
Minimum connected dominating sets
of random cubic graphs∗

W. Duckworth
Department of Computing

Macquarie University
Sydney, NSW 2109, Australia

billy@ics.mq.edu.au

Submitted: August 14, 2001; Accepted: February 14, 2002.
MR Subject Classifications: 05C80, 05C69

Abstract

We present a simple heuristic for finding a small connected dominating set of
cubic graphs. The average-case performance of this heuristic, which is a randomised
greedy algorithm, is analysed on random n-vertex cubic graphs using differential
equations. In this way, we prove that the expected size of the connected dominating
set returned by the algorithm is asymptotically almost surely less than 0.5854n.

1 Introduction

A dominating set of a graph, G, is a subset, D, of the vertices of G such that for every
vertex v of G, either v ∈ D or there exists a vertex u ∈ D incident with v in G. A
connected dominating set, C, of a graph, G, is a dominating set such that the subgraph
induced by the vertices of C in G is connected. We are interested in finding connected
dominating sets of small cardinality. For other basic graph theory definitions not defined
here, the reader is referred to [2].

The problem of finding a minimum connected dominating set of a graph is polynomi-
ally equivalent to finding a maximum leaf spanning tree of the graph. This well-known,
NP-hard, optimisation problem [6, Problem ND2] is defined as follows. A spanning tree
of a graph, G, is a connected spanning subgraph, T , of G that does not contain a cycle.
Vertices of degree 1 in T are called leaves and we are interested in finding a spanning
tree with a set of leaves of large cardinality. Note that the non-leaf vertices of T form a
connected dominating set of G.

∗This research was carried out whilst the author was in The Department of Mathematics & Statistics,
The University of Melbourne, VIC 3010, Australia

the electronic journal of combinatorics 9 (2002), #R7 1

Solis-Oba [11] showed that the maximum leaf spanning tree problem is approximable
with approximation ratio 2, improving the previous best known approximation ratio of 3
by Lu and Ravi [9]. Galbiati, Maffioli and Morzenti [5] showed that the same problem
does not exhibit a Polynomial Time Approximation Scheme, unless P=NP.

A graph, G, is said to be d-regular if every vertex of G has degree d. In this paper
we consider simple, connected, cubic (i.e. 3-regular) graphs. Also, when considering any
such graph on n vertices, we assume n to be even to avoid parity problems. Note that for
such graphs, it is simple to show that the minimum connected dominating set problem is
approximable with approximation ratio 2.

For a graph, G, define L(G) to be the maximum number of leaves in any spanning
tree of G. Storer [10] showed that for an n-vertex connected cubic graph, G, L(G) ≥
d(n/4) + 2e. This worst-case bound is the best possible since there exists infinitely many
n-vertex connected cubic graphs that have no more than d(n/4) + 2e leaves. Griggs,
Kleitman and Shastri [7] presented and analysed an algorithm that constructs a spanning
tree of an n-vertex connected cubic graph with at least d(n/4) + 2e leaves. They also
showed that for an n-vertex connected cubic graph, G, that has no subgraph isomorphic
to “K4 − e” (K4 with one edge removed), L(G) ≥ d(n/3) + (4/3)e.

Duckworth and Wormald [4] gave a new derivation, at least to within an additive
constant, of the main result of [10]. They also showed that the size of a connected
dominating set of an n-vertex cubic graph of girth at least 5 is at most 2n/3 +O(1). The
linear programming technique that was used to analyse the performance of the algorithms
that were presented, also demonstrated the existence of infinitely many cubic graphs for
which the algorithms only achieve these bounds. An example was given of an infinite
family of n-vertex cubic graphs of girth at least 5 that have no connected dominating set
of size less than 4n/7− O(1).

As we consider regular graphs that are generated u.a.r. (uniformly at random), we
need some notation. We use the notation P (probability), E (expectation) and say that
a property, B = Bn, of a random regular graph on n vertices holds a.a.s. (asymptotically
almost surely) if limn→∞ P(Bn)=1. For other basic random graph theory definitions not
defined here, the reader is referred to [8].

The algorithms of [4, 7], that find a small connected dominating set of cubic graphs,
guarantee that the size of the connected dominating set returned is at most 3n/4 +O(1)
in the worst-case. In this paper we consider the average-case behaviour of a randomised
version of these algorithms. We analyse the performance of this randomised algorithm
on random n-vertex cubic graphs using differential equations. In this way, we prove that
the expected size of the connected dominating set returned by the algorithm is a.a.s. less
than 0.5854n.

The following section gives a brief description of our algorithm. In Section 3 we
describe the model we use for generating cubic graphs u.a.r. and describe the notion of
analysing the performance of algorithms on random graphs using systems of differential
equations. Details of our algorithm are given in Section 4 and its analysis is presented in
Section 5 proving our a.a. sure upper bound.

the electronic journal of combinatorics 9 (2002), #R7 2

2 A Simple Heuristic

The heuristic we describe is a randomised greedy algorithm that is based on repeatedly
selecting vertices of given current degree from an ever-shrinking subgraph of the input
graph. At the start of our algorithm all vertices have degree 3. Throughout the execution
of the algorithm edges are deleted and the algorithm terminates when all vertices have
degree 0.

For a cubic graph, G, the algorithm constructs a subset, C, of the vertices of G in
a series of steps. Each step starts by selecting a vertex u.a.r. from those vertices of a
particular current degree. The first step is unique in the sense that it is the only step in
which a vertex is selected u.a.r. from the vertices of degree 3. We select such a vertex
u.a.r. to add to C and delete all of its incident edges. Note that, as G is assumed to be
connected, after the first step and before the completion of the algorithm, there always
exists a vertex of current degree 1 or 2.

For each step after the first, if there exists vertices of current degree 2, such a vertex,
u, is chosen u.a.r. Otherwise we select u u.a.r. from those vertices of current degree 1.
We then choose a vertex, v, u.a.r. from the neighbours of u and add u to C based on the
current degree of v. If v has degree 3, we add u to C and delete all edges incident with
u. Otherwise, we complete the step by deleting the edge between u and v. Note that for
each step, vertices other than that chosen for possible addition to C have their degree
decreased by at most 1. Each time such a vertex has its degree decreased from 3 to 2,
the vertex u is added to C. This ensures that C is dominating in G at the end of the
algorithm. As each vertex selected for possible addition to C (after the first) is chosen
from those vertices of current degree 1 or 2, the subgraph induced by the vertices of C in
G is always connected.

3 Random Graphs and Differential Equations

3.1 Generating Random Cubic Graphs

The model we use to generate a cubic graph u.a.r. (see, for example, Bollobás [1]) may be
summarised as follows. For an n-vertex cubic graph: take 3n points in n buckets labelled
1 . . . n (with three points in each bucket) and choose u.a.r. a disjoint pairing of the 3n
points. If no pair contains two points from the same bucket and no two pairs contain four
points from just two buckets, this represents a cubic graph on n vertices with no loops and
no multiple edges. The buckets represent the vertices of the randomly generated cubic
graph and each pair represents an edge whose end-points are given by the buckets of the
points in the pair. With probability bounded below by a positive constant, loops and
multiple edges do not occur (see, for example, Wormald [13, Section 2.2]).

Generating a random cubic graph in this way may be considered as follows. Initially,
all vertices have degree 0. Throughout the execution of the generation process, vertices
will increase in degree until the generation is complete and all vertices have degree 3. We
refer to the graph being generated throughout this process as the evolving graph.

the electronic journal of combinatorics 9 (2002), #R7 3

3.2 Analysis Using Differential Equations

One method of analysing the performance of a randomised algorithm is to use a system of
differential equations to express the expected changes in variables describing the state of
the algorithm during its execution. Wormald [14] gives an exposition of this method and
Duckworth [3] applies this method to various other graph-theoretic optimisation problems.

In order to analyse our algorithm using a system of differential equations, we incorpo-
rate the algorithm as part of a pairing process that generates a random cubic graph. In
this way, we generate the random graph in the order that the edges are examined by the
algorithm.

During the generation of a random cubic graph we choose the pairs sequentially. The
first point, pi, of a pair may be chosen by any rule, but in order to ensure that the cubic
graph is generated u.a.r., the second point, pj, of that pair must be selected u.a.r. from
all the remaining free (i.e. unpaired) points. We refer to selecting pj as choosing a mate
for pi. The freedom of choice of pi enables us to select it u.a.r. from the vertices of given
current degree in the evolving graph. Using B(pk) to denote the bucket that the point
pk belongs to, we say that the edge from B(pi) to B(pj) is exposed. Note that we may
then determine the current degree of the vertex represented by the bucket B(pj) without
exposing any further edges.

The incorporated algorithm and pairing process may be loosely summarised as follows.
Repeatedly select a vertex, u, u.a.r. from those vertices of given current degree in the
evolving graph and expose an edge incident with u. This is achieved by selecting a point,
p1, u.a.r. from the free points in the bucket corresponding to u and selecting a mate,
p2, for p1 u.a.r. from all the remaining free points in the evolving graph. The choice of
whether to add u to the set under construction will depend on the current degree of the
vertex represented by the bucket that the point p2 belongs to. Further edges incident
with u may then be exposed. More detail is given in the following section.

In what follows, we denote the set of vertices of current degree i of the evolving graph,
at time t, by Vi = Vi(t) and let Yi = Yi(t) denote |Vi|. We can express the state of the
evolving graph at any point during the execution of the algorithm by considering Y0, Y1

and Y2. In order to analyse our randomised algorithm for finding a connected dominating
set, C, of cubic graphs, we calculate the expected change in this state over one unit of time
(a unit of time is defined more clearly in Section 5) in relation to the expected change in
the size of C. Let C = C(t) denote |C| at any stage of the algorithm (time t) and let E∆X
denote the expected change in a random variable X conditional upon the history of the
process. The equations representing E∆Yi and E∆C are then used to derive a system
of differential equations. The solutions to the differential equations describe functions
which represent the behaviour of the variables Yi. Wormald [14, Theorem 6.1] describes
a general result which guarantees that the solutions of the differential equations almost
surely approximate the variables Yi. The expected size of the connected dominating set
may be deduced from these results.

the electronic journal of combinatorics 9 (2002), #R7 4

4 The Algorithm

In Figure 1 we present our algorithm combined with a pairing process. This combination,
RANDCDS, generates an n-vertex cubic graph, G, u.a.r. and, at the same time, finds a
subset, C, of the vertices of G.

select u u.a.r. from V0;
C ← {u};
expose all edges incident with u;
while (Y1 + Y2 > 0) do

if (Y1 > 0)
select u u.a.r. from V1;

else
select u u.a.r. from V2;

endif
expose an edge incident with u; \∗ to a vertex v (say) ∗\
if (v ∈ V1)
C ← C ∪ {u};
expose all edges incident with u;

endif
enddo

Figure 1: RANDCDS

Note that all vertices chosen to be part of C (after the first) were in V1 or V2 at
the start of the iteration of the loop that that selected them. This ensures that the
subgraph induced by the vertices of C in G is connected. The algorithm terminates when
Y1 + Y2 = 0. At such time, either a connected cubic component has been generated and
Y0 > 0, or a dominating set has been found for G. It is well known that cubic graphs are
a.a.s. connected, so the result is a.a.s. a connected dominating set in the whole graph.

We select the first element of C u.a.r. from all of the vertices in the evolving graph and
expose all of its incident edges. We say that the remainder of the combined algorithm and
pairing process proceeds in operations where each operation is denoted by one iteration
of the while loop. There are two basic types of operation. A Type 1 operation refers
to an operation where Y1 > 0 and a vertex, u, is selected u.a.r. from V1. Similarly, a
Type 2 operation refers to an operation where Y1 = 0 and a vertex, u, is selected u.a.r.
from V2. For both types of operation, once u has been selected, an edge incident with
u is exposed. This is achieved by selecting a point, p1, u.a.r. from the free points in the
bucket corresponding to u and selecting a mate, p2, for p1 u.a.r. from all the remaining
free points in the evolving graph. Let v to denote the vertex corresponding to the bucket
that the point p2 belongs to. If v now has current degree 1, we add u to C and expose the
remaining edges incident with u (if any).

the electronic journal of combinatorics 9 (2002), #R7 5

5 Algorithm Analysis

We analyse the combined algorithm and pairing process using differential equations and
in this way prove the following theorem.

Theorem 1 The size of a minimum connected dominating set of a random n-vertex cubic
graph is asymptotically almost surely less than 0.5854n.

Proof After the first element of C has been chosen, we split the remainder of the
algorithm into two distinct phases. We informally define Phase 1 as the period of time
from the first Type 1 operation up to but not including the first Type 2 operation. Phase
2 is informally defined as the remainder of the process from the first Type 2 operation to
the end of the algorithm. We define a clutch to be a series of operations in Phase i from
an operation of Type i up to but not including the next operation of Type i.

We proceed with an examination of each of the two phases before giving a formal
definition of the distinction between the phases. For a clutch of operations in each phase
we develop equations to represent the expected changes in the variables Yi in relation to
the expected change in the size of C. These equations are then formulated as a system of
differential equations.

5.1 Preliminary Equations For Phase 1

In Phase 1 all operations are of Type 1 and therefore a clutch consists of just one operation.
Let s = s(t) denote the number of free points available in all buckets at a given stage
(time t). Note that s =

∑2
i=0(3 − i)Yi. For our analysis it is convenient to assume that

s > εn for some arbitrarily small but fixed ε > 0. Later, we discuss the last operations of
the algorithm, when s ≤ εn.

For a Type 1 operation in Phase 1, we select a vertex, u, u.a.r. from V1 and expose
an incident edge by selecting a point, p1, u.a.r. from the free points of u and selecting its
mate, p2, u.a.r. from all the free points in the evolving graph. Let v denote the bucket
that p2 belongs to.

The expected change in Yi due to changing the degree of v from i to i+ 1 (at time t)
is ρi + o(1) where

ρi = ρi(t) =
(i− 3)Yi + (4− i)Yi−1

s
, (0 ≤ i ≤ 2)

and this equation is valid under the assumption that Y−1=0. To justify this, note that
when the point p2 was chosen, the number of points in the buckets corresponding to
vertices currently of degree i is (3 − i)Yi + o(1), and s is the total number of points. In
this case Yi decreases; it increases if the selected point is from a vertex of degree i − 1.
These two quantities are added because expectation is additive. The term o(1) comes
about because the values of all these variables may change by a constant during the
course of the operation being examined. Since s > εn the error is in fact O(1/n).

the electronic journal of combinatorics 9 (2002), #R7 6

The probability that v was of degree 0 before the start of the operation is 3Y0/s+o(1).
In such an instance, we expose the remaining edge incident with u and add u to C.
Otherwise v had degree strictly greater than 0 before the start of the operation. In which
case, the degree of u is increased to 2. For both instances, the size of the set V1 decreases
by 1 and a vertex of unknown degree has its degree increased by 1.

The expected change in Yi for an operation of Type 1 in Phase 1 (and therefore a
clutch) is βi + o(1) where

βi = βi(t) = −δi1 + ρi +
3Y0

s
ρi +

(
1− 3Y0

s

)
δi2, (0 ≤ i ≤ 2) (1)

in which δij denotes the Kronecker delta function.
The expected increase in C for a clutch in Phase 1 is just

E(∆C) =
3Y0

s
+ o(1) (2)

as we add u to C if v had degree 0 at the start of the operation.

5.2 Preliminary Equations For Phase 2

The initial operation of Phase 1 is of Type 2. For simplicity, we consider operations of
Type 1 first and then combine the equations given by these operations with those given
by the operations of Type 2.

For an operation of Type 1 in Phase 2, the expected change in Yi is the same as that
for an operation of Type 1 in Phase 1 and we have

E∆Yi = βi = −δi1 + ρi +
3Y0

s
ρi +

(
1− 3Y0

s

)
δi2, (0 ≤ i ≤ 2).

We now consider operations of Type 2. A vertex, u, is chosen u.a.r. from V2 and an
edge incident with u is exposed to a vertex v (say). If v had degree 0 before the start of
the operation, we add u to C. The expected change in Yi for an operation of Type 2 in
Phase 2 is αi + o(1) where

αi = αi(t) = −δi2 + ρi, (0 ≤ i ≤ 2).

We define a birth to be the generation of a vertex in V1 by performing an operation of
Type 1 or Type 2 in Phase 2. The expected number of births from a Type 1 operation
(at time t) is ν1 + o(1) where

ν1 = ν1(t) =
3Y0Y2

s2
+

6Y0Y1

s2
+ 2

9Y 2
0

s2
=

3Y0(s+ 3Y0)

s2
.

Here we consider the probability that we expose edges to vertices that were of degree 0
at the start of the operation. Similarly, the expected number of births from a Type 2
operation (at time t) is ν2 + o(1) where

ν2 = ν2(t) =
3Y0

s
.

the electronic journal of combinatorics 9 (2002), #R7 7

Consider the Type 2 operation at the start of the clutch to be the first generation of
a birth-death process in which the individuals are the vertices in V1, each giving birth to
a number of children (essentially independent of the others) with expected number ν1.
Then, the expected number in the jth generation is ν2ν1

j−1 and the expected total number
of births in the clutch is ν2/(1− ν1).

For Phase 2, the expected change in Yi for a clutch is given by

E(∆Yi) = αi +
ν2

1− ν1
βi + o(1), (0 ≤ i ≤ 2) (3)

and the expected increase in the size of C for a clutch is given by

E(∆C) =
3Y0

s

(
1 +

ν2

1− ν1

)
+ o(1). (4)

The contribution to the increase in the size of C by the Type 2 operation in a clutch is 1
if v had degree 0 at the start of the operation. As random regular graphs a.a.s. contain
few small cycles [8, Theorem 9.5], for each birth we have a Type 1 operation (a.a.s.).

5.3 The Differential Equations

We use the preliminary equations derived in the previous two subsections to formulate a
system of differential equations for each phase. Write Yi(t) = nzi(t/n), ρi(t) = nψi(t/n),
βi(t) = nχi(t/n), αi(t) = nτi(t/n), s(t) = nξ(t/n) and νj(t) = nωj(t/n). From the
definitions of ρ, β, α, s and ν we have

ψi = (i−3)zi+(4−i)zi−1

ξ
, (0 ≤ i ≤ 2),

ξ =
∑2

i=0(3− i)zi, (0 ≤ i ≤ 2),

χi = −δi1 + ψi + 3z0

ξ
ψi +

(
1− 3z0

ξ

)
δi2, (0 ≤ i ≤ 2),

τi = −δi2 + ψi, (0 ≤ i ≤ 2),

ω1 = 3z0(ξ+3z0)
ξ2 and

ω2 = 3z0

ξ
.

Equation (1) representing the expected change in Yi for processing a clutch in Phase
1 forms the basis of a differential equation. The differential equation suggested is

dzi

dx
= χi, (0 ≤ i ≤ 2). (5)

Here, differentiation is with respect to x and xn represents the number, t, of clutches.

the electronic journal of combinatorics 9 (2002), #R7 8

Equation (2) representing the expected increase in the size of C after processing a
clutch in Phase 1 and writing C(t) = nz(t/n) suggests the differential equation for z as

dz

dx
=

3z0
ξ
. (6)

For Phase 2, Equation (3) representing the expected change in Yi for processing a
clutch suggests the differential equation

dzi

dx
= τi +

ω2

1− ω1

χi, (0 ≤ i ≤ 2). (7)

Equation (4) representing the increase in the size of C after processing a clutch in
Phase 2 suggests the differential equation

dz

dx
=

3z0
ξ

(
1 +

ω2

1− ω1

)
. (8)

The solution to these systems of differential equations represents the cardinalities of
the sets Vi and C (scaled by 1/n) for given t. For Phase 1, the equations are (5) and (6)
with initial conditions

z0(0) = 1, z1(0) = 0, z2(0) = 0 and z(0) = 0.

The initial conditions for Phase 2 are given by the final conditions for Phase 1 and the
equations are given by (7) and (8).

We use a result from [14] to show that during each phase, the functions representing
the solutions to the differential equations almost surely approximate the variables Yi and
C with error o(n). For this we need some definitions.

Consider a probability space whose elements are sequences (q0, q1, . . .) where each
qt ∈ S. We use ht to denote (q0, q1, . . . , qt), the history of the process up to time t, and
Ht for its random counterpart. S(n)+ denotes the set of all ht = (q0, . . . , qt) where each
qi ∈ S, t = 0, 1, All these things are indexed by n and we will consider asymptotics
as n→∞.

We say that a function f(u1, . . . , uj) satisfies a Lipschitz condition on W ⊆ R
j if a

constant L > 0 exists with the property that

|f(u1, . . . , uj)− f(v1, . . . , vj)| ≤ L max
1≤i≤j

|ui − vi|

for all (u1, . . . , uj) and (v1, . . . , vj) in W . Note that max1≤i≤j |ui − vi| is the distance
between (u1, . . . , uj) and (v1, . . . , vj) in the `∞ metric.

For variables Y1, . . . , Ya defined on the components of the process, and W ⊆ R
a+1 ,

define the stopping time TW = TW (Y1, . . . , Ya) to be the minimum t such that

(t/n, Y1(t)/n, . . . , Ya(t)/n) /∈W.
The following is a restatement of [14, Theorem 6.1]. We refer the reader to that paper

for explanations, and to [12] for a similar result with virtually the same proof.

the electronic journal of combinatorics 9 (2002), #R7 9

Theorem 2 Let Ŵ = Ŵ (n) ⊆ R
a+1 . For 1 ≤ l ≤ a, where a is fixed, let yl : S(n)+ → R

and fl : Ra+1 → R, such that for some constant C0 and all l, |yl(ht)| < C0n for all
ht ∈ S(n)+ for all n. Let Yl(t) denote the random counterpart of yl(ht). Assume the
following three conditions hold, where in (ii) and (iii) W is some bounded connected open
set containing the closure of

{(0, z1, . . . , za) : P(Yl(0) = zln, 1 ≤ l ≤ a) 6= 0 for some n} .

(i) For some functions β = β(n) ≥ 1 and γ = γ(n), the probability that

max
1≤l≤a

|Yl(t+ 1)− Yl(t)| ≤ β,

conditional upon Ht, is at least 1− γ for t < min{TW , TcW}.
(ii) For some function λ1 = λ1(n) = o(1), for all l ≤ a

|E(Yl(t+ 1)− Yl(t) |Ht)− fl(t/n, Y1(t)/n, . . . , Ya(t)/n) | ≤ λ1

for t < min{TW , TcW}.
(iii) Each function fl is continuous, and satisfies a Lipschitz condition, on

W ∩ {(t, z1, . . . , za) : t ≥ 0},

with the same Lipschitz constant for each l.

Then the following are true.

(a) For (0, ẑ1, . . . , ẑa) ∈W the system of differential equations

dzl

dx
= fl(x, z1, . . . , za), l = 1, . . . , a

has a unique solution in W for zl : R → R passing through

zl(0) = ẑl,

1 ≤ l ≤ a, and which extends to points arbitrarily close to the boundary of W ;

(b) Let λ > λ1 +C0nγ with λ = o(1). For a sufficiently large constant C, with probability
1−O(nγ + β

λ
exp(−nλ3

β3)),

Yl(t) = nzl(t/n) +O(λn)

uniformly for 0 ≤ t ≤ min{σn, T
cW} and for each l, where zl(x) is the solution in

(a) with ẑl = 1
n
Yl(0), and σ = σ(n) is the supremum of those x to which the solution

can be extended before reaching within `∞-distance Cλ of the boundary of W .

the electronic journal of combinatorics 9 (2002), #R7 10

First, we apply Theorem 2 to the process within Phase 1. For arbitrary small ε, define
W to be the set of all (t, z0, z1, z2, z) for which t > −ε, ξ > ε, z1 > ε, z > −ε and zi < 1+ ε
(0 ≤ i ≤ 2).

For part (i) of Theorem 2 we must ensure that Yi(t) does not change too quickly
throughout the process. As a clutch in Phase 1 consists of just one operation, the expected
change in any of the variables Yi for a clutch is at most 3. So part (i) of Theorem 2 holds
with β = 3 and γ = 0. Equations (1) and (2) verify part (ii) of Theorem 2 for a function
λ1 which goes to 0 sufficiently slowly. (Note in particular that since ξ > ε inside W ,
the assumption that s > εn used in deriving these equations is justified.) Part (iii) of
Theorem 2 ensures that the rate of change of the variables does not change too quickly
in time. By the definition of the phase and the domain W , it may be verified that the
functions derived from equations (1) and (2) are continuous on W and its boundary. This
implies that the functions are uniformly continuous. From this, the Lipschitz property of
the functions required by Theorem 2 part (iii) may be deduced.

The Lipschitz condition in Theorem 2 part (iii) prevents us from choosing a domain
which extends to the natural end of the phase which may occur at some time t2, say. We
choose a domain which the variables will almost surely remain inside until time t1 = t2−εn.

The conclusion of Theorem 2 therefore holds for the process within Phase 1. This
implies (taking λ = o(1) tending to 0 sufficiently slowly) that with probability

1− O(λ−1 exp(−nλ3)),

the random variables Yi and C a.a.s. remain within O(λn) of the corresponding deter-
ministic solutions to the differential equations (5) and (6) until a point arbitrarily close
to where it leaves the set W . Choosing, for example, λ = n−1/4, makes this success
probability 1− o(1).

Computing the ratio dzi/dz gives

dzi

dz
=
ξχi

3z0
, (0 ≤ i ≤ 2)

where differentiation is with respect to z and all functions can be taken as functions of z.
By solving (numerically) this system of differential equations, we find that the solution

hits a boundary of the domain at z1 = ε (for ε = 0 this would approximately be when
z ≥ 0.5437). At this point, we may formally define Phase 1 as the period of time from
time t0=0 to the time t1 such that z = t1/n is the solution of z1=ε.

From the point in Phase 1 after which Theorem 2 does not apply until the start of
Phase 2, the change in each variable per step is bounded by a constant. Hence, letting ε
tend to 0 sufficiently slowly, in o(n) steps the change in the variables Yi and C is o(n).

For Phase 2 and for arbitrarily small ε > 0, define W ′ to be the set of all (t, z0, z1, z2, z)
for which t > t1 + ε, ξ > ε, ω1 < 1 − ε, z > −ε and zi < 1 + ε (0 ≤ i ≤ 2). Also define

Ŵ ′ to be the vectors for which z1 ≥ 0, z2 ≥ 0 and z1 + z2 > 0. W ′ defines a domain for
the variables t, zi and z so that Theorem 2 may be applied to the process within Phase
2 (with time shifted by subtracting t2).

the electronic journal of combinatorics 9 (2002), #R7 11

As long as the expected number of births in a clutch is bounded above, the proba-
bility of getting say nε births is O(n−K) for any fixed K. This comes from a standard
argument as in [14, page 141]. So part (i) of Theorem 2 holds with β = nε and γ = n−K .
Equations (3) and (4) verify part (ii) for a function λ1 which goes to 0 sufficiently slowly.
(Note that since t < T

cW ′, it follows that Y1 + Y2 > 0, so that the next operation is of
Type 1 or Type 2.) The Lipschitz property of the functions required by Theorem 2 part
(iii) may be deduced in a similar manner to those for Phase 1.

The conclusion of Theorem 2 therefore holds for the process within Phase 2. This
implies that with probability

1− O(n1−K + nελ−1 exp(−n1−3ελ3)),

the random variables Yi and C a.a.s. remain within O(λn) of the corresponding deter-
ministic solutions to the differential equations (7) and (8) until a point arbitrarily close
to where it leaves the set W ′, or until t = T

cW if that occurs earlier. Note that the latter
may only occur when the algorithm has completely processed a component of the graph
and a random cubic graph is a.a.s. connected. Choosing K = 2 and λ = nε−1/4, say, leads
to a success probability of 1− o(1).

We compute the ratio dzi/dz, and we have

dzi

dz
=

τi + ω2

1−ω1
χi

3z0

ξ

(
1 + ω2

1−ω1

) , (i ∈ {0, 1, 2})

where, again, differentiation is with respect to z and all functions can be taken as functions
of z. By solving this we find that the solution hits a boundary of W ′ at ξ = ε.

From the point in Phase 2 after which Theorem 2 does not apply until the completion
of the algorithm, the change in each variable per step is bounded by a constant. Hence,
letting ε tend to 0 sufficiently slowly, in o(n) steps the change in the random variables Yi

and C is o(n).
The differential equations were solved using a Runge-Kutta method, giving ξ = ε at

z < 0.5854. This corresponds to the size of the connected dominating set (scaled by 1/n)
when all vertices are used up, thus proving the theorem. 2

References

[1] B. Bollobás. Random Graphs. Academic Press, 1985.

[2] R. Diestel. Graph Theory. Springer-Verlag, 1997.

[3] W. Duckworth. Greedy Algorithms and Cubic Graphs. Doctoral Thesis, Department
of Mathematics and Statistics, The University of Melbourne, 2001.

[4] W. Duckworth and N.C. Wormald. Linear Programming and the Worst-Case Analysis
of Greedy Algorithms on Cubic Graphs. Submitted.

the electronic journal of combinatorics 9 (2002), #R7 12

[5] G. Galbiati, F. Maffioli, and A. Morzenti. A Short Note on the Approximability of the
Maximum Leaves Spanning Tree Problem. Information Processing Letters, 52(1):45–
49, 1994.

[6] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman and Company, 1979.

[7] J.R. Griggs, D.J. Kleitman, and A. Shastri. Spanning Trees with Many Leaves in
Cubic Graphs. Journal of Graph Theory, 13(6):669–695, 1989.

[8] S. Janson, T. Luczak and A. Rucinski. Random Graphs. Wiley, 2000.

[9] Hsueh-I Lu and R. Ravi. Approximating Maximum Leaf Spanning Trees in Almost
Linear Time. Journal of Algorithms, 29(1):132–141, 1998.

[10] J.A. Storer. Constructing Full Spanning Trees for Cubic Graphs. Information Pro-
cessing Letters, 13(1), 8–11, 1981.

[11] R. Solis-Oba. 2-Approximation Algorithm for finding a Spanning Tree with Maximum
Number of leaves. In Proceedings of the Sixth European Symposium on Algorithms,
Venice, 1998. Lecture Notes in Computer Science, 1461:441–452, Springer, 1998.

[12] N.C. Wormald, Differential Equations for Random Processes and Random Graphs.
Annals of Applied Probability, 5:1217–1235, 1995.

[13] N.C. Wormald. Models of Random Regular Graphs. In Surveys in combinatorics,
Canterbury, 1999, pages 239–298. Cambridge University Press, 1999.

[14] N.C. Wormald. The Differential Equation Method for Random Graph Processes and
Greedy Algorithms. In Micha l Karoński and Hans-Jürgen Prömel, editors, Lectures
on Approximation and Randomized Algorithms, pages 73–155. PWN, Warsaw, 1999.

the electronic journal of combinatorics 9 (2002), #R7 13

