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Abstract

For certain subsets S and T of A = { -+,(0,2),(0,1),(0,0),(1,0),(2,0),-- } and
factor spaces Cg[X,Y], C& 1 [X,Y, Z, W] and Cg ;[X,Y, Z, W], bitableaux bases
are constructed that are indexed by pairs of standard tableaux and sequences in
the collections Y, and T,,.. These bases give combinatorial interpretations to

the appropriate Hilbert series of these spaces as well as the graded character of
CslX,Y].

The factor space Cg[X, Y] is an analogue of the coinvariant ring of a polynomial
ring in two sets of variables. C{ .[X,Y, Z, W] and Cg ,[X,Y, Z, W] are analogues
of coinvariant spaces in symme’tric and Skew—symmei;ric polynomial settings, re-
spectively. The elements of the bitableaux bases are appropriately defined images
in the polynomial spaces of bipermanents. The combinatorial interpretations of
the respective Hilbert series and graded characters are given by statistics based
on cocharge tableaux.

Additionally, it is shown that the Hilbert series and graded characters factor
nicely. One of these factors gives the Hilbert series of a collection of Schur
functions sy, where p varies in an appropriately defined A.

* Thanks to all of the wonderful editors of this journal!
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1. Introduction.

Let A be the alphabet
A = {(f, g) : f and g are nonnegative integers such that fg = O}. (1.1)
Specifically,
A = { -+,(0,3),(0,2),(0,1),(0,0),(1,0),(2,0), (3,0), - - }

The elements of A are the coordinates (i, k), of the cells of the hookshape in the first
quadrant of the plane as shown:

(3,0)

(0,0)](0,1){(0,2){(0,3)](0,4)[(0,5)

We will say that
(a1,b1) <A (az,bz)

if and only if a3 — b1 < as — bs.

Let C[X,Y,Z, W] denote the polynomial ring with complex coefficients in X =
{xlax%"'uxn}u Y = {917927'”,%1}7 Z = {217227"'7271} and W = {w17w27"'7wn}'

Given a subset
S = {(alv b1>7 (a27 b2)7 Ty (a'ru bn)} C A

of the alphabet A listed in increasing order with respect to < 4, we define Mg to be the
n X n matrix
Ms = (¢{*y )i<ikn

and Ag(X,Y) to be the determinant of Mg. Let 0,, denote the partial differential
operator with respect to ;. With P(X,Y") € C[X, Y], we will set

P(aXvaY) - P(axlvaxzv'"7amn76y178y27"'76yn>'

Setting Zg(X,Y) to be the ideal
Ts(X,Y) = {P(X, Y) € C[X,Y]: P(dx,y)As(X,Y) = 0}, (1.2)
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we define Cg[X, Y] to be the polynomial quotient ring

The rings Cg[X,Y] are called Garsia-Haiman modules. A. Garsia and M. Haiman
introduced modules of this type to study the ¢, t-Kostka coefficients (see [10]).

The action of o € S,, (where S,, denotes the symmetric group on n letters) on the
polynomial
P(X,Y,Z,W)eClX,Y,Z W]

is defined by setting

OX)Y,ZW P(mlax%"'7xn7y17y27"'7yn7217'"7zn7w17"'7wﬂ) (14)
:P('ralaxazf"7'r0'n7y0'17y0'27"'7y0'n720'17'"7zon7w017"'7wo‘n)7
OX,Y P(xlaan"'7xnay17y2a"'aynazla"'7Zn7w17"'7wn) (15)
:P(xamxaza"'7xan7y0'17y0'27"'7y0'nazla'"7zn7w17"'7wn)
and
oz W P('rlaxQ,"'axnaylayQa"'7yn7217"'7zn7w17"'7wn)
:P('xlwx%'"7xn7y17y27"'7yn72017"'720n7w017"'7w0n)'

Note that the subscripts x,v,zw, x,y and zw denote the sets of variables on which o
acts.

For subsets S and T' of A, let

C[X,Y,Z,W]={PeC[X,Y,Z,W|:oxyzw P = PVoeS,}, (1.6)

(X, Y, Z,W)
= {P e C[X,Y, Z,W]: P(0x,0v.02,0w) As(X,Y) Ar(Z,W) = 0} (1.7)

and
CS XY, Z,W] = Co XY, Z, W] [T (X, Y, Z,W). (1.8)

Analogously, with sgn(o) denoting the sign of the permutation o, let

CT[X,Y,Z,W|={PeC[X,Y,Z,W|: oxyzw P=sgn(c) P¥o e Sn}, (1.9)

Igr(X,Y,Z, W)
={PeC[X,Y,Z,W]: P(0x,0v,07,0w) As(X,Y) Ar(Z,W) =0} (1.10)
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and

(C;T[X7 Y, Z, W] = C[X,Y, Z, W]/ISTI(X, Y, Z,W). (1.11)

It should be noted that C5*[X,Y, Z, W] and C§ ,[X,Y, Z, W] are rings. Cg ,[X,Y, Z, W]
is not closed under multiplication and hence is not a ring. Thus we will be considering
CE’T[X7 Y, Z, W] simply as a module.

In this paper, we construct bases for Cs[X, Y], (CET[X, Y, Z,W]and Cg [X,Y, Z, W]
(for certain general classes of S and T' that we shall call dense) that are indexed by pairs
of standard tableaux and sequences in the collections Y, and T,.. In Section Two,

we introduce tableaux, bitableaux, bipermanents and bideterminants. In Section Three,
we define dense Garsia-Haiman Modules. The bases for Cg[X, Y], (CET[X Y, Z, W] and

Cq 71X, Y, Z, W] are constructed in Sections Three, Four and Five, respectively, using
biﬁermanents and bideterminants. Specifically, with S7,, denoting the collection of
standard tableaux with n cells, sh(Q) denoting the shape of the tableaux @, COg
denoting a collection of cocharge tableauz and [Q, Clper, [U, V|1, and [U, V], denoting

per per

certain images of bipermanents in the factor spaces Cg[X,Y], (C:{T[X Y, Z, W] and
Cg.r[X,Y, Z, W], respectively, we will prove the following theorems:

Theorem 1.1.

If S is dense then the collection
By, = {[Q, Clyer : Q € ST, C € CO5 and sh(Q) = sh((J)}

is a basis for Cg[X,Y] with coefficients from C.
Theorem 1.2.
If S and T are dense then

BSQsw = {[U,Vlfur : U € COs,V € COp and sh(U) = sh(V) |

per

is a basis for C:{T[)Q Y, Z, W] with coefficients from C.
Theorem 1.3.

If S and T are dense then the collection

BAQsr = {[U V], : U€COs, V € COr and sh(U) = sh(V)}

per
is a basis for (C;T[X, Y, Z, W] with coefficients from C.
Note that these theorems are Theorem 3.8, Theorem 4.4 and Theorem 5.7, respectively.

THE ELECTRONIC JOURNAL OF COMBINATORICS 9 (2002), #R36 4



If Ru; us,us,u, i a homogeneous subspace of dimension u; in X, ug in Y, ug in Z
and uy in W, then we define the Hilbert series H(R) to be

H(R) = Z dim( Ry ugusug) 40 ¢4 712 sM4.

U1,U2,U3,Uq

These bases imply combinatorial interpretations for the Hilbert series of Cg[X,Y] ,
Cip[X,Y, Z,W] and Cg 1[X,Y, Z,W].

Theorem 1.4.

If S is dense then the Hilbert series H(Cg[X,Y]) is given by

HCs[X,Y]) =D ha Y Y I 0DlglCr2(D)

Abn MEST ) pEY gy

where ST » denotes the collection of standard tableaux of shape A, hy denotes the number
of standard tableaux of shape X, Ty is a collection of sequences defined in equation
(3.4) and |C, 1(M)| and |C,2(M)| denote the sums of the first and second coordinates,
respectively, of the entries of C,(M).

Theorem 1.5.

If S and T are dense then the Hilbert series H((CET[X, Y, Z, WJ) for (CET[X, Y, Z, W]
s given by

H(CS 71X, Y, Z, W)

— Z Z Z Z tCo 1 (M) g Cp 2 (M) 1] Cpr 1 (N[ gl Cpr 2 (V)]

AFn pETd,S p’€T¢T (M,N)EST xxS8T

where ST ) denotes the collection of standard tableauz of shape X and Yy and Yy, are
collections of sequences defined in equation (3.4).

Theorem 1.6.
If S and T are dense the Hilbert series H(Cg [ X,Y, Z, W]) for Cg p[X,Y, Z, W] is
given by

H(C5.0[X,Y, Z2,W])

= Z Z Z Z t'Cp,l(MNq|cp,2(M)|fr|Cp/,1(Nt)|s|cp/,2(Nt)|

AN p€Y g p €Yy (M,N)EST A xXST
where STy denotes the collection of standard tableauzr of shape A\, Yy, and Yy, are

collections of sequences defined in equation (3.4) and N denotes the transpose of the
standard tableau N.
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Note that the above three theorems are Corollary 3.10, Corollary 4.5 and Corollary
5.8, respectively. Furthermore, since the action of S,, on a basis for Cg[X,Y] can be
described in terms of irreducible representations of \S,,, we will be able to compute the
graded character of the spaces Cg[X, Y] (see Corollary 3.12).

Theorem 1.7.
With S dense, the graded character charq(Cs[X,Y]) of Cs[X,Y] is given by:

chary+(Cs[X,Y]) = ZXA Z Z $1Coa (M) 4| Cp 2(M))

An p€Yyg MEST

where ST 5 denotes the collection of standard tableaux of shape X, Yy is a collection
of sequences defined in equation (3.4), and |Cy,1(M)| and |C,2(M)| denote the sum of
the first and second coordinates, respectively, of the entries of C,(N) and x> denotes
the irreducible Sy, character corresponding to shape .

Note that in Theorem 1.4, Theorem 1.5, Theorem 1.6 and Theorem 1.7, due to the
construction of the cocharge statistic, we are able to factor the resulting Hilbert series as
well as the graded character (see the theorems in the respective chapters). Additionally,
one of the factors of these polynomials turns out to be the Hilbert series of a collection
of skew Schur functions sy, as u varies in a partition A that corresponds to to a dense

set S (see Corollary 3.13).

It should be noted that Cg[X,Y], CET[X7 Y, Z, W] and (C;T[X, Y, Z, W] are gener-
alizations of some well-studied modules. For example, if

S = {(0,0),(l,O),~--,(n—1,0)} (1.12)

then Ag(X,Y) is the Vandermonde determinant in the variables {z1,z2, -, x,} and
Zs(X,Y) is the ideal generated by the elementary symmetric functions

€L = E Ly Ljy ** - Ty,

1< << <1, <n

for 1 < k < n and the monomials {y1,y2,--,yn}. In this case, Cg[X,Y] is the ring
of coinvariants in the variables X = {z1,z2, -, x,} associated with the symmetric
group S,,. Bases for Cs[X, Y] are given in [13] (in which it is shown that the collection
{zfxg? -z 0 < ¢ < i—1} is a basis), in [8] (in which a basis is constructed
using the descent monomials) and [14] and [15] (in which it is shown that the Schubert
Polynomials form a basis). C;C’ ¢ has been shown to have a basis closely related to the
descent monomials (see [2] or [16]). A. Garsia computed the Hilbert series of Cg ¢ in
[9]. It should be noted that all of the above results are with the collection S as éiven
in (1.12). The results of this paper are related to a much larger class of collections.
Additionally, the construction of a basis for Csr (for general classes of dense sets S
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and T') corresponds to constructing a basis in a noncommutative letter place algebra.
Specifically, these factor spaces Cg , are analogues of coinvariant rings in an exterior
algebra setting. The proofs of these theorems include algorithms for expanding elements
of these modules in terms of the respective bases.

M. Haiman recently announced a proof showing that the dimension of Cg[X, Y] for
classes of S related to partitions have dimension n! (see [12]). This particular paper deals
with a different type of class for S (specifically dense sets), construction of appropriate
bases for Cg[X, Y] and its relation to the rings CET[X, Y, Z,W]and Cg [X,Y, Z, W].

2. Bitableaux, Bipermanents and Bideterminants

General references for much of the material in this section (specifically, letter place
algebras, bitableaux, bideterminants and bipermanents) can be found in [7] or [11]. Let
A = (A1, Ag, -+, Ag) be a partition of n. In other words, Ay > Ao > --- > Ap > 0 and
n = A + A2+ -+ Ax. This is commonly denoted by A - n. We will use the French
notation for depicting Ferrers diagrams and tableaux. A Ferrers diagram of shape A has
A1 cells in the first row, and continuing north, has Ay cells in the second row, etc. For
example,

is a Ferrers diagram of shape (6,4,2,1). A tableau of shape A is a Ferrers diagram of
shape \ where each cell contains an entry from some alphabet. A tableau @ of shape
A is said to be injective if the alphabet is {1,2,---,n} and each of the letters appear
exactly once as entries in the cells of (). (Note that if ) has shape A\ - n then @) has
exactly n cells.) We will say that a tableau @ is standard if Q is injective, sh(Q) = A
where A\ - n and the entries strictly increase from west to east (left to right) and from
south to north (bottom to top). We will say that a tableau @ is column-strict if the
entries of () increase weakly from west to east but increase strictly from south to north.
A tableau Q) is said to be row-strict if the entries increase strictly in the rows from west
to east and increase weakly in the columns from south to north. We will denote the
collections of all column-strict tableaux and row-strict tableaux with entries from the
alphabet A and exactly n cells by CS,, and RS,,, respectively. The set of standard
tableaux with entries {1,2,---,n} will be denoted by S7,. We will denote the shape
of a tableau @ (i.e., the shape of the underlying Ferrers diagram) as sh(Q).

The column sequence cs(Q) of a tableau @ is a listing of the entries of @ from south
to north (bottom to top) in each column starting with the column farthest west (left)
and continuing east (right). Analogously, the row sequence rs(Q) of a tableau @ is a
listing of the entries of () from west to east in each column starting with the row farthest
south and continuing north.
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If @ is a tableau of shape A = (A1, \2,---,A\x) and R is a tableau of shape p =
(p1, pay -+ -, i), we will say that @ is longer than R if and only if X is lexicographically
larger than p. Similarly, we will say that @) is higher than R if and only if the conjugate
partition N is lexicographically larger than the conjugate partition p’. The transpose
Q! of a tableau Q of shape ) is the tableau of shape )\ obtained by reflecting ) along
its diagonal.

Example
Let
6 8
Q=3 5 7
1 2 4 9
Then
9
4
t __
Q= 2 5 8’
1 3 6
rs(Q) = 1,2,4,9,3,5,7,6,8
and

cs(Q) = 1,3,6,2,5,8,4,7,9. 0

Let LP be the algebra of polynomials over C in the indeterminants (a;|by) where
a; and by are elements from some alphabets AL and BL respectively. LP is called the
letter place algebra. Note that the letter place algebra L£P is commutative. Specifically,
we have that

(a1]b1) (az(b2) (as|bs) - - - (an|bn)
= (a0(1)|b0(1)) (ao(2)|bo(2)) (a0(3)|b0(3)) e (ao(n)|bo(n))

for all o € S,, (the symmetric group). Note that this implies

(ag)|b1) (ao(2)lb2) - - (o) |bn) = (a1]bs-1(1)) (a2]bs-1(2)) - - (n|bo-1(n)).  (2.1)

Let I be an injective tableau of shape A = (A1, -+, Ag). Let R; (1 <1i < k) denote
the collection of integers in the i'" row of I. Similarly, let D; (1 < i < j) denote the
collection of integers in the i*" column of I. Set

R(I) = SR1XSR2X--~XSRk (2.2)

and
D(I) = SD1 X SD2 X X SDj, (23)
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where Sk, and Sp, denote the symmetric group on the collections of elements R; and
D; respectively. Define, in the group algebra C[S,],

PI)= > o (2.4)

ceR(I)
and
N(I) = > sgn(o)o. (2.5)
oceD(I)
Similarly, let [i1,i2, -, ik] and [i1, i, -+, ik]" denote the formal sums in the group

algebra C[S,] of S,

[/L.177;27"'7Z.k] - Z g

OES iy g, ig}

and

[i17i27"'7ik]/ = Z Sgn(a) .

Ues{il,i2,<~,ik}

Now, given two tableaux, U and V', of the same shape A and an injective tableau [
(also of shape M), let u; and v; be the entries in U and V that correspond to the cell
containing i in I, respectively. The bideterminant (U, V')ge; is defined to be

(U, V)der = N(I) (ur|vr) -+ - (un|vn)
= Y sgn(o) o (urlvr) - (unlvn)

ceD(I)

= Z sgn(0) (Ue(1)|v1) -+ (U (n)|Vn)

ceD(I)
and the bipermanent (U, V)pe, is defined as

(U, V)per = P(I) (ur]or) - - - (ttm]vm)
- Z (ua(l)‘vl> T (ua(n)’vn>-

c€R(I)
The content con(U, V') of a bideterminant (U, V)get (or a bipermanent (U, V) per) is
COTL(U, V) — ((ala g, -, ak)a (ﬁl?ﬁ?a R BJ))

where a; denotes the number of entries of a; in U and (3, denotes the number of entries
of by, in V. We will say that the bitableaux

(U, V) <s'c (M7 Q)7
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where U and V have shape A and M and @ have shape p when
1. N < ¢/ (where >, denotes the lexicographic ordering); or
2. if A = p then cs(U) es(V) >1 es(M) es(Q).

The following theorem may be found in [7] or [11]. The proof of Theorem 2.1
included here (which was pointed out to this author by A. Garsia) is different than the
proof found in either [7] or [11]. This particular proof is included since it provides an
algorithm that will be useful later in this development.

Theorem 2.1.

The collections
eSD = {(M,Q)act : M, Q € CS, sh(M) = sh(Q) } (2.6)

and

CSP = {(M, Q)per : M,Q € CS, sh(M) = sh(Q)}7

where CS denotes the collection of column-strict tableauz, linearly span the letter place
algebra LP with coefficients from C.

Proof
Note that
(ug|v1) (ug|ve)(us|vs) - - - (un|vn) = (U, V)der
where
U = uj ug ug -+ Up,
V =vivvsy - v,
and

I =123 - n
Thus LP is spanned by the collection
{OV)aer s sh(U) = sh(v) }
where U and V' are not necessarily column-strict.

Suppose that U and V are two tableaux of shape A, suppose I is an injective tableau
of shape A\ and let u; and v; be the entries in U and V that correspond to the cell
containing ¢ in I respectively. Recall that if

{ij,laij,% o ',ij,kj}
is the j'* column of I, (where I has h columns and thus 1 < j < h) then
N(I) = [iva,i12, 00k li21, 2.2, s i2ks) [Th 1,002, 5 k]|
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and
(U, V)det = N(I) (u1]vr)(uz|ve)(us|vs) - - - (unfvn).

For a given content ((a1, a2, -+, ax), (61,02, -, 06;)), let (U, V) be a bitableau such
that

COTL(U, V) — ((ala g, -, ak)a (ﬁl?ﬁ?a R BJ))
and sh(U) = sh(V) = 1™. Specifically, without loss of generality we may assume that

and
Un

Un—1

V2

U1
where u; < u;4q and v; < wv;qq for 1 <@ <n—1. If u; = u;41 or v; = v;4 for any i,
then (U, V)ger = 0 and (U, V') get is in the linear span of CSD. If u; < u;41 and v; < v;41
for all i, then (U, V)ge: € CSD.

Let (U, V) be the largest bitableau with respect to >4 . such that (U, V')g4e+ cannot
be written as a linear combination of

CSD, = {(M, Q)aet : M € CSn,Q € CSn, sh(U) = sh<v>}. (2.7)

Without loss of generality, we may assume that even though at least one of U and V'
is not column-strict, the entries of the columns of both U and V increase strictly from
south to north (or bottom to top). Suppose U is not column-strict. Thus, let us suppose
that (j,m) is the smallest lexicographic pair of integers such that w; , > %;j41,m. Note
that if w; » < wjqq,m for all j and m then U is column-strict. Essentially, in columns j
and j + 1 of U we have

Uj,k;

Uj+1,k;41

Ujm > Ujtlm

Uj,1 Uj+1,1
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where wu; ,, > uj41,m. Particularly, we have
Ujp1,1 < Ujp12 <Uj41,3 < 0 < Ujpim < Ujom < Ujmi1 <00 < Ujk;-

Recall that a right transversal of a subgroup H of a group G is a subset K of GG consisting
of exactly one element from each right coset of H in G (see, for example, [17]). Let K;
be the right transversal of

Hy

= S{ij+1,17ij+1,21"'7:j+1,m} X S{ij,m:ij,m+17"':ij,kj}

in the group
Gy

- S{Zj+1,1alj+1,2r"ﬂj+1,mﬂj,mﬂj,m+1a“‘ﬂj,kj}‘

We may assume that € € K7, where € is the identity element of the group G;. Now,

N(I) [ij41,05 854120 5 G 1ms Gimy 5 k) (ua]vn) (uzlvz) - - - (un|vn)

= N(I) [i41,050541,2 djm] [ims e iin] Y sgn(@) o (urlvr) (uglvg) - - (un|on)

aeK;
=m! (kj; —m+ 1) N(I) Z sgn(a) a (up|vy)(us|ve) - -+ (tn|vn)
aeK;
=m! (kj —m+1)! (U,V)ger
+m! (kj —m+1)! N(I) Z sgn(a) a (ug|vr)(uzlve) - -« (un|vn), (2.8)

For o € K7 and « # €, we have that
N(I) o (u1|v1)(u2|v2) T (un|vn) = (Pom V)det
where P, is a tableau of shape A and cs(P,) < ¢s(U).
Now let K9 be the left transversal of
Hy = S{ij,hij,zw',ij,mq} X S{ij,mvij,erl:"'vij,kj}
X S{ij+1,1yij+1,2:"'7ij+1,’m} X S{ij+1,m+1v"'vij+1,kj+1}
in the group
Gy = S{ij,lzij,zr'wij,kj} X S{ij+1,17ij+1,27"'7ij+1,kj+1}'
Specifically,
. . . /T . . /
(i, %5,2, gk [E1,10 Gidn2s 5 Gtk ]

= Y sgn(B) B lig gy igm1]lim, ik

BEK2

[G41,15 s Gjt,m] [ Lt 1s 5 T Lk g0 -
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Therefore,

N(I) [i41,055541,2, G t,ms Ggms 5 By ] (ualvn) (uzlva) -« (wn|vn)
= [i1,1, 00,2, 5 ik) (im0, 00 G—1,2, s G— 1k
lij, 05052, ik, [G541,0055401,20 5 g1k )
[ 42,05 8542,2: s Gjq2.kyp) o [h1sTh,2s s U]
(341,15 841,20+ Gt yms Bgms - 0] (uavn) (ualv) - - (un |vn)
= [i1,1, 00,2, 50k o [l—1, 15 G— 1,2, s G— 1y
> sgn(B) B lij1,05.2, s igm) Tigms s igm, ) Tigaas s ijgim]’
BEKS
[ijtmats Gtk (2,05 05 42,2, yija2kyan) o0 [T 1 G2y Thky )
(41,05 8501,20 s Gt m Gy =5 Gy ) 870 B (wn|vr) (uzlvg) - -+ (un|vy)
=m/! (l{:j —m+1)! [il,l, 11,2, il,kl]/ ‘e [ijfl’l, 1j—1,2,"" "5 ijfl,kj—1]/
> [B(i5.1), BG52)s -+ B jm—1)) [Blij41,m41)s -5 B 1,0,00)]
BEKS

[B(ij42,1), Blijra.2), 5 Blija2k,0)] - [8(n1), Blinz2), -, Blink, )|
1B(541,1), B(ij11,2)s -+ Blijr1,m)s B(ig.m)s -+, Blijx,)]
sgn(B) B (ur]vi)(uzlve) - - - (un|vy)

=m! (kj —m+1)! Z sgn(B) (Qg, M3)det (2.9)
BEK2

where the shape of g and Mg is higher than the shape of U and V. Setting equations
(2.8) and (2.9) equal and solving for (U, V') 4.+ yields that (U, V)g4e: can be written as a
linear combination of bideterminants with smaller column sequences or higher shapes.
By induction, (U, V) can be written as a linear combination of elements of CSD,, (see
equation (2.7)). The proof when V is not column-strict is done in the same manner
using equation (2.1). Thus we have the theorem for bideterminants.

The proof for bipermanents is similar. The only major difference between the two
proofs is that we need to define the order <y, by setting

(U7 V) <sr (M7 Q)7

where U and V are tableaux of shape A and M and @) are tableaux of shape p whenever
1. A <p p; or
2. if X = p then rs(U) rs(V) > rs(M) rs(Q). O

The following theorems are proven in [7] and [11]. Particularly, they show that both
CSD and CSP are bases for the letter place algebra.
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Theorem 2.2.

The collection
eSD = {(M,Q)act : M €CS,Q € CS, sh(M) = sh(Q) }

1s linearly independent over C.

Theorem 2.3.

The collection
CSP = {(M,Q)yer : M €CS,Q € CS, sh(M) = sh(Q)}

18 linearly independent over C.
3. A Basis for Cg[X,Y].

Let LP;, be the subspace of a letter place algebra LP that consists of the linear span
of the collection

{(1|d1)(2|d2) (nldy) sdi € A1 < < n}
where d; = (d;1,d;2) € A. Define ¢ : LP; — C[X,Y] by linearly extending the map

diy dip dai d
O((Ldr)(2]d2) -~ (nldn)) = @i gy 2ay™ yy™ - typme.

With U an injective tableau and V' a tableau (and sh(U) = sh(V')) with entries from
A, we will denote gb((U, V)det) and gb((U, V)pe,,) by [U, V]der and [U, V]per, respectively.
The map ¢ is a (vector space) isomorphism. Thus we have

Theorem 3.1.

The collection
{[U, Vet : U € ST,V € CS,n, sh(U) = sh(V)},

where 8T, is the collection of all standard tableaux with n cells and CS,, is the collection
of all column-strict tableaux with n cells with entries from A, is linearly independent in
C[X,Y].

Let
77Z}5' = [[a17a27 o '7aj]7 [bla b27 t '7bj’]]

be an ordered pair of two sequences where each of the a; and b; are positive integers
and one of the following is true:
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i)j>2,7>2,a1=by=1land j+j =n+1;
(il) j =n, jy =0 and ¢g = [[al, ag, -+, ap), @}, where () denotes the empty sequence;
(iii) j = 0, /' = n and tg = [(2), [b1, b, - ~-,bn]]

For the remainder of this section, j and j' will denote the length of [a1, as, ..., a;] and

[b1, b2, -+, bj], respectively. Note that the three possible cases lead to three different
possible situations for ¥g:

vs = |[azo ag) (Lo by (3.1)
Ys = [[al,---,an],(ﬂ (3.2)
N Vs = [(7), [bl,---,bn]}, (3.3)

where each of the a; and b; are positive integers. Note that in equation (3.1), we set
a; = bl =1.

For 1 <k <y, let

k
fo = =1 4+ ) a,
i=1
and for 1 < h < 7, let
h
g = —1 + szv
i=1

We will say that 1g is dense if and only if both of the following two conditions hold.

1. For all £ such that 1 < k < j and any sequence ay, - - -, o; of nonnegative integers
not all zero, either

J
fo = Y aia; <0,

i=k
or
J
fo = D aia;i=fy,
i=k
for some p.
2. For all h such that 1 < h < j’ and any sequence f,-- -, of nonnegative

integers not all zero, either

i
gh — Zﬁi b; <0,

i=h
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or

j/
gn — > Bibi =g,

i=h

for some gq.

There are many classes of sequences that are dense. For example,
77Z}5' = [[17 ka ka k]a []-7 ka ka ka k]:|
for some positive integer k. Another such class is

¢S - |:[17a27"'7aj]7[17b27"'7bn—j+1]]

in which we require as < ag, a;la;41 (for 3 < i < j —1), by < bg and b;|b;11 (for
3 <i<n-—j). Another example, would be

bs = [[1,1,1,1,3,8],[1,2,2,5,10]].

With g given in (3.1), (3.2) or (3.3), we can construct a subset Sy of A in the
following manner.

(i) For each 1 <i < j, place (0, f;) = (0,—1+ Y _ ax) in Sy;
k=1

(ii) For each 1 <1 < j', place (g;,0) = (=1 + Zbk,O) in Sy,.
k=1
Equations (3.2) and (3.3) correspond to cases in which Ag, (X,Y) uses either the vari-
ables Y = {y1, -,yn} or X = {z1,---,x,}, respectively, but not both. The require-
ment that a; = b; = 1 in equation (3.1) comes from the fact that in this case Ag, (X,Y)
uses both sets of variables X and Y. Whenever we have a; = b; = 1, both (i) and (ii)

place (0,0) in Sy. Since Sy is a set (and not a multi-set), the net result is that there is
exactly one (0,0) in Sy.

We will say that Sy is dense if and only if ¥g is dense. Note that given a finite
subset S C A, it is possible to reverse this process and construct an appropriate 1g.

Examples

Let 1y = [[1, 1,1,1, ],@}. In this situation,

S, = {(0,4),(0,3),(0,2),(0,1),(0,0)}.
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Note that Ag,(X,Y) is the Vandermonde determinant in the variables {y1,y2,¥s,
y4ay5}' With 77Z}S = [[1727474]7 [17 1,1, 3, 6] )

Sy = {(0, 10), (0,6), (0, 2),(0,0),(1,0),(2,0), (5,0), (11,0)}.

If 4hg = [@, 1,1,2,3, 3,3]}, then

Sy = {(0, 0), (1,0),(3,0),(6,0),(9,0), (12, O)}

If g — [[2, 2,4,4,4], @], then

S, = {(0,15),(o,11),(0,7),(0,3),(0,1)}.

It is worthwhile to contrast the above collections of Sy, with the set S given in equation
(1.12).

Similarly, if
Sy = {(0,12),(0,7),(0,2),(0,0),(1,0),(2,0),(5,0),(11,0),(17,0)}

then g = [[1,2,5,5], 1,1, 1,3,6,6]]. 0

With g given in (3.1), (3.2) or (3.3), let Ty, be the collection of all sequences of
length n

P = [hjahjfla'"7h27gue27"'76j’] (34)
= [p17"'7pj—17:0j7:0j+17"'7,0n]

in which h;, e; and g are nonnegative integers such that 0 < h; < a; —1 (for 2 <14 < j),
0<e,<b,—1(for2<h<j)and 0<g < aj (cases (3.1) or (3.2)) or 0 < g < by
(case (3.3)). The number of elements dy, = |Tys| of Ty is given by

J i’
dys = ’Tibs’ = <Haz> Hbi
1=1 1=1

With g given in equation (3.1) or equation (3.2), set

P = [aj—l—hj,-~-, ag—l—hg,al—l—g, b2—1—€2, ~-~,bj/—1—ej/]
= laj—1—=p1,--y, aa—=1—=pj1,a1 =1 —=pj, bp—1—=pjy1, -, by —1—pyl.
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The analog for p~ when g is the case found in (3.3) is that we set
p- = [b1—1—g, bo—1—eg, -+ . by, —1—e,]
= [bl_l_plv b2_1_:027 7bn—1_pn]

We will say that ¢ + 1 is northwest of 7 if ¢ + 1 is strictly north and weakly west of
i. Given a standard tableau V' of shape A\, p = [p1, p2, -, Pj—1, Pjs Pj+1s " Pn) € Topg
and setting
Sy (i) = { 1 if ¢+ 1 is northwest of 7 in V'
0 otherwise
we define the cocharge tableau C' = C,(V') of V' to be the tableau of shape A with entries
from the alphabet A, where

Y

A. i If ¢g is given in (3.1) (and hence a; = by = 1 and p; = 0) then place
¢; = (¢j,1,¢4,2) = (0,0) in the cell containing j in V.

ii. If ¢g is given in (3.2) then place ¢, = (¢n.1,¢n2) = (0,p,) in the cell
containing n in V.

iii. If g is given in (3.3) then place ¢; = (c11,¢12) = (p1,0) in the cell
containing 1 in V.

B. Assuming that we have placed ¢; = (¢;1,¢i,2) in the cell containing 7 in V' (for
some positive integer i such that j < ¢ < n), place (¢;1 + pit1 + 6y (i),0) in the cell
containing 7 4+ 1 in V.

C. Assuming that we have placed ¢, = (¢p 1, cp,2) in the cell containing h in V' (for
some 2 < h < j), place (0, cp,2 + pp—1 + 0y (h — 1)) in the cell containing h — 1 in V.

Given a column-strict tableau U (of shape \) with entries from 4, we can label
the entries from smallest to largest (with respect to < 4) with the integers from 1 to
n breaking ties by which entry is the farthest west (left). Let u; = (u;1,uiz2) be the
entry of the cell in U labelled i. Note that if ¢ is given by (3.1) and the entry labelled
J, uj, is not (0,0) then [I,Ulper € Zs(X,Y). Thus, without loss of generality, we may
assume that u; = (0,0) when g is given by equation (3.1). Similarly, with ¢g given
in equation (3.2), we may assume that u, <4 (0,0). Additionally, with s given by
equation (3.3), we may assume that u; > 4 (0,0). Set CSs C CSy, to be the collection
of all U € CS,, such that

A. If ¢g is given by equation (3.1) then u; = (0,0).

B. If 5 is given by equation (3.2) then u, < 4 (0,0).

C. If 95 is given by equation (3.3) then u; > 4 (0,0).

Let U € CSg and let V = st(U) be the standard tableau of shape A obtained by
placing the label of the cells of U in its respective cell. With g given in (3.1), set

(ui,g — Uj41,2 — 5\/(2)) (HlOd Clj+1_i) for 1 S 7 S ] — 1;
piv = § 0 L= J;
(’U@l — Ui—1,1 — 5v(2 — 1)) (mod biJrj/,n) for j +1 S 1 S n.
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Note that we are considering (mod ¢) as a function that maps the integers into

{0,1,---,¢q—1}
and not as a relation.
The analogues for p; y when g = [[al,a2,~--,an],®] (equation (3.2)) or ¥g =
[@, [b1,ba, - -, bn]} (equation (3.3)) is that we set

piv = { (Ui,2 —Ujy1,2 — 5v(i)) (mOd an+1_i) for1 <i<j—1;
iU =

(u;2) (mod aq) i=mn;
or
- _ J(ui1)  (mod by) i=1;
piU = (um —Uj—1,1 — 5v(’L — 1)) (mod bz) for 2 <1< n;
respectively.
Set py to be
pu = [pru,p2,U, s Pj=1,U, PjUs Pj+1,U, 5 Pr,U]- (3.5)

If U € CSg and C = C,, (st(U)) and ¢; = (¢;,1,¢i,2) is the entry in C that replaced ¢ in
st(U), set

(0,uip = ciz) i s = [[1,a2,+,ag], [Lba, o, by ja]] and 1< i < j = 1
(ui1 —c¢i1,0) if g = :[1,a2, ey agl], [1, g, bn_j+1]] and j+1<i<mn;
i =14 (0,0) if s = |[1az, -, a5], [1,ba, o buya] | and i = j
(0,ui2 —ci2) if g = :[al,ag, . -~,an],@} and 1 < i < n;
| (i1 —¢i1,0)  ifhg = :Q), [b1, ba, - --,bn]} and 1 <17 < n;
and

You,U = V1572, 5 V=10 Vi Vi+1s " * s Ynl- (3.6)

Note that pr is a sequence of integers while v, 7 is a sequence of elements of A.
Example

Suppose that
vs = [[1.1,3,3,3],[1,2,5,5,5,5]

and
Sy = {(0, 10),(0,7),(0,4),(0,1),(0,0), (2,0),(7,0), (12,0),(17,0), (22, 0)}

THE ELECTRONIC JOURNAL OF COMBINATORICS 9 (2002), #R36 19



Let U be the column-strict tableau
(17,0)
(0,5) (0,0) (6,0)
(0,9) (0,6) (0,1)

Then the labelling of the entries of U would be

U =

)10
)3 (0,0)5 (6,0)s
1 (07 6)2 (07 1)4

where the labels are the subscripts to the entries,

7
0
0

Y
Y

V=stU) = 3 5
1 2

pu = [9—6 (mod3), 6—-5—1 (mod3),5—1

(13,0)

(0,0) (0,0)
(13,0)9

(070)6 (070)7
8 9 ,

4 6 7

(mod 3), 1-0—1

(mod 1),

0,0-0 (mod2), 0—0 (mod5), 6—0—1 (mod}5),
13—6 (mod 5),17—13—1 (mod 5)],
= [0,0,1,0,0,0,0,0,2,3],
(7,0)
CPU(St(U>) = (07 2) (070) (170) (370)
(0,3) (0,3) (0,1) (0,0) (0,0)
and
Yoo, v = [(0,6),(0,3),(0,3),(0,0),(0,0), (0,0), (0,0), (5,0), (10, 0), (10, 0)].
Note that
7
6 9
Vit = st(U)! = 4 8 :
2 5
1 3 10
py = [2,2,1,0,0,1,4,4,2,1]
and
(7,0)
(2,0) (14,0)
C,-(st(U)") = (0,0) (11,0) .0
v (0,4)  (0,0)
(0,7) (0,2) (15,0)
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Note that (1,0) replaced 8 in st(U) when we constructed C,,, (st(U)). (11, 0) replaced
8 in st(U)! when we constructed C,- (st(U)"). Now, (1,0)+(11,0) = (12,0) which is the
eighth entry of Sy as we read from left to right. In fact, the sums for the replacement
for i equals the i*" entry of Sy for 1 <4 < 10. This leads us to our next lemma.

Lemma 3.2.

Let Sy = {s1,52,--+,5n}, V a standard tableau and p € Yy . If ¢; replaced i in
C = C,(V) and if ¢ replaced i in C' = C,— (V") then ¢; + ¢ = s;.

Proof
Assume g is of case (3.1) and hence p; = 0. Then s; = (0,0), ¢; = (0,0), ¢; = (0,0)
and s; = ¢; + ¢;. Assume for some i > j that ¢; + ¢ = s;. Now,

civ1 = (ci1+ pi +0v(3),0)

and
Ci1 = (ciq+p; +0ve(i),0).

Note that 6y (i) + dve(i) = 1, p; + p; = biyjo—n — 1 and ¢;1 + ¢ ; = s;,1. Therefore, we
have . . , .
civ1 + ¢y = (cin + pi + 0v(i) + ¢y + p; + Ove(i),0)

= (si1 + bitjr—n,0)
= (8i+1,1,0)
The other cases are similar. O
The following lemma is proven in [4] (see equations (6.5) and (6.6) in Theorem 6.2).

Lemma 3.3.

Let Sy = {s1,82, -+, sn}, let Q be a standard tableau of shape X, let C' be a column-
strict tableau with entries from A also of shape A\ and let ¢; be the entry in C that
corresponds to the cell containing v in Q). Then

Q. Clper(0x,0y) A, (X.Y) = > sgn(¢) dy [Q", Eglact,
PESK

where dg 1s an integer and Ey is the tableau of shape A that has entry sgz-1(;) — ¢; in
the cell that contains i in Q. Furthermore, if Sp-1(i) — ¢i & A for any 1 <i < n, then
dg = 0; otherwise dg > 0.

Example

Let g = [[1, 1,4],[1, 2]] Therefore,

S, = {(0,5),(0,1),(0,0),(2,0)}
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and

yi o1 w;
Y3 y2 1 7
Ag, (X,Y) =
oY) =8 1 a2
yi ya 1 2}
With p =1[2,0,0,1] and
2
M= 1 3 4
then (0.0)
¢ =G0 =0y 00 woy
Therefore, ignoring those tableaux with negative entries and letting
4
@ = 1 2 3
we have
[Q?C]pe’r’(aX78Y) ASw (Xa Y)
3 (1,0) 3 (1,0)
=120 |2 ,(0,0) + 120 (2, (0,1)
1 4 (0,2) (0,1)],, 1 4 (0,2) (0,0)],.,

Essentially the coefficient “120” in the preceding equation comes from the fact that

Oz, 831 Yiyors = 120 yPysxy.

Now
4
Mt =3
1 2
p~ = [1,0,0,0]
and
(1,0)
Cp-(M") = (0,0)
(0,2) (0,1)

Note that C,,- (M") is one of the tableaux that appears in [Q, Cl,er(9x,0y) Ag, (X,Y).
The reason that this occurs in the subject of Theorem 3.4 O

The type 7(W) of a tableau U is a listing of the entries of U in decreasing order with

respect to < 4. For example, with

(2,0) (4,0
U=1(0,0) (3,00 (3,0)
(0,1) (0,1) (1,0) (4,0)
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then
T(U) = (4,0),(4,0),(3,0),(3,0),(2,0),(1,0),(0,0),(0,1),(0,1).

Recall that the column sequence of a tableau U is defined to be a listing of the entries
of each column of U from bottom to top starting with the column farthest west and
continuing east. For example, the column sequence of U is

es(U) = (0,1),(0,0),(2,0),(0,1),(3,0),(4,0),(1,0),(3,0), (4,0).

With > denoting the lexicographic ordering, we will say that
U <ste' V (3.7)

when
1. sh(U"%) <, sh(V") (specifically, V is higher than U); or
2. if sh(U) = sh(V) then 7(U) <, 7(V); or
3. if sh(U) = sh(V) and 7(U) = 7(V) then ¢s(U) >, es(V).

Furthermore, we will state that (U, V) <. (P, Q) when
1. U <4 P; or
2. if U = P then V <u0 Q.

Define
COs, = {Cp(V) . VeEST, and pe Ty} (3.8)

and
By, = {[Q,C]per . Q € 8T, C € COg, and sh(Q) = sh(C) } (3.9)
Theorem 3.4.

Let Q be a standard tableau of shape X and let C € COg, with sh(C) = sh(Q).
Furthermore, suppose that C = C,(V') where V is a standard tableau and U = C,- (V").
Then

[Q, Clper(0x,0y) Ag, (X,Y) = eqru [QF, Ulger + Z epm [P, M]get, (3.10)

(Qt7U)<stc(P7M)
PeSTp,MeCSp

where eqe 7 # 0. Therefore, the collection By, is linearly independent in Cg[X,Y].
Proof

Recall that in Theorem 3.1, we showed that the collection
{[M, Ulger : M € ST, U € CS,,, sh(M) = sh(U)}
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is linearly independent in C[X,Y]. Thus equation (3.10) immediately implies that the
collection

{[Q,C’]per(ﬁxﬁy) ASw (X,Y) : [Q, Clper € Bws}

is also a linearly independent set in C[X, Y]. This would imply that the collection By,
is linearly independent in Cg[X, Y] since

aipr + @apa + -+ agpr € Is(X,Y)
& (Oé1p1 + agpa + o0 + Oékpk>(5x,5Y) Ag, (X,Y) =0
& aip1(0x,0y) As, (X,Y) + -+ + agp(0x,0y) As, (X,Y) = 0
where o; € C and p; € By,
Lemma 3.3 implies
Q. Clyer (Ox,0) 85, (X.Y) = 3 s9n(0) di [Q", Eslacr
$ESK

where E is the tableau of shape A that has entry s4-1(;) — ¢; in the cell that contains
i in Q!. Furthermore, if any of the entries S-1(i) — ¢i ¢ A then dy = 0. Suppose that

[Q, C]per — Z (bX,Y (xil’la:SQ’l o _xszyfl,zygz,z o _yrclng)
PER(Q)

where ¢; = (¢1,1,¢1,2) is the entry in C that corresponds to the cell containing i in @
and R(Q) = D(Q") is defined in equations (2.2) and (2.3). (Recall that the action ¢x y
is defined in equation (1.5).) Set

. c1,1_C21 Cn,1,,C1,2,€22 cpo
QQ.c = Ty Xy XY Yo Yno-

If ¢x,v(qqg,c) = q0,c and ¢ € R(Q) = D(Q") then ¢; = cy(;) for 1 <i < n and

Se=1(i) — G = S¢=1(i) — Co1(d)-
Lemma 3.2 implies that
Se=1(i) — Co—1(i) = Up—1(4)
where u; is the i entry of U = C,- (V). Therefore, with ¢ € R(Q) = D(Q"), we have

Sgn((b) [Qt7E¢]det = Sgn(¢) Sgn((b) [QtvU]det - [QtyU]det-

For ¢ such that ¢x vy (qg,c) # qq,c (i-e., cpu) # c; for some i), or ¢ ¢ R(Q), it is
not difficult to show that Ey >_, U (see, for example, Theorem 6.2 of [4] where it is
worked out for the sequence

bs = [[1,k,k,---,k],[1,k,---,k]]
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in a fashion that is general enough to fit our particular situation). O

With
¢S - [[17a27"'7aj]7[17b27"'7bn—j+1]]7

for 1 <t<j—1, set
JH1—t
v o= (0, > a> (3.11)
i=2
for j+1<r <n, set

r+j' —n

o= | D Bibi0 (3.12)
i=2
and set
Fl/Js = {(717727"'773'*17(070)77j+17"'77n) tog At +05j +B2 + - +BJ’ > 0}
where a; and 3; are nonnegative integers. The analogues for I'y,, when

g = [[al,ag, . -,an],w]

or

bs = [0, [br,ba ]

is that we set
F¢s = {(717’727"'7’}%)3051+"'+05n> 0}7

n+l1—t
Tt = (0, Z o Gz‘)
i=1

with

for 1 <t <mn, and set

Py = {(n ) s B0+ B > 0

where
i=1

for 1 < r < n, respectively, where the «; and (3; are nonnegative integers.

With v = (71,72, -, 7m) (where v; = (7i,1,%i,2) € A), set

_ Yi,1, V1,2 72,1, 72,2 _Yn,1,,Yn,2
m’Y(Xa Y) - E OX)Y (ml Y T2 Yo mnn nn ) .
oES,
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Recall that the action oxy is defined in equation (1.5). Note that m,(X,Y) is a
symmetric polynomial.

Theorem 3.5.
If g is dense and v € T'yy then m(X,Y) € Zg(X,Y).

Proof

Assume

77Z}S = [17a27"'7aj]7[17b27"'7bnfj+1]:|

(once again, we have a; = b; = 1). Recall that we construct the subset Sy, of A in the
following manner.

h
(i) For each 1 < h < j, place (0, fr) = (0, —1 + Zak) in Sy;
k=1

(ii) For each 1 < i <n —j+ 1, place (¢;,0) = (-1 + Zbk,()) in Sy.
k=1

Now,
Asw(X, Y)
= ) sgn(B) Bxy <90(1)yfj By e adyly 2y el l‘%”‘j“yg)-
BES,

If v = (71,792, +,7n) subject to equations (3.11) and (3.12), it is not difficult to
show that

m,(0x,0y) As, (X,Y)

0—Yo(1),1 fi—7Yo(1),2 0—Yo(i—1),1 fo—Yo(i—1),2
= E Co E sgn(B) Bx,y (371 Y1 g Yj—1
ocES, BES,

0—Yo(i),1. 0=Yo@),2 921 Yo(i+1),1, 0—Vo(j+1),2 In—j+1,1=Yo(n),1 0—=Vo(n),2
L j Tii Yit R 2 Yn (3.13)

where ¢, = 0 if any of the exponents are negative (see, for example, Theorem 5.2 of

[4])-

Suppose 1 < h < j—1,0(h) =k where j <k <nand % = v, # (0,0) (and,
specifically, v,(1),1 > 0) then the exponent of x;, in equation (3.13) is

0— Yoy, <0
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and therefore ¢, = 0. Thus, without loss of generality, we may assume that if v, () #
(0,0) and 1 < h < j —1, then 1 < o(h) < j — 1. Similarly, we may assume that if
Yory 7 (0,0) and j+1 <7 < n, then j +1 < o(r) < n. Let h be the largest integer
such that v,y # (0,0) and 1 < h < j — 1. Thus for all ¢ such that h < ¢ < j — 1,
Yo(q) = (0,0). So there are at least j—h—1 (0, 0) terms in the sequence (y1,72, -+, 7j-1)-
Now, ;i < g 7Yi+1 yields that

Yht1 = Yhi2 = 0 = -1 = (0,0).
Since Vi = Yo(n) # (0,0) we must have 1 <k < h. Also, note that

VYht1,2 = Yht2,2 = 0 = Yj—12 = 0.

Recall that for 1 < k < j — 1 we have

Jj+1-k
Tz = Y @ a
i=2
for some sequence (o, a3, - - -, ;) of nonnegative integers (see equation (3.11)). Thus
0 = 7h+1,2 = Q2 a9 + - + aj—h aj—h,
ag = ag = - = ajp = 0,
and for all 1 <k < j— 1, we have
-k
Te2 = Z o Q.
i=j+1—h

The exponent of y,, in equation (3.13) is, with & = o(h),

Jit1—n = Yoz = fiti—n — Yk2
j+1-k

= fixion — Y qia;

i=j+1—h

With v;2 #0and 1 < k < h, gives us that 7 +1—%k > 5+ 1 — h. Since 9g is dense, we

must have either
j+1-k

fiv1-n — Z a; a; <0
i=j+1—h

or
J+l-k

fj+1—h - Z a; a; = fi

i=j+1—h
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some t, where t < j + 1 — h. If the former case, ¢, = 0. In the latter, note that
t = j+1—r some r where r > h. Therefore, v,y = (0,0) (recall h is the largest integer
1 < h < j such that v,y # (0,0)). In equation (3.13), the exponent of y, is exactly
the same as the exponent of y, (both being exactly f;) and that the exponent of both
x, and xp, is 0. Thus from equation (3.13) we have

0—Yo(1),1_ fi—7Vo(1),2 0—Ys(2),1 f2—Vo(2),2
E Co E sgn(B) Bx,y <x1 i SR | Yj—1
oES, BESH

0—vo(j4+1),1 0—Vo(j41),2 92,1 Vo(j+2),1 0—Vo(j42),2 In—j+1,1=Yo(n),1 0—Vo(n),2
j Y; Tjt1 Yji+1 T T Yn

= 0.

X

(Recall that the action Sx y is defined in equation (1.5).)
The other cases are similar. O

In the case that g = [@, 11,1, -, 1]} it is well-known that all symmetric poly-

nomials m~(X,Y’) are in the ideal Zg(X,Y’). Recall that in this case, Ag(X,Y) is the
Vandermonde determinant in the variables X, Zg(X,Y) is the ideal generated by the
monomials {y1,y2, -, yn} (since 9y, Ag(X,Y) = 0) and the elementary symmetric
polynomials in the variables X (see equation (1.12)). This previous theorem informs us
that for a dense set 1g a certain subset of these symmetric polynomials still reside in

Zs(X,Y). Specifically,
Corollary 3.6.

Assume that Vg is dense. If U € CSg and U ¢ COg,, then

Moy, o (X,Y) € Ts(X,Y).

Proof
Let V = st(U). Assume

¢S - [17a27"'7aj]7[17b27"'7bn—j+1]:|

and
pPU = [p17,027 “y Pi—15 P55 Pi+1s 7pn]

Recall that v, v is defined in equation (3.6). To show that m.,
need to show that for 1 <t <j—1,

€ Is(X,Y), we

U

jH1—t

Yt,2 = g Qg ay
i=2
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and for j +1 <7r <n,
r—i—j’—n

Yr,1 = Z Bi by
i=2

and then apply Theorem 3.5. Since U € CSg, we may assume that u; = (0,0) and
v; = (0,0). Lets assume that for some k such that j <k <n,

k—i—j’—n

Vi, 1 = Z Bi b;.
i=1

Recall that (see equations (3.5) and (3.6))
Ve = Ukl — Ck,1,

Pr+1,0 = (Uk411 — Uk — Oy (k) (mod brijr—nt1)

and
Ck+11 = k1 + prr1u + Ov(k).

There exists some integer By4j/—n+1 > 0 such that

Yk+1,1
= Uk+1,1 — Ck+1,1
= Oktj'—n+1 Oktjr—n+1 + k1 + pr+1,0 + O0v(k) — (ka1 + pr+ru + Ov(k))
= Brtj —n+1 Oktjr—nt1 + Ug1 — Cr
= Brtj'—n+1 bkyjr—n+1 + Ve

= Brtj'—n+1 bprjr—nt1 + Z Bi bs

k+j —n+1

= Z Bi b;.
=1

The other cases are similar. O

We will say that
U <str V (314)

when

1. sh(U) <r, sh(V); or

2. if sh(U) = sh(V) then 7(U) > 7(V); or

3. if sh(U) = sh(V) and 7(U) = 7(V') then rs(U) > rs(V).
Furthermore with (U, V') a pair of tableaux of shape p and (P, Q) a pair of tableaux of
shape v, we will say that (U, V) <g (P, Q) whenever
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1. U <4 P; o1
2. if U = P then V <4, Q.

Let U be a standard tableau and let R be a column-strict tableau of the same shape

as U. Let r; be the entry in the cell of R that corresponds to the cell containing ¢ in U.
In [4], the proof of Theorem 5.4 established that

mW(X7 Y) [U7 R]pe?“ - Z [U7 Va]per

a€S,

(3.15)

where sh(V,) = sh(R) and V,, has entry 7; + 7,(;) in the cell that corresponds to the
cell containing r; in R. Note that if ; + v4(;) ¢ A, some 7, then

[Ua Va]per(aX; aY) Asw (X, Y) =0

and [U, Vo lper (X,Y) € Tg(X,Y).

Example

Let

and

Note that R ¢ COg,,. Now,

and

Now, with

and recalling that

0,0)
Y 0,5

) (0,0) <2,0>L6T - lU’ o
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(specifically, any row rearrangements of the entries of R does not change the resulting
polynomial) yields

(0,0)
m’y(X, Y) U, (0,1) (0,0) (0,0) ber

_ 4 |p ©0.0) 7 (2.0)

%05 00 2ol T2 %05 00 00,
[ (2,0) .+ (0,0)

%0 0y o), T Y00 0 2o
[+ (0,0) - (0,4)

%D 0 oo, T %0 0o @ol,
[ (0,4)

2% 20 00 0o),,

There are some properties of this expansion that need to be considered. First, the
polynomial
(0,0)

[Uv R]PET = |:U7 (07 5)

(0,0) <2,0>L6T
is the smallest of all the bipermanents with entries strictly from A under <, with
non-zero coefficients. Second, the polynomials

{U’ 2 0.0 (O,O)LW’[U’ LR (O’O)LW

are in the ideal Zg(X,Y). Third, since 9 is dense, m, € Zg(X,Y) and

(0,0)

0.1) € Is(X,Y).

m,(X,Y) {Uv (0,0) (0, O)Ler

Thus, in Cg[X, Y] we can solve for [U, R]per

. (0,0)
V0.5 0,0) 20)],,
_ 1 [, (2,0 _ |y (2,0)
= 73 _U, (0,5) (0,0) (0,0)_per {U’ (0,1) (0,4) (0,0)Ler
[, (0,0) ' (0,4)
%oy 0 o, ~ lU’ 0.1 (0.0) <2,0>L§?0“5<X’Y”'D

The previous example is a special case of Theorem 3.7. In [4], the following was
essentially proven (see Theorem 5.4 and Corollary 5.5). It should be noted that [4]

deals with (using our notation ) the sequence [[1, ky--- k], [1,k, - ,k]}

31
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Theorem 3.7.

Let f : CSs — CSg be an operator on column-strict tableauzr such that if O = f(V)
then sh(O) = sh(V) and st(O) = st(V). Furthermore, suppose that f is such that
if v; and o; are the entries in 'V and O, respectively, that are labelled i and that v; =
vi—0; € A for1 <i <nthenvy; < g vip1 forl <i<n—1. Then, withy = (y1,+,7n)
and U a standard tableau, we have

m'y(Xv Y) [Uv O]per = Cu,v [U7 V]per + Z CrP,Q [P7 Q]per

(U, V)<str(P,Q)
PeSTp,QeCSy

+ Y cepg [P Qper (3.16)
P/'eSTp
Q'¢CSnp

where cyy # 0 and each Q' is a tableau with at least one entry that is not in A.

Note that there is a slight difference between the order >, defined in equation
(3.14) and the order >, defined in [4]. The proof in [4], however, admits the previous
theorem.

Note that Theorem 2.1 implies that the collection CSg spans Cg[X,Y]. (Recall
that if V € CS,, and V ¢ CSg then [U, V]per € Zg(X,Y).) Assume that V € CSg. Set
f=0C,, and hence O = C,,,, (V). Therefore, in Theorem 3.7, we have v = 7,,, v. Recall
that Corollary 3.6 implies that whenever S is dense, m,(X,Y) € Zg(X,Y). Also, in
equation (3.16), since each @ has an entry that is not in the alphabet .4, we must have

[Pva/]per(aX7aY) Asw(X, Y) =0

and [P, Q']per € Zg(X,Y). Therefore, solving for [U, V]pe, in the ring Cg[X, Y], we
have

UVler = [——— Y @ [PQher | (mod Zs(X,V)).  (3.17)

c
UV wv)<arPQ)
PESTn,QECSH

It is not difficult to see that if the type of V is either too large or too small, then
(U, V]per € Zs(X,Y). Therefore, Theorem 3.7 and equation (3.17) imply an algorithm

for the expansion of any element of P(X,Y) € Cg[X,Y] into a linear combination of
the collection By. Thus Theorem 3.4 and Theorem 3.7 imply that

By, = {[Q,C]W . Q € 8T, C € CO4, and sh(Q) = sh(C) }

is a basis for Cg[X,Y].
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If R, u, is the homogeneous subspace of dimension u; in X and dimension us in Y’
of a space R, then we define the Hilbert series H(R) to be

H(R) = Z dim(Ruy, uy) t* 2.

We can summarize the above discussion in the following theorem.

Theorem 3.8.

If S is dense then By is a basis for Cs[X,Y] and the Hilbert series H(Cg[X,Y]) is
given by

H(Cs[X,Y]) = ) > Y 110 (DlgICoa (D)

AFn (M,N)ESTAXSTX pGTwS

— Zh)‘ Z Z tlCon (M) g Cp 2 (M) (3.18)

Arn MESTs p€Yyg

where ST » denotes the collection of standard tableaux of shape A, hy denotes the number
of standard tableauz of shape A and |C,, 1(M)| and |C, 2(M)| denote the sum of the first
and second coordinates, respectively, of the entries of C,(M).

Example
Let n = 3 and suppose that
Ys = [[1, 1], [1, 2]]. (3.19)
Therefore,
Ty, = {[0,0,0],[0,0, 1]}.

Now, letting N denote a standard tableau with three cells and C,, (N) and C,,(N) the
cocharge tableaux with p; = [0,0,0] and p2 = [0, 0, 1], respectively, we have

N Cpl(N) sz(N)

1 2 3 (0,0)  (0,0) (0,0) (0,0)  (0,0) (1,0)
3 (1,0) (2,0)

2 (0,0) (0,0)

1 (0,1) (0,1)

2 (0,0) (0,0)

1 3 (0,1)  (0,0) (0,1)  (1,0)

3 (1,0) (2,0)

1 2 (0,0)  (0,0) (0,0)  (0,0)
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Recalling that hys =1, hgo 1 = 2 and hg =1 yields

H(Cs[X,Y]) = 143t +3tq+t2q+2¢+2t> = (1+1t) (1+2t+2¢+qt). O

The number of pairs (M, N) of standard tableaux with n cells and of the same shape
is n!. This immediately implies the following corollary.

Corollary 3.9.

If s is dense then the dimension (as a vector space) of Cs[X,Y] is dyg n! where
J j’
dll)s = <H ak> H bk . (320)
k=1 k=1

It is interesting to note that Theorem 3.4 did not require Sy, to be dense. Thus the
collection By is linearly independent for any Sy and dyg n! is a lower bound for the

dimension of Cg[X, Y] for any Sy. Note that when ¢g = [[3, 1,1,1], Q)] (note that this

particular 1g is not dense), in [6] it is shown that the dimension of Cg[X, Y] is 360.
Since 360 > 3(4!), there do exist rings Cg[X, Y| with dimension larger than dy, n!.

For a bitableaux bases for g = [[k, 1,1,---,1], @]} see [5].

Note that with

Pl = (Pl, y Pi—25P5—15 P55 Pi+1, " ',Pn)

and
p2 = (pla o '7pj*2707pjapj+27 o '7pn)

(note that we are changing p;_1) that

o

Therefore, in equation (3.18), we have

S Ol gICoa (V)

PETyg
- (1 N L N (qul)aﬂ) S O MgICa (V)]
p€T¢S
pj—1=0

—1)a
B (%) Y 10 MlglCratil,

PETy g
Pj—1=0
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Continuing this argument, let us set dy (g, t) to be
J q(J-H i)a; j' 1— t(j’—i—l—i)bi
dys (gt H( = i )H i | (3.21)
i=1 i=1

Therefore, we have

Corollary 3.10.

Suppose g is dense and let ¥ = [[1j], [1j/]}. The Hilbert series H(Cg[X,Y]) is
given by

H(CS[X7Y]) = dws(Qvt) H(CS@[X7Y])'

¢ € S, acting on a basis for Cg[X,Y] yields a representation ® of S,,. With I an

injective tableau of shape A, let ¢I denote the tableau of shape A\ obtained by replacing
iin I by ¢(i). Let
N)\ — {N17N27 o '>Nh>\}

denote the collection of standard tableaux of shape A\. Now

¢[NiaU]per = [¢Ni>U]per

h
= > en(® N, Ulper + Y gro [P Qlper
k=1 (P.Q)EBy,

sh(Q)>rp, sh(U)

It is not difficult to show that the matrix (e; x(¢)) is the irreducible S,, representation
corresponding to shape A (see [1]).

Thus for a given p € Ty, the action of ¢ € S,, on the collection

{[Ni,Cp(Nk)] N, Ny € NA}

per

yields a representation where the S,-irreducible representation of shape A has multi-
plicity hy (the number of standard tableaux of shape A). Thus for each p € T, there
corresponds one copy of the S,-regular representation. Therefore, we have

Corollary 3.11.

If S is dense then the multiplicity of the regular representation of S, in the repre-
sentation ® is dy, .

Now, let R, ., denote the homogeneous component of Cg[X, Y] of degree u; in X
and ug in Y. With b € By, (recall, By, is a basis for Cg[X,Y]) and if b € Ry, 4, then
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Theorem 2.1 and Theorem 3.7 imply that ob € R, 4,. Now, Theorem 3.7 implies that
if p€ Ry, us»

p=Y dib (modZs(X,Y))
=1

and d; # 0 then b; € R, 4,. Specifically, if p € Ry, u,, then op € Ry, u,. Let
char (R, u,) denote the character of the action of o € S,, on R, 5. The graded character
of Cg[X,Y] is defined as

chary+(Cs[X,Y]) = Z char (R, ) t“* ¢*2. (3.22)
Corollary 3.12.
With S dense, the graded character chary(Cs[X,Y]) of Cs[X, Y] is given by:

charg (Cs[X,Y]) = Y x> Do > G (DiglCr(aD (3.23)
An pEYy  MEST

= d¢S(Q7t> ZX)\ Z t'cpal(M)|q|Cp,2(M)|

A\-n MeST
p=(0J—1 0,0n—17)

= dyg (¢,1) Charq,t((csxp [X,Y])
where ST 5 denotes the collection of standard tableauz of shape A\ and |C,1(M)| and

|C\2(M)| denote the sum of the first and second coordinates, respectively, of the entries
of Cp(M), x> denotes the irreducible S, character corresponding to shape A and ¥ =

[119], 1]
Example

With g given in (3.19), we have

charg +(Cs[X,Y]) = (1 + X + (tg + 2gx") + (¢ + tg + t + )&V
= (1+1¢) (X(?’) + tqg xPP (4 q) X(2’1)>- 1

With

for 1 <i <n, set
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and
A= )\1/15 - ()\17)‘27"'7)‘71)'

Note that in [6], it is shown that the graded Frobenius characteristic of Cg[X,Y] for
any g is given by

f((CS [Xa Y]) = Ei (t) ﬁl” (m; q, t) (324)
where Z)(t) is the Hilbert series of the graded vector space of skew Schur functions
Sx/u(®1,- -+, xy) as p varies in Ay and Hyn(z;q,t) is a variant of the Macdonald poly-

nomial (see Theorem 2.1 in [6]). Since the Frobenius characteristic of the factor space
Csy [X, Y] where U = [0, [17]] is Hyn(2;q,t), we get

Corollary 3.13.

If
¢S = Q)v [b17b27"'7bn]

1s dense, then
E,\ws(t) = dys(0,1).

4. The Symmetric Module (CET[X, Y, Z, W].

Let £P; be the module of polynomials over C of length n in the indeterminants
(wilsk) where w; = (w; 1, w;2) and s, = (k,1,S%,2) are elements from the alphabet A.
Recall that the ring C5#[X,Y, Z, W] is defined by

CS[X,Y,Z,W] = {P(X,Y,Z,W)E(C[X,Y,Z,W]:aP - PVUESn}.

Additionally, the ideal I;C’T(X Y, Z, W) and the factor space C;T[X Y, Z, W] are de-
fined by setting

TEr(X Y, 2,W) = { P € C(X,Y, Z,W]: P(9x.0v.02,0w) As(X,Y) Aq(Z,W) = 0}

and
CL XY, Z,W] = C™X,Y, ZW]/T{ (XY, Z,W).

Note that the factor space (CET[X Y, Z, W1 is a generalization of the factor spaces found
in [16] and [2].

Define the homomorphism ¢t : EP: — C5n [X,Y, Z, W] by linearly extending the

map

0" ((wlkl) (w2ls2) (wsls3) - - - (wnlgn)>

-y FLpTI e s S0 e S yene)
= OX.Y,Z,W (951 o Tp " Y1 Yo Yn "7 21 Zpt Wy w7 ) .

oES,
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Now, let U and V be two column-strict tableaux of shape A = (A1, Ag, -+, \x) with
entries from A and let I be an injective tableau of shape A. Furthermore, suppose that
u; and v; are the entries in the cells of U and V respectively that correspond to the cell
containing ¢ in I and let

fr = Al o Al (4.1)
Noting that by acting by a~! on both the subscripts and superscripts yields
x?lia(1),1x?2ia(2),1 . ‘x::l'la(n),l yiia(1),2 L y;’::a(n),Q
ui,1 u2,1 Un,1 uUl,2 Un,2

= TarmyFa-12) " Ta1(n) Yarr) T Yai(n)

and, with D(I) defined in equation (2.3), we have

6" (0 V)aer)
= ¢+ Z Sgn((]{) (ua(1)|'l)1) (ua(2)|'l)2) ce (ua(n)|vn)
aeD(I)
=2 Ux,Y,Z,W< D sgn(a) an et - gy
€S, aeD(I)

VL1 Vs V12 o ,Un,2
21 Zn wy Wy,

— % Z Jx,y,z,w< Z Bx.v,z,w ( Z sgn(B~Y) sgn(a)

o€Sn BeD(I) B~laeD(I)
Ui, . Un,1 Uui,2 . Un,2 V1,1 .. aUn1 V1,2 L ayUn,2
Ta 1) Talatm) Ya-ta() Y tamFl A W Wy >>

1 ui, Un, U1, Un,
" 2 "X’Y’Z’W< 2 29m(@) Ty Ty Vo) Vol
gESR aeD(1

> sgn(B) Z5y e 2pt Wik '%%)
BeD(I)

— fi Z OX.Y,Z,W ([I, Ulaet (X, Y) I, V]get(Z, W)),
r oES,

Similarly,

&+ <(U, v)pew) - % Y oxvzw <[I, Ulper (X, Y) [I,V]per(Z, W)).

cES,
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We will denote ¢+ (U, V)aer) and 6% ((U,V)per) by [U,VIE, and [U, V], ve
spectively. It is not difficult to see that the definitions of [V,U]t.. and [V,U]} , are

per
completely independent of the choice of the injective tableau I. Furthermore, note that

¢t is a vector space isomorphism between £P; and C°[X,Y, Z, W]. Theorem 2.2 and
Theorem 2.1, therefore, immediately imply the following two lemmas. (Recall that the
collection CS,, consists of column-strict tableaux with entries from the alphabet A.)

Lemma 4.1.

The collection

GBD,, = {[U, VIL, 1 U,V € CS,, sh(U) = sh(V)}, (4.2)

is linearly independent in C3[X,Y, Z, W] with coefficients from C.
Lemma 4.2.

The collection

GBP, = {[U VI, : U,V € CS,, sh(U) = sh(V)}, (4.3)

spans C5*[X,Y, Z, W] with coefficients from C.

Recall that with pairs of tableaux (D, E') and (F, G), we have defined
(Da E) <stc (Fa G) (44)

when
1. D <4 F (see equation (3.7)); or
2. if D = F then E <4, G.

We want to prove that the collection
BSQsr = {[U VIt iU € COs,V € COr and sh(U) = sh(V)} (4.5)
is a basis for (CECT[X Y, Z,W]. Suppose [U, V], € BSQsr. Thus U = C,, (P) and

per

V = C,,(Q) for some standard tableaux P and () and sequences p; € Yy  and pa € Yoy,
Let D = C’p1 (P) and E = Cp2 (Q). Now,

oxyzw As(X,Y) Ap(Z, W) = As(X,Y) Ap(Z, W),
(recall equation (1.4)) and thus
[U V]per(aXaﬁYaaZaﬁI/V) AS(X Y) AT(Z W)

f[ Z OX Y, Z W <[I U]per(ax,ay) [I V]per(az,aw)) AS(X Y) AT(Z W)
ocESH

=+ 3wz (I1Uler(0x.8y) As(X.Y) [1.Vhr (02, 0w) Ar(Z, W)
o€ESh
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Lemma 3.3 and Theorem 3.4 imply that
U, V]},.(0x,0y,0z,0w) As(X,Y) Ap(Z,W)

per
1
=+ 3 oxvzw (11 Uer(0x.0v) As(X,Y) [1.V]yer(97.0w) Ar(Z.W))
ocESH
1
= E CD,E [D7E]$€t + Z CF,G |:}7'7 G]j@t'

(DaE)<stc(F7G)

where c¢p g > 0. Since the collection GBD,, is linearly independent (Lemma 4.1) and
using the fact that
C1p1 + -+ CmPm S I;’T(Xv Y7 Z’ W)
~ (Clpl + o+ Cmp’Iﬂ) (8X76Y76Z78W) AS(Xﬂ Y) AT(Zﬂ W) =0
-~ Clpl(aX7 aYa aZ, 8W) AS(Xﬂ Y) AT(Zﬂ W) + o
+ empm(9x, 0y, 0z,0w) As(X,Y) Ar(Z, W) =0,
where ¢; € C and p; € BSQg 7, we have
Theorem 4.3.
The collection BSQg 1 is linearly independent in CET[X, Y, Z, W].
Let (P, Q) and (U, V) be pairs of tableaux. Recall that we have defined
(P7 Q) <str (U7 V) (46)
if
1. P <4, U (see equation (3.14)); or
2. if P=U then Q <gs, V.

Now suppose that [U, V]F,. € GBP but [U, V], & BSQs 1. Let v = ,, v(U) and
v = 7p,v(V). Since [U, V], ¢ BSQgr, we know that at least one of v and v is
a sequence not made up of entirely (0,0)’s. Furthermore, let st(U) and st(V') be the
standard tableaux constructed from the labellings of U and V respectively. We will set

M =C,,(st(U)) and N = C,,, (st(V)). Now,
m~(X,Y) m,(Z,W) [M, N]}

= m’y(Xa Y) mV(Za W) Z OX.Y,Z,W ([]7 M]PGT(X7 Y) []7 N]per(Z7 W))
oES,
= 3 oxviaw <m7(X, Y) (I, Mper(X, V) mu (2, W) [I, N]per(Z, W))
oES,

= Z UX,Y,Z,W Z [I; Qa]per(Xa Y) Z [Iﬂ Pﬁ]PeT(Z7 W)

O'GSn aESn ﬁesn
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- Z Z Z IX.Y.Z2,W < [, Qalper (X, Y) [, Pglper(Z, W))

a€S, BES, cg€S,

= Z Z[QOMPﬁ];—eT

a€eS, BESH

where (), and Pg are as defined in equation (3.15). Thus, using Theorem 3.7 and the
straightening algorithm in Theorem 2.1, we have

m~(X,Y) m,(Z,W) [M, N}

per

=leow UV + Y o PQLL, <modI§T(X7Y,Z,W)) (4.7)

(P,Q)>str (U, V)
P,QeCSn

where cyy > 0. Now
my(X,Y) m,(Z,W) € TS (X, Y, Z,W)

if both S and T are dense. Thus, equation (4.7) implies an explicit algorithm for
expanding polynomials in (C;T[X Y, Z, W] in terms of BSQg r (with coefficients from

C or I;C’T(X7 Y, Z,W)). Using Theorem 4.3, we now have
Theorem 4.4.

If S and T are dense then

BSQsr = {[U, V] : U €COs,V € COp and sh(U) = sh(V) |

per

is a basis for (CET[X, Y, Z, W] with coefficients from C.

If Ru; us,us,u, i a homogeneous subspace of dimension u; in X, ug in Y, ug in Z
and ug in W, then we define the Hilbert series H(R) to be

H(R) = Z dim(Ruy g s ug) t40 42 T4 s

U1, U2,U3,Uq

Recall that dy4(g,t) is a polynomial defined in equation (3.21) and that Y, and Ty,
are collections of sequences defined in equation (3.4).

Corollary 4.5.

If S and T are dense then the Hilbert series H((CET[X, Y, Z, WJ) for (CET[X, Y, Z, W]
s given by
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H(CET[X, Y, Z, W)

- Z Z Z Z tlCo 1 (M)] g Cp 2 (M) | Cpr 1 (N)] 6| Cpr 2 (N

AFn pGTws p’GTwT (M,N)GSTX XS8T
= dws (q,t) d¢T(S7T) Z Z t|Cp,1(M)|q|Cp,2(M)|r|Cp/,1(N)|S|Cp/,2(N)|’ (48)

An (M,N)EST \ xST y
p=(07),p/=(0")

where ST 5 denotes the collection of standard tableauz of shape X, C,(M) denotes
a cocharge tableau corresponding to a tableau M and a sequence p, |C,1(M)| and
|C\2(M)| denote the sums of the first and second coordinates of the cocharge tableau
C,(M), respectively.

Example

With S =T given in (3.19) we have

H(CS XY, Z, W)
= (1+t)(1+7r) + (g+tg+t+t*) (s+rs+r+1?) + (tg+t3q) (rs+1r?s)
= (1+1) (1+¢q) <1+(t+q)(r+s)+tqrs>.

5. The Skew-Symmetric Module C;T[X, Y, Z, W].

We will let LP, denote the letter-place module over the alphabet A of length n that
is diagonally skew-symmetric. Specifically, with w;,s; € A, we have that

(w1ls1) (w2ls2) (wsls3) -+~ (@wnlsn) = 0 (5.1)

if (w;|s;) = (wg|sk) for i # k and that

(@o1[601) (®oalSon) - (@0, lso,) = sgn(o) (@ilar) (@2ls2) - (@alsn).  (5:2)

Note that Theorem 5 on page 28 of [11] implies that the collection
{0 V)aer :U €C8,,,V € RS, sh(U) = sh(V) |

is a basis for LP, (where CS,, and RS,, are the collections of column-strict and row-
strict tableaux, respectively, with n cells with entries from the alphabet A.) Recall
that

CTIX,Y,Z, W] = {P €C[X,Y,Z,W]:oxyzw P = sgn(o) PV o€ Sn},
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Ig’T(X7 Y, Z, W)= {P €eC [X,Y,Z,W]: P(0x,0vy,02,0w) As(X,Y) Ap(Z, W) = 0}
and
CE,T[Xv Y, Z, W] = C[X,Y, Z, W]/ZE,T(Xv Y, Z,W).
Define ¢~ : LP,, — C[X,Y, Z, W] by linearly extending the map
0~ ((w1]1) (w2ls2) (w3|<3)"'(wn|<n))

o w11 e w1,2 w S1,1 IS S1,2 Sn,
— E sgn(U) OXY.ZW (xl n1y1 . ynnz ...Znnlwl ...wan)

oc€S,
where w; = (w; 1,w;2) € A and g, = (S,1,k,2) € A.
Let G be the (group) direct product G = S,, x S,, and let C[G] be the group algebra

on G with coefficients from C. The action of («, 3) € G on a polynomial P(X,Y, Z, W)
is defined by (recall equation (1.5))

(057ﬁ> P(X7Y7Z7W) = OaXxy ﬁZ,W P(X7Y7Za W)

We will identify axy = (a,¢€), Bzw = (6,0) and ox vy zw = (0,0), where € is the
identity element in the symmetric group S,,. With I a standard tableau, recall that
D(I) = R(I') (see equations (2.2) and (2.3)) and that f;. is the order of the group
D(I). In the group algebra C[G],

Z sgn(o) oxy,z,w Z sgn(a) OéX,Y]

o€Sy LaeD(I)
, _
= 7 Y sgn(o) oxyzw | Y sgn(B) Bxy.zw
' 5es, LBeR(I)
Y. sgn(B7Y) sgn(a) Byl axy ]
B~ laeD(I)
1
= f_ Z Sgn(O') O-X7Y’Z’W[ Z sgn(a) axy Z BZW ] (53)
' es, aeD(I) BER(IY)
Similarly,
> sgn(o) oxvizw Z Bz, W]
oc€S, LBeR(IY)
1 | _
= Y sgn(o)oxyzw | Y, sgn(@) axyzw Y, azy ﬂz,W]
" es, LaeD(1) a—1BER(I?)
, _
= f_ Z Sgn(O') OX)Y,ZW Z sgn(a) axy Z ﬁZW ] (54)
I* 5es, L \aeD(1) BER(It)
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The equality of equation (5.3) and equation (5.4) yields the following important identity:

Z sgn(o) oxy.z.w Z sgn(a) &X’y]
o€S, _aGLKI)
= ) sgn(o) oxyizw | Y, Bz w]
oES, [ BeR(IY)
1
= ﬁ Z sgn(a) UX,Y,Z,W [ Z sgn(a) OéX7Y Z ﬁZ,W . (55)
I es, a€eD(I) BER(It)

Let U and M be, respectively, a column-strict tableau and a row-strict tableau both
of shape A. Equation (5.5) implies

¢~ ((U, M)det) (5.6)

U1 ul,2
= ) sgn(o) UX,Y,Z,W[ Y sgn(a) axy zy"t iy g
oESy aeD(I)

mi My1,,M1,2 My 2
AU T wy'n ] (5.7)

u1,1 un uy,2 U,
= Y sgn(o) ox.y.zw [901 : Ty ey

oES,
S Bzw e ] (5.8)
BER(I?)
1
=5 > sonlo) oxvzw (I, Ulaer(X,Y) [, M']yer (2, W) ). (5.9)
cES,

Note that since M is row-strict, M? is column-strict. Let us denote ¢~ <(U, M )det) by
U, M|, Set

CSRS,, = U M],,:UeCS,,M cRS,,sh(U) =sh(M) ;. (5.10)
det

Since ¢, is a (vector space) isomorphism (up to sign), we have
Theorem 5.1.
The collection CSRS,, is linearly independent in C~[X,Y, Z, W].
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It is important to note that equations (5.7) and (5.8) imply that the straightening
algorithm found in Theorem 2.1 can be used in LP,, to write every [P, Q],., as a linear
combination of elements from CSRS. Particularly, we have the following lemma.

Lemma 5.2.

Suppose that U and M are tableauzr such that sh(U) = p and sh(M) = v where p
and v are not necessarily equal. Let Iy and Iy be injective tableaux of shape p and v
respectively. Let \ be the larger (lexicographically) of ut and vt. Then

Z 8971(0') OX\Y,ZW <[117U]det(X7 Y) [I§7Mt]per(z7 W)) = Z CP,Q [P7 Q]d_et
g€Sy, sh(P*)>p At

where [P, Q],,, € CSRS,,.

Proof

Suppose that A = p!. Then, assuming that

[I§7Mt]pe7‘(Z?W) = Z &) pi(va)a

where each p;(Z, W) is a monomial in C[Z, W], and using equations (5.7) and (5.9), we
have

> sgn(o) oxyzw | ([ Ul (X.Y) 115, M er (2. W))]

oES, L
u1,1 Un,1,,U1,2 Un
= § sgn(o) oxyv,z,w ( E sgn(a) axy o " xpyttyp Ty, ’2)
oESn L " aeD()

Zci pi(Zv W)

ui,1 u Uui,2 u
= E C; E sgn(a) OX)Y,ZW [( E sgn(a) axy T .. .xnn,lyl e nn,z)
i

oceSy CYGD(Il)

pi(Z7 W)

_ %Zcz Z sgn(o) ox.y.z.w [[IlgU]det(X, Y) 1L, Qilper(Z, W)].
1o oE€Sn

The proof concludes by applying Theorem 2.1.

The proof when \ = v is similar. [
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With I an injective tableau of shape sh(U) = sh(V), set

1
U VIper = 5 3 s9n(0) oxv.zw |1 Uler(X,Y) [ V]per (02, 0w) D (2, w)
oES,
(5.11)
where f; is the order of the group R(I). Our goal is to show that the collection
BAQsr = ﬁUﬁﬂ@TJ]ECOSJ/GCOpsMU):shOU} (5.12)
is a basis for CE’T[X Y, Z,W]. To this end, we have the following lemma.
Lemma 5.3.
If the collection {p1,p2, -, pm} s a basis for Cp[Z, W] then the collection
{pl(aZ7 aW)AT(Zu W)a T 7p7TL(8Z7 8W)AT(Z7 W)} (513)
is a basis for Cp[Z, W].
Proof
Define an inner product <, > on C[Z, W] by setting
< P, Q > = P(az,aw) Q‘Z:W:O (5.14)

where | z—w—o indicates that we evaluate the resulting polynomial P(dz,0w) Q at
= =zp=w1 =-=w, =0.
It is clear that for any polynomial P € C[Z, W] that
<P,P>>0

and
<P,P>=0

if and only if P = 0.

Note that p;(0z,0w)Ar(Z,W) # 0 since each p; is an element of a basis for
Cr[Z,W]. Suppose that

Q = Y o pe(9z,0w) Ar(Z,W) € Ir(Z,W)
k=1
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where not all of the ¢; are equal to zero. Since the collection {p1,p2,- -, pm} is a basis
for Cp[Z, W],

n

Z Ck Pk ¢ IT(Za W)

k=1
and @ # 0. Let

n

P = chpk

k=1
and thus we have
P(0z,0w) Ar(Z,W) = Q.
Set
N = Q(dz,0w) Ar(Z,W) = 0

and hence < P, N >= 0. However,
< P,N> = P(0z,0w) Q(0z,0w) Ar(Z,W)|z=w=0
= Q(0z,0w) P(0z,0w) Ar(Z,W)|z=w=0

=<Q,Q>
> 0,

a contradiction. Thus Q(0z, 0w )Ar(Z, W) #0, Q ¢ Zp(Z, W) and the collection
{102, 0W)A2(Z,W), -, pu(02,0w) A0 (2, W) }
is linearly independent and hence a basis for Cr[Z, W]. O
It should be noted that Steinberg uses similar ideas in a different setting (see [18]).

Now,
capr + o0+ empm € Ig (X, Y, Z, W)
& (apr + -+ + empm) (0x,0y,0z,0w) As(X,Y) Ap(Z, W) =0
& cip1(0x,0y,0z,0w) As(X,Y) Ar(Z,W) + -
+ Cmpm(0x,0v,0z7,0w) As, (X,Y) Ar(Z, W) = 0.
Thus we have shown

Lemma 5.4.

The collection {p1,p2, -+, Pm } is linearly independent in C;T[X7 Y, Z, W] if and only
if the collection

{p1(3X,5y,5Z,5W) Ag(X,Y) Ap(Z, W), -,

Pm(Dx, 0y, 02,0w) As(X,Y) Ar(Z,W) |
is linearly independent in C[X,Y, Z, W].
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This leads us to our next theorem.
Theorem 5.5.

The collection

BAQsr = {[U, V], : U € COs,V € COp, sh(U) = sh(V) }

is linearly independent in (Cg’T[X7 Y, Z, W].
Proof

To prove this theorem, we will show that the collection
BAQDg
= {[U.V)r (9x, 8y, 02, 00) As(X,Y) Ax(Z,W) < [U, V], € BAQsz} (5.15)

is linearly independent in C[X,Y,Z, W] and then apply Lemma 5.4. To prove the
independence of the collection BAQDg 1, we will define a linear map

n:C3,0[X,Y,Z, W] — CIX,Y, Z,W]

and show that the matrix (g; ) defined by

77<[Ui7vi];er(aXaaY7aZaaW) As(X,Y) Ar(Z, W)) = > 9in [Un, Vilgs  (5.16)
h

where

{[U17 V].];e'/ﬂ [U27 ‘/2]];87"7 Ty [Um7 Vm];er}

is a listing of the elements of BAQg 1 in increasing order with respect to <g (see
equation (4.6)) and

{[Ub ‘/1t]d_€t7 [U27 ‘/2t];et7 ) [Umv VTZ]d_et}

is a subset of CSRS,, (see equation (5.10) and Theorem 5.1) listed in increasing order
with respect to <g. (see equation (4.4)), has rank m = |[BAQgr|. (Note that the
polynomials in the former collection are bipermanents and the polynomials in the latter
collection are bideterminants.) Specifically, we will show that (g; ) is a nonsingular
m X m matrix.

Suppose that [U, V] .. € BAQgs . Now,

U, V] ., (0x,0y,0z,0w) As(X,Y) Ap(Z, W)

;er(
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1
= — Z sgn(a) OX\)Y,ZW

fI oESy

[[1, Ulper(X,Y) [I, V]per (82, 0w) Ar(Z, W)} (9x, 8y, 07, 0w) As(X,Y)Ap(Z, W)

1

-+ (11, U)per(9x, 0v) A5 (X, V)]

Z sgn(a) OX)Y,ZW
oES,

“[I, Vlper(0z,0w)Ar(Z,W)](8z, 0w )Ar(Z, W)} (5.17)

where [ is some injective tableau. Now, let

B¢T = {[01, ‘/1];067“7 [027 V2];Dera T [Okv Vk]:ﬂe?‘}

be a basis for Cp[Z, W] ordered (from smallest to largest) with respect to <g (see
equation (4.6)). Therefore, the k x k matrix (¢; ) defined by

[[oi, Vilper (92, 0w) Ar(Z, W)} (92,0w) Ar(Z, W)

= cin [OnVilper(ZW) + > &pp [D, Elper, (5.18)

h DESTy
EECSn,E¢COp

is unique and nonsingular since both By, and

{[[oi, Vilper (92, 0w ) Ar(Z, W)] (D2, 0w )AF(Z, W) :1<i< m}

are bases for Cp[Z, W] (apply Lemma 5.3 twice). Note

Z §D,E [Da E]per GIT(Z, W)

DESTH,
EeCSy,E¢COp

and fD,E € (CUIT(Z, W)

Some additional properties of equation (5.18) need to be established. Particularly,
let g7, 7 and 7o, v, be monomials such that

Arp(Z,W) = Z sgn(a) a qrr
a€S,

and

[Oia‘/i]per = Z 0 T0,;,V;-
UGR(OQ)
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We have (by equation (5.18))
104 Vilyer (07, 0w) Ar (2, W)] (92, 0w) Ar(Z, W)
= Z Ci,h [Oh, Vh]peT(Za W) + Z gD,E [D, E]per

VhGCOT DeSTx
E€CSn,E¢CO

2[ Y oro.v | (0z,0w)

O'GR(OZ)

<sgn<a>a 3 sgn<a>a<qI,T>>]<aZ,aw> sgn(o) o 3" sgn(B) 8 (ar.r)

a€S, BESH

= Z sgn(c) Z sgn(p) Z o ( ( (ro..v.(9z,0w) « (q1,1)) (5Z,5W)> p (QI,T)>-

Note that the terms

O'GR(OZ)

Z o ( < (Toi,vi(ﬁz,ﬁw) Q (qLT)) (82,8W)> 3 (qLT)>

correspond to bipermanents of shape sh(O;) = sh(V;) and thus the algorithm implied
by Theorem 3.7 gives us that if sh(V},) <z sh(V;) then ¢; , = 0. Thus (¢; 1) is a upper
block triangular matrix and each block is nonsingular (since (¢; ;) is nonsingular). Note

also that if sh(E) < sh(V;) then £p g = 0 (see equation (3.10)).

Additionally, the straightening algorithm associated to Theorem 2.1 yields that

[[oi, Vilyer (92, 0w) Ar(Z, W)] (02, 0w) Ar(Z, W)

- Z Ci,h [027 Vh]per(27 W) + Z Ci,m [Om7 Vm]per(27 W)
VheCOr sh(Om)>sh(0;)
Vm €COT,0mEST p,
+ Z foi,E [017 E]per + Z SD,F [D7 F]per-
E¢cOrp DESTp,sh(D)>1,sh(0O;)
EcCSy F¢CcoOp,FECSy

Now, the coefficients (e;) defined by
[Oi7 Ui]per(aXy aY) AS(X7 Y)
= €; [Of,(] —
Pyt
B Hg>stcc — (Ut>
Pyt

1
HgeCSp

+ Z dp,o [P, Q)det

sh(Pt)>sh(Uf)
PeST,p,QeCSn
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are nonzero (see Lemma 3.3, Theorem 3.4, equation (3.10) and the algorithm associated
to Theorem 2.1). Furthermore, the coefficients (d; 4) and (dp,g) are unique.

Substituting (5.19) and (5.20) into (5.17), setting
= {V, € COrp : sh(V}) = sh(V;)},
O; = I and recalling equation (5.9) and Lemma 5.2 yields

[Us, Vil

B 1
fo,

(0x,0y,0z,0w) Asg(X,Y) Ap(Z, W)

per

Z sgn(a) OX\Y,ZW

oES,

101, Ulper (0, 0v) A5 (X, V)]

04, V]per (9, 0w) A (2, W)] (9, 0w) A (2, W) |

1
= — >~ sgnlo) oxvzw | e [05,C, (UD]aer(X,Y)
foi o€eS Uf
+ Z di,g [Og,Hg]det(Xa Y) + Z dp,q [P, Qlae(X, Y)]
Hg>g4cC _ (Uf) sh<P)>sh(Uit)
Pyt PEST,,QeCS,
ngcs,zl
|: Z Ci,h [Oza Vh]per(Za W) + Z Ci,m [Om> Vm]per(za W)
sh(O;)=sh(V}) sh(Om)>sh(0O;)
VL, ECOT ,OmEST y, Vm €COp
+ Z goi,E[OiyE]per + Z £D,F[D7F]peri|
E¢CcOp DESTp,sh(D)>1, sh(O;)
EECSp FgCOp,FECSy
fot
= Z € Cih | p Ut) Vh]det
0O; VweV; Yi
+ Z dM,N [M7 N]c;et + Z vaE [Q7Et]d_et7 (521)
(M,N))>stc(C _ (Uf),V}f) Q¢gCOg or

Pt E¢COT

K3
MeCOg,NeCOp

where () and E are column-strict tableaux. The coefficients e;, ¢;, and dy;,n are
uniquely defined in equation (5.21).

Recall that O; is a standard tableau of shape sh(U;). Define

n:C3pX,Y,2,W] - CIX,Y,Z,W]
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by setting

(U5, Vilyer (9 Oy 02,0))

for

i t t1— t1—

= f 2 Z €; Ci,h [Cp;t (UZ)7 Vh]det + Z dM,N [M, N ]det
Oi VhGVi 2 (MaNt))>stc(Cp_ (Uf)’v}f)

Ut
3
MeCOg,NeCOT

= Zgi,h [Uh7vff]c;et7
h=1

where the e;, ¢;, and dys N are given in equation (5.21). The matrix (g; ) is a upper
block triangular matrix where the blocks along the diagonal have the identity

for
fo.’

Recall that the matrix (¢; ) is nonsingular. Thus the rank of (g; ) is m = |[BAQs 7|
and BAQg r is linearly independent. [

Gi,h = €5 Cih

We turn our attention to showing that the collection BAQg r spans (CE’T[X Y, Z,W.

We will first show that a collection CSCOg 1 spans Cg 1[X,Y, Z, W] and then we will
show that BAQgs 1 spans CSCOg . Notice that we have the following equalities con-
cerning (U, V],

per*

[U V]per

1
- > sgn(o) oxvizw [[I, Ulper(X,Y) [I,V]per (02, 0w) Ar(Z, W)

oES,

1 Ul ,1 ’LL u1,2 u
- f_ Z S'g/H/(U) OX,Y,Z,W [ Z OCX,Y Zq e n lyl . ynnZ

! oes, a€R(I)

> B on oz on - 0u | Ar(ZW)

BER(I)
1
T > sgn(o) ox.yv.zw [ D axy oyt tE gl
I ses, a€R(I)
> [Oéz,w Bzw 070t -0 00° - '5&’;’2)} [sgn(a) azw Ar(Z, W)]
aBeR(I)
1
S L ) ona | 3 ol e[
I oESy a€R(I)
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Z ﬁZ,W 6;)111 Ce 6;’:,185}11,2 .. 621:}7;2 AT(Z, W)]

BER(I)
= Y sgn(0) oxyzw | amiy ey
oceS,
D Bow O OO 0 Ap(Z,W)] (5.22)
BER(I)

Similarly, we have that

— o ui,1 Unp,1,,U1,2 Un,2
U, V]per = E sgn(o) oxy,z,w [ E axy T mpt Yy eyt

8;)11,1 e 8;):,13:11}11,2 e @LJJZ,Q AT(Z, W)i| ) (523)

With these equations, we can begin the process of showing that the collection BAQg 1
spans C;T[X Y, Z, W] with coefficients from C.

Lemma 5.6.

If S and T are dense then the collection
CSCOgr = {[U,V],.,:U€CSs, V €COr, sh(U)=sh(V)}

per

spans Cg p[X,Y, Z, W] with coefficients from C.
Proof

Given any monomial ¢(Z, W) € C[Z, W], Lemma 5.3 and Theorem 3.8 imply that
W(Z,W) =k [Tn, Vilper (02, 0w) Ar(Z, W)
k

(identically), where V, € COr, Iy, € 8T, sh(Vy) = sh(I;) and ¢, € Zp(Z, W) U C.
Thus for any monomial

p(X,)Y) = a'wd - alyyy® -y,

we have

Z sgn(o) oxy.zw [p(X,Y) ¢(Z,W)]

oES,
= ) sgn(0) oxy.zw [PX,Y) Y e [In, Vilper(0z, 0w) Ap(Z,W)]
c€eSy, k
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Zcze > sgn(o) ox vz [o0 e - alhylt gl e Vidper (02,0w) Ar(Z,W)
oES,

= ch Uk, Vielper (5.24)
k

by equation (5.22). Note that in equation (5.24) that it is possible for some of the Uy

to not be column-strict. Using the algorithm associated to Theorem 2.1 and equations
(5.22) and (5.23), we know that

ch Uk,Vkpe,, Zd P’L?Q per

where all of the P; and @; are column-strict. Note that if »(Z, W) € Zp(Z, W) then
we must have r(Z, W) [P,Q],., € IST’T(X, Y, Z,W). Additionally, note that if either

P ¢ CSgor Q¢ CSr then [P,Q],., € Zgr(X,Y,Z,W). Without loss of generality, we
may assume that P; € CSg and @Q; € CSt. Thus the collection

CSCSsr = {[P, Ql,.. : P €CSs, Q € CSr,, sh(P) = sh(Q) }

spans Cg p[X,Y, Z, W] with coefficients from C.

S = {317827'“78n}
T = {t17t27"'7tn}

(recall that S and T are the sets from which Ag(X,Y) and Ap(Z, W) are constructed
listed in increasing order with respect to < 4). Let s’ = min{s1,(0,1)} and ¥’ =
min{ty,(0,1)}. Let U and V be the tableaux of shape n with

Let

and

and
V=t t - t.

For any pair of tableaux (M, N) such that (M, N) >, (U,V) (see equation (3.14) and
equation (4.6)), we have that [M, N|,., € Tg (X,Y, Z, W) since

[M N]per(6X76Y76Z7aW> AS(Xv Y) AT(Zv W)

1

= E Z sgn(o)ox y,zw

(11, M)er(9x, 0y ) As(X, V)
oESy

|11, Nlyer (D7, 0w ) Ar(Z,W)] (97, ) Ar (2, W)

=0.
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Now suppose that (P, Q) is the largest pair of column-strict tableaux in CSCSg r
with respect to <, (see equation (4.6)) such that [P, Q],,,. is not in the linear span of
CSCOs,r (with coefficients from C) and [P, Ql,., & Zg(X,Y, Z,W). Particularly, we
must have that Q ¢ COr. Using Theorem 3.7 we have

[I, Q]per(aZ7 8W)

= m’h(aZ?aW) [I7CQ]P3T(6Z76W) - Z CMm [Iv M]per(aZ76W>
(02 )
- Z Cr .M’ [IlaMl]pe’r(8Z7aW) (525)

sh(M’)>rsh(Q)

identically, where Cy = C,, (st(Q)) and v2 = 7,,,q. Now,

[P, Qlper

=) sgn(o) oxv.zw 1, Plyer(X,Y) [T, Qlper(92,0w) Ar(Z, W)]
oES, )

— Z Sgn(U) OX\)Y,ZW -[IaP]per(Xa Y) m’Yz(azaaW) [I, OQ]per(aZaaW) AT(Za W)i|
oES, )

=Y sgn(0) oxyzw [ILPLer(X,Y) Y enr [L Mlyper(92,0w) Ar(Z,W)]

Uesn M>s10Q
sh(M)=sh(Q)

- Z sgn(o) OX,Y,Z,W [Iap]per(Xa Y) Z Cr,m’ [Il,Ml]per(827aW)AT(Z7 W)]
oESy i sh(M’)>rsh(Q)

Notice that

Z Sgn(U) OX\)Y,ZW |:[I, P]per(Xa Y) m’YQ (8Z78W) []702]])67"(8Z78W) AT(Za W)i| =0
oES,

since M, (0z,0w) Ar(Z,W) =0 and thus

> sgn(o) oxv.zw [[L Plper(X,Y) my, (92, 0w) [I, Calper(9z, 0w) Ar(Z, W)]

cES,

€ Igp(X.Y,Z,W).

Both
> sgn(o) oxyaw (L Pher(X,Y) 30 cq [, Mlyper(92,0w) Ag(Z,W)]
7ESn 2
and
> sgn(o) O'X,Y,Z,W[[Ia Plper(X,Y) ) crr o [y M |per (02, 0w ) Ar(Z, W)]
oESn sh(M’)>rsh(Q)
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lead to sums of bipermanents that are larger than (P, Q) with respect to >g.. The
former is true since it is summed over M such that M >, (). The latter uses equation
(5.22) and the fact that

[I P]peT(X Y) [I/ ]per(aZaaW) AT(Z W)
= Zcz p(z,y) I’y M']per(0z,0w) Ar(Z,W).

This implies that [P, Q] .., is in the span of CSCOg 1 as well as the fact that CSCOs
spans CS’T[X7 Y, Z, W] with coefficients from C. O

Let [U,V],., ¢ BAQs 1 be the largest bipermanent with respect to >, (see equa-
tion (4.6)) with U € CSg, and V' € CO7 such that [U, V], is not in the linear span of
BAQg r with coefficients from C. Now if U ¢ COg, by Theorem 3.7 we can find a

T = Ypuu(X,Y) €Ty,
such that

11, Ulper
= Moy, (X,Y) []70]1967’ - Z cm 1, M]per - Z CMY [I’,M’]per(5.26)

M> g4 U ,
sh(M):tsh(U) sh(M")>r,sh(U)

where C' = C,,, (st(U)) and cpr, e € C. Therefore,

sgn(o) oxyv,zw |1, Ulper(X,Y) [I, V]per(0z,0w) Ar(Z, W)

sgn(a) OX\)Y,ZW
ocES,

100 (X, ) 1, Clyer (X, Y ) [1,Vper (92, 0w) A (Z,W)]

1
- - sgn(o) ox,v,z,w
I cES,
Y e [ Mo (X Y) [ Ve (92, 0w) Aq(Z,W))]
M>g4pU
sh(M)=sh(U)
1
-7 Z sgn(o) oxy,z.w

oES,

Z Cr .M’ [II,MI]peT(Xa Y) [I, V]per(aZ78W) AT(Za W)]
sh(M')>psh(U)
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Once again,

Z Sgn(O') 0X.Y,Z,W [m’h (Xa Y) [I7C]P€T(X7 Y) [Ia V]per(327aw) AT(Za W)}
oES,

EI;T(X,Y, Z,W).

The terms
> sgn(o) oxvzw [ > err I, Mper(X,Y) [1,V]per(9z, 0w) Ar(Z, W)]
7 E5n sh(]\;\I4>)S:tsTh[{U)

and

> sgn(o) oxvizw
oES,

Z Cr M’ [IlaM,]peT(Xa Y) []7 V]per(aZaal/V) AT(Za W)i|
sh(M')>rsh(U)

correspond to sums of bipermanents that are larger than [U, V], with respect to >,
by equation (5.23). Therefore, [U,V] ., can be written as a linear combinations of
elements of

BAQsT = {[U, V]o. : UeCOg, Ve COp and sh(U) = sh(V) }

per
with coefficients in C. Thus we have the following theorem.

Theorem 5.7.

If S and T are dense then the collection BAQg r spans (CE’T[X, Y, Z, W] with coef-

ficients from C. Hence, BAQg  is a basis for CE’T[X, Y, Z, W] with coefficients from
C.

Now, the bidegree of [, C\,(U)|per(0z, 0w ) Ar(Z, W) (with I standard) (as a poly-
nomial in C[Z, W]) equals the bidegree of [I*,C,- (U")]per (recall Theorem 3.4). Recall
that dy(q,t) is a polynomial defined in equation (3.21) and that T, and Y, are col-
lections of sequences defined in equation (3.4). Thus, Theorem 5.7 immediately yields
the following.

Corollary 5.8.

If S and T are dense then the Hilbert series H(Cg 5[ X, Y, Z, W]) of Cg p[X,Y, Z, W]
1S given by

H(C57[X,Y, Z, W)
= Z Z Z Z #1Coa (M1 I Cp 2(M)1 1 Cpr 1 (V)] 5IC,r 2 (N*)]
AFn pETd,S p’€T¢T (M,N)GSTX XST 5
= dys(q,t) dp,(s,7) Z Z $1Co 1D g1 G 2(MD I Cor s (N gl Cpr 2 (NI (5 07)

An (M,N)EST y XxST
p=(07),p/=(0")
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where ST 5 denotes the collection of standard tableauz of shape X, C,(M) denotes
a cocharge tableau corresponding to a tableau M and a sequence p, |C,1(M)| and
|C\2(M)| denote the sums of the first and second coordinates of the cocharge tableau
C,(M), respectively, and N* denotes the transpose of the tableau N.

Example

With S =T given in (3.19) we have

H(Cg [ X, Y, Z,W])
= (L41t)(rs+r%s) + (t+q+tqg+t?) (r+s+rs+r?) + (tg+t°q) (1 +7)
=(1+t)(1+7r) [rs + (t+q) (r+s) + tq].

Note that the dimensions (as vector spaces) of (C:qF r[X,Y, Z,W]and Cg +[X, Y, Z, W]
are equal. Both of these dimensions are equal to d¢5 dyp ! (see equation (3.20)).
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