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Abstract

We give a generalization for the Deza-Frankl-Singhi Theorem in case of multiple
intersections. More exactly, we prove, that if H is a set-system, which satisfies that
for some k, the k-wise intersections occupy only £ residue-classes modulo a p prime,
while the sizes of the members of H are not in these residue classes, then the size

of H is at most ,
n
(k—1)) <Z>

i=0
This result considerably strengthens an upper bound of Fiiredi (1983), and gives
partial answer to a question of T. Sés (1976).
As an application, we give a direct, explicit construction for coloring the k-
subsets of an n element set with ¢ colors, such that no monochromatic complete
hypergraph on exp (c¢(log m)/*(loglog m)'/(=1)) vertices exists.

Keywords: set-systems, algorithmic constructions, explicit Ramsey-graphs, explicit
Ramsey-hypergraphs

1 Introduction

We are interested in set-systems with restricted intersection-sizes. The famous Ray-
Chaudhuri-Wilson [RCW75] and Frankl-Wilson [FW81] theorems give strong upper
bounds for the size of set-systems with restricted pairwise intersection sizes. T. Sés
asked in 1976 [S6s76], what happens if not the pairwise intersections, but the k-wise
intersection-sizes are restricted.

THE ELECTRONIC JOURNAL OF COMBINATORICS 9 (2002), #R8 1



Fiiredi [Fiir83], [Fiir91] showed (actually proving a much more general structure the-
orem) that for d-uniform set-systems over an n element universe, for very small d’s,
(d = O(loglogn)), the order of magnitude of the largest set-systems, satisfying k-wise or
just pairwise intersection restrictions are the same.

In the present paper we strengthen this result of Fiiredi [Fiir83]. More exactly, we
prove the following k-wise version of the Deza-Frankl-Singhi theorem [DFS83]. Note, that
no upper bounds for the sizes of sets in the set-system and no uniformity assumptions are
made.

Theorem 1 Let p be a prime, let L C {0,1,...,p— 1}, and let k > 2 be an integer. Let
H be a set-system over the n element universe, satisfying that

o ()VHeH: |H|modp¢ L,
o (ii)VHy,H,,...,H, € H, where H; # H; fori # j:

Then

m<-ny (7).

1=0

As well as in the original Deza-Frankl-Singhi theorem, the upper bound does not
depend on p, so we can choose a large enough p for proving the non-modular version,
p > n certainly suffices.

Our main tool is substituting set-systems into multi-variate polynomials [Gro01]. This
tool, together with the linear-algebraic proof of Theorem 9 implies our result.

In the seminal paper of Frankl and Wilson [FW81], the Frankl-Wilson upper bound
to the size of a set-system was used for an explicit Ramsey-graph construction. Similarly,
we can also use our Theorem 1 to an explicit construction of a t-coloring of the edges
of the k-uniform complete hypergraph, such that no color class will contain a complete,
monochromatic hypergraph on a vertex set of size exp(c(lognloglogn)'/*). Our explicit
construction is similar to the explicit Ramsey-graph construction of [Gro00]. We note,
that much better explicit Ramsey hypergraphs can be constructed using the Stepping-
up Lemma of Erd6s and Hajnal [GRS80]: from an explicit construction of k-uniform
hypergraphs a (much larger) explicit construction of k + l-uniform hypergraphs follows,
where k£ > 3. Another construction for 3-uniform hypergraphs from explicit Ramsey-
graphs is due to A. Hajnal [Gy4].

Our present Ramsey-hypergraph construction is the best known for 3-uniform hyper-
graphs with more than 2 colors, and while it is weaker than the (recursive) constructions
for k > 3 with the Stepping-up Lemma of Erdés and Hajnal [GRS80], it is at least direct:
does not use constructions for k& — 1-uniform hypergraphs.
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2 Preliminaries

Definition 2 ([Gro01]) Let A = {a;;} and B = {b;;} two u x v matrices over a ring R.
Their Hadamard-product is an u x v matriz C = {c¢;;}, denoted by A® B, and is defined
as ci; = a;jbij, for 1 <i<wu,1 <7 <w.

Lemma 3 Suppose that R is commutative. Then the Hadamard-product is an associative,
commutative and distributive operation:

e (i)([AOB)®C=A6(BoC),
o (ii)) A©OB=B0OA,
e (i) (A+B) 0 C=A6C+BoC.
And, for all N € R :
e (iv) M) ©B=\A® B).

O

We make difference between hypergraphs and set systems over a universe V. A hy-
pergraph is a collection of several subsets of V', where some subsets may be present with
a multiplicity, greater than 1 (called multi-edges). A set system may, however, contain
each subset of V' at most once.

Definition 4 Let H = {Hy, Hs, ..., H,} be a hypergraph of m edges (sets) over an n
element universe V.= {v1,vq,...,0,}, and let U = {u;;} be the n x m 0-1 incidence-
matrix of hypergraph H, that is, the columns of U correspond to the sets (edges) of H,
the rows of U correspond to the elements of V', and u;; = 1 if and only if v; € H;. The
n x 1 incidence-matriz of a single subset A C 'V is called the characteristic vector of A.

Note, that every member of a set system is different; so there are no identical columns
in an incidence matrix of a set system, but there may be identical columns in an incidence
matrix of a hypergraph in case of multi-edges. If U is a 0-1 matrix with no identical
columns, then U is an incidence matrix of a set system.

2.1 Arithmetic operations on set systems

Definition 5 Let f(z1, 22, ..., %) = Xicq12,..n) @171 be a multi-linear polynomial, where
vr = [Lier zi- Let w(f) = [{ar : ar # 0}] and let Li(f) = Xicqi2,.ny lazl-

We need the following definition from [Gro01]:
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Definition 6 ([GroO1]) Let H be a set-system on the n element universe V =
{v1,v9,...,v,} and with n x m incidence-matriz U, and let f(x1,29,...,2,) =
Yicqi2,..ny a1 be a multi-linear polynomial with non-negative integer coefficients. Then
f(Hy) is a hypergraph on the Ly(f)-element vertez-set, and its incidence-matriz is the
Li(f) x m matrix W. The rows of W correspond to x;’s of f; there are a; identical
rows of W, corresponding to the same xy. The row, corresponding to xy is defined as the
Hadamard-product of those rows of U, which correspond to v;,i € I.

Let us remark, that W has rank at most w(f). Also note, that if the coefficients of
x1, T, ..., T, are all non-zero, then f(Hy) is a set-system, since the rows of U is among
the rows of the incidence-matrix of f(Hy).

The crucial property of this operation is given by the following Theorem (Theorem 11
of [Gro01]):

Theorem 7 ([GroO01)) Let H = {Hy, Hs,...,Hy,} be a set-system, and let U be their
n X m incidence-matriz. Let f be a multi-linear polynomial with non-negative integer
coefficients, or from coefficients from Z,. Let f(H) = {Hy, H,, ..., H,}. Then, for any
1<k<mandforany 1l <iy <ip <...<ip <m:

We remark, that in (1) on the left-hand side, f is applied to the characteristic vector
(a length-n 0-1 vector) of the set H;, N H;, N...N H;,.

2.2 Multiple intersections

The proof of the original, pairwise version of the Deza-Frankl-Singhi theorem [DFS83] uses
tools from linear algebra: the sets of the set-system H are associated with independent
vectors in a vector space of known dimension; consequently, their number is bounded
above by that dimension. Here we also use this idea with some natural modifications.

In the following theorems, the universe of the set-system or the hypergraph is S =
{v1,v9,...,v,}. When we say hypergraph here, we allow hypergraphs with multi-edges
also; consequently, if F,G are two edges of the hypergraph, then we allow that F' is the
same set, as G.

The first step is the following obvious theorem:

Theorem 8 Let H = {Hy, Hs, ..., H,,} be a hypergraph on the n-element universe, sat-
isfying H; # 0 for i = 1,2,...m. Suppose, that for some positive integer k > 2, every
k-wise intersection is empty:

VIc{L,2,....n},|I|=k:(H,=0 (2)
i€l
Then
[H| < (k= 1)n.
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Proof:  Every element of the universe is in at most k£ — 1 sets of H. O

We remark, that the above theorem is sharp, as it is shown by H =
{Hy,Hy,...,Hp_1yn}, where H; = {v;}, fori = (j —1)(k—-1)+1,(j — 1)(k = 1) +
2,...,jk—=1)and j =1,2,...,n.

We need the modular version of Theorem 8. The modular version is an easy exercise
for k = 2; for larger k’s, we need an additional idea.

Theorem 9 Let p be a prime, and let H = {Hy, Ha, ..., H,} be a hypergraph on the
n-element universe. Suppose, that |H;| Z 0 (mod p) for i =1,2,...,m, and for some
positive integer k > 2, every k-wise intersection-size is zero modulo p:

VIc{L,2,....m}|I|=k:(H;=0 (mod p). (3)
iel
Then
|H| < (k—1)ng < (k—1)n,

if the incidence-vectors of the edges of the hypergraph H span an ng < n-dimensional
subspace of the n-dimensional vector-space over GF(p).

Proof:  For i = 1 through m, let 2 € {0,1}" denote the characteristic vector of set
H;. In the case of k = 2, it is easy to see that their dot-product, ¥ - z0)  is zero modulo
p if i # j, and non-zero otherwise; thus vectors .7 = 1,2,..., m are independent in an
no-dimensional subspace, so m < ny.

We generalize this proof for larger values of k. Obviously, |H; N H;| = @ . 20 This
can also be written as |H; N H;| = (z® © 2)) - 1, where 1 denotes the length-n all-1
vector, and ¥ ® 219 is the characteristic vector of H; N H;. Now it is easy to see, that
the characteristic vector of

N

iel
is A
@ 2@,
iel
consequently, '
iel iel
Let 2 for i =1,2,...,k, n-dimensional vectors. Let us define

:
g(zM, 2@ 0y = (@ z(i)> 1.
i=1

In particular,

k
g(x(11)7 x(w)’ o 71,(%)) — | ﬂ Hz]|
j=1
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Consequently, from our assumptions, if i; # 4; for s # ¢, then

g(x® 202 @)y =0 (mod p) (4)
while for all : = 1,2, ..., m:
gz 2@ z@)£0  (mod p). (5)

From Lemma 3, g is a multi-linear function. We need the following Lemma to conclude
the proof:

Lemma 10 Let U C V, where V s a vector-space over the field F'. Suppose, that vectors
in U generates an ng-dimensional subspace of V', also assume that |U| > ng(k — 1) +
1. Then there exists an uw € U, such that u can be written k different ways as the
linear combinations of vectors from U such that no vector appears in two of these linear
combinations.

In other words, the Lemma states that there exist pairwise disjoint subsets
Wy, Wy, ..., W, C U, such that

u = Z a,v = Z Ay = -+ = Z a,v,
veWs veEWo veWy

for a, € F.
Proof: Let W; be a maximal linear independent vector-set from U, and for j =
2,3,...,k—1, let W; be a maximal linear independent vector-set from U — (W7 U W, U
... UW,_q). Since |W;| < ng for i = 1,2,...,k — 1, there exists a u such that u €
U — (Wl U WQ Uu...u Wk—l)' Let us define Wk = {u}

Now, for i = 1,2,...,k — 1, set W; U {u} is dependent, while W; is not, and we are
done. O

Now we give an indirect proof for the theorem. Suppose, that |H| > (k — 1)ng + 1.
Apply Lemma 10 to U = {2 2@ . g((k=Dno+DY  Now, there exists a u € U, such that
u can be given as k linear combinations of disjoint vector-subsets of U. Since u = 2, for
some i, from (5),

glu,u,...,u) Z0 (mod p). (6)

But, on the other hand, u can be given in k linear combinations, each containing
vectors from pairwise disjoint vector sets. Consequently, by the multi-linearity of
g, g(u,u,...,u) £ 0 (mod p) can be written as a linear combination of numbers
gz, x02)  200) where i, # 4, for s # t. By (4), all of these numbers are 0 modulo
p, so their linear combination is also zero modulo p, and this contradicts to (6). O

2.3 Proof of the main theorem

Now we have all the tools needed for the proof of Theorem 1. Certainly, L # (). Let

g() = [[(« - a).

a€l
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Now let f be the unique multi-linear polynomial over GF(p), such that
flry, e, 20) = g(oy + 22 + -+ 7).

The degree of f is at most |L|, so Li(f) < (p — 1) ZLQQ (T;), and w(f) < SE (’Z)
Consider now hypergraph f(H). The vertex-set of this hypergraph is of size L;(f), and
the incidence-vectors of the edges span a w(f)-dimensional subspace U of the L;(f)-

dimensional vector space V. By Theorem 7, hypergraph f(H) satisfies the assumptions

of Theorem 9, so
Lo
M| = |F(H)] < (b —1) (z ( )) |

i—0 \?

3 Set-systems with restricted k-wise intersections

In this section we give an explicit construction for a set-system with similar (but stronger)
properties described in [Gro00].

It was conjectured (see [BF92]), that if H is a set-system over an n element universe,
satisfying that VH € H: |[H| =0 (mod6), but VG, H €¢ H, G # H: |GNH| #0
(mod 6) has size polynomial in n. The conjecture was motivated by theorems of Frankl
and Wilson, showing polynomial upper bounds for prime or prime-power moduli [FW81].
We have shown in [Gro00] that there exists an H with these properties and with super-
polynomial size in n. (see the details in [Gro00].) In [Gro0l] we gave this construction
with the notions of Definition 6. Here we present a k-wise intersection-version, which will
be useful for a Ramsey hypergraph construction. On the other hand, this construction
will also show, that our Theorem 1 does not generalize to non-prime-power composite
moduli.

Theorem 11 Let n,t > 2 integers, and let pi,pa,...,p; be pairwise different primes,
and let q = pips---pi.  There exists an explicitly constructible set-system H =
{Hi, Hs, ..., H,} on the n-element universe, such that

(i) [H] = m > exp (istigr)
(ii)) VH € H, |H| =0 (mod q),
(i) VI € {1.2.....m}, 2 < 1], [Nuer H| #0 (mod g).

Proof:
Let s be a positive integer, and for ¢ = 1,2,...,t let a; be the smallest integer that
s < pi". By a result of Barrington, Beigel and Rudich [BBR94], for any ¢ > s there
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exists an explicitly constructible f-variable, degree-O(s) polynomial f, satisfying over
T = (xla Lo, . .. 73;5) S {07 1}4:

4

f(z)=0 (mod q) <~ Zx, =0 (mod p{*p3?---pg).
i=1

Let r = p"'p5?---p, and let Gy denote the set-system of all » — 1-element subsets

of the ¢ — 1-element universe. Let us take an additional element e outside this universe,
and let us define set-system G = {G U {e} G € Gy}. Indeed, for any k > 2, all k-wise
intersections in G are non-empty, and of size less than r, while the size of any element of
g is exactly r.

Then consider H = f(G). By Theorem 7, H satisfies (ii) and (iii), and since the f of
Barrington, Beigel and Rudich [BBR94] contains all variable x; with a non-zero coefficient,
then H is a set-system. The size of ‘H is the same as the size of G:

/-1
r—1/
2
H| = |g] = (/"_ 1) >

The size of the universe of H = f(G) is

Now set ¢ = r?, then

n=L(f) =" = T’O(Tl/t)a

SO ( v
c(logn
H|l=e —
[H] = exp < (loglogn)t-1 )
for some positive constant ¢, depending only on ¢ (or the primes p1,pa, ..., ps).

O

4 An Explicit Ramsey-Hypergraph Construction

Theorem 12 Let m, k,t > 2 integers. Let F denote the complete k-uniform set-system
on the m-element universe S. Then there exists an explicitly constructible t-coloring of
the sets of the k-uniform set-system JF which does not contain monochromatic complete
sub-system on

exp (c(logm) Yt (log log m)Y/ 1)

vertices.
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Proof:  First construct a set-system H with Theorem 11 with the first ¢ primes: p; =
2,ps =3,...,p. Set S ="H. (If m is not exactly the size of H, then generate the smallest
‘H with at least m elements, and let S C H.) Consequently, a member of our set-system
F € F corresponds to k sets of H: F' = {H;, Hy, ..., Hy}.

Next we define the coloring of F.

Color F to color ¢,, (1 <wv <t)if v is the smallest number that p, does not divide

k

N H.

i=1

Clearly, every F' will have some color. If every k-set in S’ C S is of color ¢,, then apply
Theorem 1 with p = p,, and get the upper bound.
O
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