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Abstract

A graph is n-e.c. (n-existentially closed) if for every pair of subsets U, W of the
vertex set V of the graph such that UNW = () and |U|+ |W| = n, there is a vertex
v €V — (UUW) such that all edges between v and U are present and no edges
between v and W are present. A graph is strongly regular if it is a regular graph
such that the number of vertices mutually adjacent to a pair of vertices vy,vo € V
depends only on whether or not {vi,v2} is an edge in the graph.

The only strongly regular graphs that are known to be n-e.c. for large n are the
Paley graphs. Recently D. G. Fon-Der-Flaass has found prolific constructions of
strongly regular graphs using affine designs. He notes that some of these construc-
tions were also studied by Wallis. By taking the affine designs to be Hadamard
designs obtained from Paley tournaments, we use probabilistic methods to show
that many non-isomorphic strongly regular n-e.c. graphs of order (¢ + 1)? exist
whenever ¢ > 16n222" is a prime power such that ¢ = 3 (mod 4).

1 Introduction

The vertex set of a graph G will be denoted by V' = V(G) and the edge set by E = E(G).
The number of vertices is denoted by N = |V].

We define a graph to be n-e.c. (n-existentially closed) if for every pair of subsets
U, W of the vertex set V such that UNW = () and |U| + |W| = n there is a vertex
v eV — (UUW) such that all edges between v and U are present and no edges between
v and W are present.

A strongly regular SR(N, K, A, M) graph is a regular graph such that the number
of vertices adjacent to a pair of vertices vi,v9 € V depends only on whether or not
{v1,v2} € E. Denote the common degree of the vertices of G by K. Given v € V| let
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I'(v) ={w €V :{w,v} € E} denote the set of vertices in V adjacent to v. If v and w are
vertices such that {w,v} € E, then the number of vertices mutually adjacent to v and w
is [I'(v) NI'(w)| = A, and if {w,v} ¢ E, then |I'(v) N I'(w)| = M.

The only strongly regular graphs that are known to be n-e.c. for n > 3 are the Paley
graphs, which are constructed from finite fields of size ¢ where ¢ is a prime power such
that ¢ = 1 (mod 4). Let F, denote the finite field containing ¢ elements, where ¢ is a
power of a prime. The vertices of the Paley graph P, are the elements of F, and there
is an edge between two vertices z and y if and only if + — y is a square in F,. The
Paley graphs are n-e.c. whenever g > n?2?"~2; see Bollobds and Thomason [3]. Recently
Bonato, Holzmann and Kharaghani [4] have used Hadamard matrices to construct new
3-e.c. graphs.

Even more recently, D. G. Fon-Der-Flaass [6] has found prolific constructions of
strongly regular graphs using affine designs. (He points out that some of these con-
structions appeared in Wallis [10].) His main construction appears as Construction 1
in Section 3. By taking the affine designs in Construction 1 to be Hadamard designs
obtained from Paley tournaments (defined in Section 3) we use probabilistic methods to
show that many non-isomorphic strongly regular n-e.c. graphs of certain orders exist.

Theorem 1.1 Suppose that q is a prime power such that ¢ = 3 (mod 4). There is a

function €(q) = O (q~'logq) such that there exvist 9(72")(1-=() non-isomorphic SR((q +
1% q(g+1)/2,(¢*> —1)/4,(¢*> — 1)/4) graphs which are n-e.c. whenever ¢ > 16n22%".

The lower bound on ¢ arises from the need to make the estimates in Theorem 3.2 below
effective and the condition on the modulus of ¢ is required because Paley tournaments
are only defined on ¢ vertices for ¢ a prime power such that ¢ =3 (mod 4).

Theorem 1.1 will be proved by analysing randomly generated strongly regular graphs.
The graphs are generated by Construction 2 (described in Section 3) when certain bijec-
tions and permutations are chosen uniformly at random. Lemma 3.3 in Section 3 shows
that Construction 2 generates many non-isomorphic graphs. We then show that most of
the graphs generated have the n-e.c. property in Section 4, thereby completing the proof
of Theorem 1.1. The proof of the n-e.c. property uses bounds on the expected number of
pairs of subsets U, W causing the graph not to be n-e.c.

2 Background

The n-e.c. property first occurred in the discussion of random graphs, in particular the
zero-one law for first-order sentences [7]. Clearly this property can be expressed as a
first-order sentence ¢,, in the language of graph theory. Now it is well-known that

(a) the countable random graph R satisfies ¢,, for all n (and is determined up to isomor-
phism by this);

(b) for fixed n, almost all finite graphs satisfy ¢,.
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Now let 6 be any sentence. Either 6 or its negation holds in R; we may suppose the
former. By compactness, 6 is a logical consequence of a finite number of sentences ¢,,; so
f holds in almost all finite graphs.

As usual, although almost all random graphs are n-e.c., it is not clear how to construct
explicit examples!

3 Constructing random strongly regular graphs

An affine design is a 2-design with the following two properties:
(i) Every two blocks are either disjoint or intersect in a constant number r of points.

(ii) Each block together with all blocks disjoint from it forms a parallel class: a set of n
mutually disjoint blocks partitioning all points of the design.

Define s to be s = (r — 1)/(n — 1). The number of parallel classes is p = n?s +n + 1
and each block in a parallel class contains k = nr = n%s — ns + n points. The following
construction is described in Fon-Der-Flaass [6]. It originally appeared in Wallis [10]:

Construction 1 Let Si,...,S,+1 be arbitrary affine designs with parameters (n,r, s);
here p = n%s +n + 1 is the number of parallel classes in each S;. Let S; = (V;, £;). Let
I=A{1,...,p+1}.

For every 4, denote arbitrarily the parallel classes of S; by symbols £;;, j € T — {i}.
For v € V;, let [;;(v) denote the line in the parallel class £;; which contains v.

For every pair 4, 7, 7 # j, choose an arbitrary bijection o; ; : £;; — L;;; we only require
that o;, = U;]-l.

Construct a graph G = G1((S;), (0;)) on the vertex set X = U;ezV;. The sets V; will
be independent. Two vertices v € V; and w € V}, ¢ # j, are adjacent in G, if and only if

w € 0;;(l;;(v)) (or, equivalently, o; ;(1;;(v)) = Lj;(w)).
Wallis and Fon-Der-Flaass go on to show that

Theorem 3.1 The graph obtained in Construction 1 is strongly reqular with parameters
(N,K,A\,M), N =n*r(n’s+n+2), K=nr(n’s+n+1), A =M =r(n’s+n).

Figure 1 shows the case n = 2, r = 1, s = 0, where we obtain a (16,6, 2,2) strongly
regular graph. Each of the four designs has as blocks all 2-subsets of a 4-set; the design S;
is labelled with a bold numeral 7 in a square. The top of the figure shows the numbering
of the parallel classes; each style of line corresponds to a fixed second index. For example,
the double lines in design §; form the parallel class £;;. The small numerals show the
correspondence between L5 and Lo1. The last two lines of the figure show some adjacen-
cies in the graph: the two points of each block in Ly, are adjacent to the two points of
the corresponding block in Lo.

In order for Construction 1 to produce strongly regular graphs with the n-e.c. property,
it is necessary that for any V; and for any pair of disjoint subsets U, W of V; such that
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Figure 1: The construction

THE ELECTRONIC JOURNAL OF COMBINATORICS 9 (2002), #R31



|U| + |W| = n, there must be a vertex v with all edges between v and U present and no
edges between v and W present. It is therefore necessary that there is a parallel class
L;; such that U and V are contained in two different (disjoint) blocks of £;;. To ensure
that condition is satisfied our designs will be Hadamard designs constructed from Paley
tournaments.

A tournament is a directed graph with no loops in which the underlying graph is the
complete graph. Suppose that ¢ is a prime power such that ¢ = 3 (mod 4). Let F, be

the finite field on ¢ elements. The vertices of the Paley tournament P, are the elements
of F, and there is a directed edge from a vertex = to another vertex y if and only if y — x
is a square in F,. (The edges are directed because of the assumption on the modulus of

q.) Let A, = (a;;) be the adjacency matrix of Eq, so that a; ; = +1 if (4, j) is an edge of

Eq and a; ; = —1 if it is not. For ¢ = 3, using + in place of +1 and — instead of —1, we
have
0 + -
A= — 0 +
+ — 0
Paley tournaments satisfy a version of the n-e.c. property given by Theorem 3.2, which
is proved using quadratic residue characters as in the proof of Theorem 10, Section XIII.2,
of Bollobas [2]. If U and W are disjoint sets of vertices of the Paley tournament ng, then
we denote by v(U, W) the number of vertices v not in U UW such that (v,u) is a directed
edge in ]3(1 for each v € U and (w,v) is a directed edge in Eq for each w € W (so that
(v, w) is not a directed edge).

Theorem 3.2 Suppose that q is a prime power such that ¢ =3 (mod 4) and Let U and

W be disjoint sets of vertices of the Paley tournament P,. and define n to ben = |U|+|W|.
Then

1
}U(U, W) — 2_”q’ < 5 (n—2427") ¢ +n)2.
Moreover, v(U,W) > 0 whenever q > n?2*"=2,

Let I, be the ¢ x ¢ identity matrix. Let B, = A, — I,. Let C, be the (¢+1) x (¢ +1)
matrix obtained by adding an initial row of 1’s and a column of 1’s. Then C, is a
Hadamard matrix. For ¢ = 3 we have

+ + +
__|,__
- - 4+
+__

_+_
By=| - - +
+__

703:

+++ +

For each ¢, the last g rows of C' are the £1 incidence matrix of an affine design. Each
parallel class contains two blocks, corresponding to 4+ and —. The columns correspond to

the points of the design. Thus, from each Paley tournament ]_3)(1 we get the incidence matrix
D, of a design on g+ 1 points with vertices corresponding to columns and parallel classes
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corresponding to rows, and with parameters p = ¢, n =2, r = (¢+1)/4, s = (¢ —3)/4
and k = (¢ + 1)/2. In our running example

+ -+ -
Dy=| + — — +

+ + - -

The vertices are labelled from 1 to g + 1.

One source of randomness in the graphs generated from Construction 1 comes from
the labelling of the parallel classes in the second step. This is equivalent to randomly
permuting the rows of D, to get the incidence matrix of each S;, 7 =1,...,¢ + 1. More
precisely, if the incidence matrix of a design §; is denoted by M;, then the jth row of M;
is the m;(j)th row of D, for some permutation ;. The total number of ways of choosing
the m; is (¢!)7™,

The functions o; ; in Construction 1 supply another source of randomness in the de-

signs. Since there are (qgl) functions to be chosen and 2 possibilities for each function

(because n = 2), there is a total of 2("2) possibilities for the o; ;. The fact that (¢!)9+?,

grows more rapidly than 2("") may indicate that the choice of permutations adds more
randomness to our construction than the choice of bijections.

Construction 2 is the version of Construction 1 that produces the graphs in Theorem
1.1.

Construction 2 Suppose that ¢ is a prime power such that ¢ =3 (mod 4).

Choose permutations m;, 1 < 7 < ¢ + 1 independently and uniformly from the set of
all permutations acting on {1,2,...,q}.

Let Si,...,S8,4+1 be affine designs such that the point sets Vi,..., V41 are copies of
{1,2,...,¢+1} and such that the jth row of M, is the m;(j)th row of D,. Let S; = (V;, £;).
Let Z={1,...,q+ 1}.

For every i, denote the parallel class of S; corresponding to the jth row of M, by
symbols L;;, j € Z — {i}. For v € V;, let [;;(v) denote the line in the parallel class L;;
which contains v. Each line in a parallel class consists of (¢+1)/2 points and each parallel
class consists of two lines.

For every pair ¢, 7, ¢ # j, choose an arbitrary bijection o; ; : £;; — Lj; arbitrarily from
the 2 possibilities; we only require that o;; = o, !

Construct a graph G = G1((S;), (0;)) on the vertex set X = U;ezV;. The sets V; will
be independent. Two vertices v € V; and w € V}, ¢ # j, are adjacent in G, if and only if
w € 0;;(l;;(v)) (or, equivalently, o; ;(1;;(v)) = Lj;(w)).

Theorem 3.1 guarantees that Construction 2 produces graphs that are SR((q+1)?, q(q+
1)/2,(¢* = 1)/4,(¢° — 1)/4).

Lemma 3.3 Construction 2 produces at least 9(“4}) (1<) non-isomorphic graphs.

Proof The number of graphs generated by Construction 2 is 2(2") (¢")**. To bound
the number of graphs G isomorphic to a specific graph G, consider the following way of
choosing vertices:
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(i) Choose q + 1 vertices in G corresponding to V4 in G. This can be done in at most
(q+1)%7Y) ways. The vertices in G corresponding to the lines of the m;(1)st parallel
class of V; in G are now determined. In particular set of vertices corresponding to
each V; are determined.

(ii) Choose the correspondences to the vertices in G to those in each V;, 2 <7 < ¢+ 1.
This can be done in ((¢ + 1)!)? ways (and determines all 7; and all o; ;).

The number of isomorphism classes is at least
205 (g (g + 170 ((g + 1)) = 220,

where £(q) = O (¢ 'logq). m

4 Proof of the n-e.c. property

Fix a pair of disjoint subsets of vertices U, W in the graph in Construction 2 such that
|U| + |W| = n. Let U; be the set of points of V; which are vertices in U and let W; be the
set of points of V; which are vertices in W. Define G; = G;(U, W) to be the labels of the
parallel classes in the (unpermuted) design D, for which all of the U; are in one block and
all of the W; are in the other. The parallel classes in G; are the ones which “separate” U;
and W;. Define I'(U, W) to be

LUW)={iell,q+1]: U, =W, =0}.
If i € (U, W), then G; = {1,2,...,q}. Define n; = |U;| + |[W;] for i € [1,q + 1].
Lemma 4.1 For eachi € [1,q+ 1],
G| = 27"q — niql/Q — 1.

Proof The conclusion of the lemma is trivially true for i € T'(U,W). Observe that for
i gT(U,W),

(U, Wi) +o(W3, U;) it 1 ¢ U UW;;

v(W; — {1}, U;) if 1eWw,
where v(U, W) was defined just before Theorem 3.2. If 1 ¢ U; U W;, then Theorem 3.2
gives v(U;, W;) > 27"q — 1n;¢"/? — %, and the same lower bound holds for v(W;, U;).
Therefore |G;| > 27™*! —n;¢'/? — n; and the conclusion of the lemma follows. If 1 € Uj,
then Theorem 3.2 gives G; = v(U; — {1}, W;) > 2=~ Yg—n;q"/2 —n;. A similar argument
is used for the case 1 € W;. m

Recall from Construction 2 that Z = {1,...,¢+ 1}. A design V; with ¢ € T(U, W) is
said to be good for U, W if m,(i) € Gy, for each k € T —T'(U, W) and is said to be bad for
U, W otherwise. The number of vertices in a design V; good for U, W which are adjacent
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to all vertices in U and not adjacent to any vertices in W corresponds to the columns
in D, for which a set of ¢ +1 — |[I'(U, W)| < n rows match a certain pattern of 0’s and
I’s. If ¢ > n?22"=2 then Theorem 3.2 implies for each good design V; there exists at least
one (actually many) points of V; satisfying the conditions of the n-e.c. property for U,
W. Therefore, if ¢ > n?2?"=2, then a graph constructed with Construction 1 satisfies the
n-e.c. property for U, W whenever some design V; is good for U, W. Therefore, to prove
that the graphs described by Construction 2 are n-e.c., it suffices to show that there exists
at least one good design for every pair U, W.
For each i € I'(U, W) let I; be the indicator random variable

I; = 1[V; is good for U, W].

Define X = X (U, W) to be

= Y L

1€ (UW)

Let us say that a pair U, W is bad if there is no vertex v € V. — (U U W) such that v is
adjacent to all edges in U and adjacent to no edge in W. Let N, (U, W) denote the event
that the pair U, W is bad for the random graph in Construction 2. Then, by the previous
paragraph,

PN, (U, W) < B(X = 0). 1)

The remaining part of the proof gets a lower bound on P(X > 0), hence an upper
bound on P(X = 0), by using a large deviations result from Poisson approximation theory.
We begin with a lower bound on EX.

Lemma 4.2 Assume that ¢ > 16n22?". Then for U and W such that |U| + |W|=n,
EX > (¢—n)2 "exp (—4n2”q_1/2) )
Proof Fix a vertex i € I'(U, ). Then
EX > (¢—n)EL

= q—n

’:]Q

Jj=1

> q—nH

]:

:

g —ng'? —m)

[y
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where we have used Lemma 4.1 at (2). Whenever 0 < z < 1/2, log(1 — ) > —2z and
l1—x>e % so

g 4n ;2™
EX > (¢g—n)27" exp( J )
e (77
q
4n ;2"
> q—nZ”HeX( o) )
J=1 Vi

— (g—n)2"exp (—4”\2”) |

We now discuss a general result from Poisson approximation theory. Suppose that
(I;; i € T') are random variables with indices ¢ in I, where I' is some arbitrary set of
indices. The probability law of the I; conditioned on the event {I; = 1} is denoted by
L(I;; j € T'|I; = 1). We say that the I; are negatively related if for each i € T random
variables (J;;; j € I') can be defined on the same probability space as (I;; j € I') in such
a way that, firstly,

and, secondly,
Jj,i < Ij fOT' CLH] el.

A special case of Theorem 2.R of the standard text [1] on Poisson approximation, which
contains many more interesting results and examples, is

Theorem 4.3 For any sumY = > I; of negatively related indicator variables

i€l
P(Y =0) < 27X,
The next lemma bounds the probability that the pair U, W is bad.

Lemma 4.4 The probability of the event N, is bounded above by

4n2"
< —(qg—n)27" — .
PN, < 2exp (~(g = m2 "exp (22 ) ) ®)
Proof We will show that P(X = 0) is bounded by the right hand side of (3) and then
apply (1). Since EI; = P(I; = 0), it suffices to prove that the variables (I;,7 € I') are
negatively related and then apply Theorem 4.3 and Lemma 4.2.

We will now construct the random variables J;; in the definition of negatively related
indicators. If I; = 1, then simply define J;; = I; for all j € I'(U, W). The harder part is
constructing J;; when I; = 0.

Fix ¢ € T'(U,W) and let k£ be an index taken over Z — I'(U,W). Conditional on
I; = 1, it follows from the definition of a design good for U, W (after Lemma 4.1) and the
independence of the permutations 7y, that the 7 (i) are uniformly distributed over the
Gy and are mutually independent. If I; = 0, then for each k such that 74 (i) ¢ Gy choose
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random elements 7, € G} such that the 7, are independent and uniformly distributed
over Gy. Replace each my for which (i) & Gy with ¢y o 1, where ¢ = (mx(7) i) is a
transposition and ¢ o w(i) = ¢(n(4)). Define J;; for j € I'(U, W) as in the definition of [,
but using ¢y o 7, in place of m, whenever 7 (i) € Gy. If m1.(i) € Gy, then continue to use
Tk

In this construction the J;; have the right distribution and are bounded by I;, proving
that the (1;,¢ € I'(U, W)) are negatively related. m

Proof of Theorem 1.1 Let Z be the expected number of bad pairs U, W and suppose
that for ¢ > 16n?2%". Using the immediate bounds n < log, ¢ and 27" > 4ng~'/? > 4¢= /2,

we have
2 (95 - (45)

4e~1
< (g+1)*lE=att 2exp (—(q — log, q) NG )

< crexp (—c2q'?)

for some constants ¢y, ca > 0. Since P(Z > 0) < EZ for all nonnegative integer-valued ran-
dom variables Z, we have the bound P(Z > 0) < ¢; exp (—c2¢"/?) for the probability that
there exist any bad pairs U, W for the graphs of Construction 2. The number of graphs
without any bad pairs U, W is therefore at least 2(q§1)(q!)‘1+1 {1—crexp (—c2¢"?)}.
Theorem 1.1 results from the proof of Lemma 3.3 applied to those graphs. m

5 Further remarks

We can obtain further strongly regular graphs with the e.c. property from our examples
using switching (see Seidel [8]) as follows. Let v be any vertex of a n-e.c. graph I'. Switch
with respect to the neighbours of v, and delete v. The resulting graph I” is (n — 1)-e.c.
Moreover, if T is strongly regular with parameters ((q+1)2, q(q+1)/2, (¢*—1)/4, (¢>°—1)/4),
then I" is strongly regular with parameters (q(q + 2), (¢ + 1)%/2, (¢ + 1)?/4, (¢ + 1)%/4).

The n-e.c. property in graphs produced by Construction 1 depends crucially on the
designs used. If we use affine geometries in place of Paley designs, we can do no better
than 3-e.c.:

Proposition 5.1 Let G, = Gi((S;), (0:;)) be a strongly regular graph produced by Con-
struction 1. Suppose that at least one of the designs S; is an affine geometry over Fy.
Then Gi does not satisfy 4-e.c.

Proof Suppose that &7 is an affine geometry, and let v, w, x,y be an affine plane of S;.
Then any hyperplane containing three of v, w,x,y contains the fourth; so every vertex
joined to three of these vertices is also joined to the fourth. m
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Thomason [9] defined a class of “pseudo-random” graphs which he called jumbled
graphs. He showed that these share many properties with random graphs. However, the
n-e.c. property for large n is not such a property: in fact, one of Thomason’s graphs
arises from Construction 1 using affine geometries over Fs.

The usual description of the graph G(n) is as follows. Let

Q(r) = x1xp41 + ToXpao + -+ - + TpToy

be a quadratic form on the vector space V = F3". The vertex set of the graph is V, and
vertices v, w are joined if and only if Q(v —w) = 1.

We re-formulate the definition as follows. Let W =F;. Then V = W @ W; we write a
typical vector as (z,a), and let W, = {(z,a) : « € W}. Then Q(z,a) = x-a (the standard
inner product).

Each set W, is naturally bijective with W = [, the point set of the affine geometry.
A parallel class of hyperplanes in W is given by

H(c,i)={xeW:x-c=1i} fori=0,1,

for each non-zero ¢ € W. Thus, we can label the parallel classes in W, by vectors b # a,
where the parallel class labelled by b is

Lo ={(H(a+b,0),a),(Hla+0b,1),a)}.

Now the neighbours of (y,b) in W, are precisely the points (z,a) which satisfy (z — y) -
(a —b) = 1. If a = b, there are no such vertices. If a # b, then (z,a) € ((H(a +b),1),a)
and (y,b) € (H(a+b),j),b) satisfy x - (a+b) =i and y - (a + b) = j, so they are joined
if and only if ¢ — j = 1. Thus, choosing the bijection o,; to map ((H(a + b),i),a) to
((H(a+b),i4 1),b), we see that Construction 1 does produce this graph.

We conclude by noting that, even though G(n) fails to be 4-e.c., it has a much stronger
version of the 3-e.c. property, considered by Cameron et al. [5]: for every pair of subsets
U, W of the vertex set V' such that UNW = @ and |U|+ |W| = 3, the number of vertices
v €V —(UUW) joined to every vertex in U and to none in W depends only on the
induced subgraph on U U W with distinguished subset U (and this number is non-zero
provided that n > 3).
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