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Abstract

If G = Kn is the complete graph, the classical Prüffer correspondence gives
a natural bijection between all spanning trees of G (i.e., all Cayley trees) and all
functions from a set of n−2 elements to a set of n elements. If G is a complete multi-
partite graph, then such bijections have been studied by Eğecioğlu and Remmel. In
this paper, we define a class of directed graphs, called filtered digraphs, and describe
a natural class of bijections between oriented spanning forests of these digraphs and
associated classes of functions. We derive multivariate generating functions for the
oriented spanning forests which arise in this context, and we link basic properties
of these spanning forests to properties of the functions to which they correspond.
This approach yields a number of new results for directed graphs. Moreover, in the
undirected case, various specializations of our multivariate generating function not
only include various known results but also give a number of new results.

1 Introduction

This paper is motivated by the work of Eğecioğlu and Remmel [4] who gave a bijective
proof of the formula nn−2 for the number of Cayley trees on n vertices, i.e. the number
of spanning trees of the complete graph Kn. In particular, they showed that there is a
natural bijection between the set of Cn,1 of all Cayley trees on n vertices where all edges are
directed toward the root 1 and the class of functions F = {f : {2, . . . , n−1} → {1, . . . , n}}.
Later in [5], Eğecioğlu and Remmel extended this idea to give a bijective proof for the
number of spanning trees of the complete k-partite graph, Kn1,...,nk

. Again in [5], Eğecioğlu
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and Remmel showed that there was a natural bijection between a certain class of functions
f : {2, . . . , n− 1} → {1, . . . , n} and the set of spanning trees of Kn1,...,nk

rooted at vertex
1.

It is well known that the formulas for the number of spanning trees of Kn and Kn1,...,nk

follow from the matrix tree theorem [1]. One advantage of [4, 5] over the matrix tree the-
orem approach is that the resulting bijections give rise to natural multivariate generating
functions which keep track of the descent and rise edges for the set of root-directed span-
ning trees, i.e., the spanning trees where all edges are directed toward the root. A second
advantage of the bijective approach of [4, 5] is that there are well known techniques
[10, 11, 12] for ranking and unranking function classes and hence the bijections provide
ways to rank and unrank spanning trees of Kn and Kn1,...,nk

.
In this paper, we define a class of directed graphs, called filtered digraphs, and describe

a natural class of bijections between oriented spanning forests of these digraphs and asso-
ciated classes of functions. We derive multivariate generating functions for the oriented
spanning forests which arise in this context and we link basic properties of these spanning
forests to properties of the functions to which they correspond. We should note that the
class of filtered digraphs contains not only both Kn and Kn1,...,nk

but also many directed
graphs to which the matrix tree theorem does not apply. Thus we extend the methods
of Eğecioğlu and Remmel to a much larger class of graphs. In addition, we extend the
results of Eğecioğlu and Remmel in two other ways. First, our methods apply to spanning
forests rather than just to spanning trees. Second, our multivariate generating functions
are finer than those considered by Eğecioğlu and Remmel and hence have a greater variety
of specializations.

This paper is organized as follows. In section two, we define the class of filter digraphs
and their corresponding function classes. We then define the bijection between the func-
tion class of a filtered digraph and the set of root-directed spanning trees of the filtered
digraph. Our main result is Theorem 2.4 where we prove the validity of this bijection
and show how the bijection allows us to derive a multivariate generating function for the
set of root-directed spanning forests of a filtered digraph. In section three, we give three
examples.

Example 3.1. We consider the case when G = Kn. Our method gives a new multivariate
generating function for the set of rooted spanning forests of Kn. In addition, we
show that certain specializations of our multivariate generating function allow us to
derive new formulas for the number of spanning forests with specified sets of ascent
and descent edges.

Example 3.2. We show that similar results hold for the root-directed spanning forests
of Kn1,...,nk

.

Example 3.3. We show how similar formulas can be derived for a basic class of multi-
partite cyclic digraphs. These results are new and are not covered by the classical
matrix tree theorem.
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We end section three with a brief discussion of some additional classes of filtered digraphs
G for which one can derive closed expressions for the generating functions for the set of
root-directed spanning forests of G.

2 General results for directed graphs

In this section, we shall introduce the definition of a filtered digraph and prove our main
result.

Let [n] = {1, 2, . . . , n}. Let G = ([n], E) be a digraph with vertex set [n] and edge
set E. Let F = (c1, c2, . . . , ck) be a composition of n. That is, assume ci is a positive
integer for each i and

∑k
i=1 ci = n. Let N0 = 0 and let Nt = c1 + · · ·+ ct for t = 1, . . . , k.

We let Ct = {1 + Nt−1, . . . , Nt} for t = 1, . . . , n. Note that each Ct is an interval and the
collection of nonempty sets {Ci | i = 1, . . . , k} forms a set partition of [n]. We call this
set partition the filtration associated with the composition F.

Definition 2.1 Given a composition F = (c1, . . . , ck) of n, we define a partial order
relation ≤F on [n] by x ≤F y if x = y or if x ∈ Ci and y ∈ Cj where 1 ≤ i < j ≤ k. We
call ≤F the filtration order on [n].

We write x <F y if x ≤F y but x 6= y. If x <F y, then our definitions ensure that x < y
as integers. Note that 1 ∈ C1, n ∈ Ck, and each of the sets Ci is a set of incomparable
elements (i.e., an antichain) with respect to ≤F . In the standard terminology for posets,
≤F is the ordinal sum of the antichains Ci, 1 ≤ i ≤ k.

Definition 2.2 Let {Ci : i = 1, . . . , k} be the filtration associated with the composition
F = (c1, . . . , ck) of n. Let IB and IS be subsets of [k] and let B = {Ci : i ∈ IB} and
S = {Ci : i ∈ IS}. We refer to the sets B and S as the bases and summits of G
respectively. A set Ci ∈ B is called a base of G and its elements are called base vertices
of G. A set Ci ∈ S is called a summit of G and its elements are called summit vertices of
G. We say that a digraph G = ([n], E) is a filtered digraph with respect to F, IB, and IS,
if the following conditions hold for all x, y ∈ [n].

1. 1 ∈ IB, 1 6∈ IS, k 6∈ IB, and k ∈ IS.

2. If x, y ∈ Ci for some 1 ≤ i ≤ k, then (x, y) 6∈ E.

3. If y <F x, then (x, y) ∈ E if and only if there exist p < q such that x ∈ Cq, q ∈ IS,
y ∈ Cp and p ∈ IB.

4. If x ∈ Ci, 1 ≤ i < k, and Ci is not a summit, then there is some y such that
(x, y) ∈ E and x <F y.

It is perhaps helpful to paraphrase conditions (1)-(4). Condition (1) states that C1

is a base but not a summit and Ck is a summit but not a base. Otherwise the bases
and summits are arbitrary. A set Ci with i /∈ {1, k} may be both a base and a summit.
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Condition (2) states that the restrictions of G to the sets Ci are empty digraphs (no
edges). Condition (3) states that all directed edges between summit vertices and “lower”
base vertices are present and these are the only “downward” edges in E. That is, these
are the only edges (x, y) ∈ E with y <F x. Finally, condition (4) states that for any
vertex x that does not belong to a summit, there is at least one upward edge out of x.
That is, there is at least one edge (x, y) ∈ E such that x <F y.

Given any digraph G′ = ([n], E ′), we can define the set of “root-directed” spanning
forests of G′ with roots r1, . . . , rq ∈ [n] as follows. First we regard the digraph G′ as an
undirected graph in the obvious manner. Next we consider the set of all spanning forests
T ′ = (T ′

1, . . . , T
′
q) of this undirected version of G′ with subtrees T ′

i , i = 1, . . . , q, such that
ri ∈ T ′

i for i = 1, . . . , q. We can then think of each T ′
i as a directed graph by considering

ri as the root of T ′
i and directing all edges back toward the root. That is, we direct all

edges in T ′
i so that there is a directed path from each vertex v in T ′

i to ri. If for each i, all
these directed edges are in fact in E, then we say that T ′ is a root-directed spanning forest
of G′ with roots r1, . . . , rq. Alternatively, such spanning forests are called “oriented,” but
we shall stick to the former terminology.

We denote the set of all root-directed spanning forests of G′ with roots r1, . . . , rq

by T G′
{r1,...,rq}. If n /∈ {r1, . . . , rq}, then we use the notation T G′

{r1,...,rq};rj
to designate all

root-directed spanning forests of G′ with n in the component tree rooted at rj.
Returning to the case G = ([n], E), suppose we are given a directed edge (i, j) where

1 ≤ i, j ≤ n. Following a suggestion of Peter Doyle [3], we define the weight of (i, j),
W ((i, j)), by

W ((i, j)) =

{
pisj if i < j,
qitj if i ≥ j

(1)

where pi, qi, si, ti are variables for i = 1, . . . , n. We shall call a directed edge (i, j) a
descent edge if i ≥ j and an ascent edge if i < j. We then define the weight of any
digraph G = ([n], E) by

W (G) =
∏

(i,j)∈E

W ((i, j)). (2)

Definition 2.3 Let G = ([n], E) be a filtered digraph with respect to the composition
F = (c1, . . . , ck), the set of bases indexed by IB and the set of summits indexed by IS. Let
m be such that 1 ≤ m < n − 1 and assume that 1, . . . , m are base vertices of G. Suppose
that m ∈ Ct. Let Fn(G,F, m) be the set of all functions f : {m + 1, . . . , n− 1} → [n] that
satisfy the following conditions.

1. If f(i) 6= i then (i, f(i)) ∈ E.

2. If f(i) = i and i ∈ Cp, then p ∈ IS ∩ IB and p ≥ t.

3. If p ∈ IS ∩ IB and p ≥ t, then there is at most one i ∈ Cp such that f(i) = i.

We call Fn(G,F, m) the m-canonical function class for the filtered digraph G with respect
to F , IB and IS.
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We note that our conditions ensure that Fn(G,F, m) is not empty. That is, suppose
that v ∈ [n] − {n, 1, . . .m} is in Ci. Now if Ci is a summit, then we know that i > 1.
Moreover, we know that 1 ∈ C1 and that C1 is a base so that (v, 1) in E. Thus there is at
least one choice for f(v). Similarly, if Ci is not a summit, then i < k and we know that
there is at least one upward edge out of v in G. Thus again, there is at least one choice
for f(v).

We can think of each f ∈ Fn(G,F, m) as a directed graph on the vertex set {1, . . . , n}.
That is, if f(i) = j, then there is a directed edge from i to j. A moment’s thought will
convince one that, in general, the digraph corresponding to a function f ∈ Fn(G,F, m)
will consists of m + 1 root-directed trees rooted at vertices 1, . . . , m and n respectively,
with all edges directed toward their roots, plus a number of directed cycles of length ≥ 1.
For each vertex v on a given cycle, there is possibly a root-directed tree attached to v
with v as the root and all edges directed toward v. Note the fact that there are trees
rooted at vertices n, 1, . . . , m is due to the fact that these elements are not in the domain
of f . Thus there can be no directed edges out of any of these vertices. We let the weight
of f , W (f), be the weight of the digraph associated with f .

Suppose that we are given a filtered digraph G = ([n], E) with respect to the com-
position F = (c1, . . . , ck). Suppose that the summits are indexed by IS and the bases
are indexed by IB. Suppose also that 1, . . . , m are fixed base elements of G. Let
{Ci | i = 1, . . . , k} be the filtration partition for F and suppose that m ∈ Ct. Thus
Nt−1 < m ≤ Nt. Let T G

[m];j denote all root-directed spanning forests of G with roots in

[m] = {1, . . . , m} and for which n is a vertex of the tree (component) rooted at j. We
shall show that in this situation, if the root j 6∈ Ct, then there is a natural bijection Θj

between the m-canonical function class Fn(G,F, m) for G and the set T G
[m];j. If j ∈ Ct,

then there is a corresponding bijection Θ∗
j from the subset F∗

n(G,F, m) of Fn(G,F, m) to
T G

[m];j where F∗
n(G,F, m) consists of all f ∈ Fn(G,F, m) such that f(i) 6= i for all i ∈ Ct

such that i > m. The fact that Θ∗
j , which is simply the restriction of Θj to F∗

n(G,F, m),
is a bijection will easily follow from our proof that Θj is a bijection.

Theorem 2.4 Let G = ([n], E) be a filtered digraph with respect to the composition F =
(c1, . . . , ck), the set of summits indexed by IS, and the set of bases indexed by IB. Assume
that 1, . . . , m are base elements of G, that m ∈ Ct, and that Nt−1 = c1 + · · ·+ ct−1. Then,
for each 1 ≤ j ≤ Nt−1, there is a bijection Θj : Fn(G,F, m) → T G

[m];j and, for each

Nt−1 + 1 ≤ j ≤ m, there is a bijection Θ∗
j : F∗

n(G,F, m) → T G
[m];j such that

qntjW (f) = W (Θj(f)), 1 ≤ j ≤ Nt−1 and (3)

qntjW (f) = W (Θ∗
j(f)), Nt−1 + 1 ≤ j ≤ m. (4)

Hence

qn(t1 + · · · + tNt−1)
∑
f∈Fn

W (f) + qn(tNt−1+1 + · · ·+ tm)
∑
f∈F∗

n

W (f) =
∑

T∈T G
[m]

W (T ). (5)

Here if t = 1, then Nt−1 = N0 = 0 and we take t1 + · · · + tNt−1 = 0.
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Proof: To define the bijection Θj, 1 ≤ j ≤ Nt−1, we first imagine that the directed
graph corresponding to f ∈ Fn(G,F, m) is drawn in two parts (see Figure 1). The first
part of the graph consists of the rooted-trees at roots 1, . . . , j−1, j +1, . . .m. The second
part of the graph is drawn so that

(a) the trees rooted at n and j are drawn on the extreme left and the extreme right
respectively with their edges directed upwards,

(b) the cycles are drawn so that their vertices form a directed path on the line between n
and j, with one back edge above the line, and the root-directed tree attached to any
vertex on a cycle is drawn below the line between n and 1 with its edges directed
upwards,

(c) each cycle is arranged so that its maximum element is on the right, and

(d) the cycles are arranged so that if the maximum element mc of a cycle c is in Ci and
the maximum element mc′ of a cycle c′ in Cj , then c is to the left of c′ if either (i)
i > j, (ii) i = j and c is a one cycle or (iii) i = j, neither c nor c′ are one cycles and
mc > mc′ .

Figure 1 pictures a function f drawn according to the rules (a)-(d) where n = 27,
F = (5, 5, 3, 6, 8), and G = ([n], E) is the filtered digraph defined as follows. Since
F = (5, 5, 3, 6, 8), C1 = {1, . . . , 5}, C2 = {6, . . . , 10}, C3 = {11, . . . , 13}, C4 = {14, . . . , 19}
and C5 = {20, . . . , 27}. We let IB = {1, 2, 4} and IS = {2, 4, 5} so that the sets C1, C2 and
C4 are bases and the sets C2, C4 and C5 are summits. Finally, we specify the edges of G as
follows.

C1 : C2, C3, C4

C2 : C1, C3, C4, C5

C3 : C4, C5

C4 : C1, C2, C5

C5 : C1, C2, C4

In the above specification of the edges of G, we interpret Ci : Cj1 , . . .Cjs to mean that
there is a directed edge from every vertex v ∈ Ci to every vertex w in Cjk

for k = 1, . . . , s.
This given, suppose that the digraph of f is drawn as described above and the cycles of

fare c1(f), . . . , ca(f) reading from left to right. We let rci(f) and lci(f) denote the right and
left endpoints of the cycle ci(f) for i = 1, . . . , a. Note that if ci(f) is a 1-cycle, then we let
rci(f) = lci(f) be the element in the 1-cycle. Θj(f) is obtained from f by simply deleting
the back edges (rci(f), lci(f)) for i = 1, . . . , a and adding the directed edges (rci(f), lci+1(f))
for i = 1, . . . , a − 1 plus the directed edges (n, lc1(f)) and (rca(f), j). That is, we remove
the all the back edges that are above the line, and then we connect n to the lefthand
endpoint of the first cycle, the righthand endpoint of each cycle to the lefthand endpoint
of the cycle following it, and we connect the righthand endpoint of the last cycle to j. For
example, Θ2(f) is pictured in Figure 2 for the f given in Figure 1. If there are no cycles
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Figure 1: The digraph of a function

in f , then Θj(f) is simply the result of adding the directed edge (n, j) to the digraph of
f .

To see that Θj(f) ∈ T G
[m];j for all f ∈ Fn(G,F, m), first observe that for all i = 1, . . . , a,

lci(f) must be a base element and rci(f) must be a summit element. That is, if ci is a cycle
of length one, then f(rci(f)) = lci(f) = rci(f) so that lci(f) must be both a summit and base
element, since by our definition of Fn(G,F, m), the only fixed points of f are elements
of Cp for some p ∈ IB ∩ IS. If ci is not a one cycle, then f(rci(f)) = lci(f) < rci(f) since
rci(f) is the largest element of ci. By our definition of Fn(G,F, m), (rci(f), lci(f)) must be
a downward edge of G so that rci(f) must be a summit element and lci(f) must be a base
element. In particular, this means that the edges (n, lc1(f)) and (rca(f), j) are elements of
G. Recall here that n ∈ Ck, which is the highest summit, and hence n is connected to all
base elements in G. On the other hand, by assumption, j ∈ [Nt−1] ⊆ [m]. By definition,
1, . . . , m are base elements and m ∈ Ct. Thus {1, . . . , m} ⊆ ∪t

b=1Cb and C1, . . . , Ct are all
bases. Now suppose that rca(f) ∈ Cs. There are two possibilities. First it could be that ca

is a one cycle. Then in this case, our definition of Fn(G,F, m) ensures that s ∈ IB ∩ IS

and s ≥ t. Thus the edge (rca(f), j) connects a summit vertex to an element in a lower
base and hence is in G. If ca is not a one cycle, lca(f) ∈ Cu where u ∈ IB and u < s.
However, since lca(f) is part of a cycle of f (hence in the domain of f), we know that
lca(f) > m. Thus, by our definition of a filtration, we know that u ≥ t since m ∈ Ct. Since
j ∈ Cr for some r < t and j is a base element, Cr is a base below the summit Cs so that
again we can conclude that (rca(f), j) is in G.

Now consider the other edges (rci(f), lci+1(f)) that we added to the digraph of f . There
are two cases to consider.

Case 1 ci+1 is a one cycle.
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Figure 2: Θ2(f)

Then lci+1(f) = rci+1(f) ∈ Cp for some p ∈ IB ∩ IS. However, by our convention for drawing
the digraph of f , ci+1 must be the leftmost cycle of the form ck such that rck(f) ∈ Cp.
Hence rci(f) must be in some Cw where w > p. Since rci(f) is a summit element, the edge
(rci(f), lci+1(f)) goes from a summit vertex to a vertex which is in a lower base and hence
is in G.

Case 2 ci+1 is not a one cycle.
Then lci+1(f) < rci+1(f). Thus rci+1(f) ∈ Cp for some p ∈ IS and lci+1(f) ∈ Cs for some
s ∈ IB where s < p since (rci+1(f), lci+1(f)) is a downward edge in G. By our convention
for ordering the cycles, we know that rci(f) ∈ Cu where u ≥ p. Thus Cu must be a summit
which lies above the base Cs so again the edge (rci(f), lci+1(f)) must be in G.

In the special case where f has no cycles, we add only the edge (n, j) which must be
in G since j is in a base which lies below the top summit Ck. It follows that all the
new edges that we add to the digraph of f are in G. Note that since we remove all the
backedges and these are the only possible loops in the digraph of f , all the remaining
edges are of the form (i, j) where f(i) = j and i 6= j and hence are in G by our definition
of Fn(G,F, m). Thus Θj(f) ∈ T G

[m];j for all f ∈ Fn(G,F, m).
The weight preserving property of Θj is also easy to verify. That is, by our conventions,

any backedges (rci(f), lci(f)) are descent edges so that its weight is qrci(f)
tlci(f)

. Thus the
total weight of the backedges is

a∏
i=1

qrci(f)
tlci(f)

. (6)

Our argument above shows that all the new edges that we add are also descent edges so
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that the weight of the new edges is

qntlc1(f)
(
a−1∏
i=1

qrci(f)
tlci+1(f)

)qrca(f)
tj = qntj

a∏
i=1

qrci(f)
tlci(f)

. (7)

Since all the remaining edges have the same weight in both the digraph of f and in the
digraph Θj(f), it follows that qntjW (f) = W (Θj(f)) as claimed.

To see that Θj is a bijection, we shall describe how to define Θ−1
j . Given a forest

T ∈ T G
[m]:j, consider the path

m0 = n, x1, . . . , m1, x2, . . .m2, . . . , xt, . . . , mt, j

where mi is the maximum interior vertex on the path from mi−1 to j, 1 ≤ i ≤ t. If
(mi−1, mi) is an edge on this path, then it is understood that xi, . . . , mi = mi consists of
just one vertex and we define xi = mi. Note that by definition m0 = n > m1 > . . . > mt.

We obtain the digraph Θ−1
j (T ) from T via the following procedure.

Procedure for computing Θ−1
j (T ) :

(1) First we declare that any edge e of T which is not an edge of the path from n to j is
an edge of Θ−1

j (T ).

(2) Next we remove all edges of the form (mt, j) or (mi−1, xi) for 1 ≤ i ≤ t.

Finally for each i with 1 ≤ i ≤ t, we consider the subpath xi, . . . , mi.

(3) If mi = xi, create a directed loop (mi, mi).

(4) If mi ∈ Cs for some s, but xi 6∈ Cs, convert the subpath xi, . . . , mi into the
directed cycle xi, . . . , mi, xi.

(5) If xi, mi ∈ Cs for some s, but xi 6= mi, then convert the subpath xi, x
′
i, . . . , mi to

the directed cycle x′
i, . . . , mi, x

′
i and the directed loop (xi, xi).

Lemma 2.5 If T ∈ T G
[m];j, then Θ−1

j (T ) ∈ Fn(G,F, m).

Proof: Suppose that T ∈ T G
[m];j. It is clear from the definition of Θ−1

j that Θ−1
j (T ) is

the digraph of a function f with domain {m + 1, . . . , n − 1} and codomain [n]. That is,
there are no edges out of the roots 1, . . . , m in T and we do not create any new edges
out of 1, . . . , m in the process of creating Θ−1

j (T ) from T . We remove the edge out of

n in T and we do not create an edge out of n in Θ−1
j (T ). Finally, for every vertex

v ∈ [n] − {1, . . . , m} ∪ {n}, there will be an edge out of v ∈ Θ−1
j (T ).
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We need to show that items (1) through (3) of definition Fn(G,F, m) are satisfied.
The edges of T are, by definition, edges of G. Thus any edge (i, f(i)) of Θ−1

j (T ) that was

an edge of T satisfies condition (1). Thus we need only consider the edges of Θ−1
j (T ) that

are not in T .
These edges are the result of our procedure applied to the path

m0, x1, . . . , m1, x2, . . .m2, . . . , xt, . . . , mt, j

where we set m0 = n. Note that all of the mi must be summit vertices of G. That is, all
vertices which follow mi in the path must be less than mi by definition. Thus the edge
out of mi on the path must be a downward edge. But the only downward edges in G start
at summit vertices so that mi must be a summit vertex.

Next suppose that there is a loop (y, y) in Θ−1
j (T ) created from some y ∈ Cp for some

p. Suppose that this loop is created from a subpath of the form xa, x
′
a, . . .ma for some

1 ≤ a ≤ t. Thus ma ∈ Cp so that p > 1 since ma is a summit vertex. Note that ma−1 > xa

so that (ma−1, xa) is a downward edge in G and hence xa is a base vertex. There are now
two cases. First it could be that xa = ma, in which case y = ma = xa so that y is both
a summit and a base vertex. Otherwise, xa 6= ma, xa, ma ∈ Cp and y = xa. But in that
case, Cp contains both a summit and base vertex and hence it must be both a summit and
base. Thus we have shown that if (y, y) ∈ Θ−1

j (T ), then y ∈ Cp for some p ∈ IB ∩IS. Next
suppose that a second such loop in Cp is created from a subpath xb, x

′
b, . . .mb where a < b.

Then once again we can conclude that xb, mb ∈ Cp. But this implies that mb−1 ∈ Ce where
e > p since (mb−1, xb) is a downward edge. Thus, mb−1 > ma, contradicting a ≤ b−1 and
the fact that m0 > m1 > . . . > mt. Thus we have shown that for any loop (y, y) in Θ(T ),
there is a p ∈ IB ∩ IS such that y ∈ Cp and (y, y) is the only loop that involves an element
of Cp. Thus conditions (2) and (3) of the definition of Fn(G,F, q) are satisfied. Finally we
observe that the argument just given shows that the element y of the loop (y, y) lies in
the leftmost (as defined in the proof of Theorem 2.4) occurrence of a subpath of the form
xi, x

′
i, . . .mi for which mi ∈ Cp. Thus our construction of Θ−1

j is consistent with condition
(d) of the proof of Theorem 2.4.

Finally, we must show that all nonloop edges of Θ−1
j (T ) that do not belong to T must

also belong to E. Such an edge can only arise from the path xi, . . . , mi where xi 6= mi.
Since mi is the largest element on the path from mi−1 to j, we know that xi < mi. There
are now two cases. First it could be that this edge is of the form (mi, xi) that arises from
step (4) of our procedure defining Θ−1

j . Note that since (mi−1, xi) is a downward edge of
G, xi is a base vertex. But in case (4), xi ∈ Cs and mi ∈ Cp for some s 6= p so that it
must be the case that s < p since mi > xi. Thus Cs is base which lies below the summit
Cp and hence our definition of G ensures that (mi, xi) is an edge of G. The other case is
where that path is of the form xi, x

′
i, . . . , mi where xi, mi ∈ Cp for some p and the new

edge is of the form (mi, x
′
i) that arises from step (5) of our procedure to define Θ−1

j . Thus
(xi, x

′
i) an edge of T . It cannot be that (xi, x

′
i) is an upward edge since it would be the

case that x′
i is in some Cr with r > p. But in that case x′

i > mi since mi ∈ Cp which
would violate the fact that mi is the largest element on the path from mi−1 to j. Thus
it must be the case that xi > x′

i. Thus (xi, x
′
i) is a downward edge of G so that x′

i is a
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base vertex. Since xi ∈ Cp, it must be that x′
i ∈ Cr where r < p. Thus Cr is a base which

lies below Cp which is a summit and hence (mi, x
′
i) is an edge of G. Thus, any nonloop

edge added to Θ−1
j (T ) must be an edge of G so that condition (1) of Fn(G,F, q) is also

satisfied. This completes the proof of the lemma. �

As noted in the proof just given, a loop (y, y) with y ∈ Cp that appears in Θ−1
j (T )

occurs as the leftmost cycle of all cycles whose maximum element is also in Cp. Thus, if
we apply the map Θj to Θ−1

j (T ) then we will just reconstruct T . Thus Θj is a bijection
from Fn(G,F, q) to T G

[m];j for each 1 ≤ j ≤ m.
Next we consider the case were Nt−1 + 1 ≤ j ≤ m so that j ∈ Ct. Given a function

f ∗ ∈ F∗
n(G,F, m), the forest Θ∗

j(f
∗) is created by exactly the same procedure that we

used to create Θj(f) for f ∈ Fn(G,F, m). To show that Θ∗
j (f

∗) is always in T G
[m];j, one

can use essentially the same argument that we used to show that Θj(f) is always in T G
[m];j

for an f ∈ Fn(G,F, m) when j ≤ Nt−1 with one exception. That is, consider the edge
(rca(f

∗), j). There are two possibilities. First it could be the ca is a one cycle so that
lca(f

∗) = rca(f
∗) and rca(f

∗) is a fixed point of f ∗. Then by definition of F∗
n(G,F, m), it

must be that rca(f
∗) ∈ Cp for p > t and rca(f

∗) is a summit vertex. Since j is a base vertex
in Ct and p > t, it follows that (rca(f

∗), j) is an edge in G. The only other possibility is
that lca(f

∗) 6= rca(f
∗) in which case (rca(f

∗), lca(f
∗)) is a downward edge. But then once

again we can conclude that rca(f
∗) is a summit vertex in some Cp for p > t. Thus once

again in this case, (rca(f
∗), j) is an edge in G since j is a base vertex in Ct and p > t.

Finally given a T ∗ ∈ T G
[m];j, we define (Θ∗

j )
−1(T ∗) in exactly the same way that we

defined Θ−1
j (T ) for T ∈ T G

[m];j′ when j′ ≤ Nt−1. The only thing that we have to check

to prove that (Θ∗
j)

−1(T ∗) ∈ F∗
n(G,F, m) is that (Θ∗

j )
−1(T ∗) never has a fixed point in Ct.

That is, exactly the same argument will show that Θ∗
j((Θ

∗
j )

−1(T ∗)) = T ∗. It then follows
from our ordering of the cycles that the only way that f ∗ = (Θ∗

j)
−1(T ∗) could have a fixed

point in Ct is if the rightmost cycle of (Θ∗
j)

−1(T ∗) has its maximal element rca(F
∗) in Cp.

But this is impossible since j ∈ Ct and (rca(f
∗), j) is an edge in G.

�

We end this section with some general remarks about how to modify the proof of
Theorem 2.4 to deal with root-directed spanning forests at other roots. For example,
suppose that we want to find a formula for the number of root-directed spanning forests
which are rooted at the m largest vertices instead of the m smallest vertices. One can
easily modify the machinery that we developed to prove Theorem 2.4 to handle this case.
That is, we need only make the following observation. Suppose that we replace each vertex
label i with the vertex label n + 1 − i. It is easy to see that we interchange ascent edges
with descent edges and conversely. That is, suppose that i 6= j. Then an ascent edge (i, j)
with weight pisj will become a descent edge (n+1− i, n+1− j) with weight qn+1−itn+1−i.
Similarly a descent edge (i, j) with weight qitj becomes ascent edge (n + 1− i, n + 1− j)
with weight pn+1−isn+1−i. In the case when i = j, we declared a loop (i, i) as a descent
edge with weight qiti which means that we want (n+1− i, n+1− i) to be an ascent edge
with weight pn+1−isn+1−i. Thus the new weights of edges should be as follows. We define
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the weight of (i, j), W ((i, j)), by

W ((i, j)) =

{
pisj if i ≤ j,
qitj if i > j

Similarly, we define the weight of any digraph G = ([n], E) by

W (G) =
∏

(i,j)∈E

W ((i, j)).

If we do this, we can then get a formula for the sum of the weights W (F ) of the root-
directed forests F rooted at n + 1 − 1, . . . , n + 1 − m by simply taking equation (4) and
systematically replacing qi by pn+1−i, ti by sn+1−i, pi by qn+1−i and si by tn+1−i.

One can also develop a machinery to deal with root-directed forests rooted at an
arbitrary set of roots. This was done in the case of a single root for the set of spanning
trees of Kn by Eğecioğlu and Remmel [4]. In that case, if one picks a root i other than
1 or n, one must use a coarser set of weights than we used in Theorem 2.4. A similar
situation holds for the case of root-directed forests of filter digraphs that are not rooted
at the m largest or the m smallest vertices. However we shall not pursue these types of
results in this paper.

3 Examples

Example 3.1. We use Theorem 2.4 to derive new results for the classical case of complete
graphs. Consider the complete digraph G = ([n], E) where E is the set of all pairs (i, j),
i 6= j. The graph G corresponds in the obvious manner to Kn, the complete undirected
graph on n. We take the composition F = (c1, . . . , cn) of n where ci = 1 for all i. The
filtration {Ci | i = 1, . . . , n} associated with this composition of n is the discrete partition.
Note that G = ([n], E) is a filtered digraph with respect to F, IB = {1, 2, . . . , n− 1}, and
IS = {2, 3, . . . , n}. Note that in this case, Fn(G,F, m) = F∗

n(G,F, m) so that identity (5)
of Theorem 2.4 becomes∑

T∈T G
[m]

W (T ) = qn(t1 + · · ·+ tm)
∑

f∈Fn(G,F,m)

W (f)

= qn(t1 + · · ·+ tm)

n−1∏
j=m+1

(qj(t1 + . . . tj) + pj(sj+1 + . . . + sn)). (8)

The set of root-directed spanning forests T ∈ T G
[m] with roots in [m] corresponds in a

natural way to the undirected spanning forests of Kn with component trees rooted at the
vertices [m].

In the special case when m = 1, (8) becomes∑
T∈T G

[1]

W (T ) = qnt1

n−1∏
j=2

(qj(t1 + . . . tj) + pj(sj+1 + . . . + sn)). (9)
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This formula easily specializes to the formula of Eğecioğlu and Remmel

∑
T∈T G

[1]

W(T ) = xqnyt1
n−1∏
j=2

(xqj(t1 + . . . tj) + ypj(sj+1 + . . . + sn)). (10)

found in [4] where they used the weight W on edges i → j such that

W(i → j) =

{
xqitj if i ≥ j
ypisj if i < j

by simply letting qi = xqi, pi = ypi, si = si and ti = ti for i = 1, . . . , n. We note however
the proof given by Eğecioğlu and Remmel in [4] to prove (10) does prove (9) if one uses
our weights.

The power of Theorem 2.4 is illustrated in this case by specializing the weight function
W . Let (A, B, N) be an ordered set partition of {m + 1, . . . , n− 1}. We use the notation
that χ(statement) = 0 if “statement” is false and χ(statement) = 1 if “statement” is

true. For an edge (i, j) of the graph G, define W̃ ((i, j)) = pi sj χ(i < j) if i ∈ A,

W̃ ((i, j)) = qi tj χ(i ≥ j) if i ∈ D, and W̃ ((i, j)) = W ((i, j)) if i ∈ N (see equation (1)).
For a digraph H = ([n], EH), let

W̃ (H) =
∏

(i,j)∈EH

W̃ ((i, j)) . (11)

Let T be a root-directed spanning forest of G with roots 1, . . .m. Note that W̃ (T ) is
nonzero if and only if

for every vertex i ∈ A, i is the first vertex of a directed edge (i, j) ∈ ET only if i < j so
that (i, j) must be an “ascent”edge if i ∈ A and

for every vertex i ∈ D, i is the first vertex of a directed edge (i, j) ∈ ET only if i ≥ j so
that (i, j) must be a “descent edge” if i ∈ D.

Let T G
[m](A, D) denote the set of spanning forests of T for which W̃ (T ) is nonzero.

Equation (5) of Theorem 2.4 now can be used to express
∑

T∈T G
[m]

(A,D) W̃ (T ) as

qn(t1+· · ·+tm)
∏
i∈A

pi(si+1+· · ·+sn)
∏
i∈D

qi(t1+· · ·+ti)
∏
i∈N

[qi(t1+· · ·+ti)+pi(si+1+· · ·+sn)] .

(12)
We now specialize further the weights by setting pi = qi = si = ti = qi. With this
specialization, ∑

T∈T G
[m]

(A,D)

W̃ (T ) =
∑

T∈T G
[m]

(A,D)

qδT where δT =
∑
i∈[n]

i degT (i) . (13)
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In this identity, degT (i) denotes the degree of the vertex i in the tree T . Substituting the
specialized weights into equation (8) and using the standard notation [k]q = 1 + q + · · ·+
qk−1 gives ∑

T∈T G
[m]

(A,D)

qδT = q

(
(n+2

2 )−(m+2
2 )

)
[m]q [n]|N |

q

∏
i∈A

qi[n − i]q
∏
i∈D

[i]q . (14)

Equation (14) is a new result for the complete graph that gives a specific formula for the
q-generating function of a degree-weighted vertex-ranking statistic for spanning forests of
Kn, with restricted ascents and descents, and with specified roots for the component trees
of the forests.

Consider equation (14) in the case A = D = ∅. In that case, N = {m + 1, . . . , n− 1} and
T ∈ T G

[m](A, D) = T ∈ T G
[m]. We obtain,∑
T∈T G

[m]

qδT = q

(
(n+2

2 )−(m+2
2 )

)
[m]q[n]n−m−1

q . (15)

In the case m = 1 (a single root) we obtain∑
T∈T G

1

qδT = q

(
(n+2

2 )−3
)
[n]n−2

q . (16)

Finally, if we take q = 1, we obtain the classical formula for the number of Cayley trees.

|T G
1 | = nn−2 . (17)

This latter equation is the classical formula for the number of spanning trees of the
complete graph. As a specific example, note that for n = 4 and m = 1, the right-hand
side of equation (16) becomes q12[4]2q = q12(1 + q + q2 + q3)2. This identity can easily be
checked by listing the sixteen root-directed spanning trees for this case and comparing
their weights with the sixteen terms in this expression. Note that the tree with largest
weight 18 (i.e., 18 is the degree-weighted vertex-ranking statistic), corresponds to the
term q18. This tree has edges (2, 4), (3, 4), (4, 1). Likewise, the tree with smallest weight
corresponds to the term q12 and has edges (2, 1), (3, 1), (4, 1).

It is interesting to consider equation (14) in the case A = N = ∅. In that case, D =
{m + 1, . . . , n − 1}. Now

∑
T∈T G

[m]
(∅,D)

qδT = q

(
(n+2

2 )−(m+2
2 )

)
[m]q

n−1∏
i=m+1

[i]q . (18)

In the case m = 1, this equation becomes∑
T∈T G

[m]
(∅,D)

qδT = q

(
(n+2

2 )−3
)

[n − 1]q! . (19)
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We use here the standard notation
∏n−1

i=2 [i]q = [n − 1]q!. As a specific example, take
n = 4 and m = 1. Thus, D = {2, 3}. The right-hand side of equation (16) becomes
q12[2]q[3]q = q12(1 + q)(1 + q + q2). The six root-directed spanning trees with descent set
{2, 3} have edge sets as follows:

{(2, 1), (3, 1), (4, 1)}, {(2, 1), (3, 2), (4, 1)}, {(2, 1), (3, 1), (4, 3)},
{(2, 1), (3, 1), (4, 2)}, {(2, 1), (3, 2), (4, 2)}, {(2, 1), (3, 2), (4, 3)}.

The analog of equation (19) in the case D = N = ∅ and A = {m + 1, . . . , n− 1} is easily
derived.

Example 3.2. We next consider the case where G = Kn1,...,nk
is the n-vertex multipartite

graph with k parts of size n1, . . . , nk. Thus, n = n1 + · · · + nk. In this case, Onodera [8]
showed that the number of spanning trees of Kn1,...,nk

is nk−2
∏k

i=1(n − ki)
ki−1.

We start with the case k = 2. In the context of this paper, the composition is F = (n1, n2).
The filtration is {Ci | i = 1, 2} where C1 = {1, 2, . . . , n1} and C2 = {n1 + 1, n1 + 2, . . . , n}.
C1 is a base and C2 is a summit. We assume that 1 ≤ m ≤ n1 so that equation (5) becomes∑

T∈T G
[m]

W (T ) = qn(t1 + · · ·+ tm)
∑

f∈Fn(G,F,m)

W (f)

= qn(t1 + · · · + tm)

n1∏
j=m+1

pj(sn1+1 + . . . + sn)

n2−1∏
j=1

qn1+j(t1 + . . . + tn1). (20)

The set of root-directed spanning forests T ∈ T G
[m], with roots [m], corresponds in a

natural way to the undirected spanning forests of Kn1,n2 , with component trees rooted at
the vertices [m]. As in the previous example, we specialize further the weights by setting
pi = qi = si = ti = qi. This substitution, then leads to the following calculation:

qn+1[m]q

n1∏
j=m+1

qj+n1+1[n2]q

n2−1∏
j=1

qn1+j+1[n1]q

= qn+1[m]qq
n1(n1−m)[n2]

n1−m
q [n1]

n2−1
q

n1∏
j=m+1

qj+1

n2−1∏
j=n1+1

qn1+j+1

= qn+1[m]qq
n1(n1−m)[n2]

n1−m
q [n1]

n2−1
q

n−1∏
j=m+1

qj+1

= [m]qq
n1(n1−m)[n2]

n1−m
q [n1]

n2−1
q

n∏
j=m+1

qj+1

= [m]qq
n1(n1−m)[n2]

n1−m
q [n1]

n2−1
q q

(
(n+2

2 )−(m+2
2 )

)
.

Analogous to equation (15) of the previous example, we obtain∑
T∈T G

[m]

qδT = q

(
(n+2

2 )−(m+2
2 )

)
[m]qq

n1(n1−m)[n1]
n2−1
q [n2]

n1−m
q . (21)
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As a trivial special case of this equation, we can easily verify the case n = 4, n1 = n2 = 2.
If m = 1, we get q14(1+q)2 = q14 +2q15+q16 for the right-hand side of equation (21). The
tree with degree-weighted vertex-ranking statistic 14 has edge set {(3, 1), (4, 1), (2, 3)}, the
two trees with statistic 15 have edge sets {(3, 1), (4, 1), (2, 4)} and {(3, 1), (2, 3), (4, 2)},
and the tree with statistic 16 has edge set {(3, 2), (4, 1), (2, 4)}. If, on the other hand, we
take m = 2, we obtain q9(1+q)2 = q9 +2q10 + q11 for the right-hand side of equation (21).
The tree with statistic 9 has edge set {(3, 1), (4, 1)} (the tree rooted at 2 has no edges).
The two trees with statistic 10 have edge sets {(3, 2), (4, 1)} and {(3, 1), (4, 2)}. The tree
with statistic 11 has edge set {(3, 2), (4, 2)}.
We now consider the more difficult case of k > 2. In this case we will need the full power
of Theorem 2.4 in that we will need to consider functions whose associated digraphs have
loops. In particular, Kn1,...,nk

is the n-vertex multipartite graph with k > 2 parts of size
n1, . . . , nk. Thus, n = n1 + · · · + nk and the composition is F = (n1, . . . nk). Again, we
denote the partial sum n1 + · · · + nj by Nj and let N0 = 0. The filtration in this case is
{Ci | i = 1, . . . k} where

C1 = {1, 2, . . . , N1}, C2 = {N1+1, N1+2, . . . , N2}, . . . , Ck = {Nk−1+1, Nk−1+2, . . . , Nk} .

C1, . . . , Ck−1 are bases and C2, . . . , Ck are summits. Take 1 ≤ m ≤ Nk−1 and assume that
m ∈ Ct. Identity (5) of Theorem 2.4 then becomes

[
qn(t1 + · · ·+ tNt−1)B̃t

k∏
j=t+1

Ãj

]
+

[
qn(tNt−1+1 · · · + tm)D̃t

k∏
j=t+1

Ãj

]
=

∑
T∈T G

[m]

W (T ). (22)

Here for t < j < k,

Ãj =

Nj∏
i=Nj−1+1

(
pi(sNj+1 + · · ·+ sn) + qi(t1 + · · · + tNj−1

)
)

+

Nj∑
r=Nj−1+1

qrtr

Nj∏
i=Nj−1+1

i6=r

(
pi(sNj+1 + · · · + sn) + qi(t1 + · · ·+ tNj−1

)
)
.

The summation in the above expression takes into account the possible loops in the
digraphs corresponding to the functions f ∈ Fn(G,F, m). Similarly,

B̃t =
Nt∏

i=m+1

(
pi(sNt+1 + · · · + sn) + qi(t1 + · · ·+ tNt−1)

)

+
Nt∑

r=m+1

qrtr

Nt∏
i=m+1

i6=r

(
pi(sNt+1 + · · ·+ sn) + qi(t1 + · · · + tNt−1)

)
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and

D̃t =

Nt∏
i=m+1

(
pi(sNt+1 + · · ·+ sn) + qi(t1 + · · ·+ tNt−1)

)
.

Note that if t = 1, D̃t =
∏Nt

i=m+1 pi(sNt+1 + · · · + sn). Also, if m = Nt, then we take

B̃t = D̃t = 1. Finally, for j = k, we have

Ãk =
n−1∏

i=Nk−1+1

qi(t1 + · · · tNk−1
) .

As a simple check on equation (22), take n = 6, n1 = n2 = n3 = 2 and m = 2 so that
t = 1 and Nt−1 = 0. We set all variables equal to 1. Note that, by our convention,
t1 + · · · + tNt−1 = 0 in this case. Since m = N1, D̃1 = 1 by convention. Thus we must

compute the value of q6(t1 + t2)D̃1Ã2Ã3 when all the variables are set equal to 1. It is
easy to see that under this substitution, Ã2 becomes 24 and Ã3 becomes 4 so that the
final result is 2 × 24 × 4 = 192. Thus there are 192 root-directed spanning forests for
this 3-partite graph with roots 1 and 2. This can be checked directly from the problem
definition (with a bit of work). Similarly, suppose that we take n = 6, n1 = n2 = n3 = 2
and m = 3 so that t = 3 and Nt−1 = 2. Then we must compute q6(t1+t2)B̃2Ã3+q6t3D̃2Ã3

when all the variables are set equal to 1. It is easy to check that under this substitution
B̃2 becomes 5 and D̃2 becomes 4 so that there are 2 × 5 × 4 + 4 × 4 = 56 root-directed
spanning forests for this 3-partite graph with roots 1,2 and 3.

We note that in the special case when m = 1, Eğecioğlu and Remmel in [6] had a
specialization of (22) for G = Kn1,...,nk

. That is, they again used the weight W on edges
i → j such that

W(i → j) =

{
xqitj if i ≥ j
ypisj if i < j

and proved that ∑
T∈T G

[1]

W(T ) = xqnyt1GF (F1) · · ·G(Fk) (23)

where

GF (F1) =

N1∏
i=2

ypi(s1+N1 + · · ·+ sn),

GF (Fk) =
n−1∏

i=1+Nk−1

xqi(t + · · · + tNk−1)
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and for 1 < t < k,

GF (Ft) =
Nt∏

i=1+Nt−1

(ypi(s1+Nt + · · · + sn) + (xqi(t + · · · + tNt−1))

+

Nt∑
i=1+Nt−1

xqiti
Nt∏

j=1+Nt−1

j 6=i

(ypi(s1+Nt + · · ·+ sn) + (xqi(t + · · ·+ tNt−1)).

We now turn to the specialization of equation (22), analogous to equation (14) of the
previous example, that gives us the generating function for the degree-weighted vertex-
ranking statistics associated with spanning forests of the multipartite graph G = Kn1,...,nk

.
We set all variables subscripted by i in equation (22) equal to qi. To simplify the notation,
we use the same symbols as used previously for equation (22) (i.e., Ãj, B̃t, etc.). We obtain
from equation (22),

[qn+1[Nt−1]qB̃t

k∏
j=t+1

Ãj ] + [qn+1qNt−1 [m − Nt−1]qD̃t

k∏
j=t+1

Ãj] =
∑

T∈T G
[m]

qδT . (24)

Now we have, for t < j < k,

Ãj =

( Nj∏
i=Nj−1+1

qi+1

)
×

( Nj∏
i=Nj−1+1

(qNj [n − Nj]q + [Nj−1]q)

+

Nj∑
r=Nj−1+1

qr−1

Nj∏
i=Nj−1+1

i6=r

(qNj [n − Nj ]q + [Nj−1]q)

)
.

Rewriting the inner products as powers and factoring them from the sum gives

Ãj =

( Nj∏
i=Nj−1+1

qi+1

)
×(

(qNj [n − Nj ]q + [Nj−1]q)
Nj−Nj−1

+(qNj [n − Nj ]q + [Nj−1]q)
Nj−Nj−1−1qNj−1 [Nj − Nj−1]q

)
.

Here the sum
∑Nj

r=Nj−1+1 qr−1 has been rewritten as qNj−1 [Nj − Nj−1]q. Next we can

factor out (qNj [n−Nj]q + [Nj−1]q)
Nj−Nj−1−1 and observe that nj = Nj −Nj−1 and [n]q =
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qNj [n − Nj]q + [Nj−1]q + qNj−1 [Nj − Nj−1]q to obtain

Ãj = [n]q

( Nj∏
i=Nj−1+1

qi+1

)
(qNj [n − Nj ]q + [Nj−1]q)

nj−1 .

An almost identical computation yields

B̃t =

( Nt∏
i=m+1

qi+1

)
(qNt [n − Nt]q + [Nt−1]q)

Nt−m−1(qNt [n − Nt]q + [Nt−1]q + qm[Nt − m]q) .

Similarly,

D̃t =

( Nt∏
i=m+1

qi+1

)
(qNt [n − Nt]q + [Nt−1]q)

Nt−m .

and

Ãk =

( n−1∏
i=Nk−1+1

qi+1

)
[n − nk]

nk−1
q

We now substitute the above identities into equation (24) and collect together the k−t−1
factors of [n]q. We also combine the initial product expressions in the above identities
which, together with the factor qn+1, give

n∏
i=m+1

qi+1 = q(
n+2

2 )−(m+2
2 ) .

The resulting identity is the “q-version” of equation (22) (W (T ) = qδT is the q-weight):

[n]k−t−1
q q(

n+2
2 )−(m+2

2 )
(

[Nt−1]qBt + qNt−1 [m − Nt−1]qDt

) k∏
j=t+1

Aj =
∑

T∈T G
[m]

qδT (25)

where,

Bt = (qNt [n − Nt]q + [Nt−1]q)
Nt−m−1(qNt [n − Nt]q + [Nt−1]q + qm[Nt − m]q)

= ([n]q − qNt−1[nt]q)
Nt−m−1([n]q − qNt−1[m − Nt−1]q),

Dt = (qNt [n − Nt]q + [Nt−1]q)
Nt−m

= ([n]q − qNt−1 [nt]q)
Nt−m,

Aj = (qNj [n − Nj]q + [Nj−1]q)
nj−1

= ([n]q − qNj−1 [nj ]q)
nj−1
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for t < j < k, and
Ak = [n − nk]

nk−1
q .

We consider some special cases. If q = 1, then equation (25) gives the cardinality |T G
[m]|.

In this case, Aj = (n − nj)
nj−1, t < j ≤ k. Bt = (n − nt)

Nt−m−1(n + Nt−1 − m) and
Dt = (n − nt)

Nt−m. We obtain,

nk−t−1

(
Nt−1(n−nt)

Nt−m−1(n+Nt−1−m)+(m−Nt−1)(n−nt)
Nt−m

) k∏
j=t+1

(n−nj)
nj−1 (26)

for |T G
[m]|. Note that if t = 1, Nt−1 = N0 = 0 and thus we obtain

nk−2

(
m(n − nt)

n1−m

) k∏
j=2

(n − nj)
nj−1 = |T ∈ T G

[m]|. (27)

If m = 1 this identity becomes the formula of Onodera [8]:

nk−2
k∏

j=1

(n − nj)
nj−1 = |T G

1 |. (28)

To take some simple numerical examples, consider the case considered above where n = 6,
n1 = n2 = n3 = 2, t = 1 and m = 2 (hence Nt−1 = 0). We set all variables equal to 1 in
the expression

nk−2

(
m(n − nt)

n1−m

) k∏
j=2

(n − nj)
nj−1 = |T G

[m]|

obtaining 6× 2× 40 × 4× 4 = 192 as previously found. To take a more complex example,
consider the case where n = 6, n1 = n2 = n3 = 2, t = 2 and m = 3. The left-hand side of
equation (22) becomes

q18(1 + q + q2 + q3)

(
(1 + q)

(
(1 + q4)(1 + q) + q3

)
+ q2(1 + q4)(1 + q)

)
.

Expanding this expression, we obtain

q18 + 3q19 + 5q20 + 7q21 + 8q22 + 8q23 + 8q24 + 7q25 + 5q26 + 3q27 + q28

as the degree-weighted vertex-ranking generating function for the spanning forests of G
with roots 1, 2, and 3. This can be checked without too much difficulty directly from the
problem definition.

Finally, we note that equation (25) with k = 2 and t = 1 reduces to equation (21).
Substituting these values for k and t into equation (25) into the expressions B1, Dt, Aj ,
and Ak associated with equation (25) gives [n]2−1−1

q = 1, [N0]qB1 = 0, and

D1 = (qn1[n − n1]q)
n1−m

= qn1(n1−m)[n − n1]
n1−m
q
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and hence
qN0[m − N0]qD1 = [m]qD1 = [m]qq

n1(n1−m)[n − n1]
n1−m
q .

There are no values j such that 1 = t < j < k = 2 in this case. For k = 2, A2 =
[n − n2]

n2−1
q . Thus, the left-hand side of equation (25) becomes

q(
n+2

2 )−(m+2
2 )[m]qD1A2 = q(

n+2
2 )−(m+2

2 )[m]qq
n1(n1−m)[n − n1]

n1−m
q [n − n2]

n2−1
q .

Thus, equation (24) becomes

q

(
(n+2

2 )−(m+2
2 )

)
[m]qq

n1(n1−m)[n1]
n2−1
q [n2]

n1−m
q =

∑
T∈T G

[m]

qδT .

This latter equation is exactly equation (21).

Example 3.3. In this example, we consider a directed graph G = Cn1,...,nk
which is not

the digraph corresponding to an undirected graph (as were examples (3.1) and (3.2)).
This graph is a multipartite cyclic digraph defined by taking the composition of n to
be F = (n1, . . . , nk). Thus, the filtration is the partition Ci = {Ni−1 + 1, . . . , Ni}, with
N0 = 0 and Ni = n1 + · · · + ni, i = 1, . . . , k. There is one base, C1, and one summit,
Ck. All directed edges that connect a vertex in Ci to a vertex in Ci+1 are present for
i = 1, . . . , k − 1. As required by our framework (Theorem 2.4), all directed edges that
connect a summit vertex in Ck to a base vertex in C1 are also present. Thus in this case,
the t as in the statement of Theorem 2.4 is just 1. Thus all roots {1, . . . , m} of forests in
T G

[m] will belong to C1 since all such roots belong to a base and C1 is the only base.

As with equations (8) and (22), we start with identity (5) of Theorem 2.4:∑
T∈T G

[m]

W (T ) = (29)

qn(t1 + · · · + tNt−1)
∑

f∈Fn(G,F,m)

W (f) + qn(tNt−1+1 + · · · + tm)
∑

f∈F∗
n(G,F,m)

W (f).

In this case, Nt−1 = 0 so we obtain the simplification

qn(t1 + · · ·+ tm)
∑

f∈F∗
n(G,F,m)

W (f) =
∑

T∈T G
[m]

W (T ). (30)

Translating the sum over f ∈ F∗
n(G,F, m) directly into generating functions we obtain

qn(t1 + · · · + tm)D̃1

k∏
j=2

Ãj =
∑

T∈T G
[m]

W (T ). (31)

Here for t < j < k,

Ãj =

Nj∏
i=Nj−1+1

pi(sNj+1 + · · ·+ sNj+1
) .
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The summation in the above expression does not take into account fixed points in functions
f ∈ Fn(G,F, m). No such fixed points can occur since any such point must belong to both
a base and a summit and there are no blocks in the filtration that are both a base and a
summit. In addition, we have

D̃1 =

N1∏
i=m+1

pi(sN1+1 + · · ·+ sN2) and Ãk =
n−1∏

i=Nk−1+1

qi(t1 + · · · tN1) .

We now turn to the specialization of equation (31) that gives us the generating function
for the degree-weighted vertex-ranking statistics associated with spanning forests of the
multipartite cyclic graph G = Cn1,...,nk

. We set all variables subscripted by i in equation
(31) equal to qi. As in the previous example, we shall use the same symbols as we used in
connection with equation (31) (i.e., Ãj , D̃1). We obtain from equation (31), in a manner
similar to the previous example,

qn+1[m]qD̃1

k∏
j=2

Ãj =
∑

T∈T G
[m]

qδT

where

D̃1 =

( n1∏
i=m+1

qi+1

)
(qn1[n2]q)

n1−m ,

for 1 < j < k

Ãj =

( Nj∏
i=Nj−1+1

qi+1

)
(qNj [nj+1]q)

nj ,

and, finally,

Ãk =

( n−1∏
i=Nk−1+1

qi+1

)
[n1]

nk−1
q .

Combining the products in the above expressions, we obtain

[m]qq
(n+2

2 )−(m+2
2 )D1

k∏
j=2

Aj =
∑

T∈T G
[m]

qδT (32)

where
D1 = (qn1 [n2]q)

n1−m ,

for 1 < j < k,
Aj = (qNj [nj+1]q)

nj ,

and
Ak = [n1]

nk−1
q .
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We note that it is easily shown that for the case k = 2, equation (32) reduces to equa-
tion (21) as it should.

As a simple check of equation (32), take n = 6, n1 = n2 = n3 = 2, and m = 1. We obtain

q25
(
q2(1 + q)

)(
q4(1 + q)q4(1 + q)

)(
1 + q

)
.

Expanding, this becomes

q35 + 4q36 + 6q37 + 4q38 + q39 .

These functions are easily listed directly from the problem definition. For example, the
minimal weight root-directed spanning tree with δT = 35 has edge set

{(2, 3), (3, 5), (4, 5), (5, 1), (6, 1)}

and the maximal weight spanning tree with δT = 39 has edge set

{(5, 2), (2, 4), (4, 6), (3, 6), (6, 1)}.

Finally we end this section with a brief discussion of how one can generate additional
examples of filtered digraphs by modifying and combining examples 3.2 and 3.3 in various
ways.

First, we should note that Example 3.3 is the simplest case of a more general con-
struction. That is, suppose that we start with any acylic directed graph G = ([k], E) such
that vertex 1 is the only source in G, vertex k is the only sink in G, and all vertices lie
on a path from the source to the sink. Then we can create a filtered digraph as follows.
Start with a composition F = (c1, c2, . . . , ck) of n and let C1, . . . , Ck be its corresponding
set partition. Next we replace each vertex i by an empty graph Ci. Then whenever there
is an edge from (i, j) ∈ E, we create a directed edge from each vertex in Ci to each vertex
in Cj . We let C1 be the only base and let Ck be the only summit. Finally, we must add a
directed edge from each summit vertex to each base vertex. Clearly, the graphs Cn1,...,nk

arise from this construction by starting with a simple graph

1 → 2 → · · · → k − 1 → k.

We can also combine Examples 3.2 and 3.3 in various ways. For example, suppose
that we start with blocks of sizes n1, . . . , nk as in Example 3.2. Now instead of taking the
empty graph in each of these blocks as we do to create Kn1,...,nk

, imagine that we put the
structure of a multipartite cyclic digraph in each block. That is, suppose that in each block
Ci = {Ni−1 + 1, . . . , Ni}, we put the structure of some Cp1,...,pl

where p1 + · · · + pl = ni.
Then there are many possible ways to connect the blocks C1, . . . , Ck to form a filtered
digraph. Clearly we have to connect each vertex in a summit of a Cp1,...,pl

making up a
block Ci to all vertices in bases in a block Cs with s < i. However, we have many choices
of how to connect the element of Ci to elements of Ct with i < t and still conform to
Definition 2.2. For example, we could have a directed edge from each vertex of Ci to every
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vertex of Ct. We could connect every vertex of the base of Ci to every vertex Ct and make
no other connections. We could connect every vertex of the summit of Ci to every vertex
Ct and make no other connections. We could connect every vertex of the base of Ci to
every vertex in the base of Ct and make no other connections, etc.. Of course, we can
iterate this type of procedure. For example, replace the empty graph on Ci by one of the
filtered digraphs that we just described.
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