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Abstract

Let m be a positive integer, and pn(m) the proportion of permutations of the
symmetric group Sn that admit an m-th root. Calculating the exponential
generating function of these permutations, we show the following asymptotic
formula

pn(m) ∼
n→+∞

πm

n1−ϕ(m)/m
,

where ϕ is the Euler function and πm an explicit constant.

1. Introduction

The question consists in estimating the number of permutations of the symmetric
group Sn which admit an m-th root when n is large. Turán gave an upperbound when
m is a prime number [Tu] and Blum found an asymptotically equivalent form for m = 2
[Bl]. In the general case, Bender applied a theorem of Hardy, Littlewood and Karamata
to the exponential generating function of these permutations to obtain an asymptotic
equivalent of the partial sums of the required numbers [Be]. In [BoMcLWh], it is shown
that the sequence tends monotonically to zero in the case when m is prime.

Whether a permutation of Sn admits an m-th root can be read on the partition
of n determined by the lengths of the permutation’s cycles, because the class of such
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permutations is stable under conjugacy inSn. This characterisation, already mentioned
in [Be] is established in section 2.

The computation of the exponential generating function (EGF) Pm of these per-
mutations follows from the preceding result. This EGF splits in a natural way as a
product of two others EGF:

Pm = Cm × Rm.

Singularity analysis provides the asymptotics of the coefficients of Cm =
∑

n cn(m)Xn

because Cm has a finite number of algebraic singularities on its circle of convergence.
This asymptotics turns to be of the following form

cn(m) ∼
n→+∞

κm

n1−ϕ(m)
m

,

where κm is an explicit constant and ϕ the Euler function. This formula was already
established in [BoGl] only when m is a prime number.

On the contrary, the singularities of Rm =
∑

n rn(m)Xn form a dense subset of its
circle of convergence; this prevents transfer theorems to apply to Rm and to the whole
series Pm. Nevertheless, the series with positive coefficients

∑
n rn(m) converges. Now,

since
pn(m)
cn(m)

=
n∑

k=o

cn−k(m)
cn(m)

rk(m),

and since cn−k(m)/cn(m) tends to 1 as n tends to infinity for every k, the asymptotics
of the pn(m) will follow from an interchange of limits.

Lebesgue’s dominated convergence theorem for the counting measure on the natu-
ral numbers does not directly apply because cn−k(m)/cn(m) is too large when k is not
far from n (if k equals n, its value is n1−ϕ(m)/m up to a positive factor). If the sequences(
cn−k(m)/cn(m)

)
n

were monotonic, the result would be a consequence of Lebesgue’s
monotonic convergence theorem (for the counting measure once again). Unfortunately,
this is not the case. We approximate the cn(m) by the coefficients dn(m) of the expan-
sion in power series of the principal part Dm of Cm in a neighbourhood of its dominant
singularity 1. The sequences

(
dn−k(m)/dn(m)

)
n

are this time monotonic, so that

lim
n→+∞

n∑
k=0

dn−k(m)
dn(m)

rk(m) =
∑
n≥0

rn(m).

Now, the approximation of the cn(m) by the dn(m) is good enough to ensure the
application of dominated convergence theorem; this last fact implies the announced
result.

In an appendix, we give an explicit formula giving the number cn(m) × n! of per-
mutations of Sn whose canonical decomposition has only cycles of length prime to m
(these permutations are m-th powers).
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2. What does an m-th power look like in Sn ?

Every permutation has a canonical decomposition (unique up to order) as a product
of cycles of disjoint supports. These cycles commute. Therefore, a permutation is an
m-th power if and only if it is a product of m-th powers of cycles with disjoint supports.
Then, it suffices to check what the m-th power of a cycle looks like.

Lemma. The m-th power of a cycle of length l is a product of gcd(l, m) cycles of
length l/ gcd(l, m) with disjoint supports.

In algebraic terms, this lemma can be understood in the following way: if c is a cycle
of length l, the order of the element cm in the symmetric group is l/ gcd(l, m).

In order to establish the shape of an m-th power ofSn, let us introduce the notation
l∞ ∧ m: if l and m are integers, gcd(ln, m) does not depend on n, provided n is large
enough; l∞ ∧ m is defined as this common value of gcd(ln, m), n � 1. In terms of
decomposition in prime factors, l∞ ∧m is the part of m having a common divisor with
l: let m = ±∏

pvp(m) be the decomposition of m in primes, the products ranges over
all primes numbers p, the valuations vp(m) are nonnegative integers, almost all of them
are zero. Then, l∞ ∧ m =

∏
pvp(m) where the product ranges over all primes p such

that p divides l. At last, one can see the number l∞ ∧ m as the least positive divisor d
of m such that l and m/d are coprimes.

Proposition. A permutation σ ∈ Sn has an m-th root if and only if for every
positive integer l, the number of l-cycles in the canonical decomposition of σ is a multiple
of l∞ ∧ m.

Proof. Let δ = l∞ ∧ m. Then δ divides m, and gcd(m/δ, l) = 1. For every positive
integer k, with the help of the lemma, a product of kδ cycles with disjoint supports
is the m-th power of a cycle of length lkδ. Doing this for every l, one sees that the
condition is sufficient. Now, let c be a cycle of length k. Then, thanks to the lemma, cm

is the product of gcd(k, m) cycles of length l = k/ gcd(k, m). To catch the necessity of
the condition, it is enough to show that gcd(k, m) is a multiple of δ, i.e. that for every
prime p, one has vp(gcd(k, m)) ≥ vp(δ). It follows from the definition of l∞ ∧ m that

vp(δ) =
{

0 if p divides gcd(l, m)
vp(m) if p does not divide gcd(l, m).

Suppose that p is a prime divisor of gcd(l, m). In particular, vp(l) 6= 0 Then, vp(m) <
vp(k) since vp(l) = vp(k) − min{vp(m), vp(k)}. This implies that vp(gcd(k, m)) =
vp(m) = vp(δ). On the other hand, if the prime p does not divide gcd(l, m), then
vp(δ) = 0 ≤ vp(gcd(k, m)) and the proof is complete.

Examples. 1: In the case where m is a prime number, the recipe to build an m-th
power in Sn is the following: compose arbitrarily cycles of length not divisible by m
with groups of m cycles of same length divisible by m (all cycles with disjoint supports).
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2: The notations for partitions are the standard ones. If the partition associated
to a permutation σ is (26, 327, 42, 5, 618, 72), then σ is the 18-th power of a permutation
whose partition is (43, 5, 72, 8, 273, 104). In general, a permutation admits many m-th
roots, which do not have necessarily the same partition.

3. The exponential generating function of the m-th powers

We adopt the following notations :

Pm =
∑
n≥0

pn(m)Xn

Cm =
∑
n≥0

cn(m)Xn

Rm =
∑
n≥0

rn(m)Xn.

Pm ∈ Q[[X ]] is the exponential generating function (EGF, formal series) of the
m-th powers in the groups Sn. This means that the number of m-th powers in Sn is
pn(m)×n! for each n. In the same way, Cm is the EGF of the permutations having only
cycles of length prime to m in their canonical decomposition (they admit a m-th root)
and Rm the EGF of the rectangular m-th powers, that is the m-th powers with only
cycles of length having a common factor with m (the adjective rectangular is chosen
because of the form of the Ferrers diagram associated to such a permutation : a sequence
of rectangular blocks of height greater than 1).

Now, the standard way to compute these series [FlSe] leads to the following expres-
sions, according to the previous proposition:

Pm = Cm × Rm =
∏
l≥1

el∞∧m

(X l

l

)
. (1)

In the last formula, l∞ ∧ m is defined in 2- and ed denotes the formal series (or the
entire function) defined for d ≥ 1 by

ed(X) =
∑
n≥0

Xnd

(nd)!
=

1
d

∑
ζ

exp(ζX).

The last sum is extended to all d-th (complex) roots of 1. Note that for d = 1 this series
is the exponential and for d = 2 the hyperbolic cosine.

3.1. Isolating the numbers l prime to m, one finds

Cm = exp




∑
l≥1

gcd(l,m)=1

X l

l


 . (2)
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If the decomposition into prime numbers of m is m = pα1
1 . . . pαr

r with all αi greater or
equal to one, let q(m) = p1 . . . pr be the quadratfrei radical* of m (a positive integer is
said to be quadratfrei if and only if it has no square factor). For conciseness, we shall
write q in place of q(m) if the situation is unambiguous. Formula (2) shows that

C(m) = C(q).

If m is the power of a prime number, gcd(k, m) = 1 if and only if k is not divisible by
the prime q, which gives the expression Cm = q

√
1 − Xq/(1 − X). Furthermore, if p is

a prime number and q a quadratfrei number prime to p, formula (2) shows that

Cpq(X) = Cq(X) × Cq(Xp)1/p. (3)

We note µ the Möbius function on the positive integers, defined by µ(m) = 0 if m
has a square prime factor, and µ(q) = (−1)r if q is a quadratfrei number with r prime
factors (in particular, µ(1) = 1). The function µ is multiplicative in the following sense
: if m1 and m2 are coprime numbers, then µ(m1m2) = µ(m1)µ(m2) (see [HaWr]).

Proposition. For every positive m, the EGF of the permutations having only
cycles of length prime to m in their canonical decomposition is

Cm =
∏
k|m

(
1 − Xk

)−µ(k)/k

Proof. Induction with formula (3).

Note that one can write the proposition with the product being extended only to
all divisors of the quadratfrei radical q of m. Indeed, only the quadratfrei divisors of m
have a non trivial contribution.

3.2. The contribution of the rectangular m-th powers to the series Pm is the
product extended to the l which have a common factor with m, i.e.

Rm =
∏
l≥1

gcd(l,m)6=1

el∞∧m

(
X l

l

)
. (4)

* In terms of commutative algebra, the radical of an ideal I is the set of all elements
of the ring some positive power of which belongs to I; in the present situation, q(m) is
the positive generator of the radical of the ideal of Z generated by m.
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4. Main theorem

We now aim to calculate an asymptotic equivalent of the coefficients of Pm =
CmRm. Singularity analysis will allow us to establish such an asymptotics for the coef-
ficients of Cm, because the radius of convergence of the associated analytic function it
defines is 1, with a finite number of algebraic singularities on the unit circle. Unfortu-
nately, the series Rm admits the unit circle as a natural boundary: the singularities of
Rm form a dense subset of the unit circle.

The argument given to reach the desired asymptotics uses the convergence of the
series of coefficients of Rm, and a combination of monotonic and dominated convergences
round Cm, together with a new occurence of singularity analysis.

4.1. Convergence of the series
∑

n rn(m)

The infinite product

Rm(1) =
∏
l≥1

gcd(l,m)6=1

el∞∧m

(
1
l

)

converges because its general term is 1 + O(1/l2) as l tends to infinity.
Moreover, ed(X l/l) = 1 + 1

ldd!
X ld + · · ·, which shows that just a finite number of

factors of the infinite product Rm are enough to calculate the n-th coefficient rn(m)
(roughly speaking, one needs less than the first dn/2e terms of the product).

If t is a positive integer, let Rt
m =

∑
rt
n(m)Xn be the product of the first t terms of

the product Rm. The series Rt
m has an infinite radius of convergence; in particular, the

series
∑

n rt
n(m) converges to Rt

m(1). Then, all terms being nonnegative, if t is greater
than dn/2e, one has successively

n∑
k=0

rk(m) =
n∑

k=0

rt
k(m) ≤

+∞∑
k=0

rt
k(m) = Rt

m(1) ≤ Rm(1).

The last inequality is due to the fact that the ed are greater than 1 on the nonnegative
real numbers. Since the terms rn(m) are all positive, the series

∑
n rn(m) converges

and thanks to Abel’s theorem*, one has at last
∑
n≥0

rn(m) = Rm(1). (5)

Remark. The series Rm admits the unit circle as a natural boundary. We illus-
trate this phenomenon on the particular case where m = 2. The general case, more
complicated to write, is conceptually of the same kind.

* We refer to the following theorem of Abel: if the series
∑

an converges, then the
power series

∑
anzn is uniformly convergent on [0, 1].
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For m = 2, the series is

R2 =
∏
n≥1

cosh
(

X2n

2n

)
= exp


∑

m≥1

(−1)m−1τm−1

m22m+1
Li2m(X4m)


 , (6)

where Lin(X) =
∑

Xk/kn is the n-th polylogarithm and τm are the tangent numbers,
defined by the expansion tanX =

∑
τmX2m+1. The n-th polylogarithm has a singular-

ity at 1, with principal part (1−z)n−1 log 1/(1−z) up to a factor. Thus every primitive
4m-th root of unity ζ is a singularity of R2 with principal part (1− z/ζ)2m−1 log 1/(1−
z/ζ) up to a factor, so that R2 is singular at a dense subset of points on the unit circle.

4.2. Asymptotics of the cn(m)

We use a restricted notion of order of a singularity: we will say that an analytic
function f has order α ∈ R \ Z− at its (isolated) singularity ζ if

f(z) =
c(

1 − z
ζ

)α

(
1 + O(z − ζ)

)

in a neighbourhood of ζ which avoids the ray [ζ, +∞[, where c is a non zero constant
(c is the value at ζ of the function z 7→ (1 − z

ζ )αf(z)).
All the singularities of Cm are on the unit circle : they are the q-th roots of

unity, where q is the quadratfrei radical of m. The order of the singularity 1 is clearly∑
µ(k)/k, where the sum extends to all divisors of q. Let ϕ be the Euler function, i.e.

ϕ(q) is the number of all positive integers less or equal to q and prime to q. Because of
the Möbius inversion formula (see [HaWr]), since q =

∑
ϕ(k) where k ranges over all

divisors of q, one finds
∑

µ(k)/k = ϕ(q)/q. An elementary calculation of the same kind,
using the multiplicativity of the arithmetical functions ϕ and µ leads to the following
result.

Lemma. If ζ is a primitive k-th root of unity (where k divides q), then Cm has at

ζ a singularity of order
µ(k)
ϕ(k)

ϕ(q)
q

.

Note once more that one could state this result without the use of q, writing directly m
instead of q. Indeed, µ is zero on non-quadratfrei numbers, and ϕ(q)/q = ϕ(m)/m.

Proposition. For every positive integer m, the number cn(m)×n! of permutations
of Sn having only cycles of length prime to m in their canonical decomposition satisfies

cn(m) ∼
n→+∞

κm

n1−ϕ(m)
m

,

where κm is the following constant depending only on the quadratfrei radical q of m

κm =
1

Γ
(ϕ(m)

m

) ∏
k|m

k−µ(k)
k .
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Proof. Cm defines an analytic (single-valued) function in any simply connected domain
that avoids its singularities. The lemma shows that the singularity of Cm at 1 determines
alone the asymptotics of cn(m) via transfer theorem *. The constant κm × Γ

(ϕ(m)
m

)
is

the value at 1 of the function z 7→ (1 − z)ϕ(m)/mCm(z).

For a formula giving the exact value of cn(m), see the appendix. Figure 1 shows
the first thousand values of kappa, with m on the x-axis and κm on the y-axis.

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Figure 1: The function m 7→ κm

4.3. Statement and proof of the main theorem

The situation is the following: we look for the asymptotics of the coefficients
pn(m) of the formal series Pm = CmRm where the coefficients cn(m) are equivalent
to n−1+ϕ(m)/m up to a constant factor, and the series of coefficients rn(m) converges.

* By transfer theorem, we mean analysis of singularities that consists in deducing the
asymptotics of the coefficients of a power series from the local analysis of its singularities
when they involve only powers and logarithms. For a detailed study, see [FlSe].

the electronic journal of combinatorics 9 (2002), #R3 8



Theorem. Let m be a positive integer. The number pn(m) × n! of permutations
of Sn which admit a m-th root satisfies

pn(m) ∼
n→+∞

πm

n1−ϕ(m)
m

where πm is the positive constant

πm = κmRm(1) =
1

Γ
(ϕ(m)

m

) ∏
k|m

k−µ(k)
k

∏
l≥1

gcd(l,m)6=1

el∞∧m

(
1
l

)
.

Proof. For simplicity, we note pn = pn(m), and similarly for cn and rn. We deduce
from the formula Pm = CmRm that pn =

∑
cn−krk, where k ranges over {0, . . . , n}.

Since cn−k/cn tends to 1 as n tends to infinity for every k (see the asymptotics of cn),
it is enough to show that the following interchanging of limits is valid:

lim
n→+∞

n∑
k=0

cn−k

cn
rk =

∑
n≥0

rn.

Let Dm be the series Dm = κm×Γ(ϕ(m)/m)×(1−X)−ϕ(m)/m =
∑

n≥0 dnXn, principal
term of the series Cm in a neighbourhood of 1 (see proof of the previous proposition).
For each integer k, the sequence (dn−k/dn)n decreases (compute it explicitely, dn is a
generalised binomial number up to a factor) and converges to one. Then, by monotonic
convergence theorem,

lim
n→+∞

n∑
k=0

dn−k

dn
rk =

∑
n≥0

rn.

On the other hand, the formal series Cm − Dm defines a function analytic on the unit
disk, whose singularities are those of Cm except 1 which becomes of order ϕ(m)/m− 1.
If m 6= 1, the singularity that determines the asymptotics of its coefficient has order α
strictly less than ϕ(m)/m (the previous lemma gives α explicitely). As a consequence,
1 − dn/cn tends to zero as n tends to +∞. In particular, there exist two positive
constants A and B such that

∀n ≥ 0, A ≤ dn

cn
≤ B.

Then, for all n and k (with k ≤ n), one has

cn−k

cn
≤ B

A

dn−k

dn
.

The conclusion follows now from the dominated convergence theorem.
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Figure 2 shows the first thousand values of the function m 7→ πm, with m on the
x-axis and πm on the y-axis.
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0 200 400 600 800 1000

Figure 2: The function m 7→ πm

Remarks.
i) When m is the power of a prime number q, there is another way to catch the in-
terchange of limits because one can explicitly write the coefficients cn(m) = cn(q) as
products and quotients of integers (see section 5- : under this assumption, bn(q) equals
cn(q)). It is just a matter of elementary computation to see that for every k, the
“congruence subsequences” of cn−k(q)/cn(q) are monotonic :

∀k ≥ 0, ∀r ∈ {0, . . . , q − 1}, the sequence
(

cnq+r−k(q)
cnq+r(q)

)
n

is monotonic.

Putting together the common asymptotics these congruence subsequences give is enough
to prove the theorem.
ii) The expression of Pm with the help of polylogarithms such as in formula (6) would
give an alternative proof of the theorem, and a way to obtain further asymptotics of the
numbers pn(m), using a hybrid method of singular analysis and of Darboux’s method
as it is described in [FlGoPa].
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5. Appendix

Let bn(m)×n! be the number of permutations of Sn which admit no cycle of length
divisible by m in their canonical decomposition. Calculating the exponential generating
function of these permutations leads to a recurrence formula for the bn(m); finally, one
finds

bn(m) =
∏

1≤k≤n
m|k

(
1 − 1

k

)

(see [BeGo]). One can calculate these numbers with the induction formula:

{
bn(m) = bn−1(m) if n /∈ mN∗

bn(m) = bn−1(m)(1 − 1
n
) if n ∈ mN∗

If Bm (resp. Cm) denotes the set of all permutations (of anySn) which admit no cycle of
length divisible by m (resp. having only cycles of length prime to m) in their canonical
decomposition, then Cm =

⋃Bd, where the union is extended to all divisors d of q
greater than or equal to 2. Once more, q denotes the quadratfrei radical of m. The
sieve formula gives #(Cm) =

∑−µ(d)#(Bd), the sum being extended to the same d as
before; µ is the Möbius function. This implies the following result.

Proposition. The number cn(m) × n! of permutations of Sn having only cycles
of length prime to m satisfies

cn(m) =
∑
d≥2
d|m

− µ(d)bn(d) =
∑
d≥2
d|m

− µ(d)
∑

k∈dZ
1≤k≤n

(
1 − 1

k

)
.
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[BoMcLWh] M. Bóna, A. McLennan and D. White, Permutations with roots, Random
Structures & algorithms 17(2) (2000), 157-167.
[FlGoPa] P. Flajolet, X. Gourdon, D. Panario, The complete analysis of a polynomial
factorization algorithm over finite fields, J. of Algorithms, to appear.
[FlOd] P. Flajolet and A.M. Odlyzko, Singularity analysis of generating functions, SIAM
Journal on Discrete Mathematics 3(2) (1990), 216-240.
[FlSe] P. Flajolet and R. Sedgewick, The average case analysis of algorithms: complex
asymptotics and generating functions, INRIA research report 2026 (1993).
[HaWr] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford
Science Publications.
[Tu] P. Turán, On some connections between combinatorics and group theory, Colloq.
Math. Soc. János Bolyai, P. Erdös, A. Rényi and V. T. Sós, eds., North Holland,
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