
Pattern avoidance in permutations: linear and cyclic
orders

Antoine Vella∗

Dept. of Combinatorics and Optimization, University of Waterloo
200 University Avenue West, N2L 3G1 Waterloo, Canada

avella@math.uwaterloo.ca

Submitted: Jun 10, 2003; Accepted: Oct 28, 2003; Published: Nov 7, 2003
MR Subject Classifications: 05C88, 05C89

ABSTRACT: We generalize the notion of pattern avoidance to arbitrary functions on ordered sets, and
consider specifically three scenarios for permutations: linear, cyclic and hybrid, the first one corresponding
to classical permutation avoidance. The cyclic modification allows for circular shifts in the entries.
Using two bijections, both ascribable to both Deutsch and Krattenthaler independently, we single out
two geometrically significant classes of Dyck paths that correspond to two instances of simultaneous
avoidance in the purely linear case, and to two distinct patterns in the hybrid case: non-decreasing Dyck
paths (first considered by Barcucci et al.), and Dyck paths with at most one long vertical or horizontal
edge. We derive a generating function counting Dyck paths by their number of low and high peaks, long
horizontal and vertical edges, and what we call sinking steps. This translates into the joint distribution
of fixed points, excedances, deficiencies, descents and inverse descents over 321-avoiding permutations.
In particular we give an explicit formula for the number of 321-avoiding permutations with precisely k

descents, a problem recently brought up by Reifegerste. In both the hybrid and purely cyclic scenarios,
we deal with the avoidance enumeration problem for all patterns of length up to 4. Simple Dyck paths
also have a connection to the purely cyclic case; here the orbit-counting lemma gives a formula involving
the Euler totient function and leads us to consider an interesting subgroup of the symmetric group.

1 Introduction

Pattern avoidance in permutations has received much attention in the last few years. The
basic idea is the following: if we write a permutation as a sequence of integers a1a2, . . . an,
then we can consider subsequences to be “occurrences” of smaller permutations by keeping
track of the order in which the chosen entries appear, and their values. So for example
523 would be an occurrence of 312 in 652431. Often the term “permutation” is used to
mean a bijective mapping of an arbitrary (typically finite) set into itself; however, any
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formalization of the concept of avoidance in the usual sense requires the set to be equipped
with a linear (total) order. Once we have such a formalization, we can consider situations
in which the order is not necessarily linear. Here we propose to take what appears to be
a natural next step: go from linear to cyclic.

In [8], in order to obtain a combinatorialist’s generalization of the concept of a per-
mutation from the finite to the infinite, Cameron regards a permutation as a pair of total
orders on the ground set. In this context, he also considers subpermutations, cyclic orders
and circular permutations. His definition naturally extends to an arbitrary number of
orders; the one we shall give generalizes in a different direction. For the specific cases we
shall consider in this paper, our definitions are essentially equivalent to Cameron’s, and
can be simplified without loss of rigour; however, we wish to emphasize that they general-
ize the concept of pattern avoidance to arbitrary functions whose domain and codomain
are ordered sets, and open up a myriad questions in this regard.

Here by ordered set we mean a set X equipped with an arbitrary “k-ary relation”, that
is a subset TX of the cartesian product Xk, for some positive integer k. Two standard
examples are the familiar linear (total) orders, obtained by taking a binary relation satis-
fying the properties of antisymmetry, transitivity, reflexivity and decisiveness1, and cyclic
orders, given by a ternary relation satisfying certain properties which we shall specify in
Section 1.2. In both cases, we have an essentially (up to isomorphism) unique way of
constructing an order of the prescribed type on a given set. As prototypes of finite linear
and cyclically ordered sets, we may take X to be simply the set In of the first n positive
integers, with the binary relation consisting of all pairs (i, j) with i ≤ j for the linear
order, while a cyclic order is given by all triples (i, j, k), (j, k, i), (k, i, j) with i ≤ j ≤ k.

A subset Y of X inherits an ordered structure given by the subset of Xk {t ∈ TX | ti ∈
Y ∀i}, where ti denotes the i-th coordinate of t; that is, we take all tuples whose co-
ordinates all take values in Y . In the above examples, the inherited order turns out to
be essentially the same as the one we would construct directly on Y itself. An order-
isomorphism of two ordered sets X, Y is a bijection σ such that, for all k-tuples t ∈ Xk,
we have t ∈ TX if and only if the corresponding tuple (σ(t1), σ(t2), . . . , σ(ts)) belongs to
TY . Given any two linearly ordered sets, there is a unique isomorphism between them if
and only if they have the same cardinality, and none otherwise; if instead we have two
finite cyclically ordered sets of cardinalities n1, n2, then again there exist isomorphisms
if and only if n1 = n2 (= n), and in this case there are precisely n of them. For example,
if we write the letters of the English alphabet in clockwise order on a circle, and take the
cyclic order given by all triples which can be read off the circle in clockwise fashion, then
one order isomorphism of I26 with the cyclic order onto the English alphabet is the map
1 7→ e, 2 7→ f , . . . , 22 7→ z, 23 7→ a, . . . , 26 7→ d, and all others are “rotations” of this.

Given functions γ : A → B and δ : B → C, γ ◦ δ denotes the function a 7→ δ(γ(a))
(note this notation may be in conflict with that used by several authors). An order
function is a function whose domain and codomain are both ordered sets. Given order
functions f : D → E and g : F → G, we say that f and g are order-equivalent if there
exist order-isomorphisms α : D → F and β : g(F )→ f(D) such that f = α ◦ g ◦ β, where

1This is the requirement that any two elements be comparable.
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g(F ) and f(D) inherit their orders from G and E respectively. If h is an order function,
an occurrence of h is a subset S of the domain of f such that f |S is order-equivalent to h.

Consider for example the linearly ordered sets I5 and I8, the set Σ of letters of the
English alphabet, with the cyclic order defined above, and the order functions χ : I8 → Σ
and ψ : I5 → Σ

χ :
1 2 3 4 5 6 7 8
p a t t e r n s

ψ :
1 2 3 4 5
a c c d b

Then the set {1, 3, 4, 7, 8} inherits a linear order from I8, the sets {a, b, c, d} and {n, p, s, t}
inherit cyclic orders from Σ and the order isomorphisms

1 2 3 4 5
1 3 4 7 8

a b c d
p s t n

show that the function
1 3 4 7 8
p t t n s

is order-equivalent to ψ, and therefore the set {1, 3, 4, 7, 8} ⊆ I8 is an occurrence of ψ in
χ.

If no subset of the domain of f is an occurrence of h, then f avoids h. Equivalently,
f is h-avoiding. This also extends to simultaneous avoidance, i.e. if Z is a set of order
functions, f avoids Z (or is Z-avoiding) if it avoids all elements of Z. Also, an occurrence
of Z is an occurrence of an element of Z. It is easy to check that order-isomorphism is an
equivalence relation, and that avoidance is independent of the particular representative
of the equivalence class. More precisely, if h1, h2 are order-isomorphic order functions,
then S is an occurrence of h1 if and only if it is an occurrence of h2, and if f, g are
order-isomorphic as in the definition above, then S is an occurrence of h in f if and only
if α(S) is an occurrence of h in g.

Thus it makes sense to speak of one equivalence class avoiding another, and a pattern
could be defined as an equivalence class of order functions (which might as well be sur-
jective). In keeping with current terminology, we shall reserve the term “pattern” for the
equivalence classes being avoided.

Graphs provide other examples of pattern avoidance in the above sense; if for example
we take the order on the domain to be an arbitrary symmetric reflexive binary relation,
and the codomain to be the linearly ordered set Is, then we are dealing with s-coloured
graphs avoiding a subgraph with a prescribed t-labelling (It being the codomain of the
pattern), in the sense that the labels of a copy of the subgraph in the graph may not have
the same relative order as those on the subgraph (via any graph-isomorphism). If we take
the pattern to be just an edge labelled with a constant, then we are dealing with properly
n-coloured graphs, and for a fixed graph the problem of enumerating the order functions
avoiding this pattern is “solved” by the chromatic polynomial.

Different interesting enumeration problems arise in different contexts; for example, we
could take the order functions to be the identity mappings from graphs to themselves, in
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which case we are dealing with graphs avoiding a fixed subgraph. An asymptotic version
of this problem (which also fits into the context of Cameron) has been solved in terms of
threshold functions; see for example [2], Chapter 4.

However, in this paper we shall not venture far from classical permutation avoidance;
we shall consider only bijective functions, in the following scenarios:

1. linear orders on the domain and the codomain—this gives classical permutation
avoidance;

2. a cyclic order on the domain and a linear order on the codomain—in this case,
taking order-equivalent functions corresponds to “wrapping around” in the domain,
and we shall call the equivalence classes cyclic arrangements ; e.g. 35412, 54123,
41235, 12354 and 235412 all correspond to the same cyclic arrangement;

3. cyclic orders on both the domain and codomain—in this case, taking order-equivalent
functions corresponds to “wrapping around” independently both in the domain and
in the codomain (not necessarily by the same “shift”), and we shall use the term
orbits for the equivalence classes; e.g. 35412, 54123 and 324512.

The case of a linear order on the domain and a cyclic order on the codomain is entirely
analogous to the the second one above. Note that, in the literature, the term circular
permutations is variously used to refer to the equivalence classes in one or the other of
the last two cases.

In scenarios (2) and (3) above, although the problem of finding the equivalence classes
avoiding a given pattern (equivalence class) is reducible to that of determining the set A
of permutations avoiding a certain set Z of patterns, our techniques for determining A
make use of the cyclic structure and do not extend to an arbitrary set of patterns of the
same length; moreover, in scenario (3) taking equivalence classes on A is non-trivial and
therefore the enumeration problem becomes more complicated.

We remark here that the orders we are considering have the following very important
properties:

• they are parametrizable with cardinality, i.e. given a finite set, we can construct
the corresponding order in a unique (up to order-isomorphism) way, and the result
depends only on the cardinality of the given set;

• the inherited order depends only on the cardinality of the subsets, i.e. for a fixed
integer k, any two subsets of cardinality k with the inherited order structure are
order-isomorphic;

• inheritance is well-behaved, in the sense that the inherited order on a subset S
agrees with the one constructed a priori on S.

2If necessary, refer to Section 1.2 for an explanation of this notation.
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Thus in our context it is sufficient to specify the cardinalities of the domain and
codomain in question, and since we shall deal exclusively with bijections, we might as
well assume them to be the same set. Clearly, if this set has cardinality n, we may
take it to be In, as long as we do not feel necessarily bound to the usual order on the
integers. Since modular arithmetic offers a convenient way of dealing with cyclic orders
on In (except for letting n replace the usual 0), we shall always indeed assume that our
functions are permutations from In onto itself.

1.1 Overview

In Section 2 we deal with classical permutation avoidance, with reference to two different
bijections, both discovered independently by Krattenthaler [15] and Deutsch, that relate
permutation avoidance to Dyck paths. We single out two geometrically significant classes
of Dyck paths which, under these bijections, correspond to {132, 3241}-avoiding permu-
tations and {321, 2143}-avoiding permutations respectively, namely non-decreasing Dyck
paths, first considered by Barcucci et al. [3], and what we call simple Dyck paths. Simple
Dyck paths are characterized by the property of having at most one long vertical edge or
at most one long horizontal edge, where we consider an edge to be “long” if it consists of
at least two consecutive steps (of the same kind). These classes of Dyck paths enable us
to give new proofs of results needed in Sections 3 and 4, first obtained by Billey et al. [5]
and West [29]. In doing so, we give a bijective construction of non-decreasing Dyck paths
(the zigzag construction), use it to refine the enumeration of these paths of Barcucci et al.
in terms of the number of valleys, translate this into a simple explicit formula in n and k
for the number of {132, 3241}-avoiding permutations of length n with precisely k descents
and characterize {321, 2143}-avoiding permutations in terms of Grassmannian permuta-
tions. We also derive a generating function counting Dyck paths simultaneously by the
number of hilltops and mountain-tops (peaks at height one or more respectively), long
horizontal and vertical edges and sinking steps—horizontal steps which are not the first
step of the edge they belong to. These statistics on Dyck paths translate into statistics
on 321-avoiding permutations, namely fixed points, excedances, descents, dips (descents
in the inverse permutation, also called “inverse descents”), and deficiencies, respectively.
A specialization of this generating function allows us to derive explicit formulas for the
number of 321-avoiding permutations of length n with precisely k descents, addressing an
issue brought up in the recent work of Reifegerste [21].

In Section 3 we enumerate the cyclic arrangements of length n avoiding a given pattern,
for all three patterns of length 4 (this is the first interesting case). Of these, two are
reducible to the two cases of classical simultaneous avoidance dealt with in Section 2, and
are thus tied to non-decreasing and simple Dyck paths respectively, while the third admits
a bijective solution (the wraparound map) in terms of what we call non-bisecting subsets
of In, or equivalently Grassmannian permutations, which (incidentally) underlie all three
sections. The wraparound map also has an unexpected link to classical simultaneous
avoidance: it establishes a one-to-one corresponce between the subsets of In and the
{132, 312}-avoiding permutations of [n+ 1].
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In Section 4 we also settle the enumeration of orbits of length n avoiding a given orbit
of length up to 4. It turns out that there is only one interesting case here, and this is
still connected to simple Dyck paths, but the equivalence relation makes matters more
complicated. Our approach is based on the orbit-counting lemma and this leads us to
consider a class of permutations, which we refer to as affine permutations, that constitute
a subgroup of the symmetric group within which the usual composition of permutations
can be broken down into composition of “smaller” functions and multiplication in the
group of invertible elements modulo a small integer.

1.2 Technical preliminaries

We denote by Z the set of all integers. An interval is a set A ⊆ Z with the property that
whenever the integers a, b, c satisfy a, c ∈ A, a < b < c , then b ∈ A. For integers r, s, we
denote by [r, s] the interval whose smallest and largest elements are r and s respectively.
If r > s, [r, s] is empty. When r = 1, we omit it from our notation and write simply [s]
(thus [s] = Is as defined in the introduction). Also, if r = 0, [r] is empty. The notation
{a1 < a2 < · · · < ak} stands for the set of integers {a1, a2, . . . , ak} with a1 < a2 < · · · < ak.

For a non-negative integer n, a permutation of [n] is a bijection of [n] to itself; n is the
length of the permutation. For convenience we allow the “empty” permutation, of length
0. The set of permutations of length n is denoted by Sn. The notation a1a2 · · ·an, which
we have already tacitly used above, represents the function (almost always a permutation)
which sends i to ai, e.g. 53412 is the permutation which maps 1, 2, 3, 4, 5 to 5, 3, 4, 1,
2 respectively. When necessary, we shall separate the entries with a dot, e.g. 15 · 1 · 12.
We shall extend this notation in the following way: if σ, τ are functions on [m], [n]
respectively, σ|τ indicates the function σ(1)σ(2) · · ·σ(m)τ(1)τ(2) · · · τ(n). With reference
to this notation, an entry of such a function f is a pair (i, f(i)); i is the position and f(i)
is the value of the entry.

An inversion of a permutation σ of [n] is a pair {i < j} ⊆ [n] with σ(i) > σ(j),
i.e. an occurrence of the pattern 21. A descent of σ is a point k ∈ [n − 1] such that
σ(k) > σ(k + 1).

For the sake of completeness, we also include here the standard definition of a cyclic
order (see, for example, [14]). A cyclically ordered set is a set X equipped with a ternary
relation S such that:

• a 6= b 6= c 6= a
(a, b, c) /∈ S

}
⇔ (c, b, a) ∈ S

• (a, b, c) ∈ S ⇒ (b, c, a) ∈ S

• (a, b, c) ∈ S
(a, c, d) ∈ S

}
⇒ (a, b, d) ∈ S.
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Figure 1: A non-decreasing panoramic Dyck path with four valleys, one hilltop and four
mountain-tops, the corresponding escalating Dyck path, and the action of the first-return
and the sink-or-float bijections.

643125

12

789643125 312467958
a) b)

2 Dyck paths and classical permutation avoidance

A panoramic Dyck path of semilength n is a path in the integer plane consisting of 2n
steps of type u = (1, 1) and d = (1,−1), starting at the origin, ending on the x-axis
and never going strictly below the x-axis. We call steps of type u upward and steps of
type d downward. An escalating Dyck path of semilength n is a path in the integer plane
consisting of steps of type v = (0, 1) and h = (1, 0) starting at the origin, ending at (n, n)
and never going below the diagonal x = y. We call steps of type v vertical and steps of
type h horizontal. A two-dimensional representation of a Dyck path in the integer plane
is reminiscent of a mountainous landscape in the case of panoramic Dyck paths (Figure
1a)) and a staircase in the escalating case (Figure 1b)).

Clearly changing u’s to v’s and d’s to h’s gives a bijection between escalating and
panoramic Dyck paths preserving semilength. An edge of a Dyck path is a maximal
subpath consisting of steps of the same kind. An edge is upward, downward, horizontal or
vertical according to the kind of step which it consists of. Edges correspond to maximal
straight lines in the diagrammatic representation of Dyck paths. An edge is long if it
consists of at least two steps.

Dyck paths can also be represented as strings on the alphabet {u, d} or {h, v}. In
terms of this representation, a non-empty panoramic Dyck path can be written uniquely
as uw1dw2 where w1 and w2 are themselves (possibly empty) panoramic Dyck paths. This
is known as the first-return decomposition of the Dyck path, since the d corresponds to
the first downward step which touches the x-axis. Also, w1 and w2 will be referred to
respectively as the left and right parts of the Dyck path.
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2.1 Non-decreasing Dyck paths and simultaneous avoidance of
132 and 3241

2.1.1 The first-return bijection

Dyck paths have been the subject of much research, in particular in connection with
pattern avoidance. Here we briefly describe a construction which gives a bijection between
panoramic Dyck paths of semilength n and 132-avoiding permutations of length n. This
bijection is essentially the same as the one given by Krattenthaler in [15], although he gives
a different, non-recursive, definition. He states that it was also discovered, independently
and at the same time, by Emeric Deutsch. Our construction is the inverse of the one
given in [6].

To an arbitrary panoramic Dyck path of semilength n ≥ 1 with first-return decompo-
sition uw1dw2, we associate a 132-avoiding permutation R(P ) = α|n|β with β = R(w2)
and α order-isomorphic to R(w1) (i.e. giving an occurrence of R(w1) using the symbols
n2 + 1, n2 + 2, . . . , n− 1, n2 being the semilength of w2). For n = 0, R takes the unique
empty panoramic Dyck path to the unique empty permutation.

See Figure 1a) for an illustration of the action of the map P 7→ R(P ). This map gives
a bijection between panoramic Dyck paths of semilength n and 132-avoiding permutations
of [n]. We shall refer to it as the first-return bijection.

2.1.2 Non-decreasing Dyck paths and the zigzag construction

Given a panoramic Dyck path, a peak is an up-step followed by a down-step, and a valley
is a down-step followed by an up-step. The height of a peak/valley is the y-coordinate
of the point common to both steps. A peak is a hilltop if has height 1, a mountain-top
otherwise.

A panoramic Dyck path is non-decreasing if the heights of its valleys (left to right)
form a non-decreasing sequence. Now a panoramic Dyck path always starts with an
upward edge and, assuming it has k valleys, is completely determined by the sequence of
lengths of the first 2k edges as we move from left to right (excluding the last upward and
the last downward edge). We describe a procedure based on this fact to construct a set
of positive integers of even cardinality from a non-decreasing Dyck path. This procedure
is also illustrated in Figure 2.

A vertex of a Dyck path is simply a point on the integer lattice occupied by the
path. Given an edge consisting of x steps, there are precisely x+ 1 vertices lying on the
edge. Starting from an arbitrary non-decreasing Dyck path P , we label the vertices lying
on upward edges, starting with label 1, moving left to right and increasing the label by
one at each successive vertex. Then we define a2i to be the label of the i-th peak, for
i ∈ [1, k]. Clearly (a2i)i=1...k is a non-decreasing sequence of positive integers; indeed, if
we set a0 = 0, then bi = a2i − a2i−2 − 1 is the length of the i-th upward edge, which is
of course strictly positive. Hence we have a2i − a2i−2 ≥ 2, that is, there must be at least
one integer in between a2i−2 and a2i . In order to uniquely characterize P , we also need
to encode the length of the downward edges, and we would like to do so by “filling in”
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Figure 2: The zigzag construction.
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these gaps.
Since P is non-decreasing, the i-th downward edge is no longer than the i-th upward

edge, and of course consists of at least one step. Thus the length ci of the i-th downward
edge can be anything in between 1 and bi, the upper bound being precisely the number
of integers between a2i−2 and a2i. So for i ∈ [0, k − 1] we set a2i+1 = a2i + ci+1 so that

a2i+1 = a2i + ci+1 ≤ a2i + bi+1 = a2i + (a2i+2 − a2i − 1) = a2i+2 − 1 < a2i+2

and of course a2i < a2i+1.
Finally, note that the labelling process gives precisely one label per upward step, except

for an extra label for every upward edge, corresponding to the initial vertex. Since P has
k valleys and k + 1 upward edges, at least one upward step comes after the k-th peak, so
if P has semilength n (which is also the total number of upward steps), the label a2k can
be at most (n−1)+k. Thus {a1 < a2 < · · · < a2k} is a subset of [n+k−1] of cardinality
2k. The reader can easily check that the subset corresponding to the non-decreasing Dyck
path of Fig. 2 is {3, 4, 5, 6, 7, 9, 10, 11}.

We shall refer to the map that associates this subset to the Dyck path P as the
zigzag construction. Observe that given arbitrary integers bi, ci with ci ≤ bi (i ∈ [k]) and

k∑
i=1

bi < n, the lattice path consisting of upward and downward steps and starting at

the origin with bi, ci as the length of the i-th upward (respectively downward) edge can
always be completed to a non-decreasing Dyck path of semilength n with k valleys in a
unique fashion. It is now a routine matter to verify that the zigzag construction is in fact
a bijection. We thus have the following proposition.

2.1 Proposition: The zigzag construction maps non-decreasing Dyck paths with pre-
cisely k valleys bijectively onto subsets of cardinality 2k of [n+ k − 1] .

2.2 Corollary: For a fixed integer k, the number of non-decreasing Dyck paths with k
valleys is

(
n+k−1

2k

)
.

For a non-negative integer i, let Fi denote the i-th Fibonacci number, defined inductively
by F0 = 0, F1 = 1 and Fi+2 = Fi + Fi+1. Then we have that
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2.3 Corollary: The number of non-decreasing Dyck paths of semilength n is the Fi-
bonacci number F2n−1 .

Proof: A non-decreasing Dyck path of semilength n can have anything between 0 and
n− 1 valleys. So the total number of non-decreasing Dyck paths of semilength n is

n−1∑
k=0

(
(n− 1) + k

2k

)
.

It is well-known (see [28]) and easy to verify that the sum of the “shallow diagonal” of
Pascal’s triangle starting with

(
s
0

)
gives the Fibonacci number of index 2s+ 1. �

Corollary (2.3) was first proved by Barcucci et al. in [3], but the refinement in terms of
valleys, although deducible from their generating functions, is not made explicit in their
note. Also, this result can be inferred from Theorem 2.2 of [4], because non-decreasing
Dyck paths of semilength n are in bijection with directed column-convex polyominoes of
area n, (see [11]; surprisingly, this is not mentioned in [3] in spite of the authors’ paper
[4]). Under this bijection, the peaks of a non-decreasing Dyck path correspond to the
columns of the polyomino.

2.1.3 Simultaneous avoidance of 132 and 3241

In this section we show that among the 132-avoiding permutations, those which also avoid
3241 correspond, via the first-return bijection, precisely to the non-decreasing Dyck paths.
First we give a simple characterization of {132, 3241}-avoiding permutations.

Given a permutation σ : [n]→ [n], a run is a maximal interval T ⊆ [n] such that σ|T
is increasing. For example, the runs of 83724615 are [1], [2,3], [4,6], and [7,8]. Note that
the domain [n] can always be partitioned into runs. If T = [a, b] is a run and b < n, then
T is nonfinal. A run T = [a, b] is contiguous if σ(b)− σ(a) = b− a.

2.4 Theorem: A permutation σ is {132, 3241}-avoiding if and only if all the nonfinal
runs of σ are contiguous.

Proof: Assume σ avoids {132, 3241}. Then σ−1(1) is in the last run since otherwise we
have a 132 pattern. If σ(1) = 1, then σ is the identity and we have no nonfinal runs. If
σ(1) 6= 1, let a < c be in the same nonfinal run (with σ(a) < σ(c)). If σ(a) < σ(b) < σ(c)
for some b, then σ(b) cannot be to the right of σ(c) since otherwise {a < c < b} is an
occurrence of 132. Similarly, σ(b) cannot be to the left of σ(a) since otherwise {b < a <
c < σ−1(1)} is an occurrence of 3241. So we must have a < b < c; hence, each nonfinal
run is contiguous.

Conversely, assume that all nonfinal runs of σ are contiguous and, by way of contra-
diction, let {a < b < c} be an occurrence of 132. Then b cannot be in the last run.
Moreover, since each value of a nonfinal run is smaller than each value of the previ-
ous run, a and b are in the same run. But then this run cannot be contiguous since
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σ(a) < σ(c) < σ(b) and σ(c) is to the right of σ(b). Now, again by way of contradiction,
suppose that {a < b < c < d} is an occurrence of 3241 (σ(d) < σ(b) < σ(a) < σ(c)). As
before, c cannot be in the last run. Both a and b have to be in the same run as c. But
then this run contains {a < b < c}, an occurrence of 213, and so cannot be contiguous.
�

It is easy to see that the first-return bijection takes the valleys of a panoramic Dyck
path bijectively to the descents of the corresponding permutation σ; more precisely, the
k-th descent at position i corresponds to the k-th valley at height hi, where hi = |{j >
i | σ(j) > σ(i)}|, as defined in [15]. Using this fact we obtain the main result of this
section.

2.5 Theorem: Under the first-return bijection of panoramic Dyck paths to 132-avoiding
permutations, non-decreasing Dyck paths correspond bijectively to those permutations
which also avoid 3241.

Proof: Let i, j be two descents of a {132, 3241}-avoiding permutation σ. In view of (2.4),
σ(i) > σ(j) and only the last run contributes to hi and hj, implying hj ≥ hi. Hence the
panoramic Dyck path corresponding to σ is non-decreasing.

Conversely, suppose the Dyck path corresponding to σ is non-decreasing. Since σ is
132-avoiding, whenever i < j belong to the same nonfinal run and σ(i) < x < σ(j), x can-
not be to the right of σ(j), since this would lead to an occurrence of 132, and neither can it
be to the left of σ(i), because then, choosing a, b to be respectively the last descent before
i and the first after j, we would have {k > b | σ(k) > σ(b)}∪{b} ⊆ {k > a | σ(k) > σ(a)},
implying hj < hi, a contradiction. So x lies in between σ(i) and σ(j), and all nonfinal
runs must be contiguous. �

2.6 Corollary: The number of {132, 3241}-avoiding permutations of [n] with precisely
k descents is

(
n+k−1

2k

)
.

Proof: Follows from (2.5) and (2.2). �

From (2.5) and (2.3) we obtain the following result of West [29].

2.7 Corollary: The {132, 3241}-avoiding permutations of [n] are enumerated by the
Fibonacci numbers F2n−1 .

2.2 Permutations avoiding 321

2.2.1 The sink-or-float bijection

We now describe a bijection that associates to an escalating Dyck path a 321-avoiding
permutation. Again, this construction is essentially the same as the one given by Krat-
tenthaler [15], who states that it was also discovered independently and at the same time
by Emeric Deutsch. Our formulation is closer to the one given by Elizalde [12].
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Given an escalating Dyck path of semilength n, we consider the area in the integer
lattice “enclosed” by the Dyck path, the horizontal axis, and a vertical line at a distance
of n from the origin. There are n columns in this region, and in each column precisely
one horizontal step. We call a horizontal step floating if it is the first step of the edge
it belongs to, and sinking otherwise. There are also precisely n rows in the region under
consideration.

We single out one tile per row and per column in the region, in the following manner:
proceeding column by column from left to right, we choose the highest tile if the horizontal
step is a floating step, and the tile in the lowest free row if the horizontal step is a sinking
step. Now the required permutation associates to i the height of the chosen tile in column
i. See Figure 1b) for an example.

This construction gives a bijection between escalating Dyck paths and 321-avoiding
permutations; we shall refer to it as the sink-or-float bijection and, given an escalating
Dyck path P , we shall denote by SoF(P ) the corresponding permutation. The bijection
given by Krattenthaler actually associates a panoramic Dyck path to a 123-avoiding per-
mutation, as opposed to a 321-avoiding permutation; given σ1σ2 . . . σn = σ = SoF(P ), the
panoramic Dyck path corresponding to the 123-avoiding permutation σnσn−1 . . . σ1 via
Krattenthaler’s bijection can be obtained from P by rotating clockwise by π/4, reflecting
in a vertical line and translating horizontally (so as to start at the origin) to obtain a
panoramic Dyck path.

Krattenthaler’s construction goes from permutations to panoramic Dyck paths; in
order to make the connection to his formulation more explicit, we now describe the inverse
of SoF in terms more akin to his. Given a permutation σ, a left-to-right maximum is an
integer i ∈ [n] such that for all positive j < i, σ(j) < σ(i). If σ = a1a2 . . . an is 321-avoiding
with left-to-right maxima i1 < i2 < · · · < is, then setting a0 = i0 = 0, is+1 = n + 1 and
taking, for j = 1 . . . s, bj = aij − aij−1

and cj = ij+1 − ij respectively as the lengths of
the j-th vertical and horizontal edges gives the escalating Dyck path corresponding to σ.
Thus, in Krattenthaler’s terminology, the length of a horizontal edge is one more than
the length of the corresponding substring in between successive left-to-right maxima and
the length of a vertical edge is the difference in value of σ on successive maxima (with
the convention σ(0) = a0 = 0).

2.2.2 Grassmannian permutations and permutation statistics

Following Lascoux and Schützenberger [17], we shall refer to permutations with at most
one descent as Grassmannian permutations. It is easy to construct a Grassmannian
permutation starting from an arbitrary subset A of [n]: simply write all elements of A in
increasing order, followed by all elements of its complement in increasing order. Then if A
is empty, or else an interval containing 1, the result is always the identity permutation, but
this construction is otherwise injective. In fact, if we call a proper subset of [n] bisecting
whenever it is of the form [k] with 0 ≤ k < n, we have that this construction gives a
bijection between the set of non-bisecting subsets of [n] and Grassmannian permutations
of [n]. This also makes it clear that the number of such permutations is 2n − n.
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Given functions w : A → Z, f : A → Zs, the statistic on A of f with respect to
w is the function on Z2 which associates to (n, p) ∈ Zs+1 the cardinality of the set
{a ∈ A | w(a) = n, f(a) = p}. Typically for us A will be a set of permutations or a set
of Dyck paths and w will be the length of the permutation or the semilength of the path.
There are various functions on the set of all permutations whose statistics with respect
to length have been well-studied. Most of these count the number of points of a generic
permutation σ of a certain kind; we shall be interested in the following:

exc(σ) excedances fix(σ) fixed points
suff(σ) sufficiencies def(σ) deficiencies
des(σ) descents ides(σ) dips
ltrmx(σ) left-to-right maxima.

A point i ∈ [n] is a sufficiency of a permutation σ ∈ Sn if σ(i) ≥ i, and a deficiency
otherwise. Sufficiencies are distinguished into excedances and fixed points according to
whether the inequality is strict or not. A dip is a point i ∈ [n − 1] such that σ(i) − 1
occurs to the right of i.

It is easy to see that i is a dip of σ if and only if σ(i) − 1 is a descent of σ−1; this
accounts for the (standard) notation ides. Thus the number of dips of a permutation is
equal to the number of descents of its inverse. We shall refer to permutations with at
most one dip as monodipic permutations; note that they are the inverses of Grassmannian
permutations.

We shall also consider the following functions which count the number of “features” of
a certain kind of a generic Dyck path, and their statistics with respect to the semilength
of the path:

hor(P ) horizontal edges lhor(P ) long horizontal edges
ver(P ) vertical edges lver(P ) long vertical edges
vall(P ) valleys peak(P ) peaks
hill(P ) hilltops mnt(P ) mountain-tops
sink(P ) sinking steps.

We shall capitalize the initial letter in the notation for these functions to indicate
the corresponding statistic, e.g. Ltrmx is the statistic of ltrmx. Moreover, whenever
the statistic is taken over a strict subset of the domain, we shall specify this with a
subscript. Thus, if A is the set of {132, 3241}-avoiding permutations, the statement of
Corollary 2.6 can be rephrased succinctly as DesA(n, k) =

(
n+k−1

2k

)
. Furthermore, we

shall concatenate notation with a vertical bar to indicate joint statistics, e.g. Des | Ides
indicates the statistic of the function σ 7→ des | ides(σ) = (des(σ), ides(σ)). Finally, we
shall capitalize the whole symbol to indicate the corresponding generating function, e.g.
DES | IDES(x, y, z) is the formal power series in x, y, z in which the coefficient of the term
xnymzt equals Des | Ides(n,m, t). Thus, the first variable will always correspond to a
distinguished weight (for us, typically the length or semilength), which is suppressed in
the notation, and the others to the other weights according to the order in which they
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are listed. We immediately see that the following equations hold:

fix + exc = suff hor = ver = peak Lhor = Lver peak = vall+1 = hill + mnt .

Note that lhor and lver are not equal. We propose to use the statistics on the intu-
itively more manageable Dyck paths to gain results regarding the statistics on the set
Z of 321-avoiding permutations. Statistics on Z were studied by Reifegerste [21, 22],
Robertson et al. [23], Adin and Roichman [1] and Elizalde [12], while Krattenthaler [15]
considered statistics on 123-avoiding permutations which can be trivially translated into
statistics on 321-avoiding permutations.

Consideration of the sink-or-float bijection leads to the following remarks.

• As we move from left to right, we choose a tile below its predecessor precisely
at the first sinking step of each horizontal edge; this gives a natural one-to-one
correspondence between long horizontal edges and descents.

• For columns with sinking steps, the row below the chosen one has already been pre-
viously occupied, and if we associate a floating step to the vertical edge immediately
preceding it, we see that for columns with floating steps, the row immediately below
the chosen one is picked in the previous column if the corresponding vertical edge is
short, and later otherwise. This gives a natural one-to-one correspondence between
long vertical edges and dips.

• A horizontal step gives a tile strictly below the diagonal if and only if it is a sink-
ing step, and if we associate a floating step to the peak immediately preceding it
(switching to the panoramic perspective) we see that floating steps distinguish be-
tween fixed points (tiles on the diagonal) and excedances according to whether the
corresponding peak is a hilltop or a mountain-top. The construction also makes it
clear that horizontal steps give left-to-right maxima if and only if they are floating
steps. This gives natural one-to-one correspondences between peaks, sufficiencies
and left-to-right maxima, hilltops and fixed points, mountain-tops and excedances
and sinking steps and deficiencies.

These remarks translate into the following equations:

∀P ∈ D : peak(P ) = suff(SoF(P )) = ltrmx(SoF(P ))

hill(P ) = fix(SoF(P ))

mnt(P ) = exc(SoF(P ))

sink(P ) = def(SoF(P ))

lhor(P ) = des(SoF(P )) (1)

lver(P ) = ides(SoF(P )) (2)

where D denotes the set of all Dyck paths.
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Note that (1) and (2) imply that 321-avoiding Grassmannian permutations correspond
precisely to escalating Dyck paths with at most 1 long horizontal edge, and 321-avoiding
monodipic permutations to escalating Dyck paths with at most 1 long vertical edge. We
shall call these escalating Dyck paths horizontally simple and vertically simple respec-
tively, while a path will be simple if it is one or the other.

Now any occurrence {x < y < z} of 321 in a permutation is such that {x, y} and
{y, z} are inversions. It is easy to see that if {i < j} is an inversion of a permutation σ,
then there must be a descent a and a dip b with i ≤ a < j and σ(i) ≥ σ(b) > σ(j), so
in fact all Grassmannian permutations and all monodipic permutations are 321-avoiding.
We summarize with the following proposition.

2.8 Proposition: The sink-or-float bijection maps horizontally simple escalating Dyck
paths bijectively to Grassmannian permutations and vertically simple escalating Dyck paths
bijectively to monodipic permutations.

2.2.3 Simultaneous avoidance of 321 and 2143

Just as in section 2.1 the non-decreasing Dyck paths gave us the permutations which
simultaneously avoid 132 and 3241, here simple Dyck paths correspond to {321, 2143}-
avoiding permutations. Note that 2143-avoiding permutations are often referred to as
vexillary permutations. For the purposes of the following proof, we define a gaping step
of an escalating Dyck path to be a vertical step which is not the last step of the vertical
edge it belongs to.

2.9 Theorem: Under the sink-or-float bijection of escalating Dyck paths to 321-avoiding
permutations, simple Dyck paths correspond bijectively to those permutations which also
avoid 2143.

Proof: First we show that if an escalating Dyck path P has at least two long hori-
zontal edges and at least two long vertical edges then σ, the corresponding 321-avoiding
permutation, has an occurrence of 2143. Let e1 be the first long (vertical) edge, s1 the
first floating step immediately after e1, s2 the first sinking step (after s1), e2 the last
long (horizontal) edge, s3 the floating step of e2 and s4 the last sinking step (of e2). For
i ∈ [1, 4], we also denote by ai the position (column) of si. We claim that {a1, a2, a3, a4}
is an occurrence of 2143.

By definition of the si’s, we have a1 < a2 and a3 < a4 (note that s3 and s4 belong to
the same horizontal edge); since there are at least two long horizontal edges and s2 and
s3 belong respectively to the first and last of these, we also have a2 < a3.

Now all edges before e1 are short, meaning that there are only fixed points before a1;
since e1 is long, a1 is an excedance, and the row corresponding to the first gaping step of
e1 lies below the tile chosen in column a1, and will be taken precisely at the first sinking
step after s1, i.e. s2. Thus σ(a1)−σ(a2) = |e1|−1 > 0. Since the tile chosen in column a3

is immediately below e2, and the one chosen in column a4 is also below e2, we also have
σ(a3) > σ(a4). To prove the claim, all that needs to be shown is that σ(a4) > σ(a1).
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Note that the total number of sinking steps is equal to the total number of gaping
steps, and that e1 contains precisely |e1| − 1 gaping steps. Since there are at least two
long vertical edges, the total number of gaping steps, and therefore of sinking steps, is
at least |e1|. But s2, s4 are respectively the first and last sinking steps, so there must
be at least |e1| − 2 sinking steps between them. Moreover, the entries corresponding to
floating steps constitute a strictly increasing sequence, so σ(a4) ≥ σ(a2) + (|e1| − 1) =
σ(a2) + (σ(a1)− σ(a2)) = σ(a1), and of course the inequality must be strict.

Conversely, suppose that the permutation σ corresponding to the Dyck path P has
an occurrence {i < j < k < `} of 2143. Then the inversion {i < j} forces a descent
x1 ∈ [i, j − 1] and a dip y1 with σ(y1) ∈ [σ(j) + 1, σ(i)], and the inversion {k < `} forces
a descent x2 ∈ [k, `− 1] and a dip y2 with σ(y2) ∈ [σ(`) + 1, σ(k)]. Since j < k, x1 6= x2,
and since σ(i) < σ(`), y1 6= y2. Thus by Equations (1) and (2) P has at least two long
vertical edges and at least two long horizontal edges. �

2.10 Corollary: The {321, 2143}-avoiding permutations are precisely the Grassman-
nian permutations and their inverses. The number of such permutations of [n] is 2n+1 −(

n+1
3

)
− 2n− 1.

Proof: In the light of (2.9), it is sufficient to find the number of simple Dyck paths.
Except for the identity permutation, the vertically simple Dyck paths correspond to Grass-
mannian permutations, so there are 2n − n− 1 Dyck paths with precisely 1 long vertical
edge (see the introduction to Section 2.2.2). Clearly there are just as many Dyck paths
with precisely 1 long horizontal edge. Now it is sufficient to count the Dyck paths with
precisely one long vertical edge and one long horizontal edge. First note that in such a
Dyck path, the two long edges must have the same length, say `. The Dyck path must
consist of a certain number of hilltops, say i, before the first long (vertical) edge, a certain
number j ≤ n − ` − i of hilltops after the last long (horizontal) edge, and n − ` − i − j
valleys in between.

Given a subset {i < j < k} ⊆ [0, n], we can construct an escalating Dyck path of this
kind by taking i for the height of the base of the vertical edge, j + 1 for the height of the
top of the vertical edge, and k − 1 for the height of the horizontal edge. This bijection
shows that the number of such paths is

(
n+1

3

)
. Thus the total number of simple paths is

2(2n − n− 1)−
(

n+1
3

)
+ 1. �

The formula above was first obtained by Billey et al. [5] as a corollary of their work in
a different, more involved framework; their proof parallels ours, but they use a different
bijection which deals with a skew partition obtained from the diagram of a permutation
and do not single out the class of simple Dyck paths. In [13], Eriksson and Linusson
characterize {321, 2143}-avoiding permutations in terms of Fulton’s essential set and thus
are able to rederive the formula using a combinatorial argument, again analogous. The
first few terms of the sequence given by this formula are: 1, 2, 5, 13, 33, 80, 185, 411, 885,
1862, 3853, 7881, 15993, 32284, 64945, 130359. More terms are listed in entry A088921
of [18].
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We conclude this section with a lemma about Grassmannian permutations that is
particularly easy to prove in the context of the sink-or-float bijection.

2.11 Lemma: Let i be the only descent of a permutation σ; then i is an excedance and

• for j < i, σ(j) ≥ j,

• for i < j ≤ σ(i), σ(j) < j

• for j > σ(i), σ(j) = j.

Proof: The assertion says that a permutation with precisely one descent consists of an
initial (possibly empty) sequence of fixed points, followed by a (non-empty) sequence of
excedances, the last one of which is the descent i, a (non-empty) sequence of deficiencies
ending at position σ(i), and finally a (possibly empty) sequence of fixed points. This is
evident from the fact that it is the image under the sink-or-float bijection of a Dyck path
with precisely one long horizontal edge; we only observe that discarding the final tail of
hilltops gives a Dyck path of semilength σ(i). �

Note that the above lemma implies in particular that there can be no excedances
to the right of the only descent of a Grassmannian permutation; we shall use this fact
repeatedly in the later sections.

2.2.4 A generating function for some statistics

In this section we use the considerations in Section 2.2.2 to obtain information about
statistics on 321-avoiding permutations. We derive the generating function F counting
Dyck paths by semilength and by the number of hilltops, mountain-tops, sinking steps,
long horizontal edges and long vertical edges, or equivalently 321-avoiding permutations
by length and by the number of fixed points, excedances, deficiencies, descents and dips.

We have already seen that the sink-or-float bijection gives a one-to-one correspondence
between peaks of a Dyck path and the sufficiencies (which are also left-to-right maxima)
of the corresponding 321-avoiding permutation. The enumeration of Dyck paths by the
number of valleys (equivalently, peaks) dates back to the work of Narayana in 1955 [19].
The solution is given by the well-known Narayana numbers; more precisely, for n 6=
0, Peak(n, k) = Nn,k = 1

n

(
n

k−1

)(
n
k

)
. The corresponding generating function PEAK(x, v)

satisfies the quadratic

xX2 + (vx− 1− x)X + 1 = 0. (3)

Thus we already have that

2.12 Proposition: The statistics Suff and Ltrmx are Narayana distributed over the
321-avoiding permutations.
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In order to deal with other statistics, we define a weight on a generic Dyck path by

f(P ) = x`(P )ylhor(P )zlver(P )uhill(P )vmnt(P )wsink(P )sα(P )tβ(P )

where `(P ) is the semilength of P and α(P ) (respectively β(P )) is 1 if P starts (ends)
with a hilltop and 0 otherwise. Note that if G(s, t, u, v, w, x, y, z) denotes the formal power

series G =
∑
P∈D

f(P ), then

G(1, 1, u, v, w, x, y, z) = HILL |MNT | SINK | LHOR | LVER(x, u, v, w, y, z) = F,

the generating function we require.
Now we observe that apart from the empty Dyck path, with weight 1, and the unique

Dyck path of semilength 1, with weight stux, Dyck paths can be distinguished into those
of the form udP ′, with P ′ a non-empty panoramic Dyck path (class A), and those of the
form uQdR, with Q,R panoramic Dyck paths, Q non-empty (class B).

In class A, the right part P ′ gives no contribution to α(P ) and the first hilltop is cer-

tainly not the last, so
∑
P∈A

f(P ) = usxG(1, t, u, v, w, x, y, z), whereas in class B, since Q is

non-empty, uQd does not start with a hilltop, and so does not contribute to α, nor to β.
Moreover, uQd will have one more long upward (downward) edge than Q precisely when
Q starts (ends) with a hilltop, and exactly the same number otherwise. Also, all peaks
(whether hilltops or mountain-tops) of Q become mountain-tops of uQd, while both the
semilength and the number of sinking steps go up precisely by one. Finally, R does not con-

tribute to α, and we have
∑
P∈B

f(P ) = wx(G(y, z, v, v, w, x, y, z)− 1)G(1, t, u, v, w, x, y, z).

So we conclude

G(s, t, u, v, w, x, y, z) = 1 + stux+ sux(G(1, t, u, v, w, x, y, z)− 1)

+wx(G(y, z, v, v, w, x, y, z)− 1)G(1, t, u, v, w, x, y, z).

Substituting first s = t = 1, then u = v, s = y, t = z and finally s = 1, t = z, u = v we
obtain the system of three equations in three unknowns

F = 1 + uxF + xF (B − 1)

B = 1 + vxyz + vxy(C − 1) + x(B − 1)C

C = 1 + vxz + vx(C − 1) + x(B − 1)C

where B = G(y, z, v, v, w, x, y, z) and C = G(1, z, v, v, w, x, y, z). Eliminating B and C,
we deduce that F satisfies the quadratic

A2F
2 + A1F + 1 = 0 (4)

where

A2 = −x2wu− vx2u+ vx3wu+ ux3vyzw − ux3vyw + vx− ux
+u2x2 + vx2yw + xw + vx2zw − vx3zwu− vx2w

A1 = −vx+ 2ux+ vx2yzw − vx2yw− vx2zw + vx2w − 1− xw
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Equation (4) can be specialised to more manageable forms; substituting u = v = w =
y = z = 1 we obtain the familiar functional equation xX2 −X + 1 = 0 for the Catalan
numbers; substituting w = y = z = 1 and u = v (so as not to distinguish between hilltops
and mountain-tops) we obtain that PEAK(x, v) satifies (3), as expected. Substituting
w = u = y = z, we obtain that MNT(x, v) satisfies

vxY 2 + (x− 1− vx)Y + 1 = 0. (5)

It is easy to verify that substituting X = vY − v + 1, Equation (3) reduces to Equation
(5); from this it follows that the coefficient of xnvk in MNT(x, v) is just the coefficient
of xnvk+1 in PEAK(x, v), except for n = k = 0, in which case we have a 1 corresponding
to the trivial Dyck path. Thus mountain-tops are also Narayana distributed. This fact
has also been shown by Deutsch [9]; while the corresponding excedance statistic was
shown to be Narayana distributed over the 321-avoiding permutations by Reifegerste [21].
Substituting u = v = y = z = 1 into Equation (4) again gives Equation (5) (with w
for v), so the distribution of deficiencies over 321-avoiding permutations (sinking steps
over all Dyck paths) is identical to that of mountain-tops, but this also follows from
the fact that for any permutation σ of [n], suff(σ) + def(σ) = n and the symmetry of
the Narayana numbers (Nn,k = Nn,n+1−k). Substituting w = z = 1 we obtain the joint
distribution for fixed points, descents and excedances over 321-avoiding permutations,
which was recently derived independently by Elizalde [12] (Section 3) using similar ideas.
If we further substitute y = 1 we obtain the generating function HILL |MNT, derived
by Deutsch in [10] (Equation (6.12)). Finally, substituting v = 1 gives the generating
function for fixed points over the 321-avoiding permutations; however, the statistic Fix
has been expressed more explicitly by Robertson et al. [23].

The general solution to Equation (4) is rather cumbersome to express explicitly. Since
for any permutation σ of [n] we have that def + fix + exc = n, and since Lhor = Lver, in
the following statement, apart from summarizing the above considerations, we give the
explicit solution in the cases y = z = 1 and u = v = w = 1.

2.13 Theorem:

• The generating function

F (u, v, w, x, y, z) = HILL |MNT | SINK | LHOR | LVER(x, u, v, w, y, z)

= FIX |EXC |DEF|DES | IDESZ(x, u, v, w, y, z)

is the unique non-spurious solution of Equation (4).

• The statistics Mnt and Sink are Narayana distributed over Dyck paths, and the
statistics Exc and Def are Narayana distributed over the 321-avoiding permutations.

• The joint statistic of excedances, fixed points and deficiencies over 321-avoiding
permutations (mountain-tops, hilltops and sinking steps over Dyck paths) is given
by:
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FIX |EXC |DEFZ(x, u, v, w) = HILL |MNT | SINK(x, u, v, w)

=
1 + vx+ wx− 2ux−

√
(1− vx− wx)2 − 4vwx2

2x(1− ux)(v + w − u) + 2vwx2
.

• The joint statistic of descents and dips over 321-avoiding permutations (long hori-
zontal and long vertical edges over Dyck paths) is given by:

DES | IDESZ(x, y, z) = LHOR | LVER(x, y, z)

=
Q−

√
Q2 − 4P

2P
(6)

where P = x(1− x+ xy)(1− x+ xz) and Q = 1− x2(y − 1)(z − 1).

Note that the generating function in Equation (6) can be expressed as C(P/Q2)
Q

, where

C(x) is the familiar Catalan generating function, i.e. C(x) = 1−√
1−4x

2x
=
∑

i≥0 cix
i, with

ci = 1
i+1

(
2i
i

)
, the i-th Catalan number. Setting M = 1−Q = x2(y − 1)(z − 1), we obtain

the series ∑
i≥0

ciP
i

(∑
j≥0

M j

)2i+1

and from this it is a routine matter to extract the following expression for the coefficients.

2.14 Proposition: The number of 321-avoiding permutations of length n with precisely
b descents and c dips is given by:∑

i≥0

ci

∑
2s + a1 = n
b1 + b2 = b
c1 + c2 = c

(−1)n+b+c+i

(
i

b1

)(
i

c1

)(
s

b2

)(
s

c2

)(
2i+ s

s

)(
2i− b1 − c1

a1 − b1 − c1 − i

)
.

The above formula is not especially enlightening, and is probably not the most concise
way of expressing the coefficients, but apart from being specializable to a much less
daunting, and more useful, form (as we shall see in the following section), it does make
it computationally feasible to determine these numbers algorithmically. For example, of
the 1583850964596120042686772779038896 321-avoiding permutations of length 60, there
are 2539791795216418415246700 which have precisely 19 descents and 5 dips.

2.2.5 The descent statistic on 321-avoiding permutations and a refinement
of the Catalan numbers

In [21], Reifegerste studies the descent statistic on 321-avoiding permutations. She re-
duces the problem to an equivalent one on a certain class of Motzkin paths but does not
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give an explicit formula. Here we obtain an expression for the number of 321-avoiding
permutations of length n with precisely m descents. In order to do this, we simply need to
determine the coefficient of xnym in the generating function C(P ′) with P ′ = x(1−x+xy),
obtained by substituting z = 1 in (6). Routine manipulation gives the following expression
for the coefficients.

2.15 Proposition: The descent statistic on 321-avoiding permutations is given by:

DesZ(n,m) =
∑

i

(−1)n+i+m 1

i+ 1

(
2i

n

)(
n

i

)(
n− i
m

)
=

∑
i

(−1)n+i+mci

(
i

n− i

)(
n− i
m

)
.

In particular, we have that

A DesZ(2m,m) = cm

B DesZ(2m+ 1, m) =
(
2m+2

m

)
.

In the above summations, as in the next corollary, all variables are non-negative inte-
gers and we adopt the convention that

(
a
b

)
= 0 if a is negative or b /∈ [0, a]. Parts A and B

are obtained from the second and first formulas respectively by substituting n = 2m and
n = 2m + 1 and simplifying. Part A is equivalent to Exercise 6.19, q4 of [26]. Since we
know that the total number of 321-avoiding permutations of length n is the n-th Catalan
number, we also have the following identity refining the Catalan numbers.

2.16 Corollary: ∑
m

∑
i

(−1)n+i+mci

(
i

n− i

)(
n− i
m

)
= cn.

In Table 1 we give the values of the first few of these numbers. Note that the second
column in this table gives the number of permutations with precisely 1 descent, which we
know to be 2n−n−1. These numbers are known as the Eulerian numbers, and appear as
sequence A000295 in [18]. We remark that, for fixed m, it is possible to use Zeilberger’s
algorithm and Petkovšek’s algorithm (see [20]) to obtain (hypergeometric) closed form
formulas for DesZ(n,m). In particular,

• DesZ(n, 2) = 2n−3 n(n− 5) +
(

n+1
2

)
• DesZ(n, 3) = 1

3
2n−6 n(n− 1)(n2 − 13n+ 46)−

(
n+1

3

)
• DesZ(n, 4) = 1

9
2n−10 n(n− 1)(n− 2)(n− 9)(n2 − 15n+ 68) +

(
n+1

4

)
.
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Table 1: A refinement of the Catalan numbers

m Row
n 0 1 2 3 4 5 6 7 sum

2 1 1 2
3 1 4 5
4 1 11 2 14
5 1 26 15 42
6 1 57 69 5 429
7 1 120 252 56 1430
8 1 247 804 364 14 4862
9 1 502 2349 1800 210 16796
10 1 1013 6455 7515 1770 42 58786
11 1 2036 16962 27940 11055 792 208012
12 1 4083 43086 95458 57035 8217 132 742900
13 1 8178 106587 305812 257257 62062 3003 2674440
14 1 16369 258153 931385 1049685 381381 37037 429 9694845

One way to obtain the general form for DesZ(n,m) is to use hypergeometric functions.
The following derivation was given by Krattenthaler [16]. For a treatment of hypergeo-
metric functions, the reader is referred to [25].

Starting from the sum

n−m∑
i=0

(−1)n+i+m 1

i+ 1

(
2i

n

)(
n

i

)(
n− i
m

)
,

reversing the order of summation and writing the resulting sum in hypergeometric nota-
tion, we obtain the expression

(1− 2m+ n)n

m!(n−m+ 1)!
3F2

[
m− n− 1, m− n

2
, 1

2
+m− n

2

m− n, 1
2

+m− n ; 1

]

where (x)n stands for the rising factorial

n−1∏
i=0

(x + i), and where we use hypergeometric

function notation, that is, for integers p, q, parameters a1, a2, . . . ap, b1, b2, . . . bq and a
variable z, the symbol

pFq

[
a1, a2, . . . ap

b1, b2, . . . bq
; z

]
denotes the function

∞∑
n=0

(a1)n(a2)n · · · (ap)nz
n

(b1)n(b2)n · · · (bq)nn!
.
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We now use the contiguous relation

3F2

[
a, b, c
d, e

; z

]
=

(d− 1)(e− 1)

z(b − 1)(c− 1)
3F2

[
a, b− 1, c− 1
d− 1, e− 1

; z

]
− (d− 1)(e− 1)

z(b− 1)(c− 1)
3F2

[
a− 1, b− 1, c− 1

d− 1, e− 1
; z

]
iteratively, to obtain the relation

3F2

[
a, b, c
d, e

; z

]
= (−1)m (d−m)m(e−m)m

zm(b−m)m(c−m)m
3F2

[
a−m, b−m, c−m

d−m, e−m ; z

]

+

m∑
k=1

(−1)k−1 (d− k)k(e− k)k

zk(b− k)k(c− k)k
3F2

[
a− k + 1, b− k, c− k

d− k, e− k ; z

]
.

If we apply this relation to our series, the result simplifies to the expression

(−1)m (n+ 1)n

m!(n−m+ 1)!
3F2

[
−1− n,−n

2
, 1

2
− n

2

−n, 1
2
− n ; 1

]

+
m∑

k=1

(−1)k−1 (n− 2m+ 2k + 1)n

m!(n−m+ 1)!
2F1

[
−k +m− n

2
, 1

2
− k +m− n

2
1
2
− k +m− n ; 1

]
.

The 2F1-series can be evaluated by means of the Chu-Vandermonde summation formula
(see [25], (1.7.7), Appendix (III.4))

2F1

[
a,−t
c

; 1

]
=

(c− a)t

(c)t

for any non-negative integer t, while the 3F2-series is balanced and can therefore be eval-
uated by means of the Pfaff-Saalschütz summation formula (see [25], (2.3.1.3), Appendix
(III.2))

3F2

[
a, b,−t

c, 1 + a+ b− c− t ; 1

]
=

(c− a)t(c− b)t

(c)t(c− a− b)t

where t must again be a non-negative integer. As a result we obtain

2.17 Theorem: The descent statistic on 321-avoiding permutations is given by:

DesZ(n,m) = (−1)m

(
n+ 1

m

)

+

m∑
k=1

(−1)k−12n−2m+2k(n− 2m+ 2k + 1)2m−2k(n−m+ 2)k−1

m!(m− k)! .

Note that the number of summands in the above formula (as opposed to the one given in
(2.15)) depends only on m; thus for arbitrary fixed m this is a closed form formula in n
for the number of 321-avoiding permutations of [n] with precisely m descents.
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3 Cyclic arrangements

Let n be a positive integer. Given an integer k, the notation k omod n stands for the
unique integer in [n] congruent to k modulo n. Given integers i, j, i ⊕ j denotes i + j
omod n; in this section, the value of n will be clear from the context. The operation
	 is defined analogously. These operations can be thought of the usual operations of
modular arithmetic, except that they use the symbol n in place of 0. Now let εn, ρn be
the permutations given by i 7→ i ⊕ 1 and i 7→ n − i + 1 respectively. Note that ρn is an
involution and εnn is the identity permutation of [n].

If we consider permutations as functions from [n] = In to itself, with the domain
equipped with the (obvious) cyclic order as constructed in Section 1, and the codomain
equipped with the usual linear order, then the equivalence class of a permutation σ, under
order-isomorphism as defined in Section 1, consists of all “rotations” of the permutation,
that is, all permutations εin ◦ σ with i ∈ [0, n− 1].

We shall call these equivalence classes cyclic arrangements of length n (or simply of
[n]); clearly there are (n− 1)! cyclic arrangements of [n]. We shall denote the equivalence
class of σ by (σ). Note that technically a cyclic arrangement is a set of permutations. So
for example (4312) = {4312, 3124, 1243, 2431}.

The reverse of a permutation σ ∈ Sn is the permutation ρn ◦ σ; the reverse can be
obtained by reading σ “right to left”, e.g. 43152 is the reverse of 25134. The complement
of a permutation σ ∈ Sn is the permutation σ ◦ ρn; the complement can be obtained
by subtracting the value of each entry from n + 1, that is, swapping the largest value of
σ with the smallest one, the second largest with the second smallest, et cetera. So for
example, 41532 is the complement of 25134.

For fixed n, reversal and complementation are involutions of the set Sn. Moreover,
in the context of classical pattern avoidance (i.e. only linear orders), if r(σ) denotes the
reverse of σ, or its complement, then we have that σ has an occurrence of τ if and only if
r(σ) has an occurrence of r(τ). The same property is satisfied by one other involution of
the set of permutations: the operation of taking inverses. In classical pattern avoidance,
it has become standard practice to use these three operations to reduce the number of
different cases to be analysed, since for any composition p of the operations of reversal,
complementation and taking inverses, the set of p(τ)-avoiding permutations is the image
under p of the set of τ -avoiding permutations (and in particular these two sets have the
same cardinality).

For cyclic arrangements, reversal and complementation are well-defined, but not tak-
ing inverses; i.e. for any cyclic arrangement θ, the set {r(σ) | σ ∈ θ} (where r stands for
complementation or reversal) is itself a cyclic arrangement, but this property fails for the
operation of taking inverses. Thinking of reversal and complementation respectively as
pre- and post-composition with ρn, we immediately see why this is true for complemen-
tation, while for reversal it follows from the fact that that εn ◦ ρn ◦ εn = ρn.

In this section we deal with the enumeration of cyclic arrangements of [n] avoiding
any fixed cyclic arrangement (pattern) of length t, for t ≤ 4. Recall that, according to the
definitions in Section 1, for cyclic arrangements x, y, the fact that x avoids y is equivalent
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to every member of x avoiding every member of y in the classical sense of permutation
avoidance. For t = 1, 2, there is only one cyclic arrangement of [t], so for n ≥ t no cyclic
arrangements can avoid any pattern of length t. For t = 3, there are only 2 distinct
patterns, (123) and (321), which are complements (and reverses!) of each other. Hence if
a permutation σ of [n] is to avoid (123), then all subsets of [n] of cardinality three must
be occurrences of (321). Now it is easy to see that (σ) = (ρn), i.e. there is only one cyclic
arrangement which avoids (123).

For t = 4, there are 6 different patterns: (1243), (1342), (1324), (1423), (1234), (1432).
Since 1243 is the reverse of 3421 ∈ (1342), (1324) is the reverse of 4231 ∈ (1423) and 1234
is the reverse of 4321 ∈ (1432), it is sufficient to consider only one from each of these
pairs.

3.1 The pattern (1243) and the wraparound map

We now construct a map which associates to a subset of [n] a (1243)-avoiding permutation
of [n + 1]. Although formally we prefer to think of the domain as the power set of [n],
the function is perhaps most effectively described in terms of binary strings of length n,
on the alphabet {T,B} (T for top, B for bottom). Given a subset A of [n], consider the
binary string of length n having T at position i if and only if i ∈ A (and B otherwise).
We can think of this string as a slightly modified characteristic function of A. Now

• label the B’s of the string, starting with 1 at the rightmost B, moving to the left
and increasing with one at each successive B;

• add the next label to the left of the string;

• label the T ’s of the string, starting with the next label at the leftmost T , moving
to the right and increasing with one at each successive B.

The following example shows how we obtain the permutation 678543921 from the set
{1, 2, 6} ⊆ [1, 8]:

1 2 3 4 5 6 7 8

5 4 3 2 1
←− ←− ←− ←− ←−

6 T T B B B T B B
−→ −→ −→
7 8 9

We shall refer to the above map as the wraparound map. For the purposes of the
following proof, we make the following definitions. Suppose X ⊆ [n] is an occurrence of
the permutation τ , where τ ∈ S|X| is either the identity permutation or ρ|X|, and suppose
also that σ(X) is an interval. If τ is the identity and n ∈ σ(X), then σ(X) is an increasing
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chain, and if τ is ρ|X| and 1 ∈ σ(X), then σ(X) is a decreasing chain. If instead X is
an occurrence of (τ), then σ(X) is a cyclic increasing (decreasing) chain. Also, the chain
starts at position i if σ(i) is the smallest element of σ(X).

For example, {8, 9} and {4, 3, 2, 1} = {1, 2, 3, 4} are respectively an increasing chain
of length 2 starting at position 3 and a decreasing chain of length 4 starting at position
5, both in the above permutation 678549321, (note the shift of one in the positions) and
{5, 6, 7, 8} is the longest cyclic increasing chain in 37148562 (starting at position 6).

In the statement of the following theorem, we think of the image of the wraparound
map as a cyclic arrangement rather than a permutation; that is, strictly speaking we
compose with the map x → (x). However, for the purposes of the proof, it does matter
which particular representative the wraparound map chooses.

3.1 Theorem: The wraparound map takes the set of non-bisecting3 subsets of [n] bijec-
tively onto the set of (1243)-avoiding cyclic arrangements of [n + 1].

Proof: First we show that the permutation obtained indeed avoids (1243). Suppose, by
way of contradiction, that there is an occurrence of (4312) = (1243). If the 4 does not
occur as a label of a T , then all the labels smaller than it form a decreasing sequence to
its right, and therefore cannot give an occurrence of 312. So we may assume that 4 occurs
as a label of a T . Then all smaller labels, in particular the one occurring as 3, either
are to its left or else correspond to a B. So 3 must occur in one of these two possible
ways. In both cases, the labels smaller than the one occurring as 3, and (cyclically) in
between the occurrence of 3 and the occurrence of 4, form a decreasing subsequence of
labels corresponding to B’s, and so cannot give an occurrence of 12.

Next we show that any (1243)-avoiding cyclic arrangement can be obtained by the
wraparound map. Consider an arbitrary (1243)-avoiding cyclic arrangement θ and let C
denote the longest cyclic increasing chain in any representative of θ (note this is indepen-
dent of the particular choice of representative) and x denote the smallest element (value)
of C. We can choose the representative σ so that σ(1) = x. Also, we denote by Aθ the set
{i ∈ [n] | σ(i+ 1) ∈ C}. It is now sufficient to show that the values smaller than x form
a decreasing subsequence, because then σ is the image of Aθ under the wraparound map:
the values less than x correspond to B’s and the values larger than x correspond to T ’s.

Consider any two values a < b less than x and suppose, by way of contradiction, that
a occurs to the left of b. Note that since C is longest possible, if x is at least 2 then
x − 1 must appear between the values x and n + 1. In our case, since a < b < x, x ≥ 3.
Now any two values less than x appearing in between x and n + 1 must be an inversion,
otherwise we would get an occurrence of 3124 with x as 3 and n+ 1 as 4. Thus, the first
value less than x is x− 1. Since a is to the left of b and a < b < x, this implies b < x− 1.
But now we have an occurrence of 4312 with x as 4, x− 1 as 3, a as 1 and b as 2.

The fact that x−1 must appear between x and n+1 also shows that the corresponding
string has a B before the T corresponding to the value n + 1; thus Aθ is not a bisecting
subset. The case x = 1 corresponds to the identity permutation; here C = [n + 1] and
Aθ = [n], which is also non-bisecting.

3Refer to the first paragraph of Section 2.2.2 for the definition of a bisecting subset.
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Finally, we deal with injectivity. It is clear that the wraparound map will associate
distinct permutations to distinct (possibly bisecting) subsets; we shall show that if the
image σ of A ⊆ [n] belongs to a cyclic arrangement θ of [n + 1] and A 6= Aθ, then A is
a bisecting set. Let σθ be the image of Aθ; we have σ, σθ ∈ θ, and by construction in
both permutations there is an increasing chain starting at position 1, while the remaining
values form a decreasing chain; in σθ, however, the increasing chain is the longest cyclic
increasing chain, that is, the longest possible increasing chain (starting at position 1)
among all representatives of θ. If σθ(1) = x and σ(1) = y, since σ 6= σθ we have that
x < y, y > 1 and the increasing chain of σ is strictly contained in that of σθ and not
longest possible. This implies that in σ the value y − 1 is to the right of n + 1; but
then so are all the smaller values, which leaves the increasing chain entirely to the left
of the decreasing chain. Thus A = {1, 2, . . . , n−y+1}, which is a bisecting subset of [n]. �

3.2 Corollary: The number of (1243)-avoiding cyclic arrangements of [n] is 2n−1 −
n + 1. They are in a one-to-one correspondence with the Grassmannian permutations of
[n− 1].

Proof: This follows from (3.1) and the bijective construction of Grassmannian permuta-
tions in terms of non-bisecting subsets described in Section 2.2.2. �

We remark here that although both the wraparound map and the bijective construction
of Grassmannian permutations given in Section 2.2.2 are one-to-one over the set of non-
bisecting subsets of [n] but fail to be one-to-one over the entire power set of [n], in the
two cases injectivity fails in rather different ways. Indeed, in the case of Grassmannian
permutations, all sets of the form [k] for k ∈ [0, n] (all of which are bisecting sets, except for
[n] itself) are mapped to the identity permutation, whereas in the case of the wraparound
map, for k ∈ [0, n − 1] the image of [k] is the same as the image of [n − k, n]. The
wraparound map also has the following interesting link to classical permutation avoidance.

3.3 Proposition: The wraparound map takes the power set of [n] bijectively onto the
{132, 312}-avoiding permutations of [n+ 1].

Proof: We observe that if A ⊆ [n], σ is the image of A under the wraparound map and
L,R ⊆ [n + 1] are respectively the set of positions i such that the label σ(i) does not
correspond to a T,B (note L ∪R = [n+ 1], L ∩ R = {1}), then:

i i ∈ [n] is a descent of σ if and only if i /∈ A;

ii for any i ∈ L, there are no values less than σ(i) to the left of i;

iii for any i ∈ R, there are no values greater than σ(i) to the left of i.

Considering the entry corresponding to 2 in a potential occurrence of 132 or 312 in σ,
it becomes clear from observations (ii) and (iii) above that σ must be {132, 312}-avoiding.
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As we remarked in the proof of 3.1, it is trivial to see that the wraparound map is one-to-
one. It remains to be proved that any {132, 312}-avoiding permutation σ of [n+ 1] is the
image of some subset of [n] under the wraparound map. In view of (i), this subset would
have to be the complement in [n] of the set of descents of σ.

Consider the subset D ⊆ [2, n + 1] of integers i such that i − 1 is a descent of
σ. Now if j ∈ D then σ(j′) > σ(j) for all j′ < j because otherwise we would have
σ(j′) < σ(j) < σ(j − 1) and since j′ 6= j − 1, {j′ < j − 1 < j} would be an occurrence
of 132. Similarly (using the fact that σ is 312-avoiding) it follows that if C denotes the
set [2, n + 1] \ D and j ∈ C then for all j′ < j we have that σ(j′) < σ(j). This implies
that σ is decreasing on the set {1} ∪ D and increasing on the set {1} ∪ C. But then σ
is the image under the wraparound map of the set {i | i+ 1 ∈ C}, which is precisely the
complement in [n] of {i | i+ 1 ∈ D}, the set of descents of σ. �

Thus, for n ≥ 1 the number of {132, 312}-avoiding permutations of [n] is 2n−1. This
fact was first shown by Simion and Schmidt [24].

3.2 The patterns (1324) and (4321)

Throughout this section, given a permutation σ of [n], we shall denote by σ̂ the permu-
tation σ|n+ 1 of [n+ 1].

3.4 Proposition: A permutation σ avoids 132 and 3241 if and only if σ̂ avoids (1324).

Proof: Suppose σ has an occurrence of 132 or 3241. Clearly any occurrence of 3241 in
σ is also an occurrence of 3241, and therefore of (1324), in σ̂. If A is an occurrence of
132 in σ, then A ∪ {n + 1} is an occurrence of 1324 in σ̂. Thus in both cases σ̂ has an
occurrence of (1324).

Conversely, suppose σ̂ has an occurrence of (1324)= {1324, 3241, 2413, 4132}. If B is
an occurrence of 1324 in σ̂, then B \ {n + 1} contains an occurrence of 132 in σ. Any
occurrences of 3241 in σ̂ cannot involve (n + 1), so they must also occur in σ; the same
is true for 2413 and 4132, both of which contain an occurrence of 132. �

3.5 Corollary: The (1324)-avoiding cyclic arrangements of [n] are enumerated by the
Fibonacci numbers F2n−3. They are in one-to-one correspondence with non-decreasing
Dyck paths of semilength n− 1.

Proof: Choosing representatives of (1324)-avoiding cyclic arrangements of [n] so that the
value n occurs at position n, this follows from (3.4), (2.5) and (2.7). �

3.6 Proposition: A permutation σ avoids 123 and 3412 if and only if σ̂ avoids (1234).
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Proof: Suppose σ has an occurrence of 123 or 3412. Clearly any occurrence of 3412 in
σ is also an occurrence of 3412, and therefore of (1234), in σ̂. If A is an occurrence of
123 in σ, then A ∪ {n + 1} is an occurrence of 1234 in σ̂. Thus in both cases σ̂ has an
occurrence of (1234).

Conversely, suppose σ̂ has an occurrence of (1234)= {1234, 2341, 3412, 4123}. If B is
an occurrence of 1234 or 2341 in σ̂, then B \ {n+ 1} contains an occurrence of 123 in σ.
Any occurrences of 3412 in σ̂ cannot involve (n + 1), so it must also occur in σ, and the
same is true for 4123, which itself contains an occurrence of 123. �

3.7 Corollary: The number of (1234)-avoiding cyclic arrangements of [n] is

2n −
(
n

3

)
− 2n+ 1.

They are in one-to-one correspondence with the simple Dyck paths of semilength n− 1.

Proof: Choosing representatives of (1234)-avoiding cyclic arrangements of [n] so that the
value n occurs at position n, applying (3.6) and reversing the patterns, the assertion fol-
lows from (2.9) and (2.10). �

4 Orbits

For a positive integer n, Zn denotes the usual quotient Z/nZ. The addition operation
on Zn will be denoted by the usual +, as opposed to ⊕, the operation on [n] as defined
in Section 3. Whenever it is necessary to specify that + does not stand for the usual
addition of integers, or to clarify the value of n, we shall use square “lop-sided” brackets
with a subscript, e.g. d2 + 5c7 = 0, d2 ⊕ 5c7 = 7. Recall that the subset of “invertible”
elements of Zn, that is the set {i ∈ Zn | gcd(i, n) = 1}, forms a group with respect to
the usual modular multiplication; we shall denote it by Z∗

n. Also, for integers p, q, the
notation p|q means that p divides q.

4.1 Cyclic Operators and Affine Permutations

For a, b ∈ Zn, 〈a, b〉 denotes the operator from Sn into itself which maps σ to ε−a
n ◦ σ ◦ εbn

(with εn as defined in Section 3). The operator 〈a, b〉 has the effect of rotating the entries
to the right by a positions, and rotating their values upward by b positions. Thus for
example 〈3, 1〉(21453) = 51432.

Clearly the set Gn := {〈a, b〉|(a, b) ∈ Z2
n}, endowed with functional composition of the

operators as a binary operation, has a group structure isomorphic to the direct product
of Zn with itself, i.e. 〈a1, b1〉 ◦ 〈a2, b2〉 = 〈a1 + a2, b1 + b2〉. The equivalence classes of
permutations of [n] (under order-equivalence as defined in Section 1) obtained when the
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orders on the domain and codomain are both cyclic are precisely the orbits of Sn under
the action of Gn

4. We shall refer to them simply as orbits of length n.
A fixed point of an operator 〈a, b〉 is a permutation σ such that 〈a, b〉(σ) = σ. An

operator 〈a, b〉 is trivial if ab = 0, non-trivial otherwise. Clearly the only trivial operator
with any fixed points at all is the identity operator 〈0, 0〉, which fixes all permutations.

For generic positive integers r, s, let F(r, s) denote the set of functions from [r] to Zs.

4.1 Proposition: A non-trivial operator 〈a, b〉 ∈ Gn has at least one fixed point if and
only if gcd(a, n) = gcd(b, n). In this case, let k = gcd(a, n) and p = n/k; the fixed points
of 〈a, b〉 are in one-to-one correspondence with the set Sk×F(k, p). Moreover, there exist
µ, ν ∈ Z∗

p such that a = µk, b = νk and the fixed points of 〈a, b〉 are precisely the fixed
points of < k, λk >, where λ = dµ−1νcp.

Proof: Suppose 〈a, b〉 has a fixed point σ, and let k1 = gcd(a, n), k2 = gcd(b, n). Then the
periods of a, b in Zn are p1 = n/k1, p2 = n/k2 respectively. Now the operator 〈a, b〉p1 =
〈ap1, bp1〉 = 〈0, bp1〉 fixes σ, therefore bp1 must be 0, which implies p2|p1. Similarly we
obtain p1|p2 and we conclude p1 = p2, k1 = k2 (= k). Now by definition of k1, k2, we have
a = µk, b = νk for some integers µ, ν. Since k = gcd(a, n) = gcd(µk, n), µ and n/k = p
must be coprime, i.e. µ ∈ Z∗

p. Similarly we obtain ν ∈ Z∗
p.

If we set u = dµ−1cp clearly all fixed points of 〈a, b〉 are also fixed points of 〈a, b〉u =
〈ua, ub〉 = 〈duµcpk, duνcpk〉 = 〈k, λk〉 where λ = dµ−1νcp. Also, all fixed points of 〈k, λk〉
are fixed points of 〈k, λk〉µ = 〈µk, dµλcpk〉 = 〈a, b〉.

Since σ is an (arbitrary) fixed point of 〈k, λk〉, for all i ∈ [n] we must have

σ(i⊕ k) = σ(i)⊕ λk (7)

and by induction we obtain that for all s

σ(i⊕ sk) = σ(i)⊕ sλk. (8)

Now we partition the domain [n] by considering the cosets in ([n],⊕) with respect to the
subgroup generated by k, that is, the sets

Cj = {j, j ⊕ k, j ⊕ 2k, . . . , j ⊕ (p− 1)k}

for j ∈ [k]. Now as s varies in Zp, j ⊕ sk ranges over Cj and since λ itself belongs to Z∗
p,

dsλcp ranges over all of Zp and σ(j)⊕ sλk ranges over the set

{σ(j), σ(j) + k, σ(j) + 2k, . . . σ(i)⊕ (p− 1)k} = C̄

where ̄ = σ(j) omod5k. Thus the image of a coset is a coset, and since σ is a permutation
of [n], of which the cosets constitute a partition, this is a one-to-one correspondence. Hence

4For an introduction to the action of groups on sets and the orbit-counting lemma, see for example
[7].

5Refer to the first paragraph of Section 3 for the definition of the symbol omod.
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the map σ̄ given by j 7→ ̄ is a permutation of [k] satisfying σ(Cj) = C̄. At this stage it
is clear that ̄ depends only on the equivalence class of σ(j) modulo k, that all bijective
assignments of cosets to cosets are achievable, that these assignments are in a one-to-one
correspondence with Sk and that the action of σ can be broken down into its action on
the separate cosets, i.e. in order for a permutation of [n] to be a fixed point of 〈k, λk〉, it
is necessary and sufficient for it to satisfy Equation (8) for all i ∈ [k], s ∈ [p].

This equation implies that, for any j ∈ [k], fixing the value of σ on any point in Cj

uniquely determines σ on all of Cj . Thus, once fixed a coset-to-coset assignment, in order
to uniquely determine σ we only need to specify which one of the p possible rotations each
coset assumes; this we do by specifying, for all j ∈ [k], the relative position of ̄ within
Cj, i.e. the integer tj ∈ Zp for which σ(j + tjk) = ̄. If we denote by cσ the map j 7→ tj ,
the map σ 7→ (σ̄, cσ) is the desired bijection between the set of fixed points of 〈a, b〉 and
Sk × F(k, p). �

The above proposition shows that the fixed points depend only on k and λ. This
already allows us to easily derive an expression for the total number of orbits of length n.
This quantity seems to have been first considered by Steggall [27] in 1907, and the result
we give here is equivalent to his. We state it mainly for the sake of completeness, and
also because to our knowledge this precise formulation does not appear in the literature.

4.2 Proposition: The total number of orbits of length n is given by

1

n2

∑
kp=n

φ(p)2 k! pk

where φ is the Euler totient function, i.e. φ(i) is the number of integers less than i and
relatively prime to i.

Proof: By the orbit-counting lemma, it is sufficient to take the average over all operators
of the number of their fixed points. We consider non-trivial operators first. By Propo-
sition 4.1, for a non-trivial operator 〈a, b〉 to have any fixed points at all, we must have
gcd(a, n) = gcd(b, n) = k for some integer k which divides (and is smaller than) n, and in
this case it must have k!pk fixed points, where pk = n; these are precisely the fixed points
of 〈k, λk〉, where λ ∈ Z∗

p is uniquely determined by a and b.

For fixed k and λ, the number of operators which reduce to k is precisely the number
of solutions of µν−1 = λ, µ, ν = Z∗

p, that is |Z∗
p| = φ(p). However, there are just as many

possibilities for λ ∈ Z∗
p. As for the trivial operators, the only one with any fixed points

at all is the identity operator 〈0, 0〉, which fixes all n! of them. The result now follows by
observing that φ(1) = 1. �

For n from 1 to 10, the values of the above formula are: 1, 1, 2, 3, 8, 24, 108, 640,
4492, 36336. More terms are listed in sequence A002619 in the Encyclopedia of Integer
Sequences [18].

the electronic journal of combinatorics 10 (2003), #R18 31



Note that the fixed points of 〈a, b〉 can be characterized as solutions of the functional
equation σ(x⊕ a) = σ(x)⊕ b; we call a solution of this equation for some a, b with ab 6= 0
an affine permutation. Proposition (4.1) shows that an equivalent form is

σ(x⊕ k) = σ(x)⊕ λk (9)

with k = gcd(a, n) = gcd(b, n). This characterization makes it easy to see that if σ1, σ2

are fixed points for 〈k, λ1k〉, 〈k, λ2k〉 with k|n, then σ1 ◦ σ2 is a fixed point for 〈k, λ1λ2k〉.
For k|n, we denote by A(n)

k the set of solutions of Equation (9) for some λ. Thus for k 6= n,
A(n)

k is the set of fixed points in Sn for some operator 〈a, b〉 with gcd(a, n) = gcd(b, n) = k,
while A(n)

n is just Sn, which is also the set of fixed points of the identity operator.

4.3 Proposition: For positive integers k, p, consider the group Hk,p with ground set
Sk ×F(k, p)× Z∗

p and group operation, denoted by �, given by

(α, c, λ)� (β, d, µ) = (α ◦ β, c+ λ−1(σ ◦ d), λµ).

If n = kp, A(n)

k is a subgroup of Sn isomorphic to Hk,p.

Proof: Note that the assertion is trivial for k = n; hence we shall assume k < n.
Verification that the group structure of Hk,p is well-defined is routine, while the sets of
fixed points of 〈k, λk〉, as λ ranges over Z∗

p, give a partition of A(n)

k , so the bijective

correspondence between A(n)

k and Hk,p follows from Proposition (4.1). We need to check
that composition of permutations in A(n)

k agrees with the group structure of Hk,p; the
fact that A(n)

k is closed under composition follows easily from Equation (9), but will also
emerge from the following proof.

For any permutation τ ∈ A(n)

k , let τ̄ , cτ be defined as in the proof of Proposition (4.1).
Let σ1, σ2 be arbitrary fixed points of 〈k, λ1k〉 , 〈k, λ2k〉 respectively with λ1, λ2 ∈ Z∗

p.
Then for any i ∈ [n], writing i = qk + r with q ∈ Zp and r ∈ [k] (notice these are not
quite the standard quotient and remainder) we have

σ1(qk + r) = σ1(r ⊕ cσ1(r)k ⊕ dq − cσ1(r)cpk)
= σ1(r ⊕ cσ1(r)k)⊕ dq − cσ1(r)cpλ1k (10)

= σ̄1(r)⊕ d(q − cσ1(r))λ1cpk (11)

where (10) is an application of (8) and (11) holds by definition of σ̄1 and cσ1 . Similarly
we obtain

σ2(qk + r) = σ̄2(r)⊕ d(q − cσ2(r))λ2cpk (12)

Now we observe that Equation (11) essentially expresses σ1(qk + r) in the form q′k + r′

with q′ ∈ Zp and r′ ∈ [k], so substituting this into Equation(12) we derive

σ2(σ1(qk + r)) = σ̄2(σ̄1(r)) + d(q − (cσ1(r) + λ−1
1 cσ2(σ̄1(r))))(λ1λ2)cpk. (13)

For fixed i ∈ [n] with i = qk + r, we have i⊕ k = dq + 1cpk ⊕ r, so if we set σ = σ1 ◦ σ2,
from Equation (13) we see that for all i ∈ [n],

σ(i+ k)	 σ(i) = dλ1λ2cpk,

the electronic journal of combinatorics 10 (2003), #R18 32



i.e. Equation (7) is satisfied with λ = dλ1λ2cp, which implies that σ is a fixed point for
〈k, dλ1λ2cpk〉. Moreover, setting q = 0 in Equation (13) gives, for all r ∈ [k],

σ(r) = σ̄2(σ̄1(r)) + θrk

for some integer θr ∈ Zp, so that (since σ̄2 takes values in [k]) σ̄ = σ̄1◦ σ̄2. Finally, defining
the function c : [k]→ Zp by c = cσ1 + λ−1

1 (σ̄1 ◦ cσ2), thanks to Equation (13) the equation

σ(trk + r) = σ̄(r)

reduces to
d(tr − c(r))λ1λ2cp = 0

and solving for tr gives cσ = c. �

The figure on page 34 gives an illustration of the above isomorphism. Note that, if
a1|a2 and 〈a1, b〉(σ) = σ, then of course 〈a2, tb〉(σ) = 〈a1, b〉t(σ) = σ, where a2 = ta1. So
if k1|k2|n, A(n)

k1
is a subgroup of A(n)

k2
. Thus affine permutations give a subgroup hierarchy

of Sn isomorphic to the divisibility lattice of n.
Before delving into pattern avoidance, we conclude this section with an easy proposi-

tion about generic fixed points that will come in useful in the next section.

4.4 Proposition: A permutation σ is a fixed point for the cyclic operator 〈a, b〉 if and
only if σ−1 is a fixed point for 〈b, a〉.

Proof: Let s denote the inverse of the fixed point σ of 〈a, b〉. Then σ(s(j)⊕a) = σ(sj)⊕b =
j⊕ b. Equivalently, s(j⊕ b) = s(j)⊕a. Since j is arbitrary, s is a fixed point for 〈b, a〉. �

4.2 Patterns of length up to 4

For a permutation σ, we shall indicate by ((σ)) the orbit to which σ belongs. Again, as
in Section 3, ((σ)) is technically a set of permutations. For patterns of length up to three,
the equivalence classes are identical to the cyclic arrangements, so for t = 1, 2 there is
only one pattern of length t, which can never be avoided as long as n ≥ t, and the two
patterns of length 3 are ((123)) and ((321)) which, for n ≥ 3, can only be avoided by
((ρn)) and ((en)) respectively, where en denotes the identity permutation of [n]. Thus
the first interesting case occurs for patterns of length four. Here we have 3 equivalence
classes: ((1234)), ((4321)) and ((1243)). If for some σ ∈ Sn, the cyclic arrangement ((σ))
avoids ((1243)), and it is neither ((ρn)) nor ((en)) then it must must have an occurrence
of both ((1234)) and ((4321)), and from this it is easy to derive a contradiction. Thus
for n ≥ 3, there are precisely two orbits of length n that avoid ((1243)), namely ((en))
and ((ρn)). There remain the patterns ((1234)) and ((4321)) to be dealt with. These two
cases are reverses of each other; we shall consider the pattern ((4321)).

We remark here that in this context we regain the operation of taking inverses as one
of the basic involutions that allow us to reduce one pattern to another; this is because
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Composing Affine Permutations: an example.

k = 3, p = 5, n = 15

σ1 = 7 · 9 · 5 · 13 · 15 · 11 · 4 · 6 · 2 · 10 · 12 · 8 · 1 · 3 · 14

λ1 = 2, σ̄1 = 132, cσ1 = 442

Fixed point for 〈3, 6〉
0 1 2 3 4

1 2 3
7

9
5

4 5 6
13

15
11

7 8 9
4

6
2

10 11 12
10

12
8

13 14 15
1

3
14

σ2 = 3 · 2 · 10 · 12 · 11 · 4 · 6 · 5 · 13 · 15 · 14 · 7 · 9 · 8 · 1
λ2 = 3, σ̄2 = 321, cσ2 = 004

Fixed point for 〈3, 9〉
0 1 2 3 4

1 2 3
3

2
10

4 5 6
12

11
4

7 8 9
6

5
13

10 11 12
15

14
7

13 14 15
9

8
1

σ = σ1 ◦ σ2 = 6 · 13 · 11 · 9 · 1 · 14 · 12 · 4 · 2 · 15 · 7 · 5 · 3 · 10 · 8
λ = 1, σ̄ = 312, cσ = 412

Fixed point for 〈3, 3〉
0 1 2 3 4

1 2 3
6

13
11

4 5 6
9

1
14

7 8 9
12

4
2

10 11 12
15

7
5

13 14 15
3

10
8

dλ1λ2c5 = 1, σ̄1 ◦ σ̄2 = 312 = σ̄
λ−1

1 (σ̄1 ◦+cσ2) + cσ1 = 3(040) + 442 = 412 = cσ.
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for any equivalence class θ, the set {σ−1 | σ ∈ θ} is itself an equivalence class. This fact
follows easily from the observation that the inverse of εin ◦ σ ◦ εjn is εn−j

n ◦ σ−1 ◦ εn−i
n ,

while the observations in Section 3 regarding reversal and complementation still apply to
this context.

It turns out that we need to go to patterns of length 6 before taking inverses makes
a difference: the 8 patterns of length 5 are reducible to the 3 cases 12345, 12354 and
12534 using reversal and complementation, and we do not get any further merging by
allowing inverses as well. However, the 24 patterns of length 6 are reducible to 10
cases using all three operations, and 12 if we were to prohibit inverses. The 10 cases
are: ((123456)), ((123465)), ((123564)), ((123654)), ((124365)), ((124635)), ((124653)),
((125634)), ((126453)), ((135264)). Here we shall not be concerned with patterns of
length more than four, though.

Since εn◦ρn◦εn = ρn, we have that (ρn) = ((ρn)); in particular ((4321)) = (4321), so the
((4321))-avoiding permutations are precisely the (4321)-avoiding permutations studied in
Section 3; however, the partition of this set into cyclic arrangements is a refinement of the
partition into orbits. Still, using (2.9) and (3.6), we can associate to any ((4321))-avoiding
permutation of [n] a simple Dyck path of semilength n by rotating it so as to have the
entry n at the end, dropping this entry and taking the corresponding Dyck path (with
respect to the sink-or-float bijection). We shall take this to be understood whenever we
refer to a ((4321))-avoiding permutation corresponding to a simple Dyck path. Note that
going the other way, i.e. from a Dyck path to a ((4321))-avoiding permutation, gives us
one representative per cyclic arrangement, whereas we would like one per orbit.

Throughout this section we shall typically be dealing with a permutation σ = σ′|n
and we shall use heavily the following remark, obtained by pulling together Theorem 2.9,
and Propositions 3.6 and 2.8.

4.5 Remark: The following are equivalent:

• σ is ((4321))-avoiding;

• σ is (4321)-avoiding;

• σ′ is {321, 2143}-avoiding;

• σ′ is the image under the sink-or-float bijection of a simple Dyck path;

• σ′ is Grassmannian or monodipic.

Also when σ is a fixed point for some cyclic operator, we shall denote by σ̄ the first
component in the group isomorphism of (4.3), that is σ̄ as defined in (4.1). Since 4321 is
an involution, we also have the following fact which we shall use repeatedly.

4.6 Remark: A permutation σ avoids ((4321)) if and only if σ−1 does.

In order to count the number of orbits that avoid ((4321)), we consider the action of
the group Gn on the set of (4321)-avoiding permutations: we count the number of fixed
points for each operator and then apply the orbit-counting lemma.
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4.7 Proposition: Suppose k|n and the operator 〈k, λk〉 ∈ Gn has a ((4321))-avoiding
fixed point corresponding to a horizontally simple Dyck path. Then λ ∈ {1, 2}.

Proof: Since k 6= 0, clearly λ 6= 0; suppose by way of contradiction that λ ≥ 3. Let
n = q(λk) + r for non-negative integers q, r with r < λk. Note that since λk < n,
q ≥ 1, and therefore r < qλk. Let σ be a ((4321))-avoiding fixed point corresponding
to a horizontally simple Dyck path; by rotating if necessary, we may assume that the
last entry of σ is n. With this assumption, σ is of the form σ′|n for some Grassmannian
permutation σ′.

Since λ ≥ 3, we have n = λ(qk)+r ≥ 3qk; consider the entries at positions qk, 2qk, 3qk
in σ. Since the value of the last entry is n and σ is a fixed point of 〈k, λk〉, the first of
these three entries has value qλk, and the last two are congruent (modulo n) to 2qλk
and 3qλk respectively. Now qλk ≡ −r modulo n, and since r < qλk, the second of these
entries is qλk − r. Note that, in particular, thanks to the injectivity of σ this implies
that r 6= 0 (this is also easily deducible from the fact that gcd(k, n) = gcd(λk, n)), and
therefore the entries we are considering are all entries of σ′. Thus the entries at positions
qk, 2qk give an inversion in σ′, implying that σ′ has some descent at position < 2qk. Since
σ′ is Grassmannian, by 2.11 no entry to the right of this descent (in particular, to the
right of position 2qk) can be an excedance.

Suppose now that 2r < qλk. Then qλk − 2r would be positive, smaller than n and
congruent to 3qλk, implying that σ(3qk) = qλk − 2r and that the entries at positions
qk, 2qk, 3qk give an occurrence of 321 in σ′, a contradiction to the fact that σ′ is the image
under the sink-or-float bijection of a Dyck path. If instead 2r ≥ qλk, then the entry at
position 3qk is 2qλk − r ≥ 6qk − r which, since r < λk ≤ 3k, is strictly larger than
6qk − 3k ≥ (6q − 3q)k = 3qk. Thus, this entry is an excedance, again a contradiction. �

4.8 Proposition: If n = kp and p is odd, the number of Grassmannian permutations
(horizontally simple Dyck paths) which correspond to ((4321))-avoiding fixed points of
〈k, 2k〉 is 2k−1. If σ is such a permutation, then σ̄ is itself Grassmannian.

Proof: Suppose σ = σ′|n is a ((4321))-avoiding fixed point of 〈k, 2k〉, with σ′ Grassman-
nian. Recall from the proof of (4.1) that:

• for all i ∈ [k], the image of the coset Ci is the coset Cσ̄(i);

• as we move k steps at a time to the right within a given coset in the domain, the
value of σ goes up by 2k (omod n);

• given that the image of Ci is Cj, knowing the position of j in Ci uniquely determines
σ on all of Ci.

Note that since 2k < n, p is at least 3. Also, since σ(n) = n, we know that the σ(k) = 2k.
Claim: For all i ∈ [k − 1], at least one of the values i, i+ k must occur to the left of

position k.
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To see this, suppose that both i and i + k lie strictly between positions k and n (note
i < i+ k < 2k < n ). If i were to the right of i+ k, the entries with values 2k, i+ k, i, n
would give an occurrence of 3214 ∈ ((4321)) in σ, so i must be to the left of i+ k. Now
p is odd, so let p = 2s + 1 for some positive integer p. Since 2(s + 1) = (2s + 1) + 1
the inverse of 2 modulo p is s, so in fact i + k occurs k(s + 1) positions to the right of
i; consider the previous entry in the same coset, i.e. the entry with value i+ 2sk < n, k
positions to the left of the value i+ k and sk positions to the right of the value i. Since
it is not the last of entry of its coset, its position is at most n − k = 2sk < 2sk + 1, i.e.
this entry gives an excedance. But this excedance is to the right of the value i, which
is smaller than σ(k) = 2k yet in turn occurs to the right of position k, implying that
there is some descent in σ to the left of position k, and therefore of the excedance, thus
contradicting Proposition (2.11) .

The claim above effectively says that precisely one of i and i + k must occur to the
left of position k, since each coset has only one position to the left of k. Now we know
that for all j ∈ [k− 1], σ(j) = σ̄(j) or σ(j) = σ̄(j)+ k. Now suppose that σ has a descent
to the left of position k, i.e. there exists j < k − 1 such that σ(j) = u, σ(j + 1) = v
and u > v. Then u + k is larger than, and appears immediately before, v + k (note
u < 2k ⇒ u + k < 3k ≤ pk = n); none of these entries occupy position n ∈ Ck, so we
have 2 descents in σ′, contradicting the fact that σ′ is Grassmannian.

Thus the first k entries of σ form an increasing subsequence of terms of the form i or
i + k, with 1 ≤ i ≤ k. Let ̂ be the smallest integer for which σ(j) = σ̄(j) + k; then the
same must be true for all j ∈ [̂, k], and σ̄ is increasing over this interval, and over [̂− 1].
So the only possibility for a descent in σ̄ is position ̂− 1; hence, σ̄ is Grassmannian.

There are 2k−1 possibilities for choosing one element from each of the sets {i, i+k} i ∈
[k − 1] to put to the left of position k; from any such choice we can construct a fixed
point of 〈k, 2k〉 by assigning the cosets in such a way that σ is increasing on [k] (placing
2k at position k). In order to conclude the proof, we need to check that any fixed point σ
obtained in this way indeed corresponds to a Grassmannian permutation (and therefore
is ((4321))-avoiding).

So, suppose we have integers i1, i2, . . . , ib−1, ib, . . . , ik = k with σ̄(j) = ij, ̂ defined as
above, and for a ∈ [n]

σ(a) = f(a) omod p

where

f(j + zk) =

{
ij + 2zk if 1 ≤ j ≤ ̂− 1
ij + (2z + 1)k if ̂ ≤ j ≤ k

for z ∈ [0, p − 1], and suppose further that σ is increasing on [k] (by construction).
Then f is increasing on all intervals [1 + zk, k + zk] with z ∈ [0, p − 1], but also since
ik = k, we have for all z ∈ [0, p − 2] that f((1 + z)k) < f((1 + z)k + 1), so f is in fact
increasing on all of [n]. Thus σ will satisfy σ(a) < σ(a + 1) except possibly for those
a ∈ [n − 1] for which there exists a positive integer θ such that f(a) ≤ θn < f(a + 1).
We claim that the only such value of a is ̂ − 1 + sk (recall p = 2s + 1). In fact
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f (̂− 1 + sk) = (̂− 1) + 2sk

< (2s+ 1)k = pk

= n = pk

< pk + ̂ = (2s+ 1) + ̂

= f (̂ + sk) = n+ ̂

< 2n = 2pk = k + (2(p− 1) + 1)k

= f(n).

Thus σ is Grassmannian, and therefore truncating the last entry gives a Grassmannian
permutation (horizontally simple Dyck path) corresponding to a ((4321))-avoiding per-
mutation. �

4.9 Proposition: If n = kp, λ ∈ Z∗
p and the operator 〈k, λk〉 has at least one ((4321))-

avoiding fixed point, then precisely one of the following holds:

I λ = 1 and all the ((4321))-avoiding fixed points of 〈k, λk〉 correspond to the identity
permutation;

II λ = 2 and all the ((4321))-avoiding fixed points of 〈k, λk〉 correspond to Grass-
mannian, but not monodipic, permutations (horizontally simple, but not vertically
simple, Dyck paths);

III λ = d2−1cp and all the ((4321))-avoiding fixed points of 〈k, λk〉 correspond to
monodipic, but not Grassmannian, permutations (vertically simple, but not hori-
zontally simple, Dyck paths);

IV p = 3 and λ = 2 = d2−1cp.

Proof: Let σ = σ′|n be a ((4321))-avoiding fixed point of 〈k, k〉. Then σ′ must be
Grassmannian or monodipic. Suppose that λ = 1, and that σ′ is Grassmannian (and
therefore σ is itself Grassmannian). Since σ is a fixed point for 〈k, k〉, for any j ∈ [k] the
values σ̄(j), σ̄(j) + k, σ̄(j) + 2k, . . . σ̄(j) + (p− 1)k occur in this cyclic order and together
occupy the positions j, j + k, j + 2k, . . . j + (p − 1)k; suppose that they do not start at
the beginning, i.e. that σ(i) 6= σ̄(i). Then σ̄(i) + (p − 1)k occurs to the left of σ̄(i)
and therefore there must be a descent somewhere in σ to the left of the value σ̄(i), yet
this entry gives an excedance, contradicting Proposition (2.11). Thus for all j ∈ [k],
σ̄(j) = σ(j). Now any descent in [k] would be repeated in every interval [zk+1, (z+1)k],
z ∈ [p − 1], and this would give at least two descents in σ (note k < n ⇒ p ≥ 2). So
σ is increasing on [k] and this shows it must be the identity. If instead σ′ is monodipic,
then (σ′)−1 is Grassmannian, and by (4.4) and (4.6) σ−1 = (σ′)−1|n is a (4321)-avoiding
(equivalently, ((4321))-avoiding) fixed point of 〈k, k〉, so the previous argument applies to
σ−1, implying that σ is the identity permutation.
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Now we assume λ 6= 1. Suppose σ′
1 is Grassmannian, σ′

2 is monodipic, and both σ′
1|n

and σ2 = σ′
2|n are ((4321))-avoiding fixed points of 〈k, λk〉 (corresponding to a horizon-

tally and vertically simple Dyck path respectively). Since λ 6= 1, by (4.7) λ = 2, and since
σ′

2|n is monodipic, (σ′
2)

−1 is Grassmannian. Moreover, by (4.4), σ−1
2 = (σ′

2)
−1|n is a fixed

point for 〈λk, k〉 or equivalently (by 4.1) for 〈k, dλ−1cpk〉. Since σ2 is ((4321))-avoiding,
by (4.6) so is σ−1

2 , so again by (4.7) dλ−1cp = 2. Thus λ = dλ−1cp = 2, i.e. p = 3. So
if λ 6= 1 and p 6= 3, the operator 〈k, λk〉 cannot have ((4321))-avoiding fixed points that
correspond to vertically simple Dyck paths, and simultaneously fixed points (not even the
same ones) that correspond to horizontally simple Dyck paths; moreover, the existence
of fixed points of the latter type implies λ = 2, and of the former type dλ−1cp = 2. But
they must all correspond to vertically or horizontally simple Dyck paths, so precisely one
of (II) and (III) must hold. �

4.10 Proposition: If n = 3k, the Grassmannian monodipic permutations (vertically
and horizontally simple Dyck paths) that correspond to ((4321))-avoiding fixed points of
〈k, 2k〉 are precisely the ones of the form

1 · 2 · · ·x · y · y + 1 · · ·y + k − 1 · x+ 1 · x+ 2 · · ·y − 1 · y + k · y + k + 1 · · ·n

for 0 ≤ x ≤ k − 1 and y = x+ k + 1.

Proof: Let σ = σ′|n be a ((4321))-avoiding fixed point of 〈k, 2k〉 with σ′ Grassmannian
and monodipic. Then σ is itself Grassmannian and monodipic. We shall think of σ in
terms of the corresponding escalating Dyck path (via the sink-or-float bijection). Since
the identity permutation is not a fixed point of 〈k, 2k〉, this path has precisely one long
vertical edge and one long horizontal edge, clearly of the same length, with some hilltops
before the long vertical edge and after the long horizontal edge, and some peaks in between
the two long edges, all at the same height.

Let t be the position of the first floating step after the long vertical edge (the first
excedance, and the only dip) and u the position of the floating step of the long horizontal
edge (the last excedance, and the only descent). Now σ(n) = n, so σ(k) = 2k; hence k is an
excedance, t ≤ k ≤ u, the vertical edge has a length of k+1 and σ(j) exceeds j by k for all
j : t ≤ j u. In particular σ(t) = t+k, so σ(t+k) = σ(t)⊕2k = t⊕3k = t. Also, all points
before position t are fixed points of σ, so if t ≥ 2, σ(t+k−1) = σ(t−1)+2k = t+2k−1,
while if t = 1 σ(t+ k− 1) = 2k. In both cases σ(t+ k− 1) > t+ k = σ(t), so t+ k− 1 is a
descent. But then u = t+ k − 1 and, fixed t, this completely determines σ as a (possibly
empty) sequence of t−1 fixed points, followed by u− t+1 = k points on which σ exceeds
its argument by k, then an increasing sequence of k deficiencies, and finally n−2k− t+1
more fixed points. That such a permutation is ((4321))-avoiding is just a consequence of
the fact that it corresponds to a simple Dyck path, and to see that it must be a fixed
point for 〈k, 2k〉 we observe that the only places where σ(a⊕ 1) = σ(a)⊕ 1 fails is at the
points a1 = t 	 1, a2 = t ⊕ k 	 1, which satisfy a1 ⊕ k = a2, σ(a2) = σ(a1) ⊕ 2k (recall
n = 3k). �

the electronic journal of combinatorics 10 (2003), #R18 39



4.11 Corollary: If n = 3k, the number of simple Dyck paths corresponding to ((4321))-
avoiding fixed points of 〈k, 2k〉 is 2k − k.

Proof: By (4.8), there are precisely 2k−1 horizontally simple Dyck paths of this kind.
As for the vertically simple ones, taking inverses gives a bijection between the ((4321))-
avoiding fixed points of 〈k, 2k〉 corresponding to vertically simple Dyck paths and the
((4321))-avoiding fixed points of 〈2k, k〉 corresponding to horizontally simple Dyck paths.
But by (4.1), the fixed points of 〈2k, k〉 are the fixed points of 〈k, d2−1c3k〉 = 〈k, 2k〉.
So again by (4.8) there are 2k−1 vertically simple Dyck paths corresponding to ((4321))-
avoiding fixed points of 〈k, 2k〉. By (4.10) precisely k of these are vertically and horizon-
tally simple. Thus the total number is 2.2k−1 − k. �

4.12 Theorem: The number of ((4321))-avoiding orbits of [n] is given by

1

n

 2n −
(
n

3

)
− n− 2̂n

3
+

∑
2 - p |n

1 < p ≤ n

φ(p) 2
n
p


where φ is the Euler totient function and x̂ denotes x if x is an integer, and 0 otherwise.

Proof: By the orbit-counting lemma, it is sufficient to take the average over all 〈a, b〉 ∈ Gn

of the number of ((4321))-avoiding fixed points of 〈a, b〉. The identity operator fixes all
the ((4321))-avoiding permutations, of which there are n times the number of ((4321))-
avoiding cyclic arrangements, i.e. n

(
2n −

(
n
3

)
− 2n+ 1

)
(using 3.7). Clearly, no other

trivial operator has any fixed points at all.
For any non-trivial operator with at least one ((4321))-avoiding fixed points 〈a, b〉,

by (4.1) the set of fixed points is precisely the set of fixed points of 〈k, λk〉 where k =
gcd(a, n) = gcd(b, n), a = µk, b = νk, λ = dµ−1νcp and n = kp. We need to calculate how
many operators reduce to each one of the four scenarios in (4.9). Clearly λ = 1⇔ µ = ν,
so a non-trivial operator will reduce to situation (I) if and only if it is of the form 〈a, a〉.
There are n− 1 of these operators, each of which has as ((4321))-avoiding fixed points all
the n rotations of the identity permutation. That takes care of case (I) and we may now
assume 2 - p.

To deal with cases (II) and (III), we observe that the equations λ = 2, λ = d2−1cp are
equivalent to µ = 2ν and ν = 2µ (ν, µ ∈ Z∗

p) respectively, so they each have |Z∗
p| = φ(p) so-

lutions. In case (II), by (4.8) there are 2k−1 horizontally simple Dyck paths corresponding
to ((4321))-avoiding fixed points, and by (4.9) itself, these are the only ones. In case (III),
taking inverses gives a bijection between the ((4321))-avoiding fixed points of 〈k, d2−1cp〉k
and those of 〈k, 2k〉 (using once more (4.6), (4.4) and (4.1)), so again the total number
is 2k−1. Thus, for each p|n, p 6= 3, there are φ(p) operators that reduce to situation (II)
and just as many that reduce to situation (III), each of which has 2k−1n ((4321))-avoiding
fixed points (n per cyclic arrangement).
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As for case (IV), the equation λ = 2 with p = 3 has the two solutions µ = 1, ν = 2 and
µ = 2, ν = 1. Thus, if 3|n, there are another two operators, namely 〈k̄, 2k̄〉 and 〈2k̄, k̄〉
where 3k̄ = n, that have the same (non-empty) set of (4321)-avoiding fixed points. By
(4.11), there are precisely n(2k̄ − k̄) of these.

Using the above considerations to take the sum over all operators of the number of
their fixed points, dividing by n2 (the total number of operators) and simplifying gives
the desired formula. �

The first 20 values of the sequence given by the above formula are: 1, 1, 2, 2, 5, 7, 14,
24, 49, 91, 172, 324, 609, 1145, 2160, 4060, 7671, 14525, 27544, 52374.
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