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Abstract

A sequence u = u1u2...un is said to be nonrepetitive if no two adjacent blocks of u
are exactly the same. For instance, the sequence abcbcba contains a repetition bcbc,
while abcacbabcbac is nonrepetitive. A well known theorem of Thue asserts that
there are arbitrarily long nonrepetitive sequences over the set {a, b, c}. This fact
implies, via König’s Infinity Lemma, the existence of an infinite ternary sequence
without repetitions of any length.

In this paper we consider a stronger property defined as follows. Let k ≥ 2
be a fixed integer and let C denote a set of colors (or symbols). A coloring f :
N → C of positive integers is said to be k-nonrepetitive if for every r ≥ 1 each
segment of kr consecutive numbers contains a k-term rainbow arithmetic progression
of difference r. In particular, among any k consecutive blocks of the sequence
f = f(1)f(2)f(3)... no two are identical. By an application of the Lovász Local
Lemma we show that the minimum number of colors in a k-nonrepetitive coloring
is at most 2−1ek(2k−1)/(k−1)2k2(k − 1) + 1. Clearly at least k + 1 colors are needed
but whether O(k) suffices remains open.

This and other types of nonrepetitiveness can be studied on other structures
like graphs, lattices, Euclidean spaces, etc., as well. Unlike for the classical Thue
sequences, in most of these situations non-constructive arguments seem to be un-
avoidable. A few of a range of open problems appearing in this area are presented
at the end of the paper.

Keywords: nonrepetitive sequence, rainbow arithmetic progression, chessboard
coloring

1 Introduction

In this paper we consider another variant of the nonrepetitive sequences of Thue. A
finite sequence u = u1u2...un of symbols from a set C is called nonrepetitive if it does

the electronic journal of combinatorics 9 (2002), #R44 1



not contain a sequence of the form xx = x1x2...xmx1x2...xm, xi ∈ C, as a subsequence of
consecutive terms. For instance the sequence u = abcacbabcbac over the set C = {a, b, c}
is nonrepetitive, while v = abcbcba is not. A striking theorem of Thue [25] asserts that
there exist arbitrarily long nonrepetitive sequences built of only three different symbols.
Note that this fact implies also the existence of an infinite nonrepetitive sequence over a
3-element set.

Nonrepetitive sequences were rediscovered independently many times in connection
with problems appearing in seemingly distant areas of mathematics (see [1], [12], [19],
[22]). Their important applications in Combinatorics on Words, Group Theory, Universal
Algebra, Number Theory and Dynamical Systems are well known (see [1], [4], [7], [17-
20], [23]). Also, a lot of similar concepts were invented leading to new exciting forms
of nonrepetitiveness (see [8-16]). Needless to say, a stream of investigations inspired by
Thue’s discovery seems to expand in ever-widening circles. Let us mention for example a
recent graph theoretic variation introduced in [2]. A coloring of the set of edges of a graph
G is called nonrepetitive if the sequence of colors on any simple path in G is nonrepetitive.
The minimum number of colors needed is called the Thue number of G and is denoted by
π(G). For instance, Thue’s theorem asserts that π(Pn) = 3, for all n ≥ 4, where Pn is the
simple path with n edges. It has been proved in [2] that there is an absolute constant c
such that π(G) ≤ c∆2 for all graphs G with maximum degree at most ∆. The proof uses
the probabilistic method and at the moment no constructive argument is known for any
∆ ≥ 3.

The purpose of this paper is to study higher order nonrepetitiveness involving arith-
metic progressions. Let k ≥ 2 be a fixed integer and let f : N → C be a coloring of the
set of positive integers. A subset A ⊆ N is rainbow if no two of its elements are of the
same color. A coloring f is called k-nonrepetitive if for every r ≥ 1 each segment of kr
consecutive numbers contains k-term rainbow arithmetic progression of difference r. In
particular, this property implies that no two of any k consecutive blocks in the sequence
f = f(1)f(2)f(3)... are the same. Note that the existence of k-nonrepetitive colorings of
N with finite number of colors is not a priori clear for any k > 2. We will prove it, by an
application of the Lovász Local Lemma in Section 2. More precisely, we show that

T (k) ≤ 2−1ek(2k−1)/(k−1)2k2(k − 1) + 1,

where T (k) is the minimum number of colors needed. On the other hand, it is easy to see
that T (k) ≥ k + 1, and by the result of Thue we know that T (2) = 3. It might be even
the case that there is a constant c (not depending on k) such that T (k) = k + c, for all
k ≥ 2.

Another avoidance property involving arithmetic progressions has been recently intro-
duced by Currie and Simpson [10] in connection with nonrepetitive colorings of lattice
points of the n-dimensional Euclidean space. A sequence u is said to be nonrepetitive up
to mod k if it is nonrepetitive on every arithmetic progression of difference r = 1, 2, ..., k.
For instance, the sequence u = abcadbcdbacdadbadb is nonrepetitive up to mod 2 since
it is nonrepetitive itself and each of its two subsequences with even and odd indices, re-
spectively, is nonrepetitive, too. It is easy to see that the minimum number M(k) of
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symbols in an infinite such sequence is at least k + 2. It was demonstrated in [10] that
M(k) = k + 2 for k = 2, 3 and there is some numerical evidence that this holds for all
k ≥ 1. Note that, unlike for the numbers T (k), the fact that M(k) are finite for all k ≥ 1,
follows from an obvious recursive construction. However, the resulting bound on M(k)
is of enormously large order O(k!). In Section 3 we give a probabilistic upper bound on
M(k) which is much better, yet far from the expected.

In Section 4 we make a short excursion to the continuous world and look for rainbow
copies of subsets of Euclidean spaces. We show that there are k-colorings of Rn such
that every set of k points has a rainbow translated copy of itself lying within arbitrarily
small distance. This property extends the result of Bean, Ehrenfeucht and McNulty [4]
on square-free colorings of the real line. Since the proof uses transfinite induction, the
question of constructiveness arises naturally. One ingenious example of an explicit coloring
of the line provided by Rote [24] will be presented. The last section of the paper collects
a variety of open problems for future consideration.

2 Probabilistic bound on T (k)

In this section we prove that all numbers T (k) are finite by applying the probabilistic
method. It will be convenient to use the following formulation of the Lovász Local Lemma,
which is equivalent to the standard asymmetric version (see [3]).

Lemma 1 (The Local Lemma; Multiple Version) Let A1, A2, ..., An be events in an arbi-
trary probability space and let G = (V, E) be a related dependency graph, where V =
{A1, A2..., An} and Ai is mutually independent of all the events {Aj : AiAj /∈ E},
for each 1 ≤ i ≤ n. Let V = V1 ∪ V2 ∪ ... ∪ Vm be a partition such that all events
Ai ∈ Vr have the same probability pr, r = 1, 2, ..., m. Suppose that there are real numbers
0 ≤ x1, x2, ..., xm < 1 and ∆rs ≥ 0, r, s = 1, 2, ..., m such that the following conditions
hold:

• pr ≤ xr

∏m
s=1(1 − xs)

∆rs for all r = 1, 2, ..., m,

• for each Ai ∈ Vr the size of the set {Aj ∈ Vs : AiAj ∈ E} is at most ∆rs, for all
r, s = 1, 2, ..., m.

Then Pr(
⋂n

i=1 Āi) > 0.

We use this Lemma in the proof of the following theorem.

Theorem 1 Let k ≥ 2 be a fixed integer. For every ε > 0 there exists a coloring of N
with at most ck

1
ε
+1(k − 1) + 1 colors, where c is a constant depending on k and ε, such

that for every r ≥ 1, each segment of size at least (k−1)r + εr contains a k-term rainbow
arithmetic progression of difference r.
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Proof. Let N ≥ 1 be fixed and consider a random coloring of the set {1, 2, ..., N} with
C colors, where C will be specified later. Denote f(r) = dεre and Lr = (k − 1)r + f(r),
for r ≥ 1. Let R ⊆ {1, 2, ..., N} be a segment of Lr consecutive integers and let A(R)
denote the event that R does not contain a rainbow arithmetic progression of length k
and difference r. Consider a dependency graph G = (V, E) for all the events A(R) and
set Vr = {A(R) : R is a segment of length Lr}. Thus,

pr =

(
Ck − C(C − 1)...(C − k + 1)

)f(r)

Ckf(r)
≤ C−f(r)

(
k

2

)f(r)

.

Since a segment of length Lr intersects at most Lr + Ls − 1 segments of length Ls,
we may take ∆rs = (k − 1)(r + s) + f(r) + εs. Let xs = k−s. Note that k ≥ 2 implies
(1 − xs) ≥ e−2xs for all s ≥ 1. Hence the Local Lemma applies provided

C−f(r)

(
k

2

)f(r)

≤ xr

∏
s

e−2xs∆rs,

which transforms to

C−f(r) ≤ 2f(r)k−r−f(r)(k − 1)−f(r)
∏

s

e−2k−s∆rs

and next to

C ≥ 2−1k
1
ε
+1(k − 1) exp

(
2
∑

s

k−s ∆rs

f(r)

)
.

Finally, since
∑∞

s=1 k−s(1 + s) = (2k − 1)(k − 1)−2 we have

∞∑
s=1

k−s ∆rs

f(r)
=

∞∑
s=1

k−s (k − 1)(r + s) + f(r) + εs

f(r)

≤
∞∑

s=1

k−s

(
k − 1

ε
+ 1

)
(1 + s) =

2k − 1

(k − 1)2

(
k − 1

ε
+ 1

)
,

and the assertion holds if only C ≥ 2−1 exp
(

4k−2
k−1

(
1
ε

+ 1
k−1

))
k

1
ε
+1(k − 1). As N may be

arbitrarily large this completes the proof.

For ε = 1 we get the following upper bound on the numbers T (k) defined in the
Introduction.

Corollary 1 For all k ≥ 2

T (k) ≤ 2−1ek(2k−1)/(k−1)2k2(k − 1) + 1.

In the same way one may obtain the following n-dimensional version of Theorem 1.

Theorem 2 Let S ⊂ Zn be a fixed finite set and let A = {u + rS : u ∈ Zn, r ∈ N} be the
collection of all integral affine copies of S. Then for any ε > 0 there is a finite coloring
of Zn such that each set X ∈ A has a rainbow translated copy v + X satisfying ‖v‖ ≤ εr.
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3 Nonrepetitive chessboard colorings and the bound

on M(k)

An interesting new type of nonrepetitive colorings appeared in a recent paper of Currie
and Simpson [10]. Consider a coloring of an N × N chessboard such that the sequence
of colors traced by any singular Queen’s move is nonrepetitive. It is not hard to see
that for N > 4 at least five colors are needed, but to prove that this number suffices
for all N is not an easy task. Currie and Simpson achieve it by constructing arbitrarily
long sequences over five symbols which are nonrepetitive up to mod 3 (see Introduction).
In fact, if a = a1a2...a3N−2 is nonrepetitive on all arithmetic progressions of differences
r = 1, 2, 3 then the coloring

a1 a2 a3 ...
a3 a4 a5 ...
a5 a6 a7 ...
... ... ... ...

satisfies the required condition. Similarly, sequences nonrepetitive up to mod (2n − 1)
give solutions to the analogous n-dimensional chessboard coloring problem, in which the
Queen moves along the lines of slopes determined by vertices of the unit n-cube (see [10]).
Clearly, at least 2n colors are needed and it looks like 2n + 1 should suffice. In fact, some
numerical experiments suggest that M(k) = k + 2, where, as in the Introduction, M(k)
denotes the minimum number of symbols necessary to construct arbitrarily long sequences
nonrepetitive up to mod k.

The following linear upper bound on M(k) is obtained, similarly as before, by an
application of the Local Lemma.

Theorem 3 For every k ≥ 2

M(k) ≤ ke8k2/(k−1)2 + 1.

Proof. We will proceed as in the proof of Theorem 1 starting with preparations for the
Local Lemma. Consider a random C-coloring of the set {1, 2, ..., N} with N arbitrarily
large. Let R denote any arithmetic progression of length 2r and positive difference t ≤ k
contained in {1, 2, ..., N}. Let A(R) denote the bad event that the first half of R is
colored the same as the second. Put Vr = {A(R) : R is a progression of 2r terms}. Thus
pr = C−r. Since an arithmetic progression of length 2r intersects at most 4rs progressions
of length 2s with fixed difference t we may take ∆rs = 4krs. Let xs = k−s and note that
(1 − xs) ≥ e−2xs for all s ≥ 1. Hence the Local Lemma applies provided

C−r ≤ xr

∏
s

e−2xs∆rs,

that is
C−r ≤ k−r

∏
s

e−2k−s4krs.

the electronic journal of combinatorics 9 (2002), #R44 5



Taking both sides to the power of −1/r gives

C ≥ k exp

(
8k
∑

s

k−ss

)
.

Since
∑∞

s=1 k−ss = k
(k−1)2

the proof is completed.

Chessboard colorings may be generalized to arbitrary lattices, and even to arbitrary
discrete sets of points in Rn . Let P be a discrete set of points and let L be a fixed set
of lines in Rn . A coloring of P is nonrepetitive (with respect to L) if no sequence of
consecutive points on any l ∈ L is colored repetitively. For a point p ∈ P let i(p) denote
the number of lines from L incident with p and let I = I(P, L) = max{i(p) : p ∈ P}
be the maximum incidence of the configuration (P, L). Once again we apply the Local
Lemma to get the following result for configurations with bounded I(P, L).

Theorem 4 Let (P, L) be a configuration of points and lines in Rn with finite maximum
incidence I ≥ 2. If C ≥ Ie(8I2+8I−4)/(I−1)2 then there is a nonrepetitive C-coloring of P
with respect to L.

Proof. We will proceed as before. Consider a random C-coloring of the set P . For
a segment R ⊂ l of 2r consecutive points of some line l ∈ L, let A(R) denote the event
that R is colored repetitively. Put Vr = {A(R) : R is a segment of 2r points}. Thus
pr = C−r. In the worst case each point of R is incident with I lines, hence we may take
∆rs = 2r + 2s + 4rsI. Set xs = I−s and note that (1 − xs) ≥ e−2xs for all s ≥ 1. Hence
the Local Lemma applies provided

C−r ≤ xr

∏
s

e−2xs∆rs,

that is
C−r ≤ I−r

∏
s

e−2I−s(2r+2s+4rsI).

Further transformations give

C ≥ I
∏

s

e4I−s(1+s/r+2sI) = I exp

(∑
s

4I−s(1 +
s

r
+ 2sI)

)
.

Since the maximum sum of the last series is attained for r = 1, we conclude that there is
a desired C-coloring of P , provided

C ≥ I exp

(
4

∞∑
s=1

I−s(1 + s + 2sI)

)
= Ie(8I2+8I−4)/(I−1)2 .

The proof is completed.
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4 Rainbow sets in colored Euclidean spaces

In a seminal paper on avoidable patterns [4] Bean, Ehrenfeucht and McNulty introduced
square-free colorings of real and rational numbers as a continuous version of nonrepetitive
sequences of Thue. The following theorem extends their result by allowing longer arith-
metic progressions as well as arbitrarily small ε > 0. Our proof goes along the same lines
and uses transfinite induction.

Theorem 5 For every k ≥ 2 there exists a coloring of R with k colors such that for
every ε > 0 and every ρ > 0, each closed interval of length (k− 1)ρ + ε contains a k-term
rainbow arithmetic progression of difference ρ.

Proof. Let S be the set of all pairs {A, ε} where ε > 0 and A = {a + ρi : i =
0, 1, ..., k − 1} is a k-term arithmetic progression of real numbers of positive difference
ρ > 0. Clearly, S is of cardinality 2ω. Put the elements of S into a well order and define
a coloring of R inductively as follows. At each step α < 2ω take a pair {A, ε} labeled by
α and choose a translated copy B = t + A of A, 0 ≤ t < ε, no point of which has been
colored so far. Such a copy must exist since the interval [0, ε) contains 2ω elements while
the cardinality of the set of points colored before the step α is at most kα < 2ω. So, one
may color each point of B differently which, by transfinite induction, completes the proof.

An interesting question appearing here is that of finding explicit coloring function. For
k = 2 it has been done by Rote [24] as follows. Consider a coloring function f : R → {a, b}
defined by f(x) = a if ln |x| ∈ Q , and f(x) = b otherwise. To show that it satisfies the
desired property we invoke a famous result from algebraic number theory, known as the
Lindemann-Weierstrass theorem. It asserts that the equation

a1e
b1 + ... + anebn = 0

can not hold, if a1, ..., an are non-zero algebraic numbers and b1, ..., bn are pairwise distinct
algebraic numbers. Now, let ε > 0 be arbitrarily small and assume that 0 < x < y.
If the colors of x and y agree then choose t1 so that x + t1 = eq1 , 0 ≤ t1 < ε and
q1 ∈ Q . Thus f(x + t1) = a and if at the same time f(y + t1) = a, i.e., y + t1 = eq2

for another rational number q2 6= q1, pick t2 so that t1 < t2 < ε and x + t2 = eq3 , for
some q3 ∈ Q . If it would happened again that y + t2 = eq4 is a rational power of e, then
we will get eq1 − eq2 = eq3 − eq4 , with all qi different rational numbers, which contradicts
the Lindemann-Weierstrass theorem. So, the interval [x, y + ε) must contain a rainbow
translated copy of the pair {x, y}.

Similarly as Theorem 5 one may prove the following, rather counter intuitive, property.

Theorem 6 For any integer n ≥ 1 and any cardinal k ≤ ℵ0 there is a k-coloring of the
space Rn such that given any set S ⊂ Rn of cardinality k and any ε > 0 there is a vector
t, with ‖t‖ < ε, such that t + S is rainbow.

Finding an explicit coloring with the above property seems hopeless.
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5 Final discussion

5.1 Thue-like problems and the probabilistic method

The probabilistic method has already been applied in two earlier results establishing
strong avoidance properties for infinite binary sequences. One of them is the theorem of
Beck [5] asserting, for any ε > 0, the existence of an infinite binary sequence in which two
identical blocks of length n > n0(ε) are separated by at least (2− ε)n terms. The other is
an exercise in the book of Alon and Spencer [3], and says that for any ε > 0 there is an
infinite binary sequence in which every two adjacent blocks of length m > m0(ε) differ in
at least (1

2
− ε)m places. Both results relay on the Lovász Local Lemma and both imply

the existence of infinite nonrepetitive sequences over some finite set of symbols, although
the resulting number of symbols is much bigger than three. Theorem 1 however does not
seem to follow directly from any of the above results.

5.2 The numbers T (k) and M(k)

In view of some numerical experiments it looks like the cubic upper bound provided in
Theorem 1 is far from the true order of T (k). In fact, it seems plausible that T (k) = O(k).
More risky would be to expect that the following conjecture is true.

Conjecture 1 T (k) ≤ k + c for some absolute constant c.

Obviously, T (k) ≥ k +1, and by the result of Thue we know that T (2) = 3. Moreover,
it was demonstrated in [6] that there is an infinite sequence over four symbols such that
no two out of any three consecutive blocks are the same. Thus, one could even suspect
(as we did in [13]) that T (k) = k + 1 for all k ≥ 2. However, an exhaustive computer
search has shown that T (3) > 4, destroying this supposition.

Concerning the numbers M(k) the situation looks different. Up to k = 100 the
computer was able to generate very long sequences nonrepetitive up to mod k on k + 2
symbols. Also, the Theorem 3 gives a relatively better estimate which supports, at least
heuristically, the following conjecture.

Conjecture 2 M(k) = k + 2 for all k ≥ 1.

5.3 Nonrepetitive map coloring

Let the fields of an N × N chessboard be colored so that no non-self-intersecting walk
formed by a sequence of moves of the Queen is repetitive. The result of [2] guarantees
the existence of a finite number Q of colors that suffices for such a coloring, no matter
how large is N . In fact, chessboard fields can be considered as vertices of a graph with
adjacency relation defined in the obvious way. Since the maximum degree of this graph
is at most 8 we have Q ≤ πv(8), where πv(n) denotes the maximum vertex Thue number
among all graphs G with ∆(G) ≤ n. It would be nice to know the exact value of Q as
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well as its n-dimensional analogues, say Q(n). This time we have no intuition concerning
the possible growth of the sequence Q(n).

Similar questions may be posed for more general ”boards” with fields of other geomet-
rical shapes which may even have different sizes. The most intriguing general problem
could be stated, in the spirit of graph theoretic tradition, as follows. Let M be a planar
map and let P = F1F2...Fn be any sequence of distinct faces of M each pair of consecutive
ones sharing an edge. A coloring of M is nonrepetitive if no such sequence P in M is
colored repetitively. Now, is there a natural number N such that any planar map has a
nonrepetitive N -coloring?
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