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Abstract

A graph is n-e.c. (n-existentially closed) if for every pair of subsets U , W of the
vertex set V of the graph such that U ∩W = ∅ and |U |+ |W | = n, there is a vertex
v ∈ V − (U ∪ W ) such that all edges between v and U are present and no edges
between v and W are present. A graph is strongly regular if it is a regular graph
such that the number of vertices mutually adjacent to a pair of vertices v1, v2 ∈ V
depends only on whether or not {v1, v2} is an edge in the graph.

The only strongly regular graphs that are known to be n-e.c. for large n are the
Paley graphs. Recently D. G. Fon-Der-Flaass has found prolific constructions of
strongly regular graphs using affine designs. He notes that some of these construc-
tions were also studied by Wallis. By taking the affine designs to be Hadamard
designs obtained from Paley tournaments, we use probabilistic methods to show
that many non-isomorphic strongly regular n-e.c. graphs of order (q + 1)2 exist
whenever q ≥ 16n222n is a prime power such that q ≡ 3 (mod 4).

1 Introduction

The vertex set of a graph G will be denoted by V = V (G) and the edge set by E = E(G).
The number of vertices is denoted by N = |V |.

We define a graph to be n-e.c. (n-existentially closed) if for every pair of subsets
U , W of the vertex set V such that U ∩ W = ∅ and |U | + |W | = n there is a vertex
v ∈ V − (U ∪ W ) such that all edges between v and U are present and no edges between
v and W are present.

A strongly regular SR(N, K, Λ, M) graph is a regular graph such that the number
of vertices adjacent to a pair of vertices v1, v2 ∈ V depends only on whether or not
{v1, v2} ∈ E. Denote the common degree of the vertices of G by K. Given v ∈ V , let
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Γ(v) = {w ∈ V : {w, v} ∈ E} denote the set of vertices in V adjacent to v. If v and w are
vertices such that {w, v} ∈ E, then the number of vertices mutually adjacent to v and w
is |Γ(v) ∩ Γ(w)| = Λ, and if {w, v} 6∈ E, then |Γ(v) ∩ Γ(w)| = M .

The only strongly regular graphs that are known to be n-e.c. for n > 3 are the Paley
graphs, which are constructed from finite fields of size q where q is a prime power such
that q ≡ 1 (mod 4). Let Fq denote the finite field containing q elements, where q is a
power of a prime. The vertices of the Paley graph Pq are the elements of Fq and there
is an edge between two vertices x and y if and only if x − y is a square in Fq . The
Paley graphs are n-e.c. whenever q > n222n−2; see Bollobás and Thomason [3]. Recently
Bonato, Holzmann and Kharaghani [4] have used Hadamard matrices to construct new
3-e.c. graphs.

Even more recently, D. G. Fon-Der-Flaass [6] has found prolific constructions of
strongly regular graphs using affine designs. (He points out that some of these con-
structions appeared in Wallis [10].) His main construction appears as Construction 1
in Section 3. By taking the affine designs in Construction 1 to be Hadamard designs
obtained from Paley tournaments (defined in Section 3) we use probabilistic methods to
show that many non-isomorphic strongly regular n-e.c. graphs of certain orders exist.

Theorem 1.1 Suppose that q is a prime power such that q ≡ 3 (mod 4). There is a

function ε(q) = O (q−1 log q) such that there exist 2(q+1
2 )(1−ε(q)) non-isomorphic SR((q +

1)2, q(q + 1)/2, (q2 − 1)/4, (q2 − 1)/4) graphs which are n-e.c. whenever q ≥ 16n222n.

The lower bound on q arises from the need to make the estimates in Theorem 3.2 below
effective and the condition on the modulus of q is required because Paley tournaments
are only defined on q vertices for q a prime power such that q ≡ 3 (mod 4).

Theorem 1.1 will be proved by analysing randomly generated strongly regular graphs.
The graphs are generated by Construction 2 (described in Section 3) when certain bijec-
tions and permutations are chosen uniformly at random. Lemma 3.3 in Section 3 shows
that Construction 2 generates many non-isomorphic graphs. We then show that most of
the graphs generated have the n-e.c. property in Section 4, thereby completing the proof
of Theorem 1.1. The proof of the n-e.c. property uses bounds on the expected number of
pairs of subsets U , W causing the graph not to be n-e.c.

2 Background

The n-e.c. property first occurred in the discussion of random graphs, in particular the
zero-one law for first-order sentences [7]. Clearly this property can be expressed as a
first-order sentence φn in the language of graph theory. Now it is well-known that

(a) the countable random graph R satisfies φn for all n (and is determined up to isomor-
phism by this);

(b) for fixed n, almost all finite graphs satisfy φn.
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Now let θ be any sentence. Either θ or its negation holds in R; we may suppose the
former. By compactness, θ is a logical consequence of a finite number of sentences φn; so
θ holds in almost all finite graphs.

As usual, although almost all random graphs are n-e.c., it is not clear how to construct
explicit examples!

3 Constructing random strongly regular graphs

An affine design is a 2-design with the following two properties:

(i) Every two blocks are either disjoint or intersect in a constant number r of points.

(ii) Each block together with all blocks disjoint from it forms a parallel class: a set of n
mutually disjoint blocks partitioning all points of the design.

Define s to be s = (r − 1)/(n − 1). The number of parallel classes is p = n2s + n + 1
and each block in a parallel class contains k = nr = n2s − ns + n points. The following
construction is described in Fon-Der-Flaass [6]. It originally appeared in Wallis [10]:

Construction 1 Let S1, . . . ,Sp+1 be arbitrary affine designs with parameters (n, r, s);
here p = n2s + n + 1 is the number of parallel classes in each Si. Let Si = (Vi,Li). Let
I = {1, . . . , p + 1}.

For every i, denote arbitrarily the parallel classes of Si by symbols Lij, j ∈ I − {i}.
For v ∈ Vi, let lij(v) denote the line in the parallel class Lij which contains v.

For every pair i, j, i 6= j, choose an arbitrary bijection σi,j : Lij → Lji; we only require
that σj,i = σ−1

i,j .
Construct a graph G1 = G1((Si), (σi,j)) on the vertex set X = ∪i∈IVi. The sets Vi will

be independent. Two vertices v ∈ Vi and w ∈ Vj, i 6= j, are adjacent in G1 if and only if
w ∈ σi,j(lij(v)) (or, equivalently, σi,j(lij(v)) = lji(w)).

Wallis and Fon-Der-Flaass go on to show that

Theorem 3.1 The graph obtained in Construction 1 is strongly regular with parameters
(N, K, Λ, M), N = n2r(n2s + n + 2), K = nr(n2s + n + 1), Λ = M = r(n2s + n).

Figure 1 shows the case n = 2, r = 1, s = 0, where we obtain a (16, 6, 2, 2) strongly
regular graph. Each of the four designs has as blocks all 2-subsets of a 4-set; the design Si

is labelled with a bold numeral i in a square. The top of the figure shows the numbering
of the parallel classes; each style of line corresponds to a fixed second index. For example,
the double lines in design Si form the parallel class Li1. The small numerals show the
correspondence between L12 and L21. The last two lines of the figure show some adjacen-
cies in the graph: the two points of each block in L12 are adjacent to the two points of
the corresponding block in L21.

In order for Construction 1 to produce strongly regular graphs with the n-e.c. property,
it is necessary that for any Vi and for any pair of disjoint subsets U , W of Vi such that
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Figure 1: The construction
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|U | + |W | = n, there must be a vertex v with all edges between v and U present and no
edges between v and W present. It is therefore necessary that there is a parallel class
Lij such that U and V are contained in two different (disjoint) blocks of Lij. To ensure
that condition is satisfied our designs will be Hadamard designs constructed from Paley
tournaments.

A tournament is a directed graph with no loops in which the underlying graph is the
complete graph. Suppose that q is a prime power such that q ≡ 3 (mod 4). Let Fq be

the finite field on q elements. The vertices of the Paley tournament
→
P q are the elements

of Fq and there is a directed edge from a vertex x to another vertex y if and only if y − x
is a square in Fq . (The edges are directed because of the assumption on the modulus of

q.) Let Aq = (ai,j) be the adjacency matrix of
→
P q, so that ai,j = +1 if (i, j) is an edge of

→
P q and ai,j = −1 if it is not. For q = 3, using + in place of +1 and − instead of −1, we
have

Aq =


 0 + −

− 0 +
+ − 0


 .

Paley tournaments satisfy a version of the n-e.c. property given by Theorem 3.2, which
is proved using quadratic residue characters as in the proof of Theorem 10, Section XIII.2,

of Bollobás [2]. If U and W are disjoint sets of vertices of the Paley tournament
→
P q, then

we denote by v(U, W ) the number of vertices v not in U ∪W such that (v, u) is a directed

edge in
→
P q for each u ∈ U and (w, v) is a directed edge in

→
P q for each w ∈ W (so that

(v, w) is not a directed edge).

Theorem 3.2 Suppose that q is a prime power such that q ≡ 3 (mod 4) and Let U and

W be disjoint sets of vertices of the Paley tournament
→
P q. and define n to be n = |U |+|W |.

Then ∣∣v(U, W ) − 2−nq
∣∣ ≤ 1

2

(
n − 2 + 2−n+1

)
q1/2 + n/2.

Moreover, v(U, W ) > 0 whenever q > n222n−2.

Let Iq be the q × q identity matrix. Let Bq = Aq − Iq. Let Cq be the (q + 1)× (q + 1)
matrix obtained by adding an initial row of 1’s and a column of 1’s. Then Cq is a
Hadamard matrix. For q = 3 we have

B3 =


 − + −

− − +
+ − −


 , C3 =




+ + + +
+ − + −
+ − − +
+ + − −


 .

For each q, the last q rows of C are the ±1 incidence matrix of an affine design. Each
parallel class contains two blocks, corresponding to + and −. The columns correspond to

the points of the design. Thus, from each Paley tournament
→
P q we get the incidence matrix

Dq of a design on q +1 points with vertices corresponding to columns and parallel classes
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corresponding to rows, and with parameters p = q, n = 2, r = (q + 1)/4, s = (q − 3)/4
and k = (q + 1)/2. In our running example

D3 =


 + − + −

+ − − +
+ + − −


 .

The vertices are labelled from 1 to q + 1.
One source of randomness in the graphs generated from Construction 1 comes from

the labelling of the parallel classes in the second step. This is equivalent to randomly
permuting the rows of Dq to get the incidence matrix of each Si, i = 1, . . . , q + 1. More
precisely, if the incidence matrix of a design Si is denoted by Mi, then the jth row of Mi

is the πi(j)th row of Dq for some permutation πi. The total number of ways of choosing
the πi is (q!)q+1,

The functions σi,j in Construction 1 supply another source of randomness in the de-
signs. Since there are

(
q+1
2

)
functions to be chosen and 2 possibilities for each function

(because n = 2), there is a total of 2(q+1
2 ) possibilities for the σi,j . The fact that (q!)q+1,

grows more rapidly than 2(q+1
2 ) may indicate that the choice of permutations adds more

randomness to our construction than the choice of bijections.
Construction 2 is the version of Construction 1 that produces the graphs in Theorem

1.1.

Construction 2 Suppose that q is a prime power such that q ≡ 3 (mod 4).
Choose permutations πi, 1 ≤ i ≤ q + 1 independently and uniformly from the set of

all permutations acting on {1, 2, . . . , q}.
Let S1, . . . ,Sq+1 be affine designs such that the point sets V1, . . . , Vq+1 are copies of

{1, 2, . . . , q+1} and such that the jth row of Mi is the πi(j)th row of Dq. Let Si = (Vi,Li).
Let I = {1, . . . , q + 1}.

For every i, denote the parallel class of Si corresponding to the jth row of Mi by
symbols Lij, j ∈ I − {i}. For v ∈ Vi, let lij(v) denote the line in the parallel class Lij

which contains v. Each line in a parallel class consists of (q+1)/2 points and each parallel
class consists of two lines.

For every pair i, j, i 6= j, choose an arbitrary bijection σi,j : Lij → Lji arbitrarily from
the 2 possibilities; we only require that σj,i = σ−1

i,j .
Construct a graph G1 = G1((Si), (σi,j)) on the vertex set X = ∪i∈IVi. The sets Vi will

be independent. Two vertices v ∈ Vi and w ∈ Vj, i 6= j, are adjacent in G1 if and only if
w ∈ σi,j(lij(v)) (or, equivalently, σi,j(lij(v)) = lji(w)).

Theorem 3.1 guarantees that Construction 2 produces graphs that are SR((q+1)2, q(q+
1)/2, (q2 − 1)/4, (q2 − 1)/4).

Lemma 3.3 Construction 2 produces at least 2(q+1
2 )(1−ε(q)) non-isomorphic graphs.

Proof The number of graphs generated by Construction 2 is 2(q+1
2 )(q!)q+1. To bound

the number of graphs G isomorphic to a specific graph G̃, consider the following way of
choosing vertices:
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(i) Choose q + 1 vertices in G corresponding to V1 in G̃. This can be done in at most
(q+1)2(q+1) ways. The vertices in G corresponding to the lines of the πi(1)st parallel
class of Vi in G̃ are now determined. In particular set of vertices corresponding to
each Vi are determined.

(ii) Choose the correspondences to the vertices in G to those in each Vi, 2 ≤ i ≤ q + 1.
This can be done in ((q + 1)!)q ways (and determines all πi and all σi,j).

The number of isomorphism classes is at least

2(q+1
2 )(q!)q+1/

(
(q + 1)2(q+1)((q + 1)!)q

)
= 2(q+1

2 )(1−ε(q)),

where ε(q) = O (q−1 log q).

4 Proof of the n-e.c. property

Fix a pair of disjoint subsets of vertices U , W in the graph in Construction 2 such that
|U |+ |W | = n. Let Ui be the set of points of Vi which are vertices in U and let Wi be the
set of points of Vi which are vertices in W . Define Gi = Gi(U, W ) to be the labels of the
parallel classes in the (unpermuted) design Dq for which all of the Ui are in one block and
all of the Wi are in the other. The parallel classes in Gi are the ones which “separate” Ui

and Wi. Define Γ(U, W ) to be

Γ(U, W ) = {i ∈ [1, q + 1] : Ui = Wi = ∅}.
If i ∈ Γ(U, W ), then Gi = {1, 2, . . . , q}. Define ni = |Ui| + |Wi| for i ∈ [1, q + 1].

Lemma 4.1 For each i ∈ [1, q + 1],

|Gi| ≥ 2−niq − niq
1/2 − ni.

Proof The conclusion of the lemma is trivially true for i ∈ Γ(U, W ). Observe that for
i 6∈ Γ(U, W ),

|Gi| =




v(Ui, Wi) + v(Wi, Ui) if 1 6∈ Ui ∪ Wi;
v(Ui − {1}, Wi) if 1 ∈ Ui;
v(Wi − {1}, Ui) if 1 ∈ Wi,

where v(U, W ) was defined just before Theorem 3.2. If 1 6∈ Ui ∪ Wi, then Theorem 3.2
gives v(Ui, Wi) ≥ 2−niq − 1

2
niq

1/2 − ni

2
, and the same lower bound holds for v(Wi, Ui).

Therefore |Gi| ≥ 2−ni+1 − niq
1/2 − ni and the conclusion of the lemma follows. If 1 ∈ Ui,

then Theorem 3.2 gives Gi = v(Ui−{1}, Wi) ≥ 2−(ni−1)q−niq
1/2−ni. A similar argument

is used for the case 1 ∈ Wi.

Recall from Construction 2 that I = {1, . . . , q + 1}. A design Vi with i ∈ Γ(U, W ) is
said to be good for U , W if πk(i) ∈ Gk for each k ∈ I − Γ(U, W ) and is said to be bad for
U , W otherwise. The number of vertices in a design Vi good for U , W which are adjacent
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to all vertices in U and not adjacent to any vertices in W corresponds to the columns
in Dq for which a set of q + 1 − |Γ(U, W )| ≤ n rows match a certain pattern of 0’s and
1’s. If q > n222n−2, then Theorem 3.2 implies for each good design Vi there exists at least
one (actually many) points of Vi satisfying the conditions of the n-e.c. property for U ,
W . Therefore, if q > n222n−2, then a graph constructed with Construction 1 satisfies the
n-e.c. property for U , W whenever some design Vi is good for U , W . Therefore, to prove
that the graphs described by Construction 2 are n-e.c., it suffices to show that there exists
at least one good design for every pair U , W .

For each i ∈ Γ(U, W ) let Ii be the indicator random variable

Ii = I [Vi is good for U, W ] .

Define X = X(U, W ) to be

X =
∑

i∈Γ(U,W )

Ii.

Let us say that a pair U , W is bad if there is no vertex v ∈ V − (U ∪ W ) such that v is
adjacent to all edges in U and adjacent to no edge in W . Let Nq(U, W ) denote the event
that the pair U , W is bad for the random graph in Construction 2. Then, by the previous
paragraph,

P(Nq(U, W )) ≤ P(X = 0). (1)

The remaining part of the proof gets a lower bound on P(X > 0), hence an upper
bound on P(X = 0), by using a large deviations result from Poisson approximation theory.
We begin with a lower bound on EX.

Lemma 4.2 Assume that q ≥ 16n222n. Then for U and W such that |U | + |W | = n,

EX ≥ (q − n) 2−n exp
(−4n2nq−1/2

)
.

Proof Fix a vertex i ∈ Γ(U, W ). Then

EX ≥ (q − n) EIi

= (q − n)

q∏
j=1

|Gj|
q

≥ (q − n)

q∏
j=1

(
2−njq − njq

1/2 − nj

q

)
(2)

= (q − n)2−n

q∏
j=1

(
1 − nj2

nj

√
q

− nj2
nj

q

)

≥ (q − n)2−n

q∏
j=1

(
1 − 2nj2

nj

√
q

)
,
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where we have used Lemma 4.1 at (2). Whenever 0 < x < 1/2, log(1 − x) ≥ −2x and
1 − x ≥ e−2x, so

EX ≥ (q − n)2−n

q∏
j=1

exp

(
−4nj2

nj

√
q

)

≥ (q − n)2−n

q∏
j=1

exp

(
−4nj2

n

√
q

)

= (q − n)2−n exp

(
−4n2n

√
q

)
.

We now discuss a general result from Poisson approximation theory. Suppose that
(Ii; i ∈ Γ) are random variables with indices i in Γ, where Γ is some arbitrary set of
indices. The probability law of the Ii conditioned on the event {Ii = 1} is denoted by
L(Ij; j ∈ Γ|Ii = 1). We say that the Ii are negatively related if for each i ∈ Γ random
variables (Jj,i; j ∈ Γ) can be defined on the same probability space as (Ij ; j ∈ Γ) in such
a way that, firstly,

L(Jj,i; j ∈ Γ) = L(Ij ; j ∈ Γ|Ii = 1)

and, secondly,
Jj,i ≤ Ij for all j ∈ Γ.

A special case of Theorem 2.R of the standard text [1] on Poisson approximation, which
contains many more interesting results and examples, is

Theorem 4.3 For any sum Y =
∑

i∈Γ Ii of negatively related indicator variables

P(Y = 0) ≤ 2e−EX .

The next lemma bounds the probability that the pair U , W is bad.

Lemma 4.4 The probability of the event Nq is bounded above by

P(Nq) ≤ 2 exp

(
−(q − n)2−n exp

(
−4n2n

√
q

))
. (3)

Proof We will show that P(X = 0) is bounded by the right hand side of (3) and then
apply (1). Since E Ii = P(Ii = 0), it suffices to prove that the variables (Ii, i ∈ Γ) are
negatively related and then apply Theorem 4.3 and Lemma 4.2.

We will now construct the random variables Jj,i in the definition of negatively related
indicators. If Ii = 1, then simply define Jj,i = Ij for all j ∈ Γ(U, W ). The harder part is
constructing Jj,i when Ii = 0.

Fix i ∈ Γ(U, W ) and let k be an index taken over I − Γ(U, W ). Conditional on
Ii = 1, it follows from the definition of a design good for U , W (after Lemma 4.1) and the
independence of the permutations πk, that the πk(i) are uniformly distributed over the
Gk and are mutually independent. If Ii = 0, then for each k such that πk(i) 6∈ Gk choose
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random elements γk ∈ Gk such that the γk are independent and uniformly distributed
over Gk. Replace each πk for which πk(i) 6∈ Gk with φk ◦ πk, where φk = (πk(i) γk) is a
transposition and φ ◦π(i) = φ(π(i)). Define Jj,i for j ∈ Γ(U, W ) as in the definition of Ij ,
but using φk ◦ πk in place of πk whenever πk(i) 6∈ Gk. If πk(i) ∈ Gk, then continue to use
πk.

In this construction the Jj,i have the right distribution and are bounded by Ij , proving
that the (Ii, i ∈ Γ(U, W )) are negatively related.

Proof of Theorem 1.1 Let Z be the expected number of bad pairs U , W and suppose
that for q ≥ 16n222n. Using the immediate bounds n ≤ log2 q and 2−n ≥ 4nq−1/2 ≥ 4q−1/2,
we have

EZ ≤
(

(q + 1)2

n

)
2n · 2 exp

(
−(q − n)2−n exp

(
−4n2n

√
q

))

≤ (q + 1)2n2n · 2 exp

(
−(q − n)2−n exp

(
−4n2n

√
q

))

≤ (q + 1)2 log2 q+1 · 2 exp

(
−(q − log2 q)

4e−1

√
q

)

≤ c1 exp
(−c2q

1/2
)

for some constants c1, c2 > 0. Since P(Z > 0) ≤ EZ for all nonnegative integer-valued ran-
dom variables Z, we have the bound P(Z > 0) ≤ c1 exp

(−c2q
1/2

)
for the probability that

there exist any bad pairs U , W for the graphs of Construction 2. The number of graphs

without any bad pairs U , W is therefore at least 2(q+1
2 )(q!)q+1

{
1 − c1 exp

(−c2q
1/2

)}
.

Theorem 1.1 results from the proof of Lemma 3.3 applied to those graphs.

5 Further remarks

We can obtain further strongly regular graphs with the e.c. property from our examples
using switching (see Seidel [8]) as follows. Let v be any vertex of a n-e.c. graph Γ. Switch
with respect to the neighbours of v, and delete v. The resulting graph Γ′ is (n − 1)-e.c.
Moreover, if Γ is strongly regular with parameters ((q+1)2, q(q+1)/2, (q2−1)/4, (q2−1)/4),
then Γ′ is strongly regular with parameters (q(q + 2), (q + 1)2/2, (q + 1)2/4, (q + 1)2/4).

The n-e.c. property in graphs produced by Construction 1 depends crucially on the
designs used. If we use affine geometries in place of Paley designs, we can do no better
than 3-e.c.:

Proposition 5.1 Let G1 = G1((Si), (σi,j)) be a strongly regular graph produced by Con-
struction 1. Suppose that at least one of the designs Si is an affine geometry over F2 .
Then G1 does not satisfy 4-e.c.

Proof Suppose that S1 is an affine geometry, and let v, w, x, y be an affine plane of S1.
Then any hyperplane containing three of v, w, x, y contains the fourth; so every vertex
joined to three of these vertices is also joined to the fourth.
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Thomason [9] defined a class of “pseudo-random” graphs which he called jumbled
graphs. He showed that these share many properties with random graphs. However, the
n-e.c. property for large n is not such a property: in fact, one of Thomason’s graphs
arises from Construction 1 using affine geometries over F2 .

The usual description of the graph G(n) is as follows. Let

Q(x) = x1xn+1 + x2xn+2 + · · · + xnx2n

be a quadratic form on the vector space V = F
2n
2 . The vertex set of the graph is V , and

vertices v, w are joined if and only if Q(v − w) = 1.
We re-formulate the definition as follows. Let W = F

n
2 . Then V = W ⊕W ; we write a

typical vector as (x, a), and let Wa = {(x, a) : x ∈ W}. Then Q(x, a) = x ·a (the standard
inner product).

Each set Wa is naturally bijective with W = F
n
2 , the point set of the affine geometry.

A parallel class of hyperplanes in W is given by

H(c, i) = {x ∈ W : x · c = i} for i = 0, 1,

for each non-zero c ∈ W . Thus, we can label the parallel classes in Wa by vectors b 6= a,
where the parallel class labelled by b is

Lab = {(H(a + b, 0), a), (H(a + b, 1), a)}.

Now the neighbours of (y, b) in Wa are precisely the points (x, a) which satisfy (x − y) ·
(a − b) = 1. If a = b, there are no such vertices. If a 6= b, then (x, a) ∈ ((H(a + b), i), a)
and (y, b) ∈ ((H(a + b), j), b) satisfy x · (a + b) = i and y · (a + b) = j, so they are joined
if and only if i − j = 1. Thus, choosing the bijection σa,b to map ((H(a + b), i), a) to
((H(a + b), i + 1), b), we see that Construction 1 does produce this graph.

We conclude by noting that, even though G(n) fails to be 4-e.c., it has a much stronger
version of the 3-e.c. property, considered by Cameron et al. [5]: for every pair of subsets
U , W of the vertex set V such that U ∩W = ∅ and |U |+ |W | = 3, the number of vertices
v ∈ V − (U ∪ W ) joined to every vertex in U and to none in W depends only on the
induced subgraph on U ∪ W with distinguished subset U (and this number is non-zero
provided that n ≥ 3).
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