〈κτ, ρ〉.

b + d

a

c + d

b
a + d

c

e

b

a + d

c

b + d
a

c + d

e

Figure 15: Hexagonal regions without central triangles.

As we mentioned in Section 4, we can consider the Kasteleyn or Kasteleyn-Percus
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cokernel for impossible enumerations where there are no matchings. This allows us to
vary the above graphs in several ways, which we describe case by case:

• We can consider Zκ(a, b, c) when all three of a, b, and c are odd, as well as Z〈κ,ρ〉(a, a, a)
when a is odd.

• If one of a, b, and c is odd, we define the graph Z ′
κ(a, b, c) by removing the central edge

e but not its vertices before quotienting by κ. If two are odd we define Z ′
κ(a, b, c)

by removing e and its vertices before quotienting by κ.

• If ZG(a, b, c) has a polygamous vertex, we can give it the wrong parity to make Z ′
G(a, b, c).

If G = 〈τ〉 or G = 〈ρ, τ〉, then we also define the q-weighted forms Z ′
G(a, b, c; q) and

Z̃ ′
G(a, b, c; q).

• We define the graph Z(a, b, c, d, e) by removing a triangle of size e from a semiregular
hexagon of side lengths a, b + d, c, a + d, b, c + d, with d 6= e, as shown in Figure 15.
The parameters d and e might even have opposite sign, which we interpret by turning
the triangle upside-down, as also indicated in Figure 15.

For each of the graphs defined in this section, we denote a corresponding Kasteleyn-
Percus matrix by replacing Z by M if it is bipartite and monogamous, and the corre-
sponding Kasteleyn matrix by replacing Z by A otherwise.

Conjecture 11. Each of the matrices M(a, b, c; q), Mρ(a, a, a; q), Aτ (a, b, b; q), Ãτ (a, b, b; q),
A′

τ (a, a, b; q), Ã′
τ (a, a, b; q), Ã〈ρ,τ〉(a, a, a; q), Ã′

〈ρ,τ〉(a, a, a; q), and M(µ; ~qa) admits a Smith

normal form over Z[q, q−1], and the entries are q-round. The Smith normal form over
Z of each of the matrices M(a, b, c, d, e), Mκτ (2a, b, b), M〈ρ,κτ〉(2a, 2a, 2a), Aκ(a, b, c),
A′

κ(a, b, c), A〈κ,τ〉(2a, b, b), A′
〈κ,τ〉(2a, b, b), A〈ρ,κ〉(a, a, a), A〈ρ,κ,τ〉(2a, 2a, 2a), and A′

〈ρ,κ,τ〉(2a, 2a, 2a)
has round entries.

We could have stated conjecture 11 in greater generality by combining more of the
variations above. For example the graph Z(a, a, a, d, e) has symmetries and we could
consider the matrix of a suitably modified quotient graph. Indeed we do not know how
to state Conjecture 11 in full generality, since there are yet other variations of counting
lozenge tilings in a hexagon with round enumerations (4). Presumably many or all of
these variations also have impossible counterparts, and some may have q-enumerations as
well. Also the spirit of the conjecture is to find the Smith normal forms or the cokernels
explicitly.

Conjecture 12. The Smith normal forms over Z[q, q−1] of each of the matrices M(a, b, c; q),
Mρ(a, a, a; q), Aτ (a, b, b; q), Ãτ (a, b, b; q), and Ã〈ρ,τ〉(a, a, a; q) are square free.

Conjecture 12 may also not be fully general, although we note that the Smith normal
form of M(λ; ~qa) is not always square free. Note that Conjectures 12 and 11 would together
solve problem 5 in Propp’s problem list (22), which asks for the Kasteleyn cokernel of the
graph Z(a, b, c). The reason is that the Smith normal form of any non-singular matrix
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M is uniquely determined by det M , provided that the normal form exists and is square
free. For example the q-enumeration of plane partitions tells us that

det M(2, 2, 2; q) = (2)2
q(5)q,

where

(n)q =
qn − 1

q − 1
.

So Conjectures 11 and 12 assert that Sm(M(2, 2, 2; q)) exists and its nontrivial entries are
(2)q and (2)q(5)q. If we specialize at q = 1, we obtain the correct prediction that

coker M(2, 2, 2) ∼= Z/2⊕ Z/10.

Stembridge (30) noticed a family of relations, called the q = −1 phenomenon, between
−1-enumeration of some symmetry classes of plane partitions and ordinary enumeration
of other symmetry classes. We conjecture an extension of the phenomenon that is easier
to state in terms of cokernels in some cases and Smith normal forms in others.

Conjecture 13. If G is 〈1〉 or 〈ρ〉 and if G′ = 〈G, κ〉, then

Sm(AG′(a, b, c)) = Sm(MG(a, b, c)−1)
2.

If G is 〈τ〉 or 〈ρ, τ〉, and if G′ is, respectively, 〈κτ〉 or 〈ρ, κτ〉, then

coker AG(a, b, c)−1
∼= coker MG′(a, b, c)⊕2.

If G is 〈τ〉 or 〈ρ, τ〉 and if G′ = 〈G, κ〉, then

coker AG′(a, b, c) ∼= coker A′
G(a, b, c)−1.

5.2 Jacobi-Trudi matrices

One conclusion of our construction for skew tableaux is a novel determinant formula for
skew Schur functions:

sλ/µ(~x) = det M(λ/µ; ~x).

We can compare this to two other determinant formulas for skew Schur functions (27,
§7.16). Let

J(λ/µ; ~x)i,j = hλi−µj−i+j(~x),

where hn(~x) is the nth complete symmetric function of ~x, and let

D(λ/µ; ~x)i,j = eλ′
i−µ′

j−i+j(~x),

where en(~x) is the nth elementary symmetric function of ~x and λ′ is the partition conjugate
to λ. Then the Jacobi-Trudi identity states that

sλ/µ(~x) = det J(λ/µ; ~x)

while the dual Jacobi-Trudi identity states that

sλ/µ(~x) = det D(λ/µ; ~x).
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Theorem 14. The Jacobi-Trudi matrices J(λ/µ; ~x) and D(λ/µ; ~x) are stably equivalent
over the ring Z[~x] to the matrix M(λ/µ; ~x).

x4 x4 x4

x3 x3 x3

x2 x2 x2

x1 x1 x1

λ

µ

a − 1

Figure 16: First Gessel-Viennot model of lozenge tilings. (Not all orientations are shown.)

Proof. The theorem is a special case of Corollary 7. Let X(λ/µ; ~x) be the graph exem-
plified in Figure 16: a square grid of height a− 1 and width λ1 + b. On the top there is a
left endpoint at each position µi + b + 1 − i and on the bottom a right endpoint at each
position λi + b + 1 − i. Each horizontal edge points to the right and on the ith row has
weight xi. Each vertical edge points down. By a standard argument the Gessel-Viennot
matrix of X(λ/µ; ~x) is J(λ/µ; ~x). At the same time, one can check that the transit-free
resolution of X(λ/µ; ~x) is Z(λ/µ; ~x). Thus Corollary 7 says that J(λ/µ; ~x) is equivalent
to M(λ/µ; ~x).

x4 x4 x4

x3 x3 x3

x2 x2 x2

x1 x1 x1

a

µ′

λ′

Figure 17: Second Gessel-Viennot model of lozenge tilings. (Not all orientations are
shown.)

Let Y (λ/µ; ~x) be the graph exemplified in Figure 17. It is a diamond grid of height a
and width λ1 + b. All edges point down, and those in the ith row that point southwest
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have weight xi. On the top row there is a left endpoint at each position b + i− µ′
i and on

the bottom a right endpoint at each position b + i − λ′
i. Note that the left endpoints are

at all of the positions not of the form µi + b+1− i and likewise the right endpoints are at
the positions not of the form One can check that the Gessel-Viennot matrix of X(λ/µ; ~x)
is D(λ/µ; ~x). At the same time, noting the gaps between the marked endpoints, one can
check that the transit-free resolution of Y (λ/µ; ~x) is Z(λ/µ; ~x). Thus Corollary 7 says
that J(λ/µ; ~x) is equivalent to D(λ/µ; ~x).

Question 15. Are J(λ/µ; ~x) and D(λ/µ; ~x) stably equivalent over the ring of symmetric
functions?

Theorem 14 implies that there are several ways that equivalent forms of the matrix
M(λ/µ; ~x) arise in several common guises. If we set ~x = ~qa and µ = 0, then Conjecture 11
asserts that M(λ; ~qa) admits a Smith normal form a Smith normal form over the ring
Z[q, q−1]. This suggests that coker M(λ; ~qa) is an important extra structure that one can
associate to the representation V (λ) mentioned previously. Moreover the relationship
between M(λ) and V (λ) is an interesting special case of Conjecture 10.

5.3 Domino tilings

Figure 18: An Aztec diamond of order 3

Domino tilings of an Aztec diamond are a well-known analogue of lozenge tilings of a
hexagon. Recall that an Aztec diamond of order n is the polyomino consisting of those
unit squares lying entirely inside the region |x| + |y| ≤ n + 1, as shown in Figure 18. A
domino tiling of an Aztec diamond corresponds to a matching of the graph dual to the
tiling by squares; an example of such a graph is the one on the left in Figure 5. Denote
this graph by ZA(n) and let MA(n) be a Kasteleyn-Percus matrix for it.
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Theorem 16. If MA(n) is a Kasteleyn-Percus matrix for domino tilings of an Aztec
diamond of order n, then

coker MA(n) ∼= Z/2⊕ Z/4⊕ · · · ⊕ Z/2n.

Theorem 16 extends the result that the number of domino tilings of an Aztec diamond
of order n is 2n(n+1)/2 (20; 5; 6).

Proof. We give two arguments, one using Kasteleyn-Percus matrices and the other using
Gessel-Viennot matrices. First, define a binomial coefficient matrix B(n) by

B(n)0≤i,j<n =

(
i

j

)
.

(We will assume that rows and columns of other matrices are numbered from 0 as well.)
Define an n × n + 1 matrix L(n) by putting the n × n identity matrix to the left of a
null column, and define R(n) by putting the n × n identity matrix to the right of a null
column. For example here are B(4), L(3), and R(3):


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1





1 0 0 0

0 1 0 0
0 0 1 0





0 1 0 0

0 0 1 0
0 0 0 1


 .

One can check that the matrix

MA(n) = R(n) ⊗ R(n)T + L(n) ⊗ R(n)T

+ R(n) ⊗ L(n)T − L(n) ⊗ L(n)T

is a Kasteleyn-Percus matrix for the graph ZA(n). At the same time,

B(n)L(n)B(n + 1)−1 = L(n)

and
B(n)R(n)B(n + 1)−1 = R(n) − L(n).

It follows that

M ′(n)
def
= (B(n) ⊗ B(n + 1)−T )M(n)(B(n + 1)−1 ⊗ B(n)T )

= R(n) ⊗ R(n)T − 2L(n) ⊗ L(n)T .

Since B(n) is a triangular matrix, M ′(n) is equivalent to M(n). On the other hand, one
can check that, modulo permuting rows and columns,

M ′(n) = X(1) ⊕ X(2) ⊕ · · · ⊕ X(n)

⊕ Y (1) ⊕ Y (2) ⊕ · · · ⊕ Y (n),
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where

X(k) =




1 −2 0 0
0 1 −2 · · · 0
0 0 1 0

...
. . .

...
0 0 0 · · · 1




and

Y (k) =




−2 1 0 0
0 −2 1 · · · 0
0 0 −2 0

...
. . .

...
0 0 0 · · · −2


 .

Since
coker X(k) = 0 coker Y (k) = Z/2k,

the theorem follows.

0

1

2

3

0

1

2

3

Figure 19: Gessel-Viennot model of an Aztec diamond. (Not all orientations are shown.)

In the Gessel-Viennot approach we first observe that if G(n) is a graph of the type
in Figure 19 then its transit-free resolution G′(n) as described in Theorem 6 is the Aztec
diamond graph ZA(n). (The left and right endpoints of G(n) are numbered in the figure,
with the left endpoints on top. The first left and right endpoints coincide, which is
degenerate but allowed.) Let V (n) be the Gessel-Viennot matrix of G(n). The entry
V (n)i,j is the Delannoy number D(i, j) (27, §6.3) (see also Sachs and Zernitz (24)), because
G(n) matches the defining recurrence

D(i, j) = D(i, j − 1) + D(i − 1, j) + D(i − 1, j − 1)

D(0, i) = D(i, 0) = 1.

A standard formula for Delannoy numbers is

D(i, j) =
∑

k

(
i

k

)(
j

k

)
2k.
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In matrix form this identity can be expressed

V (n) = B(n)V ′(n)B(n)T ,

where V ′(n) is the Smith normal form of V (n) with

V ′(n)k,k = 2k.

Thus the Smith normal form of V (n) also establishes the theorem.

Finally, we could at least conjecturally extend Theorem 16 with the same variations
as those we considered for lozenge tilings: Domino tilings with symmetry, q-enumerations,
impossible enumerations, Aztec diamonds with teeth missing, etc. For example, Tokuyama
(32) established a relation between generating functions of lozenge-type and Aztec-type
Gelfand triangles. We conjecture that this identity can be extended to an equivalence of
Kasteleyn-Percus (or Gessel-Viennot) matrices. We leave this and other possibilities to
future work.

6 Appendix: Smith normal form

Theorem 17. If M is a k × n matrix over a principal ideal domain R, then there exist
invertible matrices A and B such that

Sm(M) = AMB

is diagonal and Sm(M)i,i divides Sm(M)i+1,i+1. The matrix Sm(M) is a Smith normal
form of M .

Evidently

coker M ∼= coker Sm(M)

= Rk−n ⊕ R/Sm(M)1,1 ⊕ · · · ⊕ R/Sm(M)n,n

if k ≥ n and

coker M ∼= coker Sm(M)

= R/Sm(M)1,1 ⊕ · · · ⊕ R/Sm(M)k,k

otherwise. (If R = Z and we allow n, but not k, to be infinite, then Theorem 17 is
equivalent to the classification of finitely generated abelian groups.) It is easy to show
that this decomposition of coker M is unique and that Sm(M) is unique up to multiplying
the entries by units.
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Proof. We argue by induction on n or k. Since R is a PID, any two elements a and b have
a greatest common divisor

gcd(a, b) = ax + by

which is unique up to a unit factor. Moreover, R is Noetherian, which means that any
chain of divisibilities ai+1|ai must eventually be constant up to unit factors. Thus we can
argue by induction with respect to divisibility of non-zero elements of R. Since we can
replace M by any equivalent form, we assume that the entry M1,1 = a is not divisible by
any entry in any form of M , except for those that are a times a unit. We claim that a
divides every entry of M . Otherwise there is an entry Mi,j = b such that a - b and b - a.
If b is in the first row or column, then after permuting rows and columns and possibly
transposing M , M1,2 = b:

M =

(
a b · · ·

...
. . .

)
.

Let c = ax + by be a greatest common divisor of a and b. If we post-multiply M by the
matrix

B =




x a/c
y −b/c

0

0 I


 ,

the result is a form of M with the entry c, which contradicts the choice of a. If a divides
every entry in the first row and column but not some entry b elsewhere, then we first
pivot at the position (1, 1) to obtain:

M =




a 0 . . .
0 b

...
. . .


 .

If we pre-multiply by

A =




1 1
0 1

0

0 I




and post-multiply by B above, we again produce the entry c.
Given that M1,1 = a does divide the rest of M we perform a deleted pivot at (1, 1)

and assume normal form for the remaining submatrix by induction.

Theorem 18. If A is an alternating n× n matrix over a principal ideal domain R, then
there exists an invertible matrix B such that

Sma(A) = BT AB

is block-diagonal with 2 × 2 blocks, and such that Sma(A)2i,2i+1 divides Sma(A)2i+2,2i+3.
The matrix Sma(A) is the alternating Smith normal form of A.
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Proof. The argument is the same as the one for Theorem 17. We assume that A1,2 = a is
minimal among all entries of all forms of A. If it does not divide some entry in the first
two rows and columns, then after permuting rows and columns, that entry is A1,3 = b:

A =




0 a b
−a 0 · · · ·
−b · 0

...
. . .


 .

Let c = ax + by be a common divisor and let

B =




1 0 0
0 x a/c
0 y −b/c

0

0 I


 .

Then BT AB has the entry c, a contradiction. If a divides every entry in the first two
rows and columns but not some other entry b, then we can perform a symmetric pivot at
(1, 2). After permuting rows and columns A then has the form:

A′ =




0 a 0 0
−a 0 0 0 . . .
0 0 0 b
0 0 −b 0

...
. . .


 .

Let c = ax + by be a common divisor and let

B =




1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

0

0 I


 .

Then BT AB has the form of the previous case.
Finally if a divides every entry of A, we perform a deleted symmetric pivot at (1, 2)

and inductively assume the normal form for the remaining submatrix.
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