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Abstract

Suppose G is r-colorable and P ⊆ V (G) is such that the components of G[P ]
are far apart. We show that any (r + s)-coloring of G[P ] in which each component
is s-colored extends to an (r + s)-coloring of G. If G does not contract to K5 or is
planar and s ≥ 2, then any (r + s − 1)-coloring of P in which each component is
s-colored extends to an (r + s − 1)-coloring of G. This result uses the Four Color
Theorem and its equivalence to Hadwiger’s Conjecture for k = 5. For s = 2 this
provides an affirmative answer to a question of Thomassen. Similar results hold for
coloring arbitrary graphs embedded in both orientable and non-orientable surfaces.

1 Introduction

Suppose G is an r-colorable graph and P ⊆ V (= V (G)). One naturally asks if an r-
coloring of G[P ] extends to a t-coloring of G where r ≤ t. This question is NP -complete
even with severe restrictions on G. Its complexity has been well studied; for a survey see
[24].

Several years ago Thomassen asked if a planarity assumption and a distance constraint
on P would help.

Question 1 [21] Suppose G is a planar graph and P ⊆ V is such that the distance
between any two vertices in P is at least 100. Can a 5-coloring of P be extended to a
5-coloring of G?
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The answer to Thomassen’s question is yes, but the result does not require any topol-
ogy.

Theorem 1 [1] If χ(G) = r and the distance between any two vertices in P is at least 4,
then any (r + 1)-coloring of P extends to an (r + 1)-coloring of all of G.

If χ(G) = r there is no similar extension theorem with r colors even if G is planar
and r = 4 [1]. In response to Theorem 1 Thomassen asked about extending colorings of
bipartite subgraphs. If P ⊆ V let G[P ] denote the subgraph of G induced by P .

Question 2 (Problem 1 in [22]) Suppose G is a planar graph, G[P ] is bipartite, and any
two components of G[P ] have distance at least 100 from each other. Can any 5-coloring
of G[P ] in which each component is 2-colored be extended to a 5-coloring of G?

In this paper we show that the answer to Thomassen’s second question is also yes.
Although the embedding assumption is partially needed, a weaker assumption on minors
is the essential ingredient. Besides considering extensions of 2-colored subgraphs we in-
vestigate when colorings of more general induced subgraphs of G extend to colorings of
all of G. We also obtain some results for embedded graphs.

Suppose P = P1 ∪ P2 ∪ · · · ∪ Pk ⊆ V where P1, P2, · · · , Pk induce the connected
components of G[P ]. Throughout this paper we will assume that χ(G) ≤ r and χ(G[Pi]) ≤
s. We say that d(P ) ≥ ρ if for every pair of vertices x ∈ Pi, y ∈ Pj (i 6= j) the distance
in the graph (i.e., the number of edges in a shortest path) between x and y is at least ρ.
If S ⊆ V , N(S) denotes the set of vertices that are not in S but are adjacent to at least
one vertex in S. Inductively N i(S) denotes the set of vertices that are not in N i−1(S)
but are adjacent to at least one vertex in N i−1(S). So N i(S) consists of those vertices in
G whose distance from S is exactly i.

In Section 2 we show that if d(P ) ≥ 4, then any (r + s)-coloring of G[P ] in which each
G[Pi] is s-colored (not necessarily with the same colors) extends to an (r + s)-coloring of
G. This is best possible both with respect to the distance constraint and the number of
colors needed. This result contrasts with the result below, an earlier extension theorem
in which each precolored component is an r-clique.

Theorem 2 [7] If χ(G) = r and G[P ] consists of copies of Kr whose pairwise distance is
at least 3r, then any (r + 1)-coloring of G[P ] extends to an (r + 1)-coloring of all of G.

Our original Section 3 considered planar graphs. Carsten Thomassen insightfully noted
that our proofs yielded more, namely that graphs containing no K5 minor played the key
role here [23] . A graph G is said to contain a graph H as a minor if some sequence of edge
deletions, vertex deletions, and edge contractions transforms G into H . Since deletion and
contraction preserve planarity (and embeddability in any fixed surface), a planar graph
cannot contain a K5 minor since K5 is not planar. However, being K5-minor free is not
enough to imply planarity since a graph is planar if and only if it contains no K5 or K3,3

minor [25]. Minors that are complete graphs are believed to have important implications
for the chromatic number; the following is one of the outstanding conjectures of graph
theory.
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Conjecture 1 Hadwiger’s Conjecture [15] If a graph G is Kk-minor free, then it can be
(k − 1)-colored.

This conjecture is known to hold for k ≤ 6: see [17] for the history and current
status of the problem. The case of k = 5 was shown to be equivalent to the Four Color
Theorem [25] and so holds [9, 19]. More recently Robertson, Seymour and Thomas [20]
have demonstrated the case of k = 6 using their work on the Four Color Theorem and
beyond [19].

In Section 3 we show that if G is K5-minor free, d(P ) ≥ 8, and s ≥ 2, then any
(r + s − 1)-coloring of G[P ] in which each G[Pi] is s-colored (again not necessarily with
the same colors) extends to an (r+s−1)-coloring of G; the same result holds for G planar.
Thus, when extending colorings of K5-minor free and planar graphs with s ≥ 2, we need
one fewer color than the results of Section 2 suggest. This doesn’t happen when s = 1.
Although our proofs fail if d(P ) ≤ 7, we do not know what the right distance hypothesis
is.

Section 4 looks at graphs embedded in a given surface. Here if one is extending a
precoloring using (nearly) the Heawood number of colors, then the total number of colors
required is one fewer than might be anticipated from Section 2. Although these results
are similar to the extension theorems for planar (and K5-minor free) graphs, there is one
important difference. For planar graphs if P is an independent set, then an extra color
is required for an extension theorem. Again for planar graphs when s ≥ 2 and G[P ] is
s-colored we need r− 1 additional colors for an extension theorem. For graphs embedded
in a surface of positive Euler genus, whenever s ≥ 1 and G[P ] is s-colored we need only
r − 1 additional colors.

2 Extending without Hadwiger or Embeddings

Theorem 3 Suppose G is r-colorable and P ⊆ V induces an s-colorable subgraph such
that d(P ) ≥ 4. Any (r + s)-coloring of G[P ] in which each G[Pi] is s-colored can be
extended to an (r + s)-coloring of G.

Proof Begin by coloring G[V − P ] with the colors 1, 2, · · · , r. Next for each i color
the vertices of G[Pi] with the colors r + 1, r + 2, · · · , r + s subject to the following two
conditions. First, the color classes in this coloring are identical with the color classes in the
precoloring. Second, if the precoloring assigns a particular color class of vertices of G[Pi] a
color from r+1, r+2, · · · , r+ s, then this coloring uses the same color on that color class.
At the moment we have an (r + s)-coloring of G in which the colors r + 1, r + 2, · · · , r + s
are only used on vertices in G[P ]. Suppose a color class in G[Pi] is colored with the color
r + j when the precoloring has it assigned color m. We simultaneously perform a Kempe
change on every vertex in this color class changing its color from r+j to m. If v is a vertex
in G that was colored m and was adjacent to w in G[Pi] that had its color changed, then v
will now be colored r + j. The Kempe chains stop after at most one stage since no vertex
in N2(Pi) can be colored r + j. Thus all of these changes are confined to the vertices
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of P ∪ N(P ). Since d(P ) ≥ 4 no vertices that have their colors changed from different
components of P can be adjacent. Thus we now have a coloring of G that extends the
desired precoloring of G[P ]. 2

The distance constraint and the total number of colors needed is best possible when
s = 1 [1, 7]. Below we see that for s ≥ 2 the total number of colors needed is also best
possible.

Example 1 For ease of presentation we assume that t = r
s

is an integer. Our graph
contains 2r vertices. The non-precolored part will be an r-clique labelled v1, v2, · · · , vr.
The precolored part will have just one component. We construct G[P ] by taking t copies
of Ks. For 1 ≤ i ≤ t we will label these vertices ui,1, ui,2, · · · , ui,s. For 1 ≤ i ≤ t − 1,
we add edges joining ui,s with ui+1,1. This makes a path of the t copies of Ks ensuring
that G[P ] is connected. Imagine a perfect matching, say M , by joining ui,j with v(i−1)s+j .
Now both G[P ] and G[V − P ] have exactly r vertices. Between these two pieces add all
edges from a Kr,r except for those in the matching M . The resulting graph G will be
our example. First χ(G) = r since each vertex in G[P ] can be assigned the color of the
vertex in the Kr that it is matched with in M . Second if the vertices in P are s-colored
by assigning the color j to the vertex ui,j, then none of the colors 1, 2, · · · , s can be used
on any of the vertices of the Kr so a total of r + s colors will be needed to finish the
coloring. If s 6 | r, a similar construction using a total of 2r·s

gcd(r,s)
vertices works.

The preceding example with s = 2 and r = 4 differs by just one edge from an example
originally presented in [1]. This graph was used there to illuminate Question 2 - in
particular to show that without the assumption of planarity the answer would be no.
Note that the issue in this example is not a conflict caused by the precoloring of different
components. It is rather the difficulty of extending the precoloring of one component to
its first neighborhood.

3 K5-minor free and Planar Graphs

Theorem 4 Suppose G does not contain K5 (respectively, K6) as a minor, P = P1∪P2∪
· · · ∪ Pk ⊆ V , G[P ] is bipartite, and d(P ) ≥ 8. Any 5-coloring (resp., 6-coloring) of G[P ]
in which each component is 2-colored can be extended to a 5-coloring (resp., 6-coloring)
of G.

Proof Suppose G does not contain K5 as a minor. For all 1 ≤ i ≤ k perform the
following two steps. First, remove edges from G[Pi] until it becomes a tree. Note that
removing these edges does not alter the color classes in any 2-coloring of each component
tree. Second, contract all of the remaining edges in G[Pi] to obtain the new vertex vi

and erase multiple edges. Call this graph G′. Note that G′ does not contract to K5 and
so is 4-colorable by (the proven case of) Hadwiger’s Conjecture with k = 5. We take a
4-coloring of G′, say c, using the colors {1, 2, 3, 4} and transfer it to G[V − P ]. We now
need to color the vertices of G[P ]. We will proceed one component at a time. Suppose
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c(vi) = 1. This means that no first neighbor of G[Pi] is colored 1. So we arbitrarily assign
the colors 1 and 5 to the two color classes of G[Pi]. If the precoloring happened to assign
these two classes the colors 1 and 5 we would be done.

For the moment suppose these two color classes are assigned the colors 2 and 3 in
the precoloring. First perform a (3, 5)-Kempe change at every vertex v in G[Pi] that is
colored 5. Now every vertex in G[Pi] that is supposed to be colored 3 is. (Note that if the
precoloring had given these two classes the colors 1 and 3, we would be done right now.)
Second perform a (1, 5)-Kempe change at every vertex in G[Pi] that is colored 1. Finally
perform a (2, 5)-Kempe change at every vertex in G[Pi] that is currently colored 5. These
three Kempe changes have the effect of making the colors on G[Pi] agree with those of the
precoloring. Furthermore these color changes are confined to Pi∪N(Pi)∪N2(Pi)∪N3(Pi).

The remaining case would be if the precoloring had assigned the colors 2 and 5 to
these two color classes of vertices. The natural temptation, to switch colors 1 and 2
might send this change throughout the graph. Here we assign the color 5 to the vertices
needing 2 and the color 1 to the vertices needing 5. Then we perform a (2, 5)-Kempe
change on G[Pi] followed by a (1, 5)-Kempe change. Here the color changes are confined
to Pi ∪ N(Pi) ∪ N2(Pi).

Since d(P ) ≥ 8, in every case the color changes for the separate components do not
affect any pair of adjacent vertices. Thus we have transformed the original 4-coloring of
G′ into a 5-coloring of G that agrees with the precoloring on each G[Pi].

When G does not contain K6 as a minor, Hadwiger’s Conjecture, proven also for k = 6,
shows that the contracted graph G′ can be 5-colored and the same proof yields a 6-color
extension theorem 2

The preceding theorem extends to precolorings in which each precolored component
is s-colored.

Theorem 5 Suppose G does not contain K5 (respectively, K6) as a minor, P = P1 ∪
P2 ∪ · · · ∪ Pk ⊆ V , G[P ] is s-colorable where s ≥ 3, and d(P ) ≥ 8. Any (3 + s)-coloring
(resp., (4 + s)-coloring) of G[P ] in which each component is s-colored can be extended to
a (3 + s)-coloring (resp., (4 + s)-coloring) of G.

Proof Construct G′ as in the proof of Theorem 4. Assume that G′ is 4-colored using colors
1, 2, 3, 4 and transfer the coloring of G′ to a coloring of G[V −P ]. Complete this to an (s+
3)-coloring of G one component at a time. Suppose c(vi) = 1. Use the colors 1, 5, 6, ..., s+3
on the vertices of G[Pi] taking care that the color classes in this coloring coincide with
the color classes in the s-precoloring of G[Pi]. For the moment assume that s = 3.
Thus the color classes are currently assigned colors 1, 5, 6 and the color classes associated
with the precoloring of G[Pi] will be one of {1, 2, 3}, {2, 3, 4}, {1, 2, 5}, {2, 3, 5}, {1, 5, 6},
or {2, 5, 6}. Any case in which one color class is already correct can be finished using an
argument from the proof of Theorem 4. This leaves only the case in which the precoloring
has {2, 3, 4} on its color classes. In this case we successively make the following Kempe
changes, (4, 6), (3, 5), (1, 5), (2, 5). Note that every Kempe change uses a color that does
not originally occur in G[V −P ]. Each such change might alter the color on a vertex that
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is adjacent to a previously altered vertex. Even though there are four Kempe changes,
they don’t use any color more than three times. Thus the changes are confined to Pi ∪
N(Pi) ∪ N2(Pi) ∪ N3(Pi). When s > 3 we note that we may assume that there are at
most three color classes in the precoloring of G[P ] that are not correctly colored by our
coloring of G′. Thus the proof above works then as well. When G is K6-minor free, the
argument is essentially the same. 2

Corollary 5.1 Suppose G is planar, P = P1 ∪ P2 ∪ · · · ∪ Pk ⊆ V , G[P ] is s-colorable
where s ≥ 2, and d(P ) ≥ 8. Any (3 + s)-coloring of G[P ] in which each component is
s-colored can be extended to a (3 + s)-coloring of G.

Note that this corollary with s = 2 answers Question 2 of Thomassen in the affirmative.
We do not know if the theorems in this section are best possible with respect to the
distance constraints. As we show below they are best possible with respect to the number
of colors needed.

Example 2 Begin with a copy of K3 whose vertices are labelled u, v, w. Next let G[P ] be
a path with vertices u1, · · · , us, v1, · · · , vs, w1, · · · , ws. Suppose u is adjacent to u1, u2, · · · , us,
v is adjacent to v1, · · · , vs and w is adjacent to w1, · · · , ws. Suppose each vertex in G[P ]
is precolored with its subscript. G is planar and so does not contract to K5, and s + 3
colors are both necessary and sufficient to extend the coloring of G[P ] to all of G. The
same construction, beginning with a copy of K4, creates a graph that does not contract
to K6 and for which s + 4 colors are necessary and sufficient to extend the coloring of
G[P ] to all of G.

4 Graphs in Surfaces

In this section we consider extending precolorings of graphs embedded in surfaces of
positive Euler genus. If ε ≤ 2 is the Euler characteristic of a surface, we let g∗ =
2 − ε denote the Euler genus. The orientable surface Sg, the sphere with g handles,
has (orientable) genus g and Euler genus g∗ = 2g. The non-orientable surface Nk, the
sphere with k crosscaps, has Euler genus g∗ = k. If G is embedded in S, a surface
of Euler genus g∗ > 0, Heawood showed that G can be colored with H(g∗) colors where

H(g∗) =
⌊

7+
√

24g∗+1
2

⌋
[16, 18]. Dirac and Ungar showed that if G is embedded in Sg (g > 0),

then G requires H(g∗) colors if and only if G contains KH(g∗) as a subgraph [10, 13]. The
analogous results for Nk were derived in [10, 2]. In these latter results N2, the Klein bottle,
is an exception. Franklin [14] showed that any graph embedded in N2 can be 6-colored
and we showed that a 6-chromatic graph embedded in N2 need not contain K6 [2], but
does contract to K6 [4]. As a consequence Hadwiger’s Conjecture holds for k = H(g∗)
for graphs in a surface of Euler genus g∗ > 0. In addition the case of k = H(g∗) − 1
is also known to hold except possibly for g∗ = 3 [3, 4, 11, 12]. Because of the stronger
containment results for k = H(g∗), we choose to primarily phrase the results of this
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section in terms of embedding and colorability, rather than using minors. We include the
related minor results as a final theorem.

We begin with the case when P is an independent set. This is of interest because,
unlike for 4-colorable graphs, there is no need for an additional color.

Theorem 6 Suppose G is embedded in S, a surface of Euler genus g∗ > 0, and P ⊆ V
is an independent set in G such that d(P ) ≥ 6. Any H(g∗)-coloring of G[P ] extends to
an H(g∗)-coloring of G except possibly when S is N3.

Proof The results for the projective plane (S = N1) and the torus (S = S1) are proved
in [5]. Any 7-coloring of a graph embedded in N2, the Klein bottle, extends by Theorem
1. The case of extending 6-precolorings of graphs embedded in N2 is unsettled as is the
case of extending 7-precolorings of graphs embedded in N3. It is well known that if G
is a graph with n vertices embedded in a surface S of Euler genus g∗, then the average
degree of G is at most 6 + 6(g∗−2)

n
. It is straightforward to check that if n ≥ 2H(g∗) and

g∗ ≥ 4, then this average is less than H(g∗) − 1. Consequently if n ≥ 2H(g∗) we can
remove a vertex x such that deg(x) ≤ H(g∗)−2. We continue doing this until the number
of vertices left in G is less than 2H(g∗). At this time we can color the reduced graph.
Since there are fewer than 2H(g∗) vertices we can arrange that the last color will be used
either once or not at all. We then insert and color the vertices that we removed from G
in the opposite order from which we removed them. Each time we insert a vertex it has
at most H(g∗) − 2 neighbors. Consequently we have at least two color choices so we can
safely avoid the last color. Therefore the original graph has an H(g∗)-coloring in which
the last color is used at most once. If the last color is used not at all we invoke Theorem
1. If the last color is used exactly once we invoke Theorem 1 of [8]. 2

Next we suppose that G[P ] is 2-colorable. Unlike the plane (or with K5-minor free
graphs) there is an increase in the number of colors needed for an extension theorem. In
the former cases the jump occurred when precoloring an independent set. Here it occurs
when we precolor a bipartite graph.

Theorem 7 Suppose G is embedded in S, a surface of Euler genus g∗ > 0, P = P1 ∪
P2 ∪ · · · ∪ Pk ⊆ V , and d(P ) ≥ 8. Any (H(g∗) + 1)-coloring of G[P ] in which each
component is 2-colored can be extended to an (H(g∗) + 1)-coloring of G. Generally any
(H(g∗) + s − 1)-coloring of G[P ] in which each G[Pi] is s-colored can be extended to an
(H(g∗) + s − 1)-coloring of G.

Proof This is the same as the proof of Theorems 4 and 5 since contraction preserves
embeddability in a surface. 2

The preceding is best possible with respect to the number of colors needed, except
possibly for the Klein bottle.

Example 3 We begin with an embedding of KH(g∗) in S a surface of Euler genus g∗ >
0, S 6= N2. We remove one vertex, say x, to have an embedding of KH(g∗)−1 = G[V − P ].
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Let the vertices be labelled v1, v2, · · · , vH(g∗)−1 in the order in which they border the face
that corresponds with where x used to be. Let G[P ] consist of a path with s(H(g∗) − 1)
vertices, say u1,1, u1,2, · · ·u1,s, u2,1, · · · , uH(g∗)−1,s. This path can be placed in the face that
used to hold the vertex x. For 1 ≤ j ≤ (H(g∗)− 1) let vj be adjacent to uj,1, uj,2, · · · , uj,s.
The precoloring of G[P ] will assign to each vertex its second subscript as its color. To
extend this precoloring we will need the colors 1, 2, · · · , s together with H(g∗)−1 additional
colors for the clique.

Sometimes we can extend with fewer colors.

Theorem 8 Suppose G, not containing KH(g∗)−1, is embedded in S a surface of Euler
genus g∗ > 0, P = P1 ∪ P2 ∪ · · · ∪ Pk ⊆ V , and d(P ) ≥ 8. Any H(g∗)-coloring of G[P ] in
which each component is 2-colored can be extended to an H(g∗)-coloring of G. Generally
any (H(g∗) + s − 2)-coloring of G[P ] in which each component is s-colored where s ≥ 3
can be extended to an (H(g∗) + s − 2)-coloring of G.

Proof The proof begins the same way as the proof of Theorem 4. We focus our attention
on G′ - in particular on the largest clique it might contain. By the distance constraint on
P any clique in G′ contains at most one vi. Since G did not contain a KH(g∗)−1, G

′ cannot
contain a KH(g∗). Consequently G′ is (H(g∗) − 1)-colorable. The proof will then proceed
as in the proof of Theorem 4. The generalization follows the proof of Theorem 5. 2

Theorem 9 Suppose G is embedded in S a surface of Euler genus g∗ > 0, G does not
contract to KH(g∗) (respectively, to KH(g∗)−1 and g∗ 6= 3), P = P1 ∪ P2 ∪ · · · ∪ Pk ⊆ V ,
and d(P ) ≥ 8. Any H(g∗)-coloring (resp., (H(g∗) − 1)-coloring) of G[P ] in which each
component is 2-colored can be extended to an H(g∗)-coloring (resp., (H(g∗)−1)-coloring)
of G. Generally any (H(g∗) + s − 2)-coloring (resp., (H(g∗) + s − 3)-coloring) of G[P ] in
which each component is s-colored where s ≥ 3 can be extended to an (H(g∗) + s − 2)-
coloring (resp., (H(g∗) + s − 3)-coloring) of G.

Proof The proof begins as in the proof for Theorem 8. When G does not contract to
KH(g∗) (resp., KH(g∗)−1), neither does G′. By Hadwiger’s Conjecture, proven for these
cases on surfaces, G′ is (H(g∗) − 1)-colorable (resp., (H(g∗) − 2)-colorable). The proof
then proceeds as for Theorem 8.2

In a subsequent paper [6] we consider additional results on coloring extensions for
locally planar graphs.
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