
On the Dimer Problem and the Ising Problem in
Finite 3-dimensional Lattices

Martin Loebl ∗

Department of Applied Mathematics

and

Institute for Theoretical Computer Science (ITI)

Charles University

Malostranske n. 25, 118 00 Praha 1, Czech Republic

loebl@kam-enterprize.ms.mff.cuni.cz

Submitted: April 11, 2001; Accepted: July 8, 2002
MR Subject Classifications: 05B35, 05C15, 05A15

Abstract

We present a new expression for the partition function of the dimer arrangements
and the Ising partition function of the 3-dimensional cubic lattice. We use the
Pfaffian method. The partition functions are expressed by means of expectations of
determinants and Pfaffians of matrices associated with the cubic lattice.

1 Introduction

The close-packed dimer model of statistical mechanics can be stated as follows. One
considers a set of sites and a set of bonds connecting certain pairs of sites. Each bond b
can absorb a ’dimer’ (which represents a diatomic molecule) with corresponding energy
Eb. It is required that each site is occupied exactly once by one of the atoms of a dimer.
A state s is an arrangement of dimers which meets this requirement, and its energy E(s)
is

∑
Eb where the sum is taken over all bonds b which absorb a dimer. Then the partition

function of the dimer model may be viewed as a density function of energy levels.
The dimer model was first considered by Roberts [18] in 1935, and by Fowler and

Rushbrook [3]. The dimer model for 2-dimensional lattices appears in calculations of the
thermodynamic properties of a system of diatomic molecules-dimers. It has been solved
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by Kasteleyn [13] and by Temperley and Fisher [11]. The same problem for 3-dimensional
lattices remains an important open problem of statistical physics (see [14] for references).

Many fundamental observations about the dimer and monomer-dimer model in general
lattice graphs have been given by Heilmann and Lieb [9], [10].

Another model we consider here is the Ising version of the Edwards-Anderson model.
It can be described as follows. A coupling constant Jij is assigned to each bond {i, j} of
a given lattice graph G; the coupling constant characterizes the interaction between the
particles represented by sites i and j. A physical state of the system is an assignment
of spin σi ∈ {+1,−1} to each site i. The Hamiltonian (or energy function) is defined
as H(σ) = −∑

{i,j}∈E Jijσiσj . The distribution of physical states over all possible en-

ergy levels is encapsulated in the partition function Z(β) =
∑

σ e−βH(σ) from which all
fundamental physical quantities may be derived.

The literature on the 3-dimensional dimer problem and the 3-dimensional Ising prob-
lem is vast but there is a general feeling and some evidence (see e.g. [12]) that no closed
solution similar to the solutions of the 2-dimensional case nor a deterministic efficient
algorithm may be found for the cubic lattices.

This however does not rule out a statistical treatment. We believe that our new
expressions are natural enough to allow such further analysis.

Recent papers [16], [17] also study the problems using a Pfaffian method. They obtain
new expressions by means of a series of Pfaffians with a topological signature. Our
approach is more combinatorial in nature. We express the partition functions by means
of expectations of the determinants of matrices naturally associated with the cubic lattice.
Determinants and spectral properties of random matrices are extensively studied (see e.g.
[8]) and a goal of this paper is to draw attention to possible applications of related
machinery to the 3-dimensional statistical mechanics problems.

We may reformulate the dimer problem and the Ising problem in graph theoretic terms
as follows. A graph is a pair G = (V, E) where V is a set of vertices and E is now the
set of edges (not the energy). A graph with some regularity properties may be called a
lattice graph. We associate with each edge e of G a weight w(e) and for a subset of edges
A ⊂ E, w(A) will denote the sum of the weights w(e) associated with the edges in A.

A subset of edges P ⊂ E is called a perfect matching or dimer arrangement if each
vertex belongs to exactly one element of P . The dimer partition function may be viewed
as a polynomial P(G, x) which equals the sum of xw(P ) over all perfect matchings P of
G. This polynomial is also called the generating function of perfect matchings.

The Ising partition function is very close to the generating function of cuts which is
a standard concept in graph theory. A cut of a graph G = (V, E) is a partition of its
vertices into two disjoint subsets V1, V2 ⊂ V , and the implied set of edges between the
two parts:

C(V1, V2) = {{u, v} ∈ E : u ∈ V1, v ∈ V2}
The generating function of cuts C(G, x) equals the sum of xw(C) over all cuts C of G.

If we set the coupling constant Jij as the weight w({i, j}) of the edge {i, j}, the
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generating function of cuts becomes very similar to the partition function:

Z(β) = 2
∑

cutC

e−β(2w(C)−W ) = 2eβWC(G, e−2β)

where W is the sum of all the edge weights.
The generating functions of perfect matchings and cuts may be defined in a more

general way as follows: associate a variable xe with each edge e of graph G, let x(A) =∏
e∈A xe and let e.g. the generating function of perfect matchings be the sum of x(P ), P

perfect matching of G. All results introduced in this paper also hold in this more general
setting; however the presentation using weights rather than variables is perhaps more
natural.

This paper studies properties of finite cubic lattices. Let us now fix some notation for
them. Let m be an odd positive integer and k an even positive integer. The cubic lattice
Qmmk is the following graph:

Qmmk has vertices Vxyz, x, y = 1, ..., m, z = 1, ..., k, and the following edges:

1. The vertical edges vxyz = {Vxyz, Vxy(z+1)},
z = 1, ..., k − 1,

2. The width edges wxyz = {Vxyz, Vx(y+1)z},
y = 1, ..., m − 1,

3. The horizontal edges hxyz = {Vxyz, V(x+1)yz},
x = 1, ...m − 1.

Let us denote the ordered set (Vxy1, ..., Vxyk) by Vxy. Vxy will also stand for the vertical
path of Qmmk from Vxy1 to Vxyk. Let V̄xy denote the reversal of Vxy.

Qmmk is a bipartite graph, which means that its vertices may be partitioned into two
sets Z1, Z2 such that if e is an edge of Qmmk then |e ∩ Z1| = |e ∩ Z2| = 1. Moreover,
we have also that |Z1| = |Z2| = mmk/2. Let Z be the square (Z1 × Z2) matrix defined
by Zij = xw(ij) if e = {ij} is an edge of Qmmk with weight w(e) = w(ij), and Zij = 0
otherwise.

We will consider matrix Z with its rows and columns ordered in agreement with the
natural order (V11, V̄12, ..., V1m, V̄21, ..., Vmm) and we will assume that V111 ∈ Z1.

Note that P(Qmmk, x) equals the permanent of Z. In this paper we show that
P(Qmmk, x) may be computed from the average of determinants of CERTAIN signings
of Z, where a signing of a matrix is obtained by multiplying some of the entries of the
matrix by −1.

The signings of Z correspond to orientations of Qmmk.
An orientation of a graph G = (V, E) is a digraph D = (V, A) obtained from G by

assigning an orientation to each edge of G, i.e., by ordering the elements of each edge
of G. The elements of A are called arcs. We say that signing Z of Z corresponds to
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orientation D of Qmmk if Zij = xw(ij) if (ij) ∈ A(D), Zij = −xw(ij) if (ji) ∈ A(D), and
Zij = 0 otherwise.

An expression of similar flavor as our result exists already: a seminal observation of
Heilmann and Lieb [9], [10] asserts that P(Qmmk, x

2) equals the average of (det(Z))2 over
ALL signings Z of Z.

The following short proof of this observation is taken from the monograph [15]. If D is
an orientation of Qmmk then let A(D) denote the skew-symmetric adjacency matrix of D,
i.e. matrix consisting of 4 blocks where both blocks on the main diagonal are 0-matrices
and the remaining two blocks equal Z and −Z, where Z is the signing of Z corresponding
to D. Clearly det(A(D)) = (det(Z))2, hence we need to show that P(Qmmk, x

2) equals
the expectation of det(A(D)) over all orientations D of Qmmk. For the expectation we
have

E(det(A(D))) =
∑

sgn(π)E(a1π(1)...anπ(n))

where n = mmk and A(D) = (aij) by the linearity of expectation. If π is a permutation
having a fix point or such that i and π(i) are non-adjacent for some i ≤ n then the term
corresponding to π equals 0. If there is i such that π(π(i)) 6= i then the random variable
aiπ(i) occurs in the term corresponding to π but the random variable aπ(i)i does not. Hence

E(a1π(1)...anπ(n)) = E(aiπ(i))E(a1π(1)...a(i−1)π(i−1)a(i+1)π(i+1)...anπ(n)) = 0.

So we are left with the terms corresponding to those permutations which have no fix point,
for which i and π(i) are adjacent and (π)2 is the identity. Such permutations uniquely
correspond to perfect matchings of Qmmk and the signs turn out correct. 2

A difference between our expression and the result of Heilmann and Lieb is that we
replace the average of a multi quadratic function by the average of a multi linear function,
with a restricted range.
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1.1 Statement of the main result.

An orientation D of Qmmk is called stable if all vertical edges are oriented in D from the
’smaller’ to the ’bigger’ vertex in the natural order. For edge e we let sD(e) = 0 if the
orientation of e agrees with the natural order, and sD(e) = 1 otherwise.

Theorem 1.1
P(Qmmk , x) = −2Crxw(M) + α(2Cr + 1)

where Cr = km(m − 1), M is the unique perfect matching of Qmmk consisting of vertical
edges only and α equals the average of det(Z(D)), D stable orientation of Qmmk satisfying

∑

A

sD(wx,2y,z)sD(wx,2y′−1,z′) =
∑

B

sD(h2x,y,z)sD(h2x′−1,y′,z′)

modulo 2, where

A = {(x, y, z, y′, z′); 1 ≤ x ≤ m, 1 ≤ y ≤ (m− 1)/2, 1 ≤ z ≤ k, 1 ≤ y′ ≤ y, z ≤ z′ ≤ z + 1}

and

B = {(x, y, z, x′, y′, z′); 1 ≤ x ≤ (m − 1)/2, 1 ≤ z ≤ k, 1 ≤ y ≤ m, 1 ≤ x′ ≤ x,

(y, z) ≤ (y′, z′) ≤ (y′′, z′′)}.
In the definition of B the order on pairs of integers is lexicographic order and (y′′, z′′) is
the immediate successor of (y, z); if the immediate successor does not exist than we let
(y′′, z′′) = (y, z).

Theorem 1.1 holds also for P(Qm1m2k, x) with m1 6= m2 odd. In this more general
setting Cr = 1/2km1(m2 − 1) + 1/2km2(m1 − 1),

A = {(x, y, z, y′, z′); 1 ≤ x ≤ m1, 1 ≤ y ≤ (m2−1)/2, 1 ≤ z ≤ k, 1 ≤ y′ ≤ y, z ≤ z′ ≤ z+1}

and

B = {(x, y, z, x′, y′, z′); 1 ≤ x ≤ (m1 − 1)/2, 1 ≤ z ≤ k, 1 ≤ y ≤ m2, 1 ≤ x′ ≤ x,

(y, z) ≤ (y′, z′) ≤ (y′′, z′′)}.

Example. Let us illustrate the statement of Theorem 1.1 by calculation of P(Q3,1,2, x)
with w(e) = 0 for each edge e. Q3,1,2 has no width edges: it is simply a square (3 × 2)
grid and thus it has 6 vertices and 3 dimer arrangements. Hence P(Q3,1,2, x) = 3.
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On the other hand there are 24 stable orientations of Q3,1,2 and those relevant for α
are characterized by the equation

sD(h2,1,1)sD(h1,1,1) + sD(h2,1,2)sD(h1,1,2) + sD(h2,1,1)sD(h1,1,2) = 0

modulo 2.
A simple calculation reveals that there are 10 such stable orientations and 6 stable

orientations that are irrelevant. Hence α equals average of 10 determinants of signings of
(3 × 3) matrix Z. We can check by hand that α = 7/5. Since Cr = 2, we have

−2Crxw(M) + α(2Cr + 1) = −4 + 5(7/5) = 3.

If we want to use Theorem 1.1 to calculate P(Q3,3,2, x) we would have Cr = 12 and α
equal the average of 223 + 211 determinants of signings of a (9 × 9) matrix.

These huge numbers which appear even for very small lattices demonstrate the char-
acter of Theorem 1.1: it certainly does not aim to a computational efficiency.

Having the expression for the partition function of the dimer problem given by Theo-
rem 1.1, let me briefly indicate how to transform the 3-dimensional Ising problem to the
dimer problem of locally modified cubic lattice. This transformation goes back to Kaste-
leyn [13] and Fisher [2] and it is well described e.g. in [6]. An eulerian subgraph of a graph
G = (V, E) is a set of edges U ⊂ E such that each vertex of V is incident with an even
number of edges from U . The generating function of eulerian subgraphs E(G, x) equals
the sum of xw(U) over all eulerian subgraphs U of G. The partition function of the Ising
problem of a graph (with zero magnetic field) can be expressed as the generating function
of eulerian subgraphs of the same graph, with modified edge weights.This classic relation
between the Ising partition function and the generating function of eulerian subgraphs
was discovered by van der Waerden:

Z(β) = 2n
∏

{i,j}∈E

cosh(βJij) E(G, tanh(βJij)),

see [20]. Hence it remains to transform the generating function of eulerian subgraphs
of the cubic lattice Qmmk into the generating function of perfect matchings of a locally
modified graph Q∗

mmk. We use Fisher’s construction [2] since it is local in the sense that
it only modifies each vertex in a way dependent on its degree and it may be performed
so that the embedding of Qmmk is preserved. Fisher’s construction may be described as
follows:

Let G = (V, E) be a graph embedded in an orientable surface of genus g, and v ∈ V a
vertex. Let e1, e2, ..., ed ∈ E denote the edges incident with v, ordered clockwise as they
spread out from v in the embedding. Then the even splitting of v is a graph G′ = (V ′, E′)
where

• V ′ = V \ {v} ∪ {v1, ..., vd, v
′
1, ..., v

′
d}

• E ′ = E \ {e1, e2, ..., ed} ∪ {e′1, e′2, ..., e′d} ∪ EA
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• EA = {{vi, v
′
i}; i = 1, ..., d} ∪ {{vi, v

′
i−1}; i = 2, ..., d} ∪ {{v′

i, v
′
i+1}; i = 1, ..., d − 1}

The edges e′i ∈ E ′ (image edges) are obtained from ei ∈ E by replacing the vertex v
by vi. The edges EA will be called auxiliary.

Note that the graph obtained by even splitting can be again embedded in the same
surface since the transformation replaces a vertex v ∈ V by a cluster of 2d vertices and
3d − 2 edges. The cluster itself is a planar graph which can be embedded in a small
neighborhood of the original location of the vertex v. The images of the edges incident
with v can be embedded in the same way as they were in the original graph.

Let G = (V, E) be a graph and G∗ = (V ∗, E∗) the graph obtained by successive even
splitting of all vertices in V . If there are weights w(e) assigned to edges e ∈ E, we assign
the same weights to their images in E∗: w(e′) = w(e). The auxiliary edges f ∈ E∗ get
assigned w(f) = 0. With this assigment of weights, the generating function of perfect
matchings of G∗ is equal to the generating function of eulerian subgraphs of G,

P(G∗, x) = E(G, x).

This may be observed as follows: if M is a perfect matching in G∗, it must cover each
of its vertices exactly once. Because the cluster replacing every vertex has an even number
of vertices, and any of the auxiliary edges which is in M covers a pair of vertices of the
cluster, there remain an even number of vertices to be covered by the image edges incident
with the cluster. Therefore, every cluster coincides with an even number of image edges
which are in M ; in other words, these edges form the image of an eulerian subgraph of G.

Vice versa, the image of any eulerian subgraph of G can be extended (uniquely) by
adding some of the auxiliary edges in G∗ to make a perfect matching in G∗. Thus, there
is a one-to-one correspondence between the perfect matchings of G∗ and the eulerian
subgraphs of G. As all the auxiliary edges have weights equal to 0, the corresponding
terms contributing to either of the generating functions are equal. Consequently, the two
generating functions are equal.

Further in sections 2,3 we show how to calculate P(Qmmk, x) by embedding Qmmk into
a generalised surface Sg so that Qmmk becomes a generalised g-graph. This embedding
of Qmmk has a ’planar part’ consisting of all the vertical edges, and this part doesnot
play a role in the derivation of the formula, where the ’non-planar’ edges are vital. The
advantage of the Fisher’s construction is that the even splitting of the vertices may be
performed in the planar part of Qmmk, hence the paths of vertical edges are replaced
by the ’paths of triangles’, and the non-planar part of Qmmk remains untouched. Hence
Qmmk is turned into Q∗

mmk without changing the embedding and an expression analogous
to the one described in Corollory 3.9 for the dimer problem holds for the Ising problem
as well.

In fact, one should find an analogous expression for the 3-dimensional variants of the
problems which may be treated by the Pfaffian method in 2 dimensions, like a variant of
the ice problem.

The proof of our result is involved: this paper may be viewed as a continuation of the
papers [4], [5], [6], [7]. A theorem of Galluccio and Loebl [4] expresses P(G, x), where
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G is an arbitrary graph, as a linear combination of Pfaffians of matrices associated with
relevant orientations of G. When G is a bipartite graph like the cubic lattice, the Pfaffians
may be turned into determinants. The relevant orientations may be naturally described
when the graph is embedded in a certain way on an orientable surface.

This ’Pfaffian approach’ to the dimer problem has been started by Kasteleyn [13].
Kasteleyn [13] and Fisher [2] also described methods how to find the Ising partition
function for a graph G as the dimer partition function of a locally modified G. In [5] and
[6], the Pfaffian method leads to an efficient algorithmic treatment of the Ising problem for
finite lattices which may be embedded on a fixed surface, e.g. on a torus. This approach
has been recently extended in [19] to non-orientable surfaces.

We use the Pfaffian method to prove Theorem 1.1 as follows: we embed the three-
dimensional cubic lattice to a 2-dimensional orientable surface, use the theory developed
in [4] and finally characterize the coefficients of the resulting linear combination and turn
it into a probabilistic expression.

Applying elementary probabilistic analysis to the statement of Theorem 1.1 I have
obtained a curious corollary which may be of independent interest. Once discovered, the
corollary may be proved directly without using Theorem 1.1.

Let Q′ be a cubic lattice with added boundary edges, i.e. the degree of each vertex
of Q′ is six. A subset C of vertices of Q′ is called a cover if each edge of Q′ is incident
with exactly one vertex of C. Note that Q′ has exactly 2 covers. We fix one of them and
denote it by C. A subgraph of Q′ is called a plane if it is obtained from Q′ by deleting
both horizontal and/or vertical edges incident with each vertex of the cover C. Hence
each vertex of C has degree 2 or 4 in any plane. A plane P is called even if the number
of vertices of C of degree 2 in P is even, and P is called odd otherwise.

Theorem 1.2
P(Q′, x) =

∑

W∈A

P(W, x) −
∑

W∈B

P(W, x)

where A consists of the even planes and B consists of the odd planes.

Proof. Let M be a perfect matching of Q′. We will compute how M contributes to
the RHS. Let Z be the subset of vertices of C incident to the width edges of M , and let
z = |Z|. M contributes to a term of the RHS corresponding to a plane P if and only if M
is a perfect matching of P . Which planes contain M? Assume M is a perfect matching
of a plane P and let x ∈ C. First let x be incident with a horisontal or a vertical edge
e of M . Then the degree of x in P is 4 and e determines which edges of P are incident
with x. Secondly let x be incident with a width edge e of M . Then all three possibilities
may occur in P : x may be incident with the width edges only, or with the width and the
horisontal edges, or with the width and the vertical edges. Let P have i ≤ z vertices of
Z incident with the width edges only. Then M contributes (−1)i to the term of the RHS
corresponding to P . Hence, the total contribution of M equals

∑z
i=0(−1)i2z−i

(
z
i

)
, which

equals (2 − 1)z = 1 by binomial theorem. 2
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The next section will describe a theorem of Galluccio and Loebl ([4]) which forms
a basis of the proof of Theorem 1.1. The basic notation, definitions and some relevant
simple facts may be found in the appendix.

2 Generalized g-graphs.

It is recommended to read the appendix first before starting with this section.

Definition 2.1 A surface Sg of genus g consists of a base B0 and 2g bridges Bi
j, i =

1, ..., g and j = 1, 2, where

i) B0 is a convex 4g-gon with vertices a1, ..., a4g numbered clockwise;

ii) Bi
1, i = 1, . . . , g, is a 4-gon with vertices xi

1, x
i
2, x

i
3, x

i
4 numbered clockwise. It is glued

with B0 so that the edge [xi
1, x

i
2] of Bi

1 is identified with the edge [a4(i−1)+1, a4(i−1)+2]
of B0 and the edge [xi

3, x
i
4] of Bi

1 is identified with the edge [a4(i−1)+3, a4(i−1)+4] of
B0;

iii) Bi
2, i = 1, . . . , g, is a 4-gon with vertices yi

1, y
i
2, y

i
3, y

i
4 numbered clockwise. It is glued

with B0 so that the edge [yi
1, y

i
2] of Bi

2 is identified with the edge [a4(i−1)+2, a4(i−1)+3]
of B0 and the edge [yi

3, y
i
4] of Bi

2 is identified with the edge [a4(i−1)+4, a4(i−1)+5(mod4g)]
of B0.

Observe that in Definition 2.1 we denote by [a, b] edges of polygons and not edges of
graphs. The usual representation in the space of an orientable surface S of genus g may
be then obtained from its polygonal representation Sg by the following operation: for each
bridge B, glue together the two segments which B shares with the boundary of B0, and
delete B.

Definition 2.2 A graph G is called a g-graph if it may be embedded on Sg so that all the
vertices belong to the base B0, and the embedding of each edge uses at most one bridge.
The set of the edges embedded entirely on the base will be denoted by E0 and the set of
the edges embedded on the bridge Bi

j will be denoted by Ei
j, i = 1, . . . , g, j = 1, 2. We

also let G0 = (V, E0) and Gi
j = (V, E0 ∪ Ei

j). Moreover the following conditions need to
be satisfied too.

1. the outer face of G0 = (V, E0) is a cycle, and it is embedded on the boundary of B0,

2. if e ∈ Ei
1 then e is embedded entirely on Bi

1 and one end vertex of e belongs to
[xi

1, x
i
2] and the other one belongs to [xi

3, x
i
4]. Similarly, if e ∈ Ei

2 then e is embedded
entirely on Bi

2 and one end vertex of e belongs to [yi
1, y

i
2] and the other one belongs

to [yi
3, y

i
4].

From now on, we shall consider g-graphs together with a fixed embedding on Sg.
Given a g-graph G, we denote by C0 the cycle which forms the outer face of G0.
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Definition 2.3 Let G be a g-graph and let Gi
j = (V, E0 ∪ Ei

j). If we draw B0 ∪ Bi
j on

the plane as follows: B0 along with the edges of the polygons belonging to its boundary is
unchanged, and the edge [xi

1, x
i
4] ([yi

1, y
i
4] respectively) of Bi

j is drawn so that it belongs to
the external boundary of B0 ∪ Bi

j, we obtain a planar embedding of Gi
j. This embedding

will be called planar projection of Ei
j outside B0.

Definition 2.4 Let G = (V, E) be a g-graph. An orientation D0 of G0 such that each
inner face of each 2-connected component of G0 is clockwise odd in D0 is called a basic
orientation of G0.

Note that a basic orientation always exists for a planar graph. Kasteleyn [13] proved
that if D is a basic orientation of a planar graph G then the contributions of all perfect
matchings of G have the same sign in Pf(A(D)).

From now on we shall fix a basic orientation D0 for each g-graph.

Definition 2.5 Let G = (V, E) be a g-graph and D0 a basic orientation of G0. We define
the orientation Di

j of each Gi
j as follows: We consider Gi

j embedded on the plane by the
planar projection of Ei

j outside B0 (see Definition 2.3), and complete the basic orientation
D0 of G0 to an orientation of Gi

j so that each inner face of each 2-connected component
of Gi

j is clockwise odd.
The orientation −Di

j is defined by reversing the orientation Di
j of Gi

j.

Observe that after fixing a basic orientation D0, the orientation Di
j is uniquely deter-

mined for each i, j.

Definition 2.6 Let G be a g-graph, g ≥ 1. An orientation D of G which equals the basic
orientation D0 on G0 and which equals Di

j or −Di
j on Ei

j is called relevant. We define
its type r(D) ∈ {+1,−1}2g as follows: For i = 0, . . . , g − 1 and j = 1, 2, r(D)2i+j equals
+1 or −1 according to the sign of Di+1

j in D.

Definition 2.7 Let G be a g-graph and D a relevant orientation of G. Let r(D) =
(r1, ..., r2g). We let c(r(D)) equal the product of ci, i = 0, ..., g−1, where ci = c(r2i+1, r2i+2)
and c(1, 1) = c(1,−1) = c(−1, 1) = 1/2 and c(−1,−1) = −1/2.

Observe that c(r(D)) = (−1)n2−g, where n = |{i; r2i+1 = r2i+2 = −1}|.
The following theorem is proved in Galluccio, Loebl [4]. See appendix for the definition

of s(D, M).

Theorem 2.8 Let G be a g-graph with a perfect matching M0 ⊂ E0. If we order the
vertices of G so that s(D0, M0) is positive then

P(G, x) =
4g∑

i=1

c(r(Di))Pf(A(Di))

where Di, i = 1, . . . , 4g, are the relevant orientations of G.
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We need a generalization of the notion of a g-graph.

Definition 2.9 Any graph G obtained by the following construction will be called gener-
alized g-graph.

1. Let g = g1 + ... + gn be a partition of g into positive integers.

2. Let Sgi
be a surface of genus gi, i = 1, ..., n. Let us denote the basis and the bridges

of Sgi
by Bi

0 and Bi
j,k, i = 1, ..., n, j = 1, ..., gi and k = 1, 2.

3. For i = 1, ..., n let Hi be a gi-graph with the property that the subgraph of Hi embedded
on Bi

0 is a cycle, embedded on the boundary of Bi
0. Let us denote it by Ci.

4. Let G0 be a 2-connected plane graph and let F1, ..., Fn be a subset of faces of G0. Let
Ki be the cycle bounding Fi, i = 1, ..., n. Let each Ki be isomorphic to Ci.

5. Then G is obtained by glueing the Hi’s into G0 so that each Ki is identified with Ci.

For each generalized g-graph G we can define 4g relevant orientations D1, ..., D4g with
respect to a fixed basic orientation of G0, and coefficients c(r(Di)), i = 1, ..., n in the
same way as for a g-graph. The following theorem can be proved in the same way as
Theorem 2.8 since each Hi may be treated independently. In fact, G. Tessler chose this
more general setting in his paper [19].

Theorem 2.10 Let G be a generalized g-graph with a perfect matching M0 of G0. Let
D0 be a basic orientation of G0. If we order the vertices of G so that s(D0, M0) is positive
then

P(G, x) =

4g∑

i=1

c(r(Di))Pf(A(Di))

where Di, i = 1, . . . , 4g, are the relevant orientations of G.
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3 Cubic lattices as generalized g-graphs.

In this section we will describe how to draw 3−dimensional cubic lattices as generalized
g-graphs. Let m, n be odd positive integers such that k = (n − 1)/2 is even. Let us use
Q to denote the cubic lattice Qm,m,n. Let us denote vertical path (Vxy1, ..., Vxyn) of Q by
Vxy(Q) = Vxy and let V̄xy denote Vxy traversed in the opposite direction.

Let Hx(Q) = Hx = {hxyz; z = 1, ..., n, y = 1, ..., m} and Wxy(Q) = Wxy = {wxyz; z =
1, ...n}.

How to draw Q on the plane.
First draw the paths Vxy along a cycle in the following natural way:

V11, V̄12, V13, ...V1m, V̄2m, V2(m−1), ..., V̄21, V31, ..., Vmm.

Next, draw the horizontal edges inside this cycle, and the width edges outside of this
cycle as depicted in Fig. 1 below where Q = Q3,3,3 is properly drawn.

Figure 1

For each x = 1, ..., m− 1 the curves representing the edges of Hx are pairwise disjoint
and for x = 2, ..., m − 2 the curves representing the edges of Hx intersect the curves
representing the edges of Hx−1 and Hx+1. We keep the following rule: the interiors of the
curves representing hxyz and h(x+1)yz intersect if and only if z is even.

For each x = 1, ..., m and y = 1, ..., (m − 1) the curves representing the edges of Wxy

are pairwise disjoint and for y = 2, ..., m − 2 the curves representing the edges of Wxy

intersect the curves representing the edges of Wx(y−1) and Wx(y+1). We again keep the
rule that the interiors of the curves representing wxyz and wx(y+1)z intersect if and only if
z is even. The curve representing an edge e will be denoted by C(e).

Now we modify Q into a generalized g-graph Q′.
Width construction. First we describe the modification for Wx, x = 1, ..., m. The

modification is described by Fig. 2 where the construction is illustrated on edges among
Vx(y−1), Vxy and Vx(y+1) for x odd and y < m − 1 even.
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Figure 2

For each x = 1, ..., m perform the following construction:

1. For each y even let Aux1 = {wxyz; z odd }. For each edge e of Aux1 introduce a
new vertex to each intersection of C(e) with the curves representing the edges of
Wx(y−1) ∪ W , where W = Wx(y+1) in case y < m − 1 and W = ∅ otherwise. By
this operation, each e ∈ Aux1 is replaced by a path. Call each edge of this path
auxiliary.

2. For each y even let Aux2 = {wx(y−1)1, wx(y−1)n}∪A, where A = {wx,(y+1)1, wx(y+1)n}
in case y < m − 1 and A = ∅ otherwise. For each edge e of Aux2 introduce a new
vertex to each intersection of C(e) with the curves representing the edges of Wxy.
Hence each e ∈ Aux2 is replaced by a path. Call each edge of this path auxiliary.

For each y even the edges vxy1, vxy(n−1) and also vx(y+1)1, vx(y+1)(n−1) will also be
called auxiliary.

In Figure 2, the auxiliary edges are represented by dashed lines.

3. We introduce a new variable a which we associate with each auxiliary edge e and
we let w(e) = 1. Hence the term associated with each auxiliary edge e has form
aw(e) = a.

4. The edges wxyz, y even and z even will be called relevant for Q. If y < m − 1 then
the relevant edges are subdivided by two vertices (added in 2.) into three edges of
Q′. The middle one will be called special and the other two long.

If y = m− 1 then the relevant edge wxyz is subdivided by one vertex into two edges
of Q′. The one incident to Vxm will be called special and the other one long.

If e is a relevant edge of Q, then we choose a corresponding long edge f and we let
w(e) = w(f). We let the weight of the special edge and of the remaining long edge
be equal to 0.
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5. The edges of Wx(y−1) ∪ W also got subdivided by new vertices introduced in step 2
and step 3.

6. We delete all edges of the paths obtained from wx(y−1)z and wx(y+1)z , 1 < z < n odd.

In Figure 2, the deleted edges are represented by dotted lines.

7. Each edge e ∈ {wx(y−1)z , wx(y+1)z; z even }, is subdivided by new vertices introduced
in 2. into a path. We let the weights assigned to the edges of the path equal 0
except of one initial edge whose weight is let equal w(e). The edge e of this path
such that the interior of C(e) does not intersect interior of any curve representing a
long edge will also be special.

8. All vertical edges which are not auxiliary (see 2.) will be called special.

In Figure 2, the special edges are represented by normal lines.

This finishes the construction for the width edges. In Figure 2, the edges which are
neither auxiliary nor special nor deleted are represented by fat lines.

Horizontal construction. Now we perform an analogous construction with the hori-
zontal edges of Q.

1. For each x even let Aux3 = {hxyz; z odd }. For each edge e of Aux3 introduce
a new vertex to each intersection of C(e) with the curves representing the edges
of Hx−1 ∪ K, where K = Hx+1 in case x < m − 1 and K = set otherwise. By
this operation, each e ∈ Aux3 is replaced by a path. Call each edge of this path
auxiliary.

2. For each x even let Aux4 = {h(x−1)11, h(x−1)nn} ∪ B, where B = {h(x+1)11, h(x+1)nn}
in case x < m − 1 and B = ∅ otherwise. For each edge e of Aux4 introduce a new
vertex to each intersection of C(e) with the curves representing the edges of Hx.
Hence each e ∈ Aux4 is replaced by a path. Call each edge of this path auxiliary.

3. We again associate variable a with each auxiliary edge e and we let w(e) = 1.

4. The edges hxyz, x even and z even will be called relevant for Q. If x < m − 1 then
the relevant edges are subdivided by two vertices (added in 2.) into three edges of
Q′. The middle one will be called special and the other two long.

If x = m− 1 then the relevant edge hxyz is subdivided by one vertex into two edges
of Q′. The one incident to Vm . will be called special and the other one long.

If e is a relevant edge of Q, then we choose a corresponding long edge f and we let
w(e) = w(f). We let the weight of the special edge and of the remaining long edge
equal 0.

5. The edges of Hx−1∪K also got subdivided by new vertices introduced in step 2 and
step 3.
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6. We delete all edges of the paths obtained from h(x−1)yz and h(x+1)yz , 1 < z < n odd.

7. Each edge h ∈ {h(x−1)yz , h(x+1)yz; z even }, is subdivided by new vertices introduced
in 2. into a path. We let the weights assigned to the edges of the path equal 0
except of one initial edge whose weight is let equal w(h). Each edge e of this path
such that the interior of C(e) does not intersect interior of any curve representing a
long edge will also be special.

Final steps. Let Aux denote the set of all auxiliary edges. Then Q′ − Aux is a
subdivision of Qmmk. We subdivide some special edges so that the graph Q = Q′−Aux is
an even subdivision of Qmmk. All these new edges will be special, and we set their weights
equal 0.

The subgraph of Q′ formed by the special edges consists of vertical paths (of odd
length) and some other mutually disjoint paths which may have at most one vertex in
common with the vertical paths. Hence there is matching M ′

0 of special edges covering all
the vertices of the vertical paths, and all but possibly one vertex of each of the additional
paths of special edges. We conclude the construction of Q′ by subdividing some auxiliary
edges in such a way that Q′ has a perfect matching M’ consisting of special and auxiliary
edges only, which extends M ′

0 (i.e. M ′
0 ⊂ M ′). All these new edges will be auxiliary; we

again associate variable a with them and we set their weights equal 1.
This finishes the construction of Q′.

Some properties of Q′.

1. Each edge e of Q′ such that C(e) does not intersect any curve representing other
edge in its interior is auxiliary or special. Let us denote the plane subgraph of Q′

formed by the auxiliary and special edges by Qp.

2. Any other edge of Q′ is drawn on a face of Qp. Moreover, the edges drawn on a face
of Qp may be drawn onto a pair of bridges above this face, where one of the bridges
contains one long edge, and the other bridge contains the remaining edges. Hence,
we may view Q′ as a generalized g-graph with the planar part equaled to Qp.

3 The special edges form an acyclic subgraph of Qp (see Fig. 2). Hence any orientation
of the special edges may be extended into a basic orientation of Qp. We will choose
basic orientation Dp of Qp with the following properties:

1. Dp on special edges is in agreement with the natural ordering ,

2. Perfect matching M ′ has positive sign in Pf(A(Dp)),

3. The orientation of edges on a bridge has positive sign if and only if it is in
agreement with the natural ordering (V11V̄12....V1mV̄21.....Vmm).

4. We constructed Q′ so that Q = Q′ − Aux is an even subdivision of Qmmk. If w
is a vector of weights associated with Qmmk then let w′ be the vector of weights
associated with Q and induced by w and let w′′ be the vector of weights associated
with Q′ which equals w′ on the edges of Q and w′′(e) = 1 for each auxiliary edge e
of Q′. If we let a = 0 we have P(Q′, x, a) = P(Qmmk , x).
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We have described how to view Qmmk, m odd and k even, as a generalized g-graph
Q′. Now we can use Theorem 2.10 for Q′ to compute P(Qmmk, x).

The relevant orientations of Q′.
Each relevant edge of Q corresponds to unique edge of Qmmk; this unique edge will

also be called relevant in Qmmk. Hence the relevant edges of Qmmk are: wxyz(Qmmk),
x = 1, ..., m, y even and and hxyz(Qmmk), x even. Hence there are 1/2km(m− 1) relevant
width edges and 1/2(m− 1)mk relevant horizontal edges in Qmmk.

We let R be the set of relevant edges of Qmmk and Cr = |R| = km(m− 1) denote the
number of relevant edges of Qmmk.

The set S of the edges of Vij(Qmmk), i, j = 1, ...m, corresponds to a subset of special
edges of Q′. The orientation Dp induces orientation Sd of S which is in agreement with
the natural ordering (V11(Qmmk)V̄12(Qmmk)....V1m(Qmmk)V̄21(Qmmk).....Vmm(Qmmk)).

Each relevant orientation D′ of Q′ is determined by the fixed basic orientation Dp of
Qp, and by a pair of signs for each pair of bridges. Each pair of bridges is associated with
a long edge of Q′. Hence these signs may be given by specifying (d1

D′(e), d2
D′(e)) ∈ {+−}2,

for each long edge e, where d1
D′(e) denotes the sign of the bridge containing e, and d2

D′(e)
denotes the sign of the other bridge.

The long edges of Q′ are associated with relevant edges of Q, and hence also with
relevant edges of Qmmk.

The relevant edges wx(m−1)z(Qmmk) and h(m−1)yz(Qmmk) are associated with only one
long edge of Q′. If e is such relevant edge of Qmmk, we will call e border edge and we
denote by e1 the corresponding long edge. We let dD′(e) = (d1

D′(e1), d
2
D′(e1), +, +).

Let Cb = 2mk denote the number of border edges.
Each relevant non-border edge e of Qmmk has two long edges e1, e2 associated with it.

We let dD′(e) = (d1
D′(e1), d

2
D′(e1), d

1
D′(e2), d

2
D′(e2))).

A relevant vector is any element r of [{+,−}4]R such that r(e)3 = r(e)4 = + for each
relevant border edge e of Qmmk. Hence there are 42Cr−Cb relevant vectors.

There is a natural bijection between relevant orientations of Q′ and relevant vectors.
If s is a relevant vector, then let D′(s) denote the corresponding relevant orientation of Q′

and let sgn(s) of a relevant vector s be calculated according to Theorem 2.10 as follows:
sgn(s) = (−1)|{(e,i);i=0,1,s(e)2i+1=s(e)2i+2=−1}|.

If D′(s) is a relevant orientation of Q′ then let D(s) denote the orientation of Qmmk

induced by D′(s) (see 5.4). An orientation of Qmmk will be called relevant if it equals
D(s) for some relevant vector s.

Let M be the (uniquely determined) perfect matching of Qmmk consisting of the edges
of S only. Recall that perfect matching M ′ has positive sign in Pf(A(Dp)) and similarly,
perfect matching M has positive sign in Pf(A(Sd)).
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Using Theorem 2.10 and Theorem 5.5 we have the following.

Theorem 3.1
P(Qmmk, x) = 2−2Cr+Cb

∑
sgn(s)Pf(A(D(s)))

where the sum is over all relevant vectors.

Note that possibly D(r) = D(r′) for relevant vectors r 6= r′. Next we clarify this.

Definition 3.2 We define an equivalence ∗ on the relevant vectors as follows. r ∗ s if
the following holds: there is exactly one relevant non-border edge e such that r(e) 6= s(e)
and r(f) = s(f) for each f 6= e. Moreover, r(e)1 6= s(e)1, r(e)3 6= s(e)3, r(e)2 = s(e)2 6=
r(e)4 = s(e)4.

Proposition 3.3 If r ∗ s then D(r) = D(s) and sgn(r) 6= sgn(s).

Proof. If r ∗ s then D(r) = D(s) by the definition of ’*’. Moreover sgn(r) 6= sgn(s) since
r(e)2 = s(e)2 6= r(e)4 = s(e)4 where e is the only relevant edge for which r(e) 6= s(e). 2

Definition 3.4 A relevant vector r is called useful if it forms a one-element class w.r.t.
equivalence ∗, i.e. if r(e)2 = r(e)4 for each relevant non-border edge e.

Corollary 3.5

P(Qmmk, x) = 2−2Cr+Cb

∑
sgn(r)Pf(A(D(r)))

where the sum is over all useful vectors r.

Definition 3.6 If r, s are useful vectors we write r ∗ ∗s if D(r) = D(s).

Proposition 3.7 1. Each equivalence class of ’**’ has 2Cr−Cb elements.

2. If r ∗ ∗s then sgn(r) = sgn(s).

Proof. Let r be a useful vector. Then D(r) determines uniquely r(e)2 and r(e)4 for each
relevant edge e and also r(f)1 for each relevant border edge f . Hence D(r) determines
uniquely r(f) for each relevant border edge f . Moreover D(r) determines uniquely the
product r(e)1×r(e)3 for each relevant non-border edge e. Since there are Cr−Cb relevant
non-border edges, each equivalence class of ’**’ has 2Cr−Cb elements.

Let r, s be useful and let r ∗ ∗s. Then r(e)2 = s(e)2 = s(e)4 = r(e)4 for each relevant
non-border edge e and r(e)2 = s(e)2 and s(e)1 = r(e)1 for each relevant border edge. This
implies that sgn(r) = sgn(s). 2
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Proposition 3.8 If D is an orientation of Qmmk that extends Sd then there is uniquely
determined class C of equivalence ∗∗ such that D = D(r) for each r ∈ C.

Hence, given an orientation D of Qmmk that extends Sd, let us call it stable orientation
and let us define its sign sgn(D) to be equal to sgn(r) for any useful vector r such that
D = D(r). This is well defined by Proposition 3.7.

Corollary 3.9

P(Qmmk, x) = 2−Cr
∑

sgn(D)Pf(A(D))

over all stable orientations D.

We continue by characterizing sgn(D).
As we noticed before, sgn(r) = (−1)|{(e,i);i=0,1,r(e)2i+1=r(e)2i+2=−1}|. If r is a stable

vector then r(e)2 = r(e)4 for each relevant non-border edge e and we get the following
observation.

Proposition 3.10 Let r be a stable vector. Then sgn(r) = (−1)|{e;r(e)1r(e)3=−1,r(e)2=−1}|.

Definition 3.11 Let D be a stable orientation. We define orientation D̄ as follows:

1. For each x, y, z such that y < m odd do the following: let n(xyz) be the number
of arcs wxab, a ≤ y odd and z ≤ b ≤ (z + 1), oriented in D against the natural
ordering. If n(xyz) odd then we orient wxyz in D̄ against the natural ordering, else
according to the natural ordering.

2. For each x, y, z such that x < m odd do the following: let n(xyz) be the number
of arcs habc oriented in D against the natural ordering. Here (abc) are the triples
of indices satisfying a ≤ x odd and (y, z) ≤ (b, c) ≤ (y′, z′) where the order is
lexicographic and (y′, z′) is immediate successor of (y, z).

If n(xyz) odd then we orient hxyz in D̄ against the natural order, else according to
the natural order.

3. All the remaining arcs orient in D̄ in the same way as in D.

Note that relevant edges are oriented in the same way in both D and D̄.

the electronic journal of combinatorics 9 (2002), #R30 18



Proposition 3.12 Let D be a stable orientation and let r be a stable vector such that
D = D(r). Let e be a relevant edge of Qmmk. Then

1. r(e)1 × r(e)3 = −1 if and only if e is oriented in D (and hence also in D̄) against
the natural ordering.

2. If e = wxyz, y even then r(e)2 = −1 if and only if wx(y−1)z is oriented in D̄ against
the natural ordering. If e = hxyz, x even then r(e)2 = −1 if and only if h(x−1)yz is
oriented in D̄ against the natural ordering.

Proof. r(e)1 × r(e)3 = −1 if and only if exactly one long edge of Q′ corresponding to e is
oriented in D′ (we remind that D is induced by orientation D′ of Q′) against the natural
ordering. Since D is induced by D′, this happens if and only if e is oriented in both D
and D̄ against the natural ordering.

It remains to prove 2. We will show the case e = wxyz since the other case is completely
analogous. If f is an edge of Qmmk then we let f(D) = 1 if f is oriented in D according to
the natural order, and we let f(D) = −1 otherwise. We proceed by induction on (y, k−z).

Firstly assume y = 2 and z = k. In this simplest case r(e)2 = wx1k(D) (see Fig. 2).
Moreover the orientation of wx1k is the same in both D and D̄.

Secondly let y = 2 and z < k. Then wx1z(D) = wx1(z+1)(D) × r(e)2 (see Fig. 2). It
follows from Definition 3.11 that r(e)2 = −1 if and only if wx1z is oriented in D̄ against
the natural order.

Thirdly, let y = 4 and z = k. Then wx3k(D) = wx1k(D)× r(e)2 (see Fig. 2). It follows
from Definition 3.11 that r(e)2 = −1 if and only if wx3k is oriented in D̄ against the
natural order.

Fourthly, let y = 4 and z < k. Then wx3z(D) = wx3(z+1)(D) × r(e)2 × r(wx2z)2 =
wx3(z+1)(D) × r(e)2 × wx1z(D) × wx1(z+1)(D) (see Fig. 2). It follows from Definition 3.11
that r(e)2 = −1 if and only if wx3z is oriented in D̄ against the natural ordering.

In general if e = wxyz, y even and z = k then wx(y−1)k(D) = r(wx(y−2)k)2 × r(e)2 =
r(e)2 ×

∏
(wxy′k(D); y′ < y − 1 odd ). It follows from Definition 3.11 that r(e)2 = −1 if

and only if wx(y−1)k is oriented in D̄ against the natural order.
Finally if e = wxyz, y even and z < k then wx(y−1)z(D) = wx(y−1)(z+1)(D) × r(e)2 ×

r(wx(y−2)z)2 = wx(y−1)(z+1)(D)×r(e)2×
∏

(wxy′z(D); y′ < y−1 odd )×∏
(wxy′(z+1)(D); y′ <

y − 1 odd ). It follows from Definition 3.11 that r(e)2 = −1 if and only if wx3z is oriented
in D̄ against the natural order. 2

Corollary 3.13 Let D be a stable orientation. Then sgn(D) = (−1)h+
Pm

x=1 w(x), where
w(x) = |{(yz); y even and both wxyz, wx,(y−1),z are oriented against the natural ordering in
D̄}|; h = |{(xyz); x even and both wxyz, w(x−1),y,z are oriented against the natural ordering
in D̄}|.
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We can also write the sign in the following form: for edge e we let sD(e) = 0 if the
orientation of e agrees with the natural order, and sD(e) = 1 otherwise.

Corollary 3.14 Let D be a stable orientation. Then

sgn(D) = (−1)
P

A sD(wx,2y,z)sD(wx,2y′−1,z′)+
P

B sD(h2x,y,z)sD(h2x′−1,y′,z′)

where

A = {(x, y, z, y′, z′); 1 ≤ x ≤ m, 1 ≤ y ≤ (m− 1)/2, 1 ≤ z ≤ k, 1 ≤ y′ ≤ y, z ≤ z′ ≤ z + 1}

and

B = {(x, y, z, x′, y′, z′); 1 ≤ x ≤ (m − 1)/2, 1 ≤ z ≤ k, 1 ≤ y ≤ m, 1 ≤ x′ ≤ x,

(y, z) ≤ (y′, z′) ≤ (y′′, z′′)}.
In the definition of B the order on pairs of integers is lexicographic order and (y′′, z′′) is
the immediate successor of (y, z).

Proposition 3.15 There are 22Cr stable orientations. There are 2Cr−1(2Cr + 1) stable
orientations with positive sign.

Proof. The first statement follows directly from the definition of a stable orientation.
For Q132 there are 16 = 24 = 22Cr stable orientations (see the remark after Theorem 1.1
for the definition of Cr), from which 10 have positive sign. Hence the difference between
the number of stable orientations of positive sign and stable orientations of negative sign
is 4 = 2Cr . For Q152 there are 44 = 22Cr stable orientations from which 10 × 10 + 6 × 6
have positive sign and 2(6 × 10) = 120 have negative sign. Hence the difference between
the number of stable orientations of positive sign and stable orientations of negative sign
is 10 × 10 + 6 × 6 − 2(6 × 10) = (10 − 6)(10 − 6) = 2Cr . Similarly by induction on a we
get that for Q1(2a+1)2 there are 42a = 22Cr stable orientations, and the difference between
the number of stable orientations of positive sign and stable orientations of negative sign
is 22a. Similarly we calculate the difference for Q13k, k even, and by induction also for
Q1mk. That takes care of one layer of width edges, and the layers are independent so the
differences multiply as indicated above. In the same way we calculate the contribution of
the horisontal edges. Summarising for Qmmk the difference between the number of stable
orientations of positive sign and those of negative sign equals 2Cr = 2(m−1)km. From this
Proposition follows. 2

4 From Pfaffians to determinants.

In the introduction we let Z be square (Z1 × Z2) matrix defined by Zij = xij if ij is an
edge of Qmmk and Zij = 0 otherwise.

the electronic journal of combinatorics 9 (2002), #R30 20



Let D be an orientation of Qmmk. In the introduction we associate a signing Z(D)
of Z with it such that Z(D)ij = xij if (ij) ∈ E(D), Z(D)ij = −xij if (ji) ∈ E(D), and
Z(D)ij = 0 otherwise.

Note that Pf(A(D)) = det(Z(D)). Hence we can reformulate Corollary 3.9:

Corollary 4.1 P(Qmmk, x) = 2−Cr
∑

sgn(D)det(Z(D)) where the sum is over all stable
orientations D of Qmmk.

Recall that M is unique perfect matching consisting only of vertical edges.

Proposition 4.2 The average of det(Z(D)), D stable, equals xw(M).

Proof. By the linearity of expectation and the definition of stable orientations, the
contribution of other than vertical edges cancel out when we calculate the average of
det(Z(D)), D stable. Since Qmmk has exactly one perfect matching consisting of vertical
edges only, Proposition follows. 2

Proof of Theorem 1.1. By Corollary 4.1 and Proposition 3.15 we have that

P(Qmmk, x) = 2−Cr [−22Crxw(M)+2α(2Cr−1(2Cr +1)] = −2−Cr+2Crxw(M)+α(2Cr+1). 2

Conclusion. We have expressed the partition functions of the dimer problem and
the Ising problem in 3-dimensional finite cubic lattices by means of expectations of the
determinants of matrices associated with the cubic lattices. This may open a possibility to
apply fundamentally different statistical methods and Monte Carlo simulations to study
these problems.
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5 Appendix: Basic notation, definitions and facts.

Let G = (V, E) be a graph. We will assume that a weight w(e) is associated with each
edge e of G. If A ⊂ E then we let w(A) =

∑
e∈A w(e). A graph G′ = (V ′, E′) is called

a subgraph of G if V ′ ⊂ V and E ′ ⊂ E. Let {v1, e1, v2, e2, ..., vi, ei, vi+1, ..., en, vn+1} be a
sequence such that each vj is a vertex of a graph G, each ej is an edge of G and ej = vjvj+1,
and vi 6= vj for i < j except if i = 1 and j = n + 1. If also v1 6= vn+1 then P is called a
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path of G. If v1 = vn+1 then P is called a cycle of G. In both cases the length of P equals
n. When no confusion arises we shall also denote paths by simply listing their vertices or
edges, namely P = (v1, v2, . . . , vn+1) or P = (e1, e2, . . . , en).

A graph G = (V, E) is connected if it has a path between any pair of vertices, and it
is 2-connected if the graph Gv = (V − {v}, {e ∈ E; v /∈ e}) is connected for each vertex v
of G. Each maximal 2-connected subgraph of G is called a 2-connected component of G.

A graph G′ is a subdivision of a graph G if some edges of G are replaced in G′ by
paths so that the inner vertices of each such new path have all degree 2 in G′, and both
terminal vertices coincide with the vertices of the corresponding deleted edge of G. G′ is
an even subdivision of G if the new paths all have odd lengths. Let w be the vector of the
weights associated with the edges of G. We define induced weights w′ for G′ as follows:
if e is an edge of G which is replaced by path (e1, ..., en) in G′ consisting of n edges then
w′(e1) = w(e), w′(ej) = 0 for each j > 1 and w′(f) = w(f) for the remaining edges f of
G.

Let G = (V, E) be a graph with 2n vertices and D an orientation of G. Denote by
A(D) the skew-symmetric matrix with the rows and the columns indexed by V , where
auv = xw(u,v) in case (u, v) is an arc of D, au,v = −xw(u,v) in case (v, u) is an arc of D, and
au,v = 0 otherwise.

The Pfaffian of A(D) is defined as

Pf(A(D)) =
∑

P

s∗(P )ai1j1 · · ·ainjn

where P = {{i1j1}, · · · , {injn}} is a partition of the set {1, . . . , 2n} into pairs, ik < jk for
k = 1, . . . , n, and s∗(P ) equals the sign of the permutation i1j1 . . . injn of 12 . . . (2n).

Each nonzero term of the expansion of the Pfaffian of A(D) equals xw(P ) or −xw(P )

where P is a perfect matching of G. If s(D, P ) denote the sign of the term xw(P ) in the
expansion, we may write

Pf(A(D)) =
∑

P

s(D, P )xw(P ).

The Pfaffian is a determinant-type expression. Note the following classic result of
Cayley (see [1]).

Theorem 5.1 Let G be a graph and let D be an orientation of G. Then

Pf 2(A(D)) = det(A(D)).

Let A∆B denote the symmetric difference of the sets A and B and let a =
2

b denote
a = b modulo 2.

Let M, N be two perfect matchings of a graph G. Then M∆N consists of vertex
disjoint cycles of even length. These cycles are called alternating cycles of M and N .

Let C be a cycle of G of an even length and let D be an orientation of G. C is said
to be clockwise even in D if it has an even number of edges directed in D in agreement
with the clockwise traversal. Otherwise C is called clockwise odd.
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Definition 5.2 Let G be a graph and let D be an orientation of G. Let M be a perfect
matching of G. For each perfect matching P of G let sgn(D, M∆P ) = (−1)n where n is
the number of clockwise even alternating cycles of M and P , and let P(D, M) be the sum
of sgn(D, M∆P )xw(P ) over all perfect matchings P of G.

The following theorem was proved by Kasteleyn [13].

Theorem 5.3 Let G be a graph and D an orientation of G. Let P, M be two perfect
matchings of G. Then

s(D, P ) = s(D, M)sgn(D, M∆P ).

Hence,

Pf(A(D)) =
∑

P

s(D, P )xw(P ) = s(D, M)
∑

P

sgn(D, M∆P )xw(P ) = s(D, M)P(D, M).

In the construction of section 3 we rely on the following definition and theorem.

Definition 5.4 Let G be a graph and let G′ be an even subdivision of G. Let D′ be an
orientation of G′. An orientation D of G induced by D′ is constructed as follows: for
each edge e of G which was changed into a path Pe in the construction of G′, orient e
in the direction in which an odd number of edges of Pe is directed in D′: this is uniquely
determined since Pe has an odd length.

Let G be a graph and let w be a vector of weights associated with the edges of G. Let
G′ be an even subdivision of G and let w′ be the vector of weights associated with the
edges of G′ induced by w. Each perfect matching P of G gives naturally rise to perfect
matching P ′ of G′ such that xw(P ) = xw′(P ′).

Observe that sgn(D, P∆Q) = sgn(D′, P ′∆Q′) for each pair of perfect matchings P, Q
of G. Hence the following theorem follows from Theorem 5.3.

Theorem 5.5 Let G be a graph and let w be a vector of weights associated with the edges
of G. Let G′ be an even subdivision of G and let w′ be a vector of weights associated
with the edges of G′ induced by w. Let D′ be an orientation of G′ and let D be the
orientation of G induced by D′. Let M be an arbitrary perfect matching of G. Then
s(D, M)s(D′, M ′)Pf(A(D′)) = Pf(A(D)).

An embedding of a graph on a surface is defined in a natural way: the vertices are
embedded as points, and each edge is embedded as a continuous non-self-intersecting
curve connecting the embedding of its end vertices. The interiors of the embedding of the
edges are pairwise disjoint and the interiors of the curves embedding edges do not contain
points embedding vertices.

A graph is called planar if it may be embedded on the plane. A plane graph is a planar
graph together with its planar embedding. The embedding of a plane graph partitions
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the plane into connected regions called faces. The (unique) unbounded face is called outer
face and the bounded faces are called inner faces.

Plane graphs with some regularities are sometimes called 2-dimensional lattices.
Let G be a plane graph. A subgraph of G consisting of the vertices and the edges

embedded on the boundary of a face will also be called a face. If a plane graph is 2-
connected then each face is a cycle.

The genus g of a graph G is that of the orientable surface S ⊂ IR3 of minimal genus
on which G may be embedded.
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