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Abstract

Let A3(n, d,w) denote the maximum cardinality of a ternary code with length
n, minimum distance d, and constant Hamming weight w. Methods for proving
upper and lower bounds on A3(n, d,w) are presented, and a table of exact values
and bounds in the range n ≤ 10 is given.
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1 Introduction

Constant weight codes constitute an important class of error-correcting codes [17]. Binary
constant weight codes have therefore been thoroughly studied with the focus of attention
on the function A(n, d, w), which denotes the maximum cardinality of a binary code of
length n, minimum distance d, and constant weight w. Extensive results on upper and
lower bounds on A(n, d, w) are presented in [1] and [7], respectively.
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When studying nonbinary constant weight codes, one may either prescribe the com-
plete weight or the Hamming weight of the codes. Codes with given complete weight
are called constant-composition codes. Ternary constant-composition codes are studied in
[25]. The maximum size of a ternary code with minimum distance d and complete weight
enumerator of the form Aw0,w1,w2z

w0
0 zw1

1 zw2
2 (so n = w0 + w1 + w2), where Aw0,w1,w2 is the

number of codewords with the given composition, is denoted by A3(n, d, [w0, w1, w2]).
In this paper, we study ternary codes with given Hamming weight, and let Aq(n, d, w)

denote the maximum size of a q-ary code of length n, minimum distance d, and con-
stant Hamming weight w (where the index q may be omitted in the binary case). A
code of size M for given values of q, n, d, and w is called an (n, d, w; M)q code. An
(n, d, w; Aq(n, d, w))q code is said to be optimal. The function A3(n, d, w) has until re-
cently received only limited attention. Published work on this topic includes [4, 10, 12,
11, 16, 22, 23, 26, 27] and the thesis [24] of the second author.

The paper is organized as follows. In Section 2 some basic results on ternary constant
weight codes are presented. Methods for obtaining upper bounds on A3(n, d, w) are con-
sidered in Section 3. In Section 4 constructions of ternary constant weight codes, which
lead to lower bounds on A3(n, d, w), are discussed. A table of A3(n, d, w) for n ≤ 10 is
presented in Section 5.

2 Preliminaries

The coordinate values of ternary codes are without loss of generality {0, 1, 2}. If desired,
these may be taken as elements of F3, the Galois field of order 3. None of the constructions
in this work, however, require any algebraic structure of this underlying set.

The rest of this section is devoted to several special cases where we can determine the
exact value of A3(n, d, w). Let Aq(n, d) denote the maximum size of a q-ary code (without
weight restrictions) of length n and minimum distance d, where the index may be omitted
when q = 2. Tables of A2(n, d) and A3(n, d) can be found in [2] and [6], respectively. The
proof of the following theorem is obvious and is omitted.

Theorem 1 Aq(n, d, n) = Aq−1(n, d).

By Theorem 1, A3(n, d, n) = A(n, d). Since binary unrestricted codes have been
thoroughly studied in the literature—see, for example, [7]—we assume that w < n in the
sequel. In the following proofs, the concept of support plays a central role. The support
of a codeword is the set of coordinates with non-zero values. The following theorem is
also proved in [12]; we give an alternative proof.

Theorem 2 Aq(n, 2, w) =
(

n
w

)
(q − 1)w−1.

Proof: There are
(

n
w

)
possible supports for codewords with weight w. Two words with

different support are clearly at distance at least 2 from each other. For a given support,
the maximum number of codewords with minimum distance 2 is Aq(w, 2, w) = Aq−1(w, 2)
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(by Theorem 1), and the proof is completed as Aq(w, 2) = qw−1. �

For small values of M , we are able to determine for what parameters A3(n, d, w) = M .
(Trivially, A3(n, d, w) ≥ 1 for any parameters.) The following lemmas will be useful in
proving such results. The proof of the first lemma is obvious and is omitted.

Lemma 3 If A3(n, d, w) ≥ 2, then d ≤ 2w and d ≤ n.

Lemma 4 A3(n, d, w) ≤ A(n, 2(d − w), w) if d/2 ≤ w ≤ d.

Proof: If the supports of two codewords of a ternary code attaining A3(n, d, w) intersect
in t coordinates, then they are at distance at most (w− t)+ t+(w− t) = 2w− t from each
other, and we get 2w−t ≥ d, so t ≤ 2w−d. Therefore, the supports correspond to a binary
code with constant weight w and minimum distance at least 2w − 2(2w − d) = 2d − 2w,
which has size at most A(n, 2(d − w), w). �

Lemma 4 is strongest when w is close to d/2. At the other extreme, when w = d, the
implication of the lemma is trivial.

Theorem 5 A3(n, d, w) ≥ 2 exactly when d ≤ min{2w, n}.
A3(n, d, w) ≥ 3 exactly when d ≤ min{2w, n/3 + w, 5n/3 − w}.

Proof: By Lemma 3, the given conditions for A3(n, d, w) ≥ 2 are necessary. Their
sufficiency is proved by two words whose supports intersect in 2w − d coordinates and
have different values in these coordinates.

It is known that A(n, d, w) ≥ 3 exactly when n ≥ 3d/2 and n ≥ w + d/2 (see [7, p.
1338]). By Lemma 4, necessary conditions for A3(n, d, w) ≥ 3 are therefore n ≥ d and
n ≥ 3(d − w). When w ≤ 2n/3, the latter condition (d ≤ n/3 + w) is sufficient, which
can be seen by finding a transformation from a binary constant weight code as follows.

Note that when w ≤ 2n/3 we can (if necessary) always transform a binary constant
weight code with three words and a given minimum distance into another binary constant
weight code with the same parameters (but possibly larger minimum distance) such that
there is no coordinate where all words have a 1. (Namely, we can transpose a 1 in such
a coordinate with a 0 in a coordinate with at most one 1—which exists since the average
number of 1s in the coordinates is 3w/n ≤ 2n/n = 2. This procedure is repeated until
there is no coordinate with three 1s.) A code with this property is then made ternary by
changing one of the 1s in a coordinate with two 1s into a 2.

We now consider w > 2n/3 and count the distances between all pairs of three given
ternary words in two ways. The pairwise distances are at least d, so a lower bound for
the sum is 3d. Denote the number of coordinates with one, two, and three nonzero values
by a, b, and c, respectively (w.l.o.g, we may assume that there are no coordinates with
only one value and that with two nonzero values, these are different). Then we have
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{
a + 2b + 3c = 3w
a + b + c = n

(1)

and the sum of distances is 2a + 3b + 2c, which equals 5n − 3w − 2a using (1), and by
combining this and the earlier result we get 3d ≤ 5n − 3w − 2a, so 3d ≤ 5n − 3w.

A code can be constructed in the following way to prove that 3d ≤ 5n − 3w is suf-
ficient when w > 2n/3. Let the n − w coordinates of 0s in the three words be non-
overlapping. Then there are 3w − 2n coordinates where all words are nonzero, and the
distance between two words in these coordinates can be made at least b2(3w − 2n)/3c
as A(n, b2n/3c) ≥ 3. The distance between two words can thus be made at least
b2(3w−2n)/3c+3(n−w) = b5n/3c−w, and as the parameters are integers, 3d ≤ 5n−3w
(that is, d ≤ 5n/3 − w). �

Corollary 6 A3(n, d, w) = 1 exactly when d > min{2w, n}. A3(n, d, w) = 2 exactly when
min{n/3 + w, 5n/3 − w} < d ≤ min{2w, n}.

Throughout the results shown so far, the obvious condition d ≤ 2w has been present
for nontrivial codes. Another family of optimal codes is obtained when d = 2w.

Theorem 7 A3(n, 2w, w) = bn/wc.

Proof: With d = 2w, no codewords can have overlapping supports. The maximum
number of codewords with this property is bn/wc. �

For d = 2w − 1, we have the following result.

Theorem 8 A3(n, 2w − 1, w) = max{M | n ≥ dMw/2e + max{bMw/2c − (
M
2

)
, 0}}.

Proof: With minimum distance d = 2w − 1, the supports of two words can have
at most one common coordinate. Moreover, no three codewords may have a common
coordinate in their supports, since then at least two of these would have the same value
in that coordinate and mutual distance at most 2w − 2. It is enough to study binary
constant weight codes with the same supports, since the required ternary code can then
always be obtained by changing a 1 into a 2 in a coordinate with two nonzero values.

Hence we consider binary codes with constant weight w and the properties that two
words have at most one common 1 and no three words have a common 1. This can be
viewed as an incidence matrix of a graph—the words correspond to vertices and the the
coordinates to edges—with vertex degrees at most w (ignoring the loops).

We fix the number of codewords, M , that is, the number of vertices in the corre-
sponding graph, and calculate the smallest length n for which a corresponding code exists
(then it also exists for any larger n). To minimize n, we have to maximize the number of
coordinates with two nonzero values, that is, the number of edges in a graph with vertex
degrees at most k = min{w, M − 1}.
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The number of edges in a graph with M vertices and vertex degrees at most k is, by
a direct counting argument, at most bMk/2c and we shall see that there are graphs that
attain this value. This can be done in several ways; we use one-factorizations. If M is
even, the complete graph KM has a one-factorization [28, Theorem 3.2], so we take k
one-factors. If M is odd, start with k one-factors of a graph with M − 1 vertices, delete
bk/2c edges from one of the factors, introduce a new vertex, and connect the new vertex
to all vertices incident to the deleted edges [28, p. 23].

Now if w ≤ M − 1, the minimum value of n is dMw/2e. If w > M − 1, the code will
have Mw − 2

(
M
2

)
coordinates with one nonzero value in addition to the

(
M
2

)
coordinates

with two values, so the length is at least Mw − (
M
2

)
. By combining these results, the

theorem is proved. �

3 Upper Bounds

Whereas lower bounds follow from explicitly constructed codes, many of which can be
verified even by hand, several of the best known upper bounds have been obtained com-
putationally and require as large effort for verification as for the original proof. In this
section, the methods that are used to produce the upper bounds of the main table are
briefly discussed; it is an interesting open research problem to try to develop even more
sophisticated bounds using, for example, the ideas in [1].

3.1 Johnson-Type Bounds

Johnson [14] presented bounds for binary error-correcting codes. Analogous bounds have
later been developed for many other types of error-correcting codes, including ternary
constant weight codes. Bounds that actually are useful for producing both upper and
lower bounds are given in the following two theorems [24].

Theorem 9
Aq(n, d, w) ≤ n

n − w
Aq(n − 1, d, w).

Proof: An optimal code attaining Aq(n, d, w) must have a coordinate with at least
(n−w)Aq(n, d, w)/n 0s. By shortening the code with respect to the 0s in this coordinate
and deleting the coordinate, we get a code with at most Aq(n − 1, d, w) words. �

If we instead shorten a code with respect to a nonzero value, we get another similar
bound. The proof mimics that of Theorem 9 and is omitted.

Theorem 10

Aq(n, d, w) ≤ n(q − 1)

w
Aq(n − 1, d, w − 1).

the electronic journal of combinatorics 9 (2002), #R41 5



Note that in using Theorems 9 and 10 and a lower bound on A3(n, d, w), instead of
applying these averaging formulas, we may dissect the code to see if there are even larger
subcodes.

The next bound is obtained by counting the distances between words in two different
ways: for all pairs of words and coordinatewise. Actually, we used this technique already
in Section 2. A slightly weaker bound for q-ary constant weight codes is presented in [12].
The ternary version of our main result appears in [24].

Lemma 11 Fill an M × n matrix A with entries ai,j (1 ≤ i ≤ n, 1 ≤ j ≤ M) from

{0, 1, . . . , q−1}, a of which are 0. Then
∑n

i=1

∑M
j=1

∑M
j′=j+1 d(ai,j, ai,j′) achieves its max-

imum value when the values of entries are evenly distributed: ba/ncorda/ne 0s in each
column; if there are b nonzero entries in a column, then there are bb/(q−1)c or db/(q−1)e
of each of the nonzero values in this column.

Proof: Let ni,j denote the number of entries j in column i. If a given matrix has a 0s,
then so has the matrix after a replacement of a nonzero value by another nonzero value.
By [5, Lemma 1], in a column i with b nonzero entries, the maximum sum of the distances
between all pairs of entries is achieved when ni,j = b(b + j − 1)/(q − 1)c, so we assume
from now on that the matrix has this property.

Assume that ni,0 − ni′,0 > 1 for two columns i and i′. Then if one 0 in column i is
replaced by a 1 and one entry (q − 1) in column i′ is replaced by a 0, we get another
matrix with the stipulated properties whose objective function differs from that of the old
matrix by

ni,0 − 1 − ni,1 − ni′,0 + (ni′,1 − 1) = (ni,0 − ni′,0) + (ni′,q−1 − ni,1) − 2

≥ 2 + 1 − 2 > 0.

Hence we may assume that the values are evenly distributed as given by the lemma. �

We define k = bMw/nc and t = Mw − nk.

Theorem 12 If there exists an (n, d, w; M)q code, then

M(M − 1)d ≤ 2t

q−2∑
i=0

q−1∑
j=i+1

MiMj + 2(n − t)

q−2∑
i=0

q−1∑
j=i+1

M ′
iM

′
j ,

where M0 = M−k−1, M ′
0 = M−k, Mi = b(k+i)/(q−1)c, and M ′

i = b(k+i−1)/(q−1)c.
Proof: In a code with the given parameters, we sum the distances between all ordered

pairs of codewords in two different ways. One way is given by Lemma 11; the sum in this
case is bounded from above by the expression on the right side of the inequality in this
theorem. On the other hand, as the code has minimum distance d, the sum of distances
is bounded from below by M(M − 1)d, and the result follows. �

For ternary codes, we get the following corollary.
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Corollary 13 If there exists an (n, d, w; M)3 code, then for even k,

(
3k2

2
− 2k

)
n + 3kt ≤ M(M − 1)(2w − d),

and for odd k,

(
3k2

2
− 2k +

1

2

)
n + (3k − 1)t ≤ M(M − 1)(2w − d).

Example 1. For the parameters n = 6, d = 5, and w = 4, [12, Lemma 5.1] gives that
A3(6, 5, 4) ≤ 5, whereas A3(6, 5, 4) ≤ 4 by Theorem 12 (or Corollary 13). For example,
to see that a (6, 5, 4; 5)3 code does not exist, we have k = 3, t = 2, M0 = 1, M1 = 2,
M2 = 2, M ′

0 = 2, M ′
1 = 1, and M ′

2 = 2, and evaluating the expression in Theorem 12
gives 100 ≤ 4 · (2 + 2 + 4) + 6(2 + 4 + 2) = 80, a contradiction.

3.2 Families of Perfect and Optimal Codes

As mentioned earlier, the results presented in this work are mainly those that turn out
to be good in the sense that they can be used to produce entries in the record table to
be presented in the final section. An alternative way of evaluating constructions is to see
whether they produce families of codes that are optimal or asymptotically optimal as the
length tends to infinity. Several such families have been published in the literature.

Generalized Steiner triple systems have recently received a lot of attention; see, for
example, [3, 8, 10]. A generalized Steiner triple system is a q-ary code of constant weight 3
and minimum distance 3, and with the property that all words of weight 2 are at distance
1 from a codeword. These are of great interest as they form optimal constant weight
codes. In particular, the ternary case has been studied and settled [10].

Theorem 14 A3(n, 3, 3) = 2n(n − 1)/3 for n ≡ 0, 1 (mod 3), n ≥ 4, n 6= 6.

Optimality of the codes attaining the bound in Theorem 14 follows from Theorems
8 and 10. Alternatively, one may use the fact that each codeword is at distance 1 from
three words of weight 2; there are 2n(n − 1) words of weight 2, none of which may be at
distance 1 from two codewords. Also the case n ≡ 2 (mod 3) has been settled [29].

Theorem 15 A3(n, 3, 3) = 2n(n − 1)/3 − 4/3 for n ≡ 2 (mod 3), n ≥ 5.

Note that Theorem 15 actually differs slightly from the result in [29], where it is
claimed that the result holds only for n ≥ 8 and does not hold for n = 5. The computer
search carried out in [29] is obviously in error, since a (5, 3, 3; 12)3 code is known to exist
[4]. Such a code with a particular structure is given later in Table 3.

Jacobsthal matrices are used in [25] to produce good constant-composition codes; they
can also be used to obtain optimal ternary constant weight codes [24]. Let p be an odd
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prime. Consider the Galois field Fpm with elements α1, α2, . . . , αpm and let S be the set
of nonzero square elements

S = {α2
i : αi ∈ Fpm , αi 6= 0 }.

A pm × pm Jacobsthal matrix Q = (qij) is defined by

qij =




0 if αi = αj ,
1 if αi − αj ∈ S,

−1 otherwise.

Theorem 16 If p ≥ 3 is a prime and m ≥ 1, then A3(p
m +1, (pm +3)/2, pm) = 2pm +2.

Proof: Take a pm × pm Jacobsthal matrix Q with entries from {−1, 0, 1} (which exists
with the given restrictions on the parameters [17, p. 47]) and map the entries to {0, 1, 2}
by −1 → 2, 0 → 0, 1 → 1. Take the rows of this matrix, add one coordinate with value 1,
and call the resulting code C1. Let C2 be the code obtained by interchanging the values
1 and 2 in all coordinates of C1.

We now claim that C = C1 ∪ C2 ∪ {011 . . . 1, 022 . . .2} proves that A3(p
m + 1, (pm +

3)/2, pm) ≥ 2pm + 2. The only nontrivial part of this proof is to show that the minimum
distance is at least (pm + 3)/2. The inner product of two distinct rows of Q is −1 by
[17, p. 47, Lemma 7]. As exactly pm − 2 of the coordinates have nonzero values in both
of these rows, we find that they coincide in (pm − 3)/2 and differ in (pm − 1)/2 of these
coordinates. The distance between two words in C1 (or C2) is therefore (pm − 1)/2 + 2.
The analysis above shows that if C2 is obtained by interchanging 1 and 2 in C1, then the
distance between a word in C1 and another in C2 is 1 + (pm − 3)/2 + 2. The distance
criterion also holds for the two supplementary words of C as there are (pm − 1)/2 values
of both −1 and 1 in each row of Q.

The theorem now follows by using A3(p
m, (pm + 3)/2, pm − 1) ≤ pm (from Theorem

12) and Theorem 10. �

The result A3(p
m, (pm + 3)/2, pm − 1) = pm from [12] is then a corollary of this result

(by using Theorems 10 and 12).
Infinite families of codes with w = 3 that are asymptotically optimal are presented in

[22] and generalized in [11].
Of particular interest is the following recently discovered [23] family of perfect one-

error-correcting constant weight codes. A code C in a given space is said to be a perfect
t-error-correcting code if all words in the space are at distance at most t from exactly one
word in C.

Theorem 17 For r ≥ 2, A3(2
r, 3, 2r − 1) = 22r−1 and corresponding codes are perfect.

After having seen some of the preliminary results of [23], the authors of [16] published
an alternative proof of Theorem 17 and also showed that these codes and the perfect
binary codes of length 2r−1, r ≥ 2 (which are ternary constant weight codes with w = n)
are the only perfect ternary constant weight codes with d = 3.
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3.3 Exhaustive Computer Search

A known upper bound Aq(n, d, w) ≤ M may be improved after an exhaustive computer
search for a code with these parameters and size M . This search can in fact be conveniently
described as a search for a clique of size M in the following graph. Consider the graph
where the vertex set corresponds to the words of length n and Hamming weight w and
two vertices are joined by an edge if the Hamming distance between the corresponding
words is greater than or equal to d.

With a maximum clique algorithm, we would find the exact value of Aq(n, d, w) but
this direct approach is computationally feasible only for very small parameters. We may
then perhaps relax the goal and just try to lower the upper bound. In any case, to speed
up the search, it is essential to handle the large automorphism group of the constructed
graph. This may be done in the following way by utilizing the Johnson-type bounds
(Theorems 9 and 10) and removing equivalent copies of partial codes.

Two q-ary constant weight codes are said to be equivalent if one can be mapped onto
the other by permuting the coordinates and permuting the nonzero values in each coordi-
nate. Such transformations are distance-preserving and weight-preserving (and constitute
the stabilizer of the all-zero word in the group of distance-preserving transformations of
unrestricted codes). An equivalence transformation that maps a code onto itself is an au-
tomorphism. The set of all automorphisms of a code constitutes the (full) automorphism
group of the code.

As in proving Theorems 9 and 10, we find that an (n, d, w; M)q code can be shortened
to get (n − 1, d, w; M ′)q and (n − 1, d, w − 1; M ′′)q subcodes, where

M ′ ≥ n − w

n
M, M ′′ ≥ w

n(q − 1)
M. (2)

Therefore, we may construct a code C by classifying all such subcodes (for one of these
two alternatives), and then use the clique-finding approach to find the rest of the words
in C. This computation can be done recursively as the following example shows.

Example 2. It was known to us that 9 ≤ A3(7, 5, 5) ≤ 10, so we wanted to find
out whether there exists a (7, 5, 5; 10)3 code. By using (2), there must be a (6, 5, 5; M ′)3

subcode with M ′ ≥ 3. There is a unique such code (for which M ′ = 3), which can be
constructed by hand or by lengthening all (5, 5, 5; 1)3 and (5, 5, 5; 2)3 codes (which are, up
to equivalence, {11111} and {11111, 22222}, respectively). Since the unique (6, 5, 5; 3)3

code cannot be lengthened to a (7, 5, 5; 10)3 code (this is preferably done by computer),
we find that A3(7, 5, 5) = 9.

To prove equivalence of codes, we have mapped codes to graphs as in [25] (with a
mapping suiting this class of codes and definition of equivalence) and used the graph
isomorphism program nauty [18].

In four cases when we tried to improve the best known upper bound, we encountered a
new code, thereby proving an exact value that is greater than the previously best known
lower bound. These four codes are among those listed in Table 1.
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Bound Codewords
A3(8, 5, 4) ≥ 13 11110000, 01021100, 00212200, 21000210, 20022020,

10200120, 02201010, 20101001, 20010102, 12002002,
02010021, 00120012, 00002111

A3(8, 5, 5) ≥ 18 11110001, 01021101, 00212201, 12000111, 10022021,
02201021, 22200202, 22122000, 21100120, 21020012,
20012110, 12011200, 11202010, 10120210, 10102102,
01002222, 00220122, 00111012

A3(8, 5, 6) ≥ 18 11111001, 22220101, 20012111, 12022021, 02101221,
01210211, 22110012, 21201110, 21002222, 20211202,
12102102, 12011210, 11222200, 11020112, 10121120,
02212120, 01221022, 00122212

A3(9, 5, 4) ≥ 19 111100000, 010211000, 002122000, 200101100,
120020100, 021002200, 210002010, 200220020,
102001020, 022010010, 001200110, 000012120,
201010001, 100202002, 100000211, 020100021,
012000102, 000110202, 000021012

A3(10, 7, 7) ≥ 13 1111111000, 1001222110, 0220211210, 0212120120,
2210022011, 2201201022, 2100110112, 2002121201,
1221020202, 1022210021, 1010102222, 0122202102,
0101012221

Table 1: Explicitly listed codes.
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4 Lower Bounds

Lower bounds are constructive and follow from explicit constructions of constant weight
codes. Two main constructions—both of which are computer-aided—are presented in this
section. For more constructions that can be used to obtain good ternary constant weight
codes, see [24]. Various constructions were, of course, also discussed earlier in this paper
along with results on exact values of A3(n, d, w).

Trivially, as a constant-composition code is also a constant weight code, we have that

Aq(n, d, w1 + w2) ≥ Aq(n, d, [w0, w1, w2]). (3)

In using this inequality applied to bounds on constant-composition codes, it is use-
ful to note that Aq(n, d, [w0, w1, w2]) = Aq(n, d, [wf(0), wf(1), wf(2)]), for any bijection
f : {0, 1, 2} → {0, 1, 2}.

4.1 Lexicographic Codes

As some of the lower bounds on binary constant weight codes in [7] come from lexico-
graphic codes, it is no surprise that some of the best known ternary constant weight codes
are also lexicographic.

A ternary constant weight lexicographic code (lexicode) is obtained in the following
way. We start by prescribing the parameters of the code—n, d, and w—and a so-called
seed: a (possibly empty) set of words that belong to the code. Then, with a given order
of the words, we go through all words in this order and add words to the code whenever
they are at distance at least d from all previously accepted words.

In this study, some lower bounds are obtained with a new type of lexicographic codes,
which we call lexicographic codes with offset. These codes are constructed as regular
lexicodes, but instead of starting from the lexicographically first word in the space, we
start from a given word (called offset vector) and proceed cyclically through all words.
The bounds obtained in this way are presented in Table 2. Some other record-breaking
codes are also achieved by lexicodes; cf. [4].

Bound Offset
A3(6, 5, 4) ≥ 4 –
A3(10, 7, 5) ≥ 8 0012100011
A3(10, 7, 6) ≥ 11 0011221100

Table 2: Lexicographic codes

4.2 Constant Weight Codes from Unrestricted Codes

If we take a (linear or nonlinear) unrestricted code with minimum distance d, then its
subcode formed by codewords with a given weight clearly has minimum distance at least
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d. There is, of course, a wide variety of codes whose subcodes one could study in the
search for good constant weight codes. It is perhaps no surprise that perfect codes are
good candidates.

The complete weight enumerator of the ternary Golay code (with minimum distance
5) and the extended ternary Golay code (with minimum distance 6) are, respectively,

W1(z0, z1, z2) = z11
0 + z11

1 + z11
2 +

11(z6
0z

5
1 + z5

0z
6
1 + z6

0z
5
2 + z5

0z
6
2 + z6

1z
5
2 + z5

1z
6
2) +

55(z6
0z

3
1z

2
2 + z6

0z
2
1z

3
2 + z3

0z
6
1z

2
2 + z3

0z
2
1z

6
2 + z2

0z
6
1z

3
2 + z2

0z
3
1z

6
2) +

110(z5
0z

3
1z

3
2 + z3

0z
5
1z

3
2 + z3

0z
3
1z

5
2),

W2(z0, z1, z2) = z12
0 + z12

1 + z12
2 +

22(z6
0z

6
1 + z6

0z
6
1 + z6

0z
6
2) +

220(z6
0z

3
1z

3
2 + z3

0z
6
1z

3
2 + z3

0z
3
1z

6
2).

From W1(z0, z1, z2) we find that A3(11, 5, 5) ≥ 132 (which in fact turns out to be an exact
value) and by using Theorem 10, we find that A3(10, 5, 4) ≥ 30. From W2(z0, z1, z2) we
find that A3(12, 6, 6) ≥ 264 and A3(12, 6, 9) ≥ 440 (which also turn out to be exact values)
and by using Theorems 9 and 10 to shorten the code twice, we arrive at A3(10, 6, 5) ≥ 36,
A3(10, 6, 6) ≥ 60, A3(10, 6, 7) ≥ 60, and A3(10, 6, 8) ≥ 45.

Occasionally, optimal unrestricted codes can be constructed from constant weight
codes. For example, by taking an (7, 4, 5, 32)3 code and one word of weight 0 or 1, we
find that A3(7, 4) ≥ 33. Actually, we know [20] that A3(7, 4) = 33, so this argument
can then in fact be used to prove that A3(7, 4, 5) = 32. Analogously, we get upper
bounds that together with constructions of corresponding codes show that A3(7, 5, 5) = 9
(A3(7, 5) = 10 from [27]) and A3(10, 7, 7) = 13 (A3(10, 7) = 14 from [15]).

4.3 Computer Search with Symmetries

The approach presented in Section 3.3 does not impose any restrictions on the structure
of codes. With restrictions, however, the search space can be reduced and even larger
instances can be attacked. This approach can, of course, be successful only if there exist
codes with the prescribed restrictions. One obvious restriction is to prescribe automor-
phisms (symmetries) of the codes one is searching for.

In this work, mainly cyclic and quasi-cyclic codes are considered. A cyclic code has
an automorphism that cyclically permutes all coordinates. One may generalize this code
family slightly to include codes for which the cyclic permutation does not act on all
coordinates (and say that the code has one or more fixed coordinates). A quasi-cyclic codes
has an automorphism that is a nontrivial subgroup of an aforementioned automorphism
of a cyclic code.

In the search for the largest code with a prescribed automorphism group, we first
compute all orbits of words, and reject those orbits in which there is a pair of words at
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distance less than d from each other. The search problem can also here be presented as
a clique problem, but now we have a graph where the vertices correspond to orbits and
vertices indicate that all words in one orbit are at distance greater than or equal to d
from all words in the other orbit. Moreover, the vertices have integer weights—given by
the number of words in the corresponding orbit—and hence we have an instance of the
maximum-weight clique problem.

Whenever possible, we solved the instances of the maximum-weight clique problem
using the program Cliquer; see [19, 21]. For instances that are too hard to solve exactly
(we stopped the search if an instance could not be solved within a few hours), one may
of course use any stochastic method of choice to find cliques with large weight; in this
work, however, we did not proceed very far in this direction. In a few cases, the best
known lower bound comes from an intermediate result of an interrupted run of the clique
algorithm.

The codes obtained in this way are listed in Table 3. The leftmost coordinate of a
codeword is numbered 1 and the rightmost is numbered n. The groups used and their
generators are given in Table 4. The list of transitive permutation groups in [9] was
extensively utilized in the search. The group G′ is the nonabelian group of order 27 with
presentation 〈s, t : s9 = t3 = 1, st = ts4〉. The notation p × G, where p is an integer,
is used in Table 3 to show that a group acts on pk coordinates instead of k coordinates
(from Table 4), as described by the following example.

Example 3. Let n = 7. Then C2 is generated by (1 2)(3)(4)(5)(6)(7), 2 × C2 is
generated by (1 2)(3 4)(5)(6)(7), and 3 × C2 is generated by (1 2)(3 4)(5 6)(7).

5 The Main Table

The best known upper and lower bounds (and exact values when these coincide) for
ternary constant weight codes of length n ≤ 10 are displayed in Table 5. Entries for
d > n, which are 1, are omitted to make the table more readable.

One reference is given for each upper and lower bound. However, references for entries
that follow from Corollary 6 (whose values are 1 or 2) are omitted. Even if a bound can
be obtained in several ways, only one reference is given.
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Bound Group Orbit Representatives
A3(5, 3, 3) ≥ 12 2 × C2 12200, 20210, 11001, 20101, 00221, 22002, 01202,

00112
A3(6, 3, 3) ≥ 18 2 × C3 210100, 022100, 120200, 011200, 100110, 200220
A3(6, 4, 3) ≥ 8 C6 101200, 202020
A3(7, 3, 4) ≥ 60 2 × C3 1121000, 2212000, 2201100, 1022100, 2011200,

1102200, 0012110, 0202210, 2101001, 1011001,
1202001, 2022001, 0021101, 0012201, 0221002,
0112002, 1001102, 0202102, 0101202, 2002202

A3(7, 3, 5) ≥ 72 C6 1211100, 1122100, 2221200, 2112001, 1222001,
2120101, 1101101, 2011101, 2202201, 2211002,
1121002, 1202102, 1220202

A3(7, 4, 3) ≥ 14 C7 1011000, 2202000
A3(7, 4, 4) ≥ 23 C6 1221000, 2011100, 2202200, 2020201, 1012002
A3(7, 4, 5) ≥ 32 3 × C2 0212210, 2211001, 1110101, 0222101, 1021201,

2102201, 2200111, 0011111, 0120211, 2010221,
1122002, 1201102, 2012102, 2220202, 0111202,
1020112, 2001212, 1100222, 0022222

A3(7, 5, 5) ≥ 9 2 × C3 0122210, 2022101, 1101202
A3(8, 3, 5) ≥ 161 C7 12221000, 21112000, 21210100, 12120100, 22201100,

20122100, 22021200, 12110001, 21220001, 22101001,
11021001, 11202001, 22012001, 20110101, 22020101,
11210002, 22120002, 12011002, 20211002, 21022002,
10122002, 11020102, 20220102

A3(8, 3, 6) ≥ 168 C8 11121100, 21212100, 22111200, 12221200, 11112200,
21211010, 21122010, 12222010, 22110110, 21220110,
12011110, 20121110, 12102110, 12210210, 11120210,
11202210, 20222210, 11212020, 12220120, 11201120,
22022120, 22202220

A3(8, 4, 3) ≥ 16 C8 10220000, 20011000
A3(8, 4, 4) ≥ 42 C8 21101000, 12021000, 10112000, 10220100, 22200200,

20202020
A3(8, 4, 5) ≥ 72 C8 11121000, 22212000, 21220100, 10211100, 12110200,

20122200, 12011010, 20221010, 22020210
A3(8, 4, 7) ≥ 28 2 × C4 22111110, 12122210, 11222120, 01112111, 20222111,

11102221, 02222221

Table 3: Codes with a nontrivial automorphism group.
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Bound Group Orbit Representatives
A3(9, 3, 4) ≥ 153 C9 211100000, 112200000, 101210000, 222020000,

120120000, 221001000, 202201000, 120011000,
102021000, 110102000, 200212000, 210022000,
110010100, 202010100, 200101100, 120200200,
220010200

A3(9, 3, 5) ≥ 336 F7,3 112110000, 221220000, 221100010, 112200010,
111010010, 202220010, 122100020, 211200020,
101110020, 222020020, 211100001, 122200001,
202210001, 101120001, 220200011, 110100021,
222100002, 111200002, 211010002, 122020002,
212000012, 101100012, 121000022, 202200022

A3(9, 3, 6) ≥ 411 S3 × C3 222111000, 221221000, 112221000, 121220100,
122011100, 011211100, 212021100, 021121100,
102121100, 111022100, 022222100, 121110200,
212110200, 111011200, 022211200, 120221200,
202221200, 222022200, 011222200, 220110110,
102210110, 120101110, 011101110, 202201110,
021202110, 210210210, 202120210, 022220210,
220201210, 102021210, 012202210, 220220220

A3(9, 3, 7) ≥ 405 G′ 211111100, 122111100, 112221100, 121212100,
212212100, 111122100, 222122100, 111211200,
222211200, 121121200, 211222200, 122222200,
122210110, 221220110, 210221110

A3(9, 3, 8) ≥ 171 C9 212111110, 221121110, 121112110, 211222110,
122222110, 122111210, 221211210, 112221210,
111212210, 212122210, 222211120, 112121120,
121221120, 211112120, 111111220, 222121220,
211221220, 122212220, 121122220

A3(9, 4, 3) ≥ 24 3 × C3 111000000, 002220000, 000111000, 220000100,
002002100, 100100200, 001010200, 010001200,
000020110, 000000222

A3(9, 4, 4) ≥ 63 C9 122100000, 220220000, 201102000, 210012000,
101200100, 202001100, 201010200

Table 3: (Cont.) Codes with a nontrivial automorphism group.
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Bound Group Orbit Representatives
A3(9, 4, 5) ≥ 132 C8 111210000, 222120000, 212201000, 102111000,

121102000, 201222000, 120110100, 202210100,
220202100, 201110001, 110120001, 101021001,
220022001, 202020201, 220210002, 102220002,
110011002, 202012002, 101010102

A3(9, 4, 7) ≥ 120 C8 222112100, 122121200, 211122200, 121111001,
212212001, 222201101, 122022101, 201222101,
212021201, 211221002, 112122002, 221210102,
111011102, 202121102, 120221102, 112201202

A3(9, 4, 8) ≥ 56 C8 211121110, 222122210, 212122101, 222111201,
121122201, 212211102, 111222102, 121211202

A3(9, 5, 5) ≥ 36 3 × C3 011110100, 200221100, 122002100, 022220200,
211001200, 100112200, 220010110, 001202110,
110020220, 002101220, 200002211, 001010221

A3(9, 5, 6) ≥ 40 C8 112022100, 112101001, 221202001, 101211002,
202122002

A3(9, 5, 7) ≥ 36 3 × C3 122122100, 102111210, 021222210, 222201120,
111012120, 221110220, 110221220, 201210111,
122200211, 011011211, 200122211, 012210222

A3(10, 3, 5) ≥ 522 G′ 2112100000, 1111200000, 2221200000, 1220110000,
2210220000, 2121001000, 1212001000, 1201101000,
2022101000, 1021011000, 2002211000, 2202102000,
2012022000, 1211000001, 2122000001, 1202100001,
2101200001, 2220100002, 2011100002, 1210200002,
1021200002, 1102200002

A3(10, 3, 6) ≥ 876 F9,4 1222210000, 2111120000, 1221120000, 1112220000,
2120111000, 1101221000, 0122221000, 2220222000,
2101210100, 2202220200, 1112100001, 2221200001,
2121010001, 2220110001, 0111110001, 1021110001,
2012110001, 1102210001, 0212210001, 2102120001,
0222120001, 0121220001, 2022220001, 0102111001,
0201211001, 0202222001, 2211100002, 1222100002,
2222010002, 1210110002, 2101110002, 0221110002,
0122210002, 1202220002

Table 3: (Cont.) Codes with a nontrivial automorphism group.
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Bound Group Orbit Representatives
A3(10, 3, 7) ≥ 960 F9,4 2121111000, 1211211000, 2222211000, 2211121000,

1222121000, 1111122000, 2122122000, 1212222000,
2112110100, 2221210100, 1212120100, 1111220100,
2122220100, 0212111100, 0222221100, 2202122100,
2211110001, 1222110001, 2121210001, 2112120001,
1110111001, 2101121001, 0122121001, 0211122001,
1202122001, 2220222001, 1101110101, 2202220201,
1221210002, 1211120002, 2111220002, 1122220002,
0221111002, 2202111002, 1201221002, 0212221002

A3(10, 3, 8) ≥ 760 F5,4 × C2 2112111100, 1121121100, 2222121100, 2111221100,
1212221100, 1211112100, 2221212100, 2211121200,
2122221200, 2212212200, 2222111010, 1122211010,
2112121010, 2211221010, 2121212010, 2122101110,
2221021110, 1112021110, 2221102110, 2120112110,
2022122110, 2222201210, 1222022210, 2220122210,
2221222020

A3(10, 3, 9) ≥ 325 2 × AGL1(5) 1111211110, 1212221110, 2122221110, 1211122110,
2112122110, 1111112210, 2222112210, 1122122210,
2121222210, 2212222210, 1111222220, 1221011111,
2121021111, 0222221111, 1222022111, 2120122111,
2202122211, 0112122211, 1012222211, 1221022221,
1210122221

A3(10, 4, 3) ≥ 26 3 × C3 0221000000, 0002220000, 1100001000, 0012001000,
0000111000, 0200202000, 2000002200, 0000001110,
0000022001, 1001000002

A3(10, 4, 4) ≥ 105 2 × C5 1021010000, 2202010000, 0101210000, 0122020000,
0011120000, 1200220000, 1100011000, 2001021000,
0020112000, 1010022000, 0220010100, 2000120100,
0000211100, 0002022100, 2010010200, 0002110200,
0020220200, 0200021200, 0000121010, 0001012010,
0100022020

Table 3: (Cont.) Codes with a nontrivial automorphism group.

the electronic journal of combinatorics 9 (2002), #R41 17



Bound Group Orbit Representatives
A3(10, 4, 5) ≥ 204 2 × D5 1111100000, 2222200000, 0122110000, 0211220000,

1101011000, 0011111000, 0112021000, 1020121000,
2001221000, 2202022000, 0022222000, 2220010100,
0202210100, 1201020100, 2002120100, 0120220100,
1010011100, 2100021100, 0021021100, 2001012100,
1000222100, 1110020200, 0101120200, 2020022200,
2200011010, 0100221010, 0020120210, 0000212210,
1100022020, 0000121120, 0000011111, 0000022222

A3(10, 4, 6) ≥ 420 2 × AGL1(5) 2122120000, 0121111000, 2220211000, 1221021000,
0212121000, 1102221000, 1110122000, 1110011100,
0202211100, 2011021100, 1200121100, 1201012100,
2102022100, 2020122100, 0012222100, 2120021200,
2002121200, 0222022200, 0101122200, 0220011110,
0010121110, 0021022110, 0100222110, 2100012210,
0110022220, 0200022211

A3(10, 4, 7) ≥ 380 2 × AGL1(5) 1122211000, 1212121000, 2221222000, 2202111100,
2211021100, 0122121100, 1022112100, 1112022100,
2101122100, 1121021200, 1011122200, 2120021110,
1202021110, 2001221110, 1021022110, 2010122110,
1100222110, 2100112210, 1001212210, 0220122220,
0011021111, 0022022211

A3(10, 4, 8) ≥ 280 2 × AGL1(5) 2121221100, 2221112100, 1211222100, 1112221200,
1111011110, 2222011110, 2210221110, 1022221110,
1220122110, 0112222110, 1221012210, 2112012210,
0211122210, 1102122210, 1111022220, 2222022220,
2012022111, 0021222111, 1210022211, 2101022211

A3(10, 4, 9) ≥ 120 2 × D5 1221111110, 2112111110, 2121222110, 2211221210,
1111112210, 2222212210, 2222121120, 1111221120,
1221122220, 2112122220, 2221021111, 1212022111,
0112121211, 2111022211, 1022122121, 2021222221

A3(10, 5, 5) ≥ 72 2 × C5 1111100000, 2222200000, 1120021000, 0012221000,
2210012000, 0021112000, 1202020100, 2010120100,
0100111100, 2101010200, 1020210200, 0200222200,
2000211010, 0002012210, 1000122020, 0001021120

Table 3: (Cont.) Codes with a nontrivial automorphism group.
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Bound Group Orbit Representatives
A3(10, 5, 6) ≥ 75 C10 2021211000, 1111021000, 1212202000, 1201210100,

1120201100, 2210022100, 2102110200, 1022022200
A3(10, 5, 7) ≥ 120 2 × D5 1121211000, 2201221100, 1011112100, 1222022100,

1112220200, 2122021010, 1110122010, 0110211110,
0021121110, 2101012110, 2202120210, 0211022210,
0102122120, 1001222220, 0002221211, 2020022211

A3(10, 5, 8) ≥ 90 2 × C5 1211211100, 2122122200, 1222111010, 0211122110,
1022222110, 2212021210, 1101221210, 1110112210,
2111222020, 2220221120, 1121012120, 2202112120,
2011111220, 0122211220, 2002121111, 0110221111,
2201022221, 0012122221

A3(10, 5, 9) ≥ 40 2 × C5 1221212110, 2212211210, 2121122120, 1112121220,
0111221111, 1102122111, 2221022211, 2012222221

A3(10, 5, 7) ≥ 120 2 × D5 1121211000, 2201221100, 1011112100, 1222022100,
1112220200, 2122021010, 1110122010, 0110211110,
0021121110, 2101012110, 2202120210, 0211022210,
0102122120, 1001222220, 0002221211, 2020022211

A3(10, 5, 8) ≥ 90 2 × C5 1211211100, 2122122200, 1222111010, 0211122110,
1022222110, 2212021210, 1101221210, 1110112210,
2111222020, 2220221120, 1121012120, 2202112120,
2011111220, 0122211220, 2002121111, 0110221111,
2201022221, 0012122221

A3(10, 5, 9) ≥ 40 2 × C5 1221212110, 2212211210, 2121122120, 1112121220,
0111221111, 1102122111, 2221022211, 2012222221

Table 3: (Cont.) Codes with a nontrivial automorphism group.

Group Order Generators
Ck k (1 2 · · · k)
D5 10 (1 2 3 4 5), (1)(2 5)(3 4)
S3 × C3 18 (1 2 3)(4 5 6)(7 8 9), (1 4 7)(2 5 8)(3 6 9),

(1)(2 3)(4)(5 6)(7)(8 9)
AGL1(5) 20 (1 2 3 4 5), (1)(2 3 5 4)
F7,3 21 (1 2 3 4 5 6 7), (1)(2 3 5)(4 7 6)
G′ (see text) 27 (1 2 3 4 5 6 7 8 9), (1)(2 5 8)(3 9 6)(4)(7)
F9,4 36 (1 6 4 5)(2 9 8 7)(3), (1 3 6 2)(4 5 9 7)(8)
F5,4 × C2 40 (1 2 3 4 5 6 7 8 9 10), (1)(2 8 10 4)(3 5 9 7)(6)

Table 4: Groups and generators.
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Exact values:
a d = 2w, Theorem 7
b d = 2w − 1, Theorem 8
m From a Jacobsthal matrix, Theorem 16
p Perfect code, Theorem 17
s Generalized Steiner system, Theorem 14
u Theorem 15
Lower bounds:
c (Quasi-)cyclic code, Section 4.3, Table 3
g Special automorphism group, Section 4.3, Table 3
l Lexicographic code, Section 4.1, Table 2
r Theorem 5
t From unrestricted code, Section 4.2
x Exhaustive search, Section 3.3, Table 1
y Theorem 9
z Theorem 10
Upper bounds:
j Theorem 12
t From unrestricted code, Section 4.2
w Eq. (3) and [25]
x Exhaustive search, Section 3.3
y Theorem 9
z Theorem 10
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