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Abstract

In this note we show that the exact value of the vertex Folkman numbers
F (2, 2, 2, 4; 6) and F (2, 3, 4; 6) is 14.

1 Notations

We consider only finite, non-oriented graphs, without loops and multiple edges. The
vertex set and the edge set of a graph G will be denoted by V (G) and E(G), respectively.
We call p-clique of G any set of p vertices, each two of which are adjacent. The largest
natural number p, such that the graph G contains a p-clique, is denoted by cl(G) (the
clique number of G). A set of vertices of a graph G is said to be independent if every two
of them are not adjacent. The cardinality of any largest independent set of vertices in G
is denoted by α(G) (the independence number of G).

If W ⊆ V (G) then G[W ] is the subgraph of G induced by W and G − W is the
subgraph induced by V (G) \ W . We shall use also the following notation:

G - the complement of graph G;

Kn - complete graph of n vertices;

Cn - simple cycle of n vertices;

N(v) - the set of all vertices adjacent to v;
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χ(G) - the chromatic number of G;

Kn −Cm, m ≤ n - the graph obtained from Kn by deleting all edges of some cycle Cm.

Let G1 and G2 be two graphs without common vertices. We denote by G1 + G2, the
graph G, for which V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ E ′, where
E′ = {[x, y] : x ∈ V (G1), y ∈ V (G2)}.

2 Vertex Folkman numbers.

Definition 1. Let G be a graph, and let a1, . . . , ar be positive integers, r ≥ 2. An
r-coloring

V (G) = V1 ∪ . . . ∪ Vr, Vi ∩ Vj = ∅, i 6= j,

of the vertices of G is said to be (a1, . . . , ar)-free if for all i ∈ {1, . . . , r} the graph G does
not contain a monochromatic ai-clique of color i. The symbol G → (a1, . . . , ar) means
that every r-coloring of V (G) is not (a1, . . . , ar)-free.

A graph G such that G → (a1, . . . , ar) is called a vertex Folkman graph. We de-
fine F (a1, . . . , ar; q) = min{|V (G)| : G → (a1, . . . , ar) and cl(G) < q}. Clearly G →
(a1, . . . , ar) implies that cl(G) ≥ max{a1, . . . , ar}. Folkman [2] proved that there ex-
ists a graph G, such that G → (a1, . . . , ar) and cl(G) = max{a1, . . . , ar}. Therefore, if
q > max{a1, . . . , ar} then the numbers F (a1, . . . , ar; q) exist and they are called vertex
Folkman numbers.

Let a1, . . . , ar be positive integers, r ≥ 2. Define

m =
r∑

i=1

(ai − 1) + 1 and p = max{a1, . . . , ar}. (1)

Obviously Km → (a1, . . . , ar) and Km−1 6→ (a1, . . . , ar). Hence, if q ≥ m + 1,
F (a1, . . . , ar; q) = m. For the numbers F (a1, . . . , ar; m), the following theorem is known:

Theorem A([4]). Let a1, . . . , ar be positive integers, r ≥ 2 and let m and p satisfy
(1), where m ≥ p + 1. Then F (a1, . . . , ar; m) = m + p. If G → (a1, . . . , ar), cl(G) < m
and |V (G)| = m + p, then G = Km+p − C2p+1.

Another proof of Theorem A is given in [13]. It is true that:

Theorem B([13]). Let a1, . . . , ar be positive integers, r ≥ 2. Let p and m satisfy (1)
and m ≥ p + 2. Then

F (a1, . . . , ar; m − 1) ≥ m + p + 2.

Observe that for each permutation ϕ of the symmetric group Sr, G → (a1, . . . , ar) ⇐⇒
G → (aϕ(1), . . . , aϕ(r)). Therefore, we can assume that a1 ≤ . . . ≤ ar. Note that if a1 = 1,
then F (a1, . . . , ar; q) = F (a2, . . . , ar; q). So, we will consider only Folkman numbers for
which ai ≥ 2, i = 1, . . . , r.

The next theorem implies that, in the special situation where a1 = . . . = ar = 2 and
r ≥ 5, the inequality from Theorem B is exact.
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Theorem C.

F (2, . . . , 2︸ ︷︷ ︸
r

; r) =

{
11, r = 3 or r = 4;
r + 5, r ≥ 5.

Obviously G → (2, . . . , 2︸ ︷︷ ︸
r

) ⇔ χ(G) ≥ r + 1.

Mycielski in [5] presented an 11-vertex graph G, such that G → (2, 2, 2) and cl(G) = 2,
proving that F (2, 2, 2; 3) ≤ 11. Chvátal [1], proved that the Mycielski graph is the smallest
such graph and hence F (2, 2, 2; 3) = 11. The inequality F (2, 2, 2, 2; 4) ≥ 11 was proved
in [8] and inequality F (2, 2, 2, 2; 4) ≤ 11 was proved in [7] and [12] (see also [9]). The
equality

F (2, . . . , 2︸ ︷︷ ︸
r

; r) = r + 5, r ≥ 5

was proved in [7], [12] and later in [4]. Only a few more numbers of the type F (a1, . . . , ar; m−
1) are known, namely: F (3, 3; 4) = 14 (the inequality F (3, 3; 4) ≤ 14 was proved in [6]
and the opposite inequality F (3, 3; 4) ≥ 14 was verified by means of computers in [15]);
F (3, 4; 5) = 13 [10]; F (2, 2, 4; 5) = 13 [11]; F (4, 4; 6) = 14 [14].

In this note we determine two additional numbers of this type.

Theorem D. F (2, 2, 2, 4; 6) = F (2, 3, 4; 6) = 14.

These two numbers are known to be less than 36 (see [4], Remark after Proposition
5).

We will need the following
Lemma. Let G → (a1, . . . , ar) and let for some i, ai ≥ 2. Then

G → (a1, . . . , ai−1, 2, ai − 1, ai+1 . . . , ar).

Proof. Consider an (a1, . . . , ai−1, 2, ai − 1, ai+1 . . . , ar)-free (r + 1)-coloring V (G) =
V1 ∪ . . . ∪ Vr+1. If we color the vertices of Vi with the same color as the vertices of Vi+1,
we obtain an (a1, . . . , ar)-free coloring of V (G), a contradiction.

3 Proof of Theorem D.

According to the lemma, it follows from G → (2, 3, 4) that G → (2, 2, 2, 4). Therefore
F (2, 2, 2, 4; 6) ≤ F (2, 3, 4; 6) and hence it is sufficient to prove that F (2, 3, 4; 6) ≤ 14 and
F (2, 2, 2, 4; 6) ≥ 14.

1. Proof of the inequality F (2, 3, 4; 6) ≤ 14.

We consider the graph Q, whose complementary graph Q is given in Fig.1.
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Fig. 1. Graph Q

This is the well known construction of Greenwood and Gleason [3], which shows that the
Ramsey number R(3, 5) ≥ 14. It is proved in [10] that K1 +Q → (4, 4). Together with the
lemma, this implies that K1 + Q → (2, 3, 4). Since cl(K1 + Q) = 5 and |V (K1 + Q)| = 14,
then F (2, 3, 4; 6) ≤ 14.

2. Proof of the inequality F (2, 2, 2, 4; 6) ≥ 14.
Let G → (2, 2, 2, 4) and cl(G) < 6. We need to prove that |V (G)| ≥ 14. It is clear

from G → (2, 2, 2, 4) that

G − A → (2, 2, 4) for any independent set A ⊆ V (G). (2)

First we will consider some cases where the proof of the inequality |V (G)| ≥ 14 is easy.
Suppose that cl(G−A) < 5 for some nonempty independent set A ⊆ V (G). According

to (2) and the equality F (2, 2, 4; 5) = 13 [11], |V (G − A)| ≥ 13. Therefore, |V (G)| ≥ 14.
Hence in the sequel, without loss of generality, we will assume that

cl(G − A) = cl(G) = 5 for any independent set A ⊆ V (G). (3)

Next assume that there exist u, v ∈ V (G), such that N(u) ⊇ N(v). Observe that
[u, v] 6∈ E(G). Assume that G−v 6→ (2, 2, 2, 4) and let V1∪V2∪V3∪V4 be a (2, 2, 2, 4)-free
4-coloring of G−v. If we color the vertex v with the same color as the vertex u, we obtain
a (2, 2, 2, 4)-free 4-coloring of the graph G, a contradiction. Therefore G− v → (2, 2, 2, 4)
and, according to Theorem B (with m = 7 and p = 4), |V (G − v)| ≥ 13. Therefore,
|V (G)| ≥ 14. So:

N(v) 6⊆ N(u), ∀u, v ∈ V (G). (4)

From (3) it follows that |N(v)| 6= |V (G)| − 1, ∀v ∈ V (G) and, according to (4),
|N(v)| 6= |V (G)| − 2, ∀v ∈ V (G). Hence

|N(v)| ≤ |V (G)| − 3, ∀v ∈ V (G). (5)
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Since G cannot be complete we know that α(G) ≥ 2. Assume that α(G) ≥ 3 and
let {a, b, c} ⊆ V (G) be an independent set. We put G̃ = G − {a, b, c}. Assume that
|V (G)| ≤ 13. Then |V (G̃)| ≤ 10. According to (2) and Theorem A (with m = 6 and
p = 4), G̃ = K10 − C9 = K1 + C9. Let V (K1) = {w}. From (5) it follows that w is not
adjacent to at least one of the vertices a, b, c. Let, for example, a and w be not adjacent.
Then N(w) ⊇ N(a), which contradicts (4). Therefore, we obtain that if α(G) ≥ 3, then
|V (G)| ≥ 14. So, we can assume that

α(G) = 2. (6)

Hence, we need to consider only the case where the graph G satisfies conditions (3),
(4), (5) and (6). According to Theorem B, |V (G)| ≥ 13. Therefore, it is sufficient to
prove, that |V (G)| 6= 13. Assume the contrary. Let a and b be two non-adjacent vertices
of the graph G, and let G1 = G − {a, b}.

Case 1. G1 → (2, 5). According to (3), cl(G1) = 5. Since |V (G1)| = 11, it follows
from Theorem A that G1 = C11. Let V (C11) = {v1, . . . , v11} and E(C11) = {[vi, vi+1] :
i = 1, . . . , 10} ∪ {[v1, v11]}. From cl(G) = 5 it follows that the vertex a is not adjacent
to at least one of the vertices v1, . . . , v11, say [a, v1] /∈ E(G). Consider a 4-coloring
V (G) = V1 ∪ V2 ∪ V3 ∪ V4, where V1 = {v6, v7}, V2 = {v8, v9}, V3 = {v10, v11}. Since
V1, V2, V3 are independent sets, then it follows from G → (2, 2, 2, 4) that V4 contains a
4-clique. Since the set {v1, v2, v3, v4, v5} contains a unique 3-clique {v1, v3, v5} and the
vertex a is not adjacent to v1, the 4-clique containing in V4 can be only {v1, v3, v5, b}.
Similarly, {v1, v8, v10, b} is a 4-clique too. Therfore {v1, v3, v5, v8, v10, b} is a 6-clique, a
contradiction.

Case 2. G1 6→ (2, 5). Let V (G1) = X ∪ Y be a (2, 5)-free 2-coloring. According
to (6), |X| ≤ 2. From (5) and (6) it follows that we may assume that |X| = 2. Let
X = {c, d}, G2 = G1 − {c, d} = G[Y ]. According to (2), G1 → (2, 2, 4) and therefore
G2 → (2, 4). Since Y contains no 5-cliques, then cl(G2) < 5. From Theorem A (with
m = 5 and p = 4) it follows that G2 = C9. Let V (C9) = {v1, . . . , v9} and E(C9) =
{[vi, vi+1] : i = 1, . . . , 8} ∪ {[v1, v9]}. Denote G3 = G[a, b, c, d]. From (6) it follows that
E(G3) contains two independent edges. Without loss of generality we can assume that
[a, c], [b, d] ∈ E(G3). It is sufficient to consider next three subcases:

Subcase 2.a. E(G3) = {[a, c], [b, d]}. From cl(G) = 5 it follows that one of the vertices
a, c is not adjacent to at least one of the vertices v1, . . . , v9, say [a, v1] /∈ E(G). Consider
a 4-coloring V (G) = V1 ∪ V2 ∪ V3 ∪ V4, where V1 = {v6, v7}, V2 = {v8, v9} and V3 = {c, d}.
Since the sets V1, V2, V3 are independent sets, it follows from G → (2, 2, 2, 4) that V4

contains a 4-clique. Since {v1, v3, v5} is the unique 3-clique in V4 − {a, b} and a 6∈ N(v1),
then this 4-clique can be only {v1, v3, v5, b}. Similarly we obtain also that {v1, v6, v8, b} is
a 4-clique. Hence, we may conclude that

v1, v3, v5, v6, v8 ∈ N(b). (7)

In the same way we can prove that v1, v3, v5, v6, v8 ∈ N(d) which, together with (7),
implies that {v1, v3, v5, v8, b, d} is a 6-clique, contradicting cl(G) < 6.
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Subcase 2.b. E(G3) = {[a, c], [b, d], [a, d]}. From cl(G) = 5 it follows that one of the
vertices a,d is not adjacent to at least one of the vertices v1, . . . , v9. Without loss of
generality we may assume that v1 and a are not adjacent. In the same way as in the
Subcase 2.a. we can prove (7). Consider a 4-coloring V (G) = V1 ∪ V2 ∪ V3 ∪ V4, where
V1 = {v4, v5}, V2 = {v6, v7}, V3 = {v8, v9}. Since V1, V2, V3 are independent sets, it
follows from G → (2, 2, 2, 4) that V4 contains a 4-clique L. It is clear that v1, v3 ∈ L.
From a 6∈ N(v1) it follows that a 6∈ L. Therefore d ∈ L and L = {v1, v3, b, d}. Similarly
{v1, v8, b, d} is a 4-clique. Therefore, {v1, v3, v8, b, d} is a 5-clique. This, together with (7)
and cl(G) < 6, implies that the vertex d is not adjacent to vertices v5 and v6, contradicting
equality (6).

Subcase 2.c. E(G3) = {[a, c], [b, d], [a, d], [c, b]}. As in the previous two subcases, we
may assume that a and v1 are not adjacent and also that (7) holds. Consider a 4-coloring
V (G) = V1 ∪ V2 ∪ V3 ∪ V4, where V1 = {v4, v5}, V2 = {v6, v7}, V3 = {a, b}. V1, V2, V3

are independent sets, which implies that V4 contains a 4-clique L. Since {v1, v3, v8} is the
unique 3-clique containing in V4 −{c, d}, either L = {v1, v3, v8, c} or L = {v1, v3, v8, d}. If
L = {v1, v3, v8, c}, then from (7) and cl(G) = 5 it follows that the vertex c is not adjacent
to vertices v5 and v6, which contradicts (6). The case L = {v1, v3, v8, d} similarly leads to
a contradiction. The Theorem D is proved.
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