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Abstract

A graph G on m edges is considered graceful if there is a labelling f of the
vertices of G with distinct integers in the set {0, 1, . . . ,m} such that the induced
edge labelling g defined by g(uv) = |f(u) − f(v)| is a bijection to {1, . . . ,m}. We
here consider some relaxations of these conditions as applied to tree labellings:

1. Edge-relaxed graceful labellings, in which repeated edge labels are allowed,

2. Range-relaxed graceful labellings, in which the upper bound m′ is allowed to
go higher than the number of edges, and

3. Vertex-relaxed graceful labellings, in which repeated vertex labels are allowed.

The first of these had been looked at by Rosa and Širáň [10]. Here some linear
bounds in the relevant metrics are given for range-relaxed and vertex-relaxed grace-
ful labellings.

1 Introduction

Let G be a graph with vertex set V and edge set E, with m = |E|. The mapping
f(V ) → N with the induced mapping g(E) → N defined by g(uv) = |f(u) − f(v)| is
graceful if

(1) f(V ) is an injection to {0, 1, . . . , m},
(2) g(E) is a bijection to {1, 2, . . . , m}.

In the mid-1960’s it was conjectured by Rosa [9] that all trees are graceful. This now
notorious open problem has been know variously as Rosa’s conjecture, Ringel’s conjecture,
or the graceful tree conjecture (GTC). While much work on graceful and related labellings
has been done since then, progress on the GTC itself has been spotty at best; Anton
Kotzig [7] has called it a “disease” of graph theory.

the electronic journal of combinatorics 9 2002, #R4 1



Relaxations of graceful labelling have been investigated for as long as graceful labelling
itself; Rosa himself presented several variants in [9]. Most of the work done, however, has
been confined to graphs that are not graceful to begin with [2] [6]. It is only recently
that relaxed graceful labellings of trees have come under scrutiny, with the results of Rosa
and Širáň on the gracesize of trees [10], and Ringel, Llado, and Serra’s study of bigraceful
trees [8].

For terms and definitions from general graph theory the reader is referred to West [12].

2 A schematization of relaxed graceful labellings

While there are innumerable relaxations of gracefulness we can choose from, in this pa-
per we will restrict ourselves to three that could be considered the most basic, in that
the properties of a graceful labelling stated above are weakened without affecting the
distinctive relationship between the vertex and edge labellings:

1. Edge-relaxed: Property (2) is relaxed, in that g need not be a bijection but can be
any mapping from E to {1, . . . , m}.

2. Range-relaxed: Properties (1) and (2) above are relaxed, in that the upper bound
on f and g is allowed to be some m′ ≥ m. The mapping g need no longer be a
bijection, but must still be an injection.

3. Vertex-relaxed: Property (1) is relaxed, allowing f to be any mapping from V to
{0, . . . , m}.

Edge-relaxed graceful labelling is in a sense the most simple and natural, in that any
proper labelling of the vertices of a graph G on m edges with numbers in the range
{0, . . . , m} satisfies the requirements. It is these labellings that were studied by Rosa and
Širáň in their 1995 paper [10]. They were able to show that all trees on m edges have an
edge-relaxed graceful labelling with at least 5

7
m of the edge labels distinct.

Range-relaxed graceful (RRG) labelling, our second scheme, has a much more extensive
history; it has been brought forth and fiddled with under various guises since the graceful
labelling problem was first popularized by Solomon Golomb in the early 1970’s. Since
that time we have seen k-graceful, node-graceful, nearly graceful, almost graceful and
pseudograceful labellings (see [5]), which are all comprehended in one way or another
under the range-relaxed scheme. Since not all labellings in even the most extended range
need be range-relaxed graceful, one could say that labellings of this sort are “not as
relaxed” as their edge-relaxed counterparts. However, as is the case with edge-relaxed
graceful labellings, every graph has a range-relaxed graceful labelling in some range; if,
for example, the vertices are labelled with distinct powers of 2, the induced edge labels
must all be distinct. This of course is definitely not the best we can do–the cycle Cn is
not graceful when n is equivalent to 1 or 2 (mod 4), but it always has a RRG labelling in
the range {0, . . . , n + 1}.
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Vertex-relaxed graceful (VRG) labellings were apparently studied in the 1970’s by
Bermond and Lehel in connection with graceful labellings of windmill graphs [1], but
since then there does not seem to have been any work done with them. The closest
recent antecedent is the bigraceful labelling scheme for bipartite graphs, from Ringel,
Llado, and Serra [8]; these labellings satisfy property (2) but only require that vertex
labels be unique within each bipartition set. Other variations of gracefulness which relax
distinctness conditions (such as equitable labellings) introduce new constraints as well.

While in a sense vertex-relaxed graceful labellings can be thought of as “dual” to
edge-relaxed graceful labellings, in structure a VRG labelling tends to look much more
like a proper graceful labelling; for example, vertices labelled 0 and m must be present and
adjacent, and m−1 adjacent to 0 or 1 adjacent to m, and so on. Many graphs that are too
sparse to be graceful have a VRG labelling; any matching on m edges, for example, can
be so labelled by giving 0 to one endpoint of each edge, and assigning 1, . . . , m arbitrarily
to the other endpoints. Not all graphs have a VRG labelling, however, and in fact we
have yet to encounter a connected ungraceful graph which is vertex-relaxed graceful.

In this paper the following two theorems will be presented regarding the relaxed grace-
ful labelling of trees:

Theorem 1 Every tree T on m edges has a range-relaxed graceful labelling f with vertex
labels in the range 0, . . . , 2m − diameter(T ).

Theorem 2 Every tree on n vertices has a vertex-relaxed graceful labelling such that the
number of distinct vertex labels is strictly greater than n

2
.

3 Proof of Theorem 1

Let v0 be an arbitrary vertex of T , and consider T in its usual representation as a tree
rooted at v0; that is, vertices the same distance from v0 are drawn on the same level, and
edges are not allowed to cross each other. We will assume that the longest path from v0

is leftmost in this representation. Let the number of vertices in this longest path be l, let
the vertex on this path at level i be denoted as vi, i = 0, 1, . . . , l−1, and let the number of
vertices on the i-th level be denoted as ki. The following construction provides a labelling
f of V (T ) in the range {0, . . . , 2m − l + 1}.

1. The root vertex v0 takes a provisional value α; once the range of values has been
established we will shift all labels by a constant such that the lowest label is 0. We
give the label α + 1 to v1, the leftmost child of v0.

2. For i > 1 each vertex vi on the leftmost path receives the labelling

f(vi) =

{
f(vi−2) − ki−2 − ki−1 + 1 = α − ∑i−1

j=0 kj + i
2

if i is even,

f(vi−2) + ki−2 + ki−1 − 1 = α +
∑i−1

j=0 kj − i−1
2

if i is odd.
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3. A vertex u on the i-th level k places to the right of vi, 0 ≤ k ≤ ki − 1, receives the
labelling

f(u) =

{
f(vi) − k if i is even,
f(vi) + k if i is odd.

Figure 1: Construction for Theorem 1

By the construction all vertex labels are distinct, since on even levels they are mono-
tonically decreasing as we go from left to right and from top to bottom, while on the odd
levels they are increasing. Figure 1 shows how these two labelling schemes are interlaced.
Likewise, the edge labelling g of E(T ) is monotonically increasing going from left to right
and from top to bottom in the tree:

1. Consider two edges uiui+1 and wiwi+1 between vertices on consecutive levels i and
i + 1, where uiui+1 is left of wiwi+1 and i is even. By part (3) of the construction, since
edges cannot cross we have f(ui) > f(wi) and f(ui+1) < f(wi+1); hence

g(uiui+1) = f(ui+1) − f(ui) < f(wi+1) − f(wi) = g(wiwi+1).

The same follows for i odd by an analogous proof.
2. Consider any two edges uiui+1 between levels i and i + 1 and wi+1wi+2 between

levels i + 1 and i + 2 where i is again even. Since the rightmost vertices ri on level i and
ri+1 on level i+1 are respectively the minimum and maximum label on levels i and i+1,
we have that

f(ri+1) − f(ri) ≥ g(uiui+1),
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while the leftmost difference g(vi+1vi+2) is a lower bound on the labels of the edges between
levels i + 1 and i + 2. Hence we have

g(uiui+1) ≤ f(ri+1) − f(ri) = f(vi+1) + ki+1 − 1 − (f(vi) − ki + 1)
< f(vi+1) − (f(vi) − ki − ki+1 + 1) = g(vi+1vi+2)

≤ g(wi+1wi+2).

Again, this holds for i odd with minor modifications.
Lastly, we check that the bound on the range holds. Let fMIN and fMAX be respec-

tively the minimum and maximum vertex labels generated by the labelling f . In the case
where l is even, the highest labelled vertex is the rightmost on level l − 1, and the lowest
labelled vertex is the rightmost on level l − 2; hence by the construction

fMAX = f(vl−1) + kl−1 − 1

= α +
∑l−2

j=0 kj − l−2
2

+ kl−1 − 1

= α + m + 1 − l
2
.

fMIN = f(vl−2) − kl−2 + 1

= α − ∑l−3
j=0 kj + l−2

2
− kl−2 + 1

= α − m − 1 + kl−1 + l
2
.

From this we obtain the bound on the range:

fMAX − fMIN = α + m + 1 − l
2
− (α − m − 1 + kl−1 + l

2
)

= 2m − l + 2 − kl−1

≤ 2m − l + 1.

Figure 2: RRG labelling of a tree using Theorem 1 construction

By choosing for our root vertex one endpoint of a longest path in T , we can obtain a
labelling in the range 2m − diameter(T ).
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We note that this bound is tight for paths, and is “good” for long, stringy trees; but
for trees of low fixed diameter we still have not broken (2 − ε)m. There do exist variants
of the above construction that in practice seem to always give us a range well within 3

2
m;

these, however, assign labels opportunistically rather than monotonically, and have not
as of yet given us any rigourous results.

4 Proof of Theorem 2

To establish Theorem 2 it is enough to show that every tree has a vertex-relaxed graceful
labelling where all vertex labels in the larger of the bipartition sets are distinct; for this
we will need a little bit of new machinery. An often studied subset of graceful labellings
are bipartite graceful (or α-graceful) labellings; the labelling f of G is bipartite if the
vertices of G have a bipartition into sets A and B such that there exists a constant α ∈ N

satisfying, for every vertex v ∈ A
f(v) ≤ α,

and for every vertex v ∈ B
f(v) > α.

If G is a tree then α is of course the highest label in the low partition A, and is equal
to |A| − 1. Among the many useful properties of this extra condition is that if f is a
bipartite graceful labelling of a graph G then addition of a constant to every vertex label
in the high bipartition set results in addition of the same constant to every edge label.
We now consider a weakened version of bipartite labelling, in that the above condition is
applied (with some modifications) not globally but locally; the highest label in the low
partition as a consequence loses its defining status.

Definition 3 Let G be a graph with a labelling f . We say that f is locally bipartite if
the vertices of G have a bipartition into sets A and B such that for every vertex v ∈ A

∀u ∈ N(v), f(v) < f(u)

and for every vertex v ∈ B

∀u ∈ N(v), f(v) > f(u)

where N(v) is the open neighbourhood of v.

Locally bipartite labellings were introduced independently in [4] and [11]. For our
present purposes we are interested in the fact that like fully bipartite labellings they have
the property that the value of all edge labels can be shifted up by a constant simply by
adding that constant to the labels of all vertices in the high partition.
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Claim 4 Let T be a tree, with the sets A and B a bipartition of the vertices of T , and
v an arbitrary vertex in A. There exists a vertex-relaxed graceful labelling f of T which
satisfies the following properties as well:

1. The labelling f is locally bipartite, with B being the high partition;

2. The vertex v is assigned the label 0 by f ;

3. The labels of all vertices in B are distinct.

Such a labelling will be denoted as VRG′ with respect to v.

Proof: Assume that all trees on less that n vertices satisfy the claim, and let T be any
tree on n vertices and m edges. For every vertex v in V (T ), we can construct a labelling
f that is VRG′ with respect to v in the following manner:

CASE: The degree of v is at least 2. Then T can be split at v to form two trees T1

and T2 of orders strictly less than n and greater than 1. Let v1 and v2 be the vertices of
T1 and T2 respectively which are identified to form v in T , and let (A1, B1) and (A2, B2)
be bipartitions of T1 and T2 such that v1 ∈ A1 and v2 ∈ A2.

Figure 3: The degree of v is at least 2

By our assumption T1 and T2 possess VRG′ labellings f1 and f2 where v1 and v2 are
assigned the label 0. If the number of edges in T1 is m1 the labelling f of T defined by

f(u) =




f1(u) if u ∈ V (T1),
f2(u) if u ∈ A2,
f2(u) + m1 if u ∈ B2.

is VRG′ with respect to v. Since f1 and f2 are VRG′ with respect to v1 and v2 respectively,
we have:

1. f(v) = f1(v1) = f2(v2) = 0.

2. f1 and f2 are both locally bipartite; addition of a constant to the labels in the high
partition does not change that fact for f2, nor does amalgamation of the subtrees
at v, so f is as well locally bipartite.
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3. The edge labels generated by f in T1 are the same as those generated by f1:
{1, . . . , m1}. The edge labels generated by f in T2 are those generated by f2 shifted
up by the constant m1: {m1 + 1, . . . , m1 + |E(T2)|}. Hence f is a vertex relaxed
graceful labelling of T .

4. All labels given by f1 to B1 are distinct, as are all labels given by f2 to B2. Since
f2 is locally bipartite no vertex in B2 is given the label 0 by f2. Hence

min{f2(B2)} + m1 ≥ m1 + 1 > m1 = max{f1(B1)}.
Therefore all labels given to B1 ∪ B2 by f are distinct.

CASE: The degree of v is 1. Let w denote the sole neighbour of v. If T is not P2

(which definitely satisfies our claim), then w has k ≥ 1 other neighbours r1, r2, . . . , rk. Let
the trees of T −{w} rooted at each ri be denoted by Ti, their size by mi, and bipartition
by (Ai, Bi) with ri ∈ Ai.

Figure 4: The degree of v is 1

Since no Ti is of order greater than n−2, by our assumption each has a VRG′ labelling
with respect to ri which we will denote fi. A labelling f of T which is VRG′ with respect
to v is then given by:

f(v) = 0,
f(w) = m,
f(u) = fi(u) + i if u ∈ Ai,

= fi(u) +
∑i−1

j=1 mj + i if u ∈ Bi.

We verify that this is VRG′; in the following Mi will denote the sum
∑i−1

j=1 mj:

1. f(v) is explicitly assigned 0 by the construction.

2. Each fi is locally bipartite; the effect of f on fi is to add the constant i to all labels
of V (Ti), and the additional constant Mi to the labels of the high partition Bi, hence
f applied to each Ti is locally bipartite. Since f(ri) is the lowest label in each Ti,
and f(w) of course the highest in T , f is locally bipartite with respect to T as well.
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3. Since the addition of a constant to all vertex labels does not effect the edge labels
generated, we have that f applied to each Ti generates {Mi +1, . . . , Mi +mi}; since
M1 equals 0 and Mi+1 equals Mi+mi, these labels with respect to the Ti’s are distinct
and cover {1, . . . , Mk + mk}. Since f(ri) equals i the edges labels generated in the
subgraph of T induced by {v, w, r1, . . . , rk} are simply {m − k, m − k + 1, . . . , m}.
The number of edges of T not in this induced subgraph is Mk + mk, hence f is
vertex-relaxed graceful.

4. For each fi we have all vertex labels in Bi distinct, with max{fi(Bi)} at most mi

and min{fi(Bi)} at least 1. Hence we have that

max{f(Bi)} ≤ Mi + mi + i < Mi+1 + i + 1 ≤ min{f(Bi+1)}.

Therefore the labels f assigns to
⋃k

i=1 Bi are all distinct. The maximum of these is
at most Mk + mk + k = m − 1, so all labels in the high partition of T are distinct
and f is VRG′ with respect to v.

Figure 5: VRG labelling of a tree using construction from Claim 4

Of course, to obtain the bound stated in Theorem 2, we choose a vertex v in V (T ) such
that the set A is the smaller one of the bipartition. We can then obtain a labelling f that
is VRG′ with respect to v by applying the above construction recursively. As mentioned
before, the label 0 cannot be used for any vertex in B; hence we have

|f(V (T ))| ≥ |B| + 1 ≥ n

2
+ 1.
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5 Closing remarks

5.1 Better bounds

Even if the graceful tree conjecture remains unattainable, better bounds for range-relaxed
and vertex-relaxed graceful labellings of trees should be within reach. The techniques
employed here, however, may not take us much further, since our results depend in part
upon the tree’s diameter for RRG labellings and the difference in the size of its bipartition
sets for VRG labellings; both may be arbitrarily small in relation to the size of the tree.
Hence different approaches will probably need to be taken in order to obtain bounds
that are, for example, comparable to those of Rosa and Širáň for edge-relaxed graceful
labellings.

Question: For a tree T on m edges and n = m + 1 vertices, is there any ε > 0 for
which we can guarantee a range-relaxed graceful labelling within the range (2− ε)m, or a
vertex-relaxed graceful labelling with at least (1

2
+ ε)n distinct vertex labels? In particular,

can we obtain bounds of roughly 7
5
m and 5

7
n respectively?

5.2 Possible reductions

A related question is whether there are reductions from any one of these labellings to
any other which preserves to some extent the bound achieved in each individual case. At
present we do know that if a tree T on n vertices has a vertex-relaxed graceful labelling
f with cn distinct vertex labels we can obtain a range-relaxed graceful labelling in the
range n− 1 for at least one tree T ′ of order cn. While it is a known fact that a subgraph
of a graceful graph is not necessarily graceful, if a graph G on m edges is graceful every
subgraph of G has a range-relaxed graceful labelling in range {0, . . . , m}; on the other
hand, if we have a graph H with a vertex-relaxed graceful labelling fH we can identify
any two vertices with the same label to obtain a VRG labelled graph H ′, since duplicate
edges and self-loops are never introduced by such vertex indentifications. Hence we can
achieve our “weak” reduction by identifying all like-labelled vertices f gives to T and then
extracting a spanning tree from the resulting graph.

Question: Do there exist direct reductions between edge-relaxed, range-relaxed, and
vertex-relaxed graceful labellings for a given tree T? If so, would any such reduction help
us to significantly tighten our best known bounds in terms of |E(T )| and |V (T )|?

5.3 Graceful versus vertex-relaxed graceful

Lastly, the idea that for connected graphs vertex-relaxed gracefulness may be strongly
correlated with gracefulness proper has very intriguing consequences. If a graph has too
few edges to be graceful then it is not connected in the first place; as mentioned earlier,
in this case there is often a VRG labelling. With connected graphs the situation is quite
different. While a full investigation of this must wait, it is certainly worth looking briefly
at how vertex-relaxation fares against some known classes of ungraceful connected graphs:
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1. A parity condition given by Rosa [9], that any Eulerian graph G on m edges has no
graceful labelling if m is equivalent to 1 or 2 (mod 4), applies as much in the VRG
case as when all vertices have distinct labels. This is because Eulerian graphs can
be decomposed into cycles, and the sum of the edge labels on any cycle must be
even.

2. With dense graphs, allowing duplicate vertex labels offers no advantage; for a graph
to have any VRG labelling that is not simply graceful at least two vertices with
disjoint closed neighbourhoods must be present (otherwise, we will have two vertices
with the same label both adjacent to some third vertex, or adjacent to each other).

3. Similarly, the presence of any dominant vertices precludes the use of duplicate labels,
hence French 2 and 3 windmills are not vertex-relaxed graceful despite not being
Eulerian or too dense; when k is greater than 3 the only vertex-relaxed graceful
labellings of French k-windmills are proper graceful labellings.

Figure 6: French 2-windmill

Question: Do all connected graphs that have a vertex-relaxed graceful labelling have
a proper graceful labelling?

We note that if the above question can be answered in the affirmative then the graceful
tree conjecture immediately follows.
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