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Abstract

We prove that for all ` ≥ 3 and β > 0 there exists a sparse oriented graph of
arbitrarily large order with oriented girth ` and such that any 1/2+β proportion of
its arcs induces an oriented cycle of length `. As a corollary we get that there exist
infinitely many oriented graphs with vanishing density of oriented girth ` such that
deleting any 1/`-fraction of their edges does not destroy all their oriented cycles.
The proof is probabilistic.

1 Introduction

We call the pair ~G = (V, E) an oriented graph if the set of vertices V is a finite set and
the set of oriented edges E ⊆ V × V , which we call arcs, is such that (v, v) 6∈ E for any
v ∈ V and if (u, v) ∈ E then (v, u) 6∈ E. Our notation will basically follow [1].

The main result of this note, Theorem 1, is related to a conjecture of Woodall, which
we now describe. Given an oriented graph ~G = (V, E), we say that a subset B ⊆ E of E is

an oriented cut in ~G if there exists a subset W ⊆ V of V such that B = E( ~G)∩ (W ×W )

∗Supported by a CNPq PhD Scholarship (Proc. 141633/1998-0).
†Research supported in part by FAPESP (Proc. 96/04505-2), MCT/FINEP/CNPq through ProNEx

Programme (Proc. CNPq 664107/1997–4), and by CNPq (Proc. 300334/93–1 and 468516/2000–0).

the electronic journal of combinatorics 9 (2002), #R45 1



and E( ~G) ∩ (W × W ) = ∅, where W = V \ W . A subset F ⊆ E of E is a transversal of

the family of oriented cuts of ~G if F ∩ B 6= ∅ for all oriented cuts B in ~G.
In 1978, Woodall [7] conjectured that, for any oriented graph ~G, a minimum oriented

cut in ~G has cardinality equal to the maximum cardinality of a family of pairwise disjoint
transversals of oriented cuts. Woodall’s conjecture has been proved in some particular
cases. Feofiloff and Younger [2], and independently Schrijver [6], proved this conjecture
for source-sink connected graphs. An oriented graph is called source-sink connected if it is
acyclic and each source is joined to each sink by an oriented path. Lee and Wakabayashi [5]
recently proved the conjecture for series-parallel oriented graphs.

To relate this conjecture to Theorem 1, we consider its dual version in the case of
planar oriented graphs. By the oriented girth of ~G, we mean the length of a shortest
oriented cycle in ~G. We call a subset D ⊆ E of the set of arcs E a transversal of the
family of oriented cycles of ~G if D intersects all oriented cycles of ~G. From now on, by a
transversal in an oriented graph ~G, we mean a transversal of the family of oriented cycles
of ~G.

A dual version of Woodall’s conjecture may be stated as follows: for any planar oriented
graph ~G, the oriented girth of ~G is equal to the maximum cardinality of a family of pairwise
disjoint transversals. In other words, this version of the conjecture states that if ` is the
oriented girth of ~G then ` is the largest k ∈ N for which there exists a k-colouring of
E( ~G), say ϕ : E( ~G) → [k], such that any oriented cycle of ~G meets all the k colours, that

is, |ϕ( ~C)| = k for all oriented cycles ~C ⊆ ~G.
We have learnt from D. Younger [8] that we cannot remove the hypothesis of planarity

from the dual of Woodall’s conjecture. Indeed, Thomassen constructed a tournament T
on 15 vertices with oriented girth 3 for which the smallest number of arcs we have to delete
to get rid of all oriented cycles is more than one third of its arcs. Hence, the oriented girth
of T is larger than the maximum cardinality of a family of pairwise disjoint transversals
and, therefore, T is a counterexample to this generalized dual statement.

Thomassen’s tournament is as follows. Take V (T ) as the disjoint union of the sets

X = {x1, x2, x3, x4, x5}, Y = {y1, y2, y3, y4, y5} and Z = {z1, z2, z3, z4, z5}.

We define E(T ) first putting arcs on each of the subsets X, Y and Z, in such a way
that we must delete at least three arcs from each of the induced subgraphs T [X], T [Y ] and
T [Z] to get rid of all the oriented cycles in these subgraphs. For example, we may take the
arcs on X to be the union of the following three oriented cycles: (x1, x2)(x2, x3)(x3, x1),
(x1, x4)(x4, x5)(x5, x1) and (x2, x5)(x5, x3)(x3, x4)(x4, x2).

Now add the arcs (yi, xi), (xi, zi) and (zi, yi), for each i ∈ {1, 2, 3, 4, 5}. We complete
the description of the set of arcs putting in E(T ) the arcs (xi, yj), for each pair i 6= j ∈
{1, 2, 3, 4, 5}, plus the arcs (yi, zj), for each pair i 6= j ∈ {1, 2, 3, 4, 5} and, finally, the
arcs (zi, xj), for each pair i 6= j ∈ {1, 2, 3, 4, 5}.

A tedious case analysis shows that to destroy all oriented cycles of T we have to delete
a minimum of 20 + 5 + 5 + 3 + 3 + 3 = 39 > 35 = 105/3 arcs, out of a total of 105. Note
that, in Thomassen’s example T above, we have that any subset of E(T ) with at least
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2/3 of the arcs of T induces an oriented cycle in T . In this note we prove the following

result. We write ~Gn for an oriented graph on n vertices.

Theorem 1 Let an integer ` ≥ 3 and a real number β > 0 be given. For any sufficiently
large n, there exists an oriented graph ~Gn with O(n1+1/(`−1)) arcs and oriented girth `

such that any 1/2 + β proportion of the arcs of ~Gn induces an oriented cycle of length `.

This theorem is best possible in the following sense: any oriented graph ~G contains a
subgraph without oriented cycles and with at least a half of its arcs, as may be seen by
taking a random linear ordering on V ( ~G).

Theorem 1 goes beyond Thomassen’s counterexample in that it tells us that there
exists an infinite family of oriented graphs showing that the planarity hypothesis may not
be dropped from the dual version of Woodall’s conjecture. More importantly, the graphs
given by Theorem 1 are sparse, with vanishing density.

Corollary 2 There exist infinitely many oriented graphs with vanishing density whose
oriented girth is larger than the maximum cardinality of a family of pairwise disjoint
transversals.

This note is organized as follows. In the next section we shall describe the tools we
need to prove Theorem 1. The proofs of Theorem 1 and Corollary 2 are given in Section 3.
We close with a remark in Section 4. In what follows, we often tacitly assume that n is
large enough for our inequalities to hold.

2 Auxiliary results

2.1 Szemerédi’s regularity lemma

We now describe a version of Szemerédi’s regularity lemma for sparse oriented graphs.
Given an oriented graph ~G = (V, E), for any pair of disjoint sets U , W ⊆ V , we denote

the set of arcs and the number of arcs from U to W by E ~G(U, W ) and by

e ~G(U, W ) = |E ~G(U, W )| =
∣∣ {(a, b) ∈ E : a ∈ U and b ∈ W}

∣∣,
respectively.

Suppose that 0 < η ≤ 1, D > 1 and 0 < p ≤ 1 are given real numbers. We say that ~G
is (η, D, p)-bounded if, for any pair of disjoint sets U , W ⊆ V with |U |, |W | ≥ η|V |, we
have

e ~G(U, W ) ≤ 1

2
Dp|U ||W |.

We define the oriented p-density from U to W in ~G by

d ~G,p(U, W ) =
e ~G(U, W )

(p/2)|U ||W | .
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For any 0 < ε ≤ 1 the pair of disjoint non-empty sets (U, W ), with U , W ⊆ V ,

is said to be (ε, ~G, p)-regular if for all U ′ ⊆ U , with |U ′| ≥ ε|U |, and all W ′ ⊆ W ,
with |W ′| ≥ ε|W |, we have ∣∣d ~G,p(U, W ) − d ~G,p(U

′, W ′)
∣∣ < ε.

We say that a partition P = {V0, V1, . . . , Vk} of V is (ε, k, ~G, p)-regular if |V0| ≤ ε|V |
and |Vi| = |Vj| for all i, j ∈ {1, 2, . . . , k}, and for more than (1 − ε)

(
k
2

)
pairs {i, j} ⊆

{1, 2, . . . , k}, i 6= j, we have that (Vi, Vj) and (Vj , Vi) are both (ε, ~G, p)-regular.
In this note, we shall use the following lemma, which is a natural variant of Szemerédi’s

regularity lemma. In fact, this is a version for sparse oriented graphs of a lemma observed
independently by Kohayakawa and Rödl (see, e.g., [3]).

Lemma 3 For any real number ε > 0, integer k0 ≥ 1 and real number D > 1, there
exist constants η = η(ε, k0, D) > 0 and K = K(ε, k0, D) ≥ k0 such that, for any 0 <

p = p(n) ≤ 1, any (η, D, p)-bounded oriented graph ~G = ~Gn admits an (ε, k, ~G, p)-regular
partition for some k0 ≤ k ≤ K.

2.2 A counting lemma

Suppose that m > 0 and ` ≥ 3 are fixed integers and V(m) = (Vi)
`
i=1 is a fixed vector of

pairwise disjoint sets, each of cardinality m. Below, the indices of the Vi’s will be taken
modulo `. Let B > 0, C ≥ 1, D > 1, ε ≤ 1, γ ≤ 1 be positive real numbers and let an
integer T ≥ 1 be given. We call ~F an (ε, γ, B, C, D;V(m), T )-graph if

(i) E(~F ) =
⋃`

i=1 E(Vi, Vi+1) and |E(~F )| = T .

(ii) For all 1 ≤ i ≤ ` we have that the pairs (Vi, Vi+1) are (ε, ~F , p)-regular, with p =
Bm−1+1/(`−1), and their oriented p-density satisfies

γ ≤ d~F ,p(Vi, Vi+1) ≤ D.

(iii) For any U ⊆ Vi and W ⊆ Vi+1, where 1 ≤ i < ` − 1, such that

|U | ≤ |W | ≤ 1

2
pm|U | ≤

(
1

2
pm

)`−2

,

we have
e(U, W ) ≤ C|W |. (1)

The main technical result that we shall need is as follows. We denote by ~C` the
oriented cycle of length `.
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Lemma 4 Let an integer ` ≥ 3 be fixed, and let constants σ > 0, 0 < α ≤ 1, 0 < γ ≤ 1,
C ≥ 1 and D ≥ 1. be given. Then there exist positive constants ε = ε(`, σ, α, γ, C, D) ≤ 1,
B0 = B0(`, σ, α, γ, C, D) > 0, and m0 = m0(`, σ, α, γ, C, D) such that, for all inte-
gers m ≥ m0 and T ≥ 1, and all real B ≥ B0, the following holds. The number of
(ε, γ, B, C, D;V(m), T )-graphs containing less than σm`/(`−1) cycles ~C` is at most

αT

(
(` + 2)m2

T

)
. (2)

We shall not prove Lemma 4 here. The interested reader may check Kohayakawa
and Kreuter [4], where it is proved that the number of (ε, γ, B, C, D;V(m), T )-graphs

containing no ~C`’s is at most as given by (2) above. It may be checked that the proof of
this result in [4], with some more bookkeeping, does in fact prove Lemma 4 above. One
may also deduce Lemma 4 from the result in [4].

3 Proof of Theorem 1

To prove our main result, we first need to recall some standard definitions. Given 0 < p ≤
1, for any positive integer n we write Gn,p for the random graph in the standard binomial
model, where n is the number of vertices and p is the probability of edges. From Gn,p we

get the random oriented graph ~Gn,p by putting, for each edge {u, v} ∈ E(Gn,p) in Gn,p,

P

(
(u, v) ∈ E( ~Gn,p)

)
= 1 − P

(
(v, u) ∈ E( ~Gn,p)

)
= 1/2,

with all these orientations independent.
Let us now start our proof. Let ` ≥ 3 and β > 0 be as given in Theorem 1. Put

δ = β/2 and set

γ =
δ

5
, α =

γ`

e2(` + 2)
, C = 4(` − 1), D = 2, σ =

1

2
, and % =

δ

4
.

Then, there are constants ε, B0, and m0 for which the upper bound of Lemma 4 holds
for the constants `, σ, α, γ, C, and D as above. We may suppose ε < δ/16.

In order to apply Lemma 3, take

k0 = max{4/δ, s}, (3)

where s is such that for any integer k ≥ s we have that ex(k, C`) < (1/2 + %)
(

k
2

)
, where

ex(k, C`) is the Turán number (see, e.g., [1]) for the cycle C` of length `. We observe that
when ` is even, we could even omit “1/2” in the definition of s, as ex(k, C`) = o(k2).

Let η and K be the constants given by Lemma 3 when applied to ε, k0, and D as
above. We may suppose η < δ/20. Put

A = B0K
1−1/(`−1) and p = An−1+1/(`−1).

We prove Theorem 1 using the claims below, whose proofs we postpone.
Define OG = OG(n), for all n ∈ N , as the set of all oriented graphs ~Gn on V =

V ( ~Gn) = [n] satisfying the following properties:
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(i) ~Gn is (η, 1 + η, p)-bounded,

(ii) e( ~Gn) = (1 + o(1))
(

n
2

)
p,

(iii) for any pair of disjoint non-empty sets U , W ⊆ V satisfying

|U | ≤ |W | ≤ 1

2
pn|U | ≤

(
1

2
pn

)`−2

, (4)

the upper bound on the number of arcs (1) holds.

Using Lemma 3 we prove that graphs in OG contain (ε, γ, B, C, D;V(m), T )-graphs in
a very robust way.

Claim 1 For any ~Gn ∈ OG with large enough n, we have that any subgraph ~J ⊆ ~Gn of
~Gn with

e( ~J) ≥
(

1

2
+ δ

)
n2p

2
(5)

arcs contains a subgraph isomorphic to an

(ε, γ, pm1−1/(`−1), C, D;V(m), T )-graph,

for some integer m, with n/2K ≤ m ≤ n/k0, and some integer T ≥ 1.

Let OG′ be the set of graphs ~Gn from OG such that

(iv) any subgraph of ~Gn isomorphic to an (ε, γ, B, C, D;V(m), T )-graph, where n/2K ≤
m ≤ n/k0, B = pm1−1/(`−1) and T ≥ 1, contains at least σ0n

`/(`−1) oriented cycles
~C`, where σ0 = σ(2K)−`/(`−1),

(v) the number of oriented cycles of length at most ` − 1 in ~Gn is no larger than
Ān`/(`−1)/ log log n, where Ā = (1/16) max{` − 1, (` − 1)A`−1}.

The family OG ′ is not empty; in fact, most graphs ~Gn,p are in OG′, as our next result
states.

Claim 2 With probability tending to 1 as n tends to infinity, we have ~Gn,p ∈ OG′.

We may now complete the proof of Theorem 1 using Claims 1 and 2.
Fix a graph ~F n ∈ OG′. Let ~Gn be a graph obtained from ~F n deleting one arc from

each of the at most Ān`/(`−1)/ log log n cycles of length at most ` − 1 in ~F n. Then,

as it is easily seen, we have ~Gn ∈ OG, and, by Claim 1, any subgraph ~J ⊆ ~Gn with
e( ~J) ≥ (1/2 + β)e( ~Gn) ≥ (1/2 + δ)n2p/2 contains an

(ε, γ, B, C, D;V(m), T )-graph,

where B = pm1−1/(`−1). As ~Gn ⊆ ~F n ∈ OG ′ we have, by (iv) from definition of OG ′, that

each ~J as above contains (1 − o(1))σ0n
`/(`−1) > 0 oriented cycles ~C`.

We have thus obtained an oriented graph satisfying the conclusions of Theorem 1, as
required.
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3.1 Proof of Claim 1

Let ~J be an oriented graph as in the statement of Claim 1. Clearly, ~J is (η, 1 + η, p)-
bounded (hence, (η, D, p)-bounded).

Let P = (Vi)
k
i=0 be an (ε, k, ~J, p)-regular partition given by Lemma 3 with the above

choices of ε, k0 and D. Put m = |Vi| ≤ n/k, for any i ∈ [k] = {1, . . . , k}.
Call R the graph whose vertex set is {V1, . . . , Vk} with {Vi, Vj} an edge in R if both

densities d ~J,p(Vi, Vj) and d ~J,p(Vj, Vi) are at least γ and (Vi, Vj) and (Vj, Vi) are (ε, ~J, p)-

regular. Suppose that e(R) < (1/2 + %)
(

k
2

)
.

The number of arcs in ~J is

e( ~J) ≤
{

εn2 + k

(
n/k

2

)
+ ε

(
k

2

)(n

k

)2

+ γ

(
k

2

)(n

k

)2

+

+

(
1

2
+ %

)(
k

2

)(n

k

)2
}

(1 + η)p

<

(
4ε +

1

k
+ γ +

1

2
+ %

)
(1 + η)

n2p

2

<

(
4ε +

1

k
+ γ +

1

2
+ % + η

)
n2p

2

<

(
1

2
+ δ

)
n2p

2
,

contradicting (5).
Therefore, R contains at least (1/2 + %)

(
k
2

)
edges and, because of the choice of k0

(see (3)), we may conclude that R contains a cycle Vi1 , . . . , Vi` .
Thus, we have an (ε, γ, pm1−1/(`−1), C, D;V(m), T )-graph given by taking V(m) as the

vector (Vi1, . . . , Vi`) of pairwise disjoint subsets of V ( ~J), putting the set of arcs as the

set
⋃`

j=1 E ~J(Vij , Vij+1
) (here the indices are taken modulo `), and letting T be the cardinal-

ity of this union. For these choices of V(m) and T , and the above choices for ε, γ, B, C and
D one may easily check properties (i)–(iii) from the definition of an (ε, γ, B, C, D;V(m), T )-
graph. This completes the proof of Claim 1.

3.2 Proof of Claim 2

We prove that ~Gn,p, with the above choice for p, satisfies items (i)–(iii) of the definition
of OG and (iv) and (v) of the definition of OG ′ with probability tending to 1 as n tends
to infinity.

To check that (i) holds with high probability, observe that by Chernoff’s inequality,
for all pairs of disjoint sets U , W ⊆ V with |U |, |W | ≥ ηn, we have

P

(
e(U, W ) > (1 + η)

p

2
|U ||W |

)
≤ exp

{
−1

3
η2 p

2
|U ||W |

}

≤ exp

{
−A

6
η4n1+1/(`−1)

}
.
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Then, the expected number of pairs of sets U , W ⊆ V , where V = V (Gn,p), with
at least ηn vertices and that violate the (η, 1 + η, p)-boundedness condition is at most
4nexp{−A6−1η4n1+1/(`−1)} = o(1). Thus, if X is the number of pairs of sets U , W ⊆ V
with at least ηn vertices and that violate the (η, 1+ η, p)-boundedness condition, then we
have, by Markov’s inequality, that P (X > 0) < 4nexp{−A6−1η4n1+1/(`−1)} = o(1).

We have (ii) with high probability from Chernoff’s inequality. In fact, we easily verify

that for any ρ > 0 the probability that |e( ~Gn,p) − p
(

n
2

)
| > ρp

(
n
2

)
is exponentially small in

pn2.
In order to prove that properties (iii) and (iv) hold for Gn,p with probability 1− o(1),

we again apply Markov’s inequality to appropriate random variables.
Let us consider (iii) first. Let U , W ⊆ V be disjoint sets satisfying (4). To verify that

(iii) holds with high probability, notice that the probability that (1) fails is

P (e(U, W ) > C|W |) ≤
(
|U ||W |
C|W |

)(p

2

)C|W |
≤
(

e

C
· p|U |

2

)C|W |
.

Observe that (1/2)p|U | ≤ ((1/2)pn)`−2/n ≤ (A/2)`−2n−1/(`−1). From n − |U | ≥
n − |W | ≥ |W |, where the last inequality comes from |W | = o(n), we may conclude

that
(

n
|U |
)
≤
(

n
|W |
)

and, therefore,
(

n
|U |
)(

n
|W |
)
≤
(

n
|W |
)2

.
These inequalities imply that the expected number of subsets U and W , with cardi-

nalities u and w respectively, for which (4) holds and e(U, W ) > C|W |, is at most

∑
1≤w<n/2

w∑
u=1

(
n

u

)(
n

w

)( e

C
· pu

2

)Cw

≤
∑

1≤w<n/2

w

(
n

w

)2
(

e

C

(
A

2

)`−2

n−1/(`−1)

)Cw

≤
∑

1≤w<n/2

w
(en

w

)2w
(

e

C

(
A

2

)`−2

n−1/(`−1)

)Cw

=
∑

1≤w<n/2

w

w2w

(
e1+2/C

C

(
A

2

)`−2

n(2/C)−(1/(`−1))

)Cw

=
∑

1≤w<n/2

w

w2w

(
e1+2/C

C

(
A

2

)`−2

n−2/C

)Cw

= o(1),

for C = 4(` − 1). Thus (iii) holds with probability 1 − o(1).
We now turn to (iv). Notice that we have K ≥ n/m, and hence

B = pm1−1/(`−1) ≥ B0(Km/n)1−1/(`−1) ≥ B0.

Observe that the number of arcs T is at least γ(p/2)m2`, and the expected number of

(ε, γ, B, C, D;V(m), T )-subgraphs of ~Gn,p containing at most σ0n
`/(`−1) ≤ σm`/(`−1) cycles

~C` of length ` is o(1). In fact, for any given positive integers m and T ≥ γ(p/2)m2`, this
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expected number is, by Lemma 4, at most

(n)`mαT

(
(` + 2)m2

T

)(p

2

)T

≤ n`m

(
α · e(` + 2)m2

T
· p

2

)T

≤ n`m

(
eα(` + 2)

`γ

)T

= n`m

(
1

e

)T

≤ exp
{
(log n)m` − γ(p/2)m2`

}
= o(n−3).

Summing over all possible choices for m and T , we only have an additional factor of at
most n3. Thus (iv) holds with probability 1 − o(1) by Markov’s inequality.

Finally, the expected number of short oriented cycles is

`−1∑
i=3

(n)i

2i

(p

2

)i

≤ 1

16

`−1∑
i=3

nipi ≤ Ān.

Invoking Markov’s inequality, we see that the probability that the number of short ori-
ented cycles should be greater than Ān`/(`−1)/log log n is smaller than log log n/n1/(`−1) =
o(1).

3.3 Proof of Corollary 2

Let ` ≥ 3 be an integer. Set β = 1/2− 1/` and let ~Gn be an oriented graph with oriented
girth ` given by Theorem 1.

Suppose we have a family T of pairwise disjoint transversals of cardinality |T | = `.

Let ~H be the graph obtained from ~Gn by deleting a transversal T ∈ T of this family
that satisfies |T | ≤ e( ~Gn)/`. We have e( ~H) ≥ (1 − 1/`)e( ~Gn) = (1/2 + β)e( ~Gn) and, by

Theorem 1, the oriented graph ~H must contain an oriented cycle, contradicting the fact
that T should be a transversal.

4 Concluding remark

Both Theorem 1 and Corollary 2 assert the existence of sparse oriented graphs, with
some given oriented girth `, that contain oriented `-cycles in a very robust way. Our
proof technique is non-constructive. It would be interesting to see whether one is able to
prove these results constructively.
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