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Abstract

We consider permutations that avoid the pattern 1324. By studying the gener-
ating tree for such permutations, we obtain a recurrence formula for their number.
A computer program provides data for the number of 1324-avoiding permutations
of length up to 20.

1 Introduction

Let S,, denote the set of all permutations of length n. A permutation 7 = (p1, pa, ..., Pn) €
Sy, contains a pattern 7 = (1,2, ..., tx) € Sy if there is a sequence 1 < iy, < 4y, < -+ -1y, <
n such that p;, < p;, < --- < p;,. A permutation 7 avoids a pattern 7, in other words
7 is 7T-avoiding, if 7 does not contain 7. We write S, (7) for the set of all T-avoiding
permutations of length n, and s,(7) for the cardinality of S, (7). Patterns 71 and 7 are
Wilf-equivalent if s, (1) = sp(72) [Wil02]. A permutation 7 is {7y, 7, ..., 7, }-avoiding if
7 does not contain any of the patterns from the set.

It is a natural and easy-looking question to ask for the exact formula for s, (7). How-
ever, this problem turns out to be very difficult. Although a lot of results on this and re-
lated problems have been discovered in the last thirty years, exact answers are only known
in a few cases. For all patterns 7 of length 3, s,(7) = C,, [Knu73], where C,, = #1(2:)
is the n-th Catalan number, a classical sequence [Sta99]. When 7 is of length 4, it
has been shown that the only essentially different patterns are 1234, 1342 and 1324; all
other patterns of length 4 are Wilf-equivalent to one of these three [Sta94, Sta96, BW00].
Regev [Reg81] showed that s,(1234) asymptotically equals ¢25, where ¢ is a constant
given by a multiple integral. Gessel [Ges90| later used theory of symmetric functions to

give a generating function for 1234-avoiding permutations. Béna [Bén97a] enumerated
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1342-avoiding permutations, giving their ordinary generating function:

32x
.(1342)2" = .
2 sn(1342)a" =~ (1 — 82)372

n

However, the exact enumeration of 1324-avoiding permutations is still an outstanding
open problem that we address in this paper.

The problem of avoiding more than one pattern was first studied by Simion and
Schmidt [SS85], who determined the number of permutations avoiding two or three pat-
terns of length 3. The numbers of permutations avoiding certain pairs of patterns of length
4 give the Schroder numbers [Wes95]. West [Wes96] also used generating trees [CGHKTS|
to enumerate permutations avoiding all pairs of a pattern of length 3 and a pattern of
length 4. Recently, Albert et al. [AAAT03] enumerated {1324, 31524 }-avoiding permuta-
tions, while finding connections with queue jumping.

We provide a full characterization for the generating tree of 1324-avoiding permuta-
tions. This result, combined with a simple computer program, provides data for s, (1324)
for n up to 20. In particular, we show the following:

Theorem 1. The number s,,(1324) of 1324-avoiding permutations of length n is g({(1),n),
where g is determined by the following recursive formula:

Z Q; an = 1;
1=1

m (1)
;g(f(<a1...am>,z’),n— 1) ifn>1

g({ay...ap),n) =

and f({ay...am),i) = (b1...b,,), where:

a; +1 if =1,
aj,1—|—1 ZfZ<]§CLZ

We conclude by enumerating 1324-avoiding permutations in a specific strong class,
which is conjectured to be the largest.

2 Proof of Theorem 1

We apply generating trees to count 1324-avoiding permutations. First, we briefly describe
succession rules and generating trees. They were introduced in [CGHKT78] for the study of
Baxter permutations and further applied to the study of pattern-avoiding permutations
by Stankova and West [Sta94, Sta96, Wes95, Wes96]. Recently, Barcucci et al. developed
ECO [BDLPP99], a methodology for the enumeration of combinatorial objects, which is
based on the technique of generating trees.
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Definition 2. A generating tree is a rooted, labelled tree such that the labels of the set
of children of each node v can be determined from the label of v itself. In other words, a
generating tree can be specified by a recursive definition consisting of:

1. basis: the label of the root

2. inductive step: a set of succession rules that yields a multiset of labelled children
depending solely on the label of the parent.

Given m = (p1,p2,---,Pn) € Sp, we call the position to the left of p; position 0, the
position between p; and p;y1, where 1 < ¢ < n — 1, position ¢, and the position to the
right of p,, position n. We will refer to any of these positions as a site of 7.

Definition 3. Let 7 be a forbidden pattern. The position 7, 0 < 7 < n, of a permutation
m € S,(7) is an active site if inserting n + 1 into position ¢ gives a permutation belonging
to the set S,.1(7); otherwise it is said to be an inactive site.

Following the methodology developed in [Wes96, Wes95], the generating tree for 7-
avoiding permutations is a rooted tree whose nodes on level n are exactly the elements of
Sn (7). The children of a permutation 7 of length n—1 are all the 7-avoiding permutations
obtained by inserting n into m. Each node in the tree is assigned a label; in the simplest
case, the label is the number of active sites of w. Typical applications of generating trees
analyze changes in the number of active sites after inserting n in a permutation of length
n — 1. These changes determine the labels in the tree and the list of succession rules.
Our application considers one more step: to keep the label of every node completely
determined from the label of its parent, we consider the changes after inserting n and also
n+ 1.

Given a node 7 at level n — 1 in the generating tree for 1324-avoiding permutations,
let 7’ be m’s children obtained by inserting n into the i-th active site of m. The label
assigned to 7t is the pair (s(r), ), where the sequence s(x) = (I(m2)...1(xX™)) contains
the number of active sites I(7?) for all children 7 of 7, i.e., for 7/ and all its siblings.
The following completely characterizes this generating tree.

Lemma 4. All 1324-avoiding permutations of length n lie on the n-th level of the gener-
ating tree (Figure 1) defined by the following succession rules:

{ basis: ((2),1)
inductive step:  ({(ay...am),1) — ((br...ba,)a;)({by...ba,),a; —1)...((by...b4), 1)

where (by...by,) = f({a1...am),7) as in (2).

Proof. First, we make the following observation. Given a 1324-avoiding permutation
m = (p1,p2,- -, Pn_1) of length n — 1, the active sites of 7 are actually the first I(7) sites;
we can order 132 patterns in 7 by the occurrence of their 2 and n can be inserted anywhere
to the left of the first 2, but nowhere to the right of it.
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Figure 1: The generating tree for 1324-avoiding permutations

Inserting n into the i-th active site of 7 certainly creates one new active site in 7',
since n+ 1 can be inserted into 7, right in front and right behind n. However, inserting n
into m may deactivate some active sites in 7, because n can play a role of 3 for some 132
pattern in 7/ that was not in 7. In other words, if we order 132 patterns in w and 7, by
the occurrence of their 2, the first 2 in 7/, may be to the left of the first 2 in 7. The index

of the first 2 that n introduces in 7’ is min k. Since the active sites of
k>i—1,px>min(p1,p2;...,pi—1)

! are exactly the sites to the left of the first 2, the number of active sites in 7/, is:

(7)) = 1+ min{l(7), min k} (3)
k>i—1,pp>min(p1...pi—1)

Notice that I(7?) > i, since I(7) > ¢ and k > 1.

In the special case when i = 1, i.e., when 7’ starts with n, we have I(7}) = 1 + I(n),
since n cannot play the role of 3 for any 132 pattern. In general, however, the equation (3)
does not express (7)) solely in terms of I(7). This is why we consider the next step,
inserting n + 1 into 7.

Let W;Jn 41 be the permutation obtained by inserting n + 1 into the j-th active site of

7! (which is not necessarily the j-th active site of 7). We do a case analysis based on j;

in each of three cases, the position of the first 2 is the key of our analysis:
e =1
Then 7sz’7jn+1 starts with n 4+ 1 and l(?sz’?n_H) =1+1(x).
¢2<j<i
Then n + 1 is inserted to the left of n and we have
W:L’,jnJrl = (pla cee >pj717n + 17pj7 <oy Pi—1, 1, Piy - - 7pn71)

Hence, W;]n 41 has a 132 pattern where any element to the left of n + 1 serves as
1, n+ 1 serves as 3, and n serves as 2. Thus, n may be the first 2 in 77 ;.
Further, the number of active sites in 7, ,; equals the number of active sites in
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m = (p1,-- -, Pj—1, 1, Dj, - - -, Pn—1), unless n is the first 2 in 7,7 ,,, which reduces

the number of active sites in 7"/

: a1 to the index of entry n. Therefore, l(ﬂz’{lﬂ) =
min(i + 1,1(77)).
o i <j<I(n)
Then n + 1 is inserted to the right of n giving
ﬂ-i;;jnJrl = (pla vy Pi-1, M, Piy - - >pj727 n—+ 17pj717 B >pn71)

Note that n + 1 is inserted right behind p; o, and not p;_1, because the position to

the right of p;_» is the j-th active site in 7. The number of active sites in W;Jn e
equals the number of active sites in 77" = (p1,...,pj—2, %, Dj—1,--.,Pn-1) Plus the

additional active site next to entry n: I(m,”, ) = (7 ~") + 1.

In summary, we have obtained the number of active sites in a 1324-avoiding permuta-
tion of length n 4 1 in terms of the number of active sites in 1324-avoiding permutations
of length n:

I(72) +1 if j =1,
Ui ) = mini+ 1,1(m)) if2<j<i,
Wi~ ) +1 if i < j <I(m).

n

J < U(x,). Hence, if we assign label (s(7),1), where s(m) = (I(7)).. A(7i™)), to each

n

m,, for 1 < i < I(m), then the label of 7,7 | is completely determined by the label of

Clearly, the values l(ﬂi’?ﬁ+1), 1 < j < (%), depend on i and the values I(7), 1 <

%
n

(l(wfl”lnH) . .l(ﬂf;’fr(ﬁll)» is given by the succession rule s(7) = f({{(7}).. .l(wil(ﬂ)»,i),

n

where f is the function defined in (2). The root of the tree has the label ((2),1), which
represents the unique permutation of length 1. This completes the proof of the lemma. [

its parent, 7. More precisely, the label of W;]n 41 18 (s(7h),7); the sequence s(m)) =

We next prove Theorem 1. Let T be the generating tree for 1324-avoiding permuta-
tions.

Proof. Let d[({aj ...apn),1),n| be the number of 1324-avoiding permutations on the n-th
level of the subtree of T', rooted at (the node with label) ({a; ...a,,),7). Then,

1 if n=20,
> d[((br e bg,),),n— 1] if n=0.

Note that d[({ay . ..am),1),1] = > 5%, d[({b1 ... ba.), j),0] = a;, since d[({by ...by,),7),0] =

j=1
1.

d[({a1...am),1),n] = {

Let g({aj...am),n) be the number of 1324-avoiding permutations on the n-th level
of the subforest of T', which consists of trees whose roots are ({ay ...an),i), 1 < i < m.
Then,
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m a;

g{ar . ..apn),n) =Y d[({ar...am),i),n] =D > d[(f({a1-..am),i),5),n — 1]

i=1 i=1 j=1

3 Concluding remarks

Theorem 1 provides a recurrence formula for the number of 1324-avoiding permutations,
which, with the help of a computer, gives values of s,(1324) up to n = 20 [SPBC96].
Figure 2 shows a simple Maple code that directly corresponds to Theorem 1; the procedure
count1324 counts the number of all 1324-avoiding permutations of length n, and the
procedure g corresponds to g, with inlined f.

Note that g has option remember modifier. It instructs Maple to use memoiza-
tion [Bel57, Mic68] for g. Namely, Maple maintains a table of the input pairs s and n
and corresponding values for g. Before computing the value for some pair, Maple first
checks if that pair is already in the table. If so, Maple immediately returns the value;
otherwise, it computes the value and stores the pair and the value in the table. The
use of memoization significantly reduces time for computing the values of g for larger n.
However, the memoization table requires space. On machines on which we used Maple, it
ran out of memory when n was 15. We rewrote the code from Figure 2 in Java to speed
up the computation and to reduce the memory consumption. The Java code uses a more
compact representation of sequences of small numbers. It also has a selective memoization
that stores in the table only the input pairs (and their corresponding values) for which g
is likely to be invoked several times. We ran the Java code on the Sun JVM version 1.3.0
running under Linux on a 2GHz Pentium IV machine with 2GB of memory. Computing
the number of 1324-avoiding permutations of length 20 took about 5 hours.

Although we have obtained a recurrence formula for the number of all 1324-avoiding
permutations, we do not have a closed form for s,(1324). The occurrence of the min
function in the definition of f, together with the fact that the length of the sequences
assigned to nodes of the generating tree increase with the node level in the tree, complicate
any attempt to obtain a closed formula. But, the formula may help finding the asymptotic
growth of s,,(1324).

In 1990, Stanley and Wilf conjectured that s,(7) < (c¢(7))", where ¢(7) is a con-
stant. This conjecture clearly holds for patterns of length 3. Results of Béna and
Regev [Bén97a, Reg81] imply that s,(1342) < 8" and s,(1234) < 9™, these bounds being
asymptotically tight. Moreover, Béna [Bén97b| proves that s,(1324) is asymptotically
larger than s,,(1234), and sketches an argument to prove that s,(1324) < 36", this bound
almost certainly not being tight. His techniques use the idea of dividing permutations
into strong classes.
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count1324 := proc(n)

n 5, (1324)
return g([1], n); 0 1
end: 1 1
. 2 2
g := proc(s, n) option remember; 3 6
local i, j, sum, sNext; 4 23
if (n = 1) then 5 103
' return convert(s, ‘+°); 6 513
fi; 7 2,762
8 15,793
sum = 0; 9 94,776
for i from 1 to'nops(s) do 10 591,950
sNeXT.: := s[i] + }; 11 3,824,112
for j from 2 to i do‘ L . 12 25,431,452
sNext := sNext, ‘min‘(i + 1, s[jl); 13 173,453,058
od; . . . 14 1,209,639,642
for j from i + 1 to S[J:] do 15 8,604,450,011
sNext := sNext, s[j - 1] + 1; 16 62,300,851,632
od; 17 458,374,397,312
sum := sum + g([sNext], n - 1); 18 3,421,888,118,907
od; 19 | 25,887,131,596,018
return sum; 20 | 198,244,731,603,623
end:
Figure 2: The Maple code for counting Figure 3: The number of 1324-avoiding
1324-avoiding permutations permutations for length up to 20

Definition 5. Two permutations m and ¢ are said to be in the same strong class if the
left-to right minima of 7 are the same as those of o and they occur in the same position;
and the same is true also of the right-to-left maxima.

Strong classes are denoted by specifying the positions of their minima and maxima and
writing a “*’ in the other positions. For example, 7+5*3%1x13x11%9 denotes the strong class
whose left-to-right minima are 7,5,3,1 (at positions 1,3,5,7) and right-to-left maxima are
13,11,9 (at positions 9,11,13). This particular strong class is, in fact, the class Sy 3 where,
in general, S, is the strong class whose left-to-right minima 2/ +1,2{ —1,... occur at the
odd numbered positions followed by the right-to-left maxima 2(l +r) —1,2(l4+7) —3,...
occurring at the remaining odd numbered positions.

Béna showed that there are at most 9™ non-empty strong classes and sketched a proof
that each one contains at most 4™ 1324-avoiding permutations. From our experiments
with the Java applet [Str03] provided by Atkinson and his group we conjecture with some
confidence that

Conjecture 6. If n = 2(l + r) — 1, the strong class S;, contains more 1324-avoiding
permutations than any other strong class with | left-to-right minima and r right-to-left
mazxima. Furthermore, the strong class S,, contains more 1324-avoiding permutations
than any other strong class of that length.

We actually know the exact formula for |5, |.
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Proposition 7. |S5,| = (ﬁ:l)

Proof. Let n = 2k + 1. Let a;,...,a; be the left-to-right minima, and b,,...,b; be the
right-to-left maxima. Here, the sequence aq,...,a;,b1,...,b, is actually the sequence
1,3,...,n. Let 0 € S;,.. It is easy to see that: 1) if £+ 1 occurs to the left of b, = n, then
k + 1 has to be the second entry of o; and 2) if k + 1 occurs to the right of a; = 1, then
k41 has to be the next-to-last entry of o. Hence, 1324-avoiding permutations in .5, fall
into two categories: the ones with o(2) = k£ + 1 and the ones with o(n — 1) =k + 1. We
map each o = (k,k+1,k—1,7) € S, tod’ = (k—1,7) € Si_1,, and vice versa, where
~" is obtained from ~ by reducing all the entries of ~ that are greater than k£ + 1 by 2.
Therefore, 1324-avoiding permutations in 5;, with k+1 as the second entry are in one-to-
one correspondence with 1324-avoiding permutations in S;_;,. Similarly, 1324-avoiding
permutations in S, with k+1 as the next-to-last entry are in one-to-one correspondence
with 1324-avoiding permutations in S;,_;. Thus, |S; .| = [Si—1,+|+|Si,—1|, completing the
proof by induction. 0

Since (') < 2"/2, the conjecture would prove that s,(1324) < (9v/2)", which would
be a considerable improvement on Béna’s bound. It remains plausible that s,,(1324) < 9™.
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