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Abstract

There are just five Fra¨ıssé classes of permutations (apart from the trivial class of per-
mutations of a singleton set); these are the identity permutations, reversing permutations,
composites (in either order) of these two classes, and all permutations. The paper also dis-
cusses infinite generalisations of permutations, and the connection with Fra¨ıssé’s theory of
countable homogeneous structures, and states a few open problems. Links with enumera-
tion results, and the analogous result for circular permutations, are also described.

1 What is an infinite permutation?

There are several ways of viewing a permutation of the finite set{1, . . . ,n}, giving rise to com-
pletely different infinite generalisations.

To an algebraist, a permutation is a bijective mapping fromX to itself. This definition
immediately extends to an arbitrary set. The set of all permutations of any setX is a group
under composition, thesymmetric groupSym(X).

A combinatorialist regards a permutation of{1, . . . ,n} in passive form, as the elements of
{1, . . . ,n} arranged in a sequence(a1,a2, . . . ,an). If we try to extend this definition to the
infinite, we are immediately faced with a problem: what kind of sequence should we use? For
example, should it be well-ordered?

A more satisfactory approach is to regard a permutation of{1, . . . ,n} as a pair of total orders,
where the first is the natural order and the second is the ordera1 < a2 < · · · < an of the terms
in the sequence. Thus a permutation is a relational structure over the language with two binary
relational symbols (interpreted as total orders).

In this aspect, the infinite generalisation is clear, but the result is different from the other
two. On an infinite setX, a pair of total orders do not correspond to a single permutation, but
to a double cosetG1πG2 in Sym(X), whereG1 andG2 are the automorphism groups of the two
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total orders. (In the finite case, of course, a total order is rigid, so this double coset contains just
the single permutationπ.)

This representation also makes the notion ofsubpermutationclear; it is simply the induced
substructure on a subsetY of X (the restriction of the two total orders toY).

I will adopt this view of permutations here. Accordingly, a finite permutation will be re-
garded as a pair of total orders, each represented by a sequence. For example, the permutation
usually written in passive form as(2,4,1,3) might be represented as(abcd,bdac). I will call
2413 thepatternof this structure. Thus, a finite permutation is the pattern of an isomorphism
class of finite structures (each consisting of a set with two total orders). The two total orders are
denoted<1 and<2.

2 Ages and amalgamation

A relational structureX is homogeneousif any isomorphism between finite substructures ofX
can be extended to an automorphism ofX. Theageof a relational structureX is the class of all
finite structures embeddable inX.

The best-known homogeneous structure is the ordered setQ. Fraı̈ssé [8], taking this as a
prototype, gave a necessary and sufficient condition for a class of finite structures to be the age
of a countable homogeneous relational structure. The four conditions are listed below; a class
C of finite structures satisfying them is called aFraı̈sśe class.

(a)C is closed under isomorphism.

(b) C is closed under taking induced substructures.

(c) C has only countably many members (up to isomorphism).

(d) C has theamalgamation property: if A,B1,B2 ∈ C and fi : A→ Bi are embeddings fori =
1,2, then there existC∈ C and embeddingsgi : Bi →C for i = 1,2 such thatf1g1 = f2g2

(where f1g1 means the result of applyingf1 and theng1).

The amalgamation property informally says that two structures with a common substructure can
be glued together. Fra¨ıssé further showed using a back-and-forth argument that, ifC is a Fra¨ıssé
class, then the countable homogeneous structureX whose age isC is unique up to isomorphism.
We callX theFraı̈sśe limit of C.

Some authors (for example, Hodges [9]) include also thejoint embedding propertyhere.
This is the following apparent weakening of the amalgamation property: givenB1,B2 ∈ C, there
existsC ∈ C such that bothB1 andB2 can be embedded inC. These authors usually require a
substructure to be non-empty; I will allow the empty structure (but assume that it is unique up
to isomorphism). With this convention, the joint embedding property is a special case of the
amalgamation property.

It is easy to see that conditions (a)–(c) above and the joint embedding property are necessary
and sufficient forC to be the age of some countable structure; but such a structure is by no means
unique in general.

See Hodges [9], Chapter 6, for further discussion of this material.
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Now we interpret (a)–(d) for the structures associated with permutations (sets with a pair
of total orders). Since a pattern specifies an isomorphism class, (a) means that such a class is
defined by a setC of patterns. Condition (b), called thehereditary property, of course means
thatC is defined by a set of excluded subpermutations. Condition (c) is vacuous. So the amal-
gamation property is the crucial condition. We will not always distinguish carefully between a
classC of relational structures and the corresponding classC of permutations!

The aim of this paper is to determine the Fra¨ıssé classes of permutations (and so, implicitly,
the countable homogeneous structures consisting of a set with a pair of total orders). The classes
will be described in the next section, and the theorem proved in the section following. Note that
Murphy [12] has considered the question of hereditary classes of permutations with the joint
embedding property (that is, ages of infinite permutations).

Countable homogeneous graphs, digraphs and posets have been determined [10, 4, 13]. The
result of this paper is analogous (though rather easier); but as far as I can see it does not follow
from existing classifications.

Much effort has been devoted to enumerating the permutations in various classes. In par-
ticular, the Stanley–Wilf conjecture [1] asserts that a hereditary class not containing all per-
mutations has at mostcn permutations onn points, for some constantc. On the other hand,
Macpherson [11] showed that anyprimitive Fraı̈ssé class of relational structures of arbitrary
signature (one whose members do not carry a natural equivalence relation derived from the
structure) has at leastcn/p(n) members of given cardinality, provided that it has more than one
member of some cardinality. (Herec is an absolute constant greater than 1, andp a polynomial.)
Examples where the growth is no faster than exponential are comparatively rare. It would ap-
pear that permutations would be a good place to look for such examples: this was part of the
motivation for the present paper. From this point of view, the main theorem of this paper is a
disappointment: of the five Fra¨ıssé classes of permutations defined below,J andJ ∗ are trivial,
J /J ∗ andJ ∗/J are imprimitive, andU consists of all permutations.

3 The examples

We begin by defining five classes of finite permutations.

J : the class of identity permutations. This corresponds to two identical total orders, and is
defined by the excluded pattern 21.

J ∗: the class of reversals, of the form(n,n−1, . . . ,1). This arises when the second order is the
converse of the first, and is defined by the excluded pattern 12.

J /J ∗: this is the class of increasing sequences of decreasing sequences of permutations, de-
fined by the excluded patterns 231 and 312.

J ∗/J : the class of decreasing sequences of increasing sequences, defined by the excluded
patterns 213 and 132.

U: the universal class of all finite permutations, where the two total orders are arbitrary.
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These are all Fra¨ıssé classes. Indeed, the countable homogeneous structures are clear in the
first four cases: the first and second areQ (with the second order equal to or the reverse of
the first); the third and fourth are the lexicographic product ofQ with itself, with the second
ordering reversed within blocks, resp. reversed between blocks. (Their automorphism groups
are Aut(Q) in the first two cases, and the wreath product Aut(Q) oAut(Q) in the third and
fourth.) In the last case, since the orders are unrelated, we can amalgamate them independently.

The countable homogeneous structure corresponding toU has an explicit description as
follows. The point set isQ2. Choose two real vectors(a,b) and (c,d), with b/a and d/c
distinct irrationals satisfyingb/a+d/c 6= 0. Now set(x,y) <1 (u,v) if xa+yb< ua+vb, and
(x,y) <2 (u,v) if xc+yd < uc+vd. (To see this, note first that given two pointsx = (x,y) and
u = (u,v), the remaining points(p,q) fall into three intervals divided byx andu with respect
to the first order, and three intervals with respect to the second order; all nine combinations
are non-empty. Using this, we find that all possible extensions of a given finite structure are
realised.)

4 The main theorem

Theorem 1 A class of finite permutations is a Fraı̈sśe class if and only if it is one of the follow-
ing: the identity permutation of{1}, J , J ∗, J /J ∗, J ∗/J , or U.

Proof The trivial class is obviously a Fra¨ıssé class, and we have observed that the same is true
for the other five classes. We have to show that any Fra¨ıssé class is one of these.

Let C be a Fra¨ıssé class of permutations, andC its Fraı̈ssé limit. We may assume thatC
contains permutations on more than one point.

First observe that, ifC contains 2-element structure on which the orders agree, then it con-
tains arbitrarily large such structures. For, by amalgamating a structure of lengthm with one of
lengthn, where the last point of one is identified with the first point of the other, we obtain a
structure of lengthm+n−1. So, in this case,C containsJ .

Dually, if C contains a two-point structure on which the orders disagree, then it containsJ ∗.
We conclude that, ifC is not equal to eitherJ or J ∗, then it contains both of them. We may

suppose that this is the case.
We further suppose thatC 6= U. Then there is some structureX not contained inC ; we

assume thatX is minimal with this property. We show thatX has three or four points. For
suppose that|X| = n > 4. There aren−1 pairs of elements which are consecutive in each of
the orders. Since

(n
2

)
> 2(n−1), there are pointsx,y ∈ X consecutive in neither order. Then

the only amalgam ofX \ {x} andX \ {y} (identifying X \ {x,y}) is the given structure onX,
since the relations betweenx andy are determined by the other points. ThusX ∈ C , contrary to
assumption.

Suppose first that|X| = 3. We know that the patterns 123 and 321 certainly occur. Now
amalgamating(ab,ab) with (bc,cb) shows that we have either(abc,acb) (pattern 132) or
(abc,cab) (pattern 312). The other three possible ways of amalgamating the two 2-element
structures show that we have one of each of the following pairs:
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• 312 or 213;

• 213 or 231;

• 231 or 132.

Thus one of the following holds:

(a) exactly two of these four patterns occur, necessarily either 132 and 213, or 312 and 231.

(b) exactly three of the four patterns occur; any one may be the missing one.

We begin with case (a). LetA andB be structures (carrying two total orders). We useA↗B
to denote the disjoint union ofA andB, with a <1 b anda <2 b for all a∈ A, b∈ B.

Lemma 2 Suppose thatC is a Fräısśe class of permutations containing132and213, Then, for
any structures A,B∈ C , we have(A↗ B) ∈ C .

Proof First assume that|A| = 1, sayA = {a}, and letx andy be the minimum elements ofB
in the two orders. Ifx = y, then amalgamateB with (ax,ax); otherwise, amalgamate it with
(axy,ayx) (of pattern 132).

Dually, the result holds if|B| = 1 (using the pattern 213).
Now for the general case, we first construct{c} ∪B, with c <1 B and c <2 B, and also

A∪{c}, with A <1 c andA <2 c. Amalgamating these structures gives the result.

If both 312 and 231 are forbidden, then the binary relation defined byx ∼ y if the orders
disagree on{x,y} is an equivalence relation, and so the structure belongs to the classJ /J ∗.
Lemma 2 shows that every permutation in this class belongs toC . SoC = J /J ∗.

Dually, if 132 and 213 are forbidden, thenC = J ∗/J .
Now we turn to case (b) and show that this cannot occur. Suppose, without loss of generality,

that only 132 is forbidden. (Interchanging either or both of the orders transforms this case into
any of the others.) Now

• amalgamating(abc,bac) (with pattern 213) with(bcd,dbc) (with pattern 312) gives
(abcd,dbac);

• amalgamating(bde,dbe) (with pattern 213) with(abe,bea) (with pattern 231) gives
(abde,dbea);

• amalgamating(abcd,dbac) with (abde,dbea) gives(abcde,dbeac).

But the last structure contains(bce,bec) with the excluded pattern 132, a contradiction.

Next suppose that|X| = 4. Our earlier argument shows that the forbidden patterns have
the property that each of the six 2-subsets in an excluded 4-set must be adjacent in one of the
two orders. The only permutations satisfying this condition are the two permutations 2413 and
3142.

But amalgamating(abce,aceb) (with pattern 1342) with(acde,dace) (with pattern 3124)
gives(abcde,daceb), containing(abde,daeb) with pattern 3142. Similarly the other pattern
can be formed by amalgamating(abce,beca) with (acde,ecad).
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Finally, if C contains all four-element structures, then there is no minimal excluded pattern,
and we haveC = U. The proof is complete.

5 Circular permutations

A circular order on a finite setX is the ternary relation obtained by placing the points on a
circle and taking all triples in anticlockwise order. In general, a circular order can be defined
as a ternary relation such that the restriction to any finite set is a circular order (it suffices to
consider restrictions to sets with at most four points [2]).

Now, by analogy, we can define acircular permutationto be a finite set carrying two distinct
circular orders.

Since a circular order onn points is not rigid but admits the cyclic groupCn of ordern
as automorphism group, we see that apattern(defining an isomorphism class of finite permu-
tations) is not a single permutation but a double cosetCnπCn, for some permutationπ. The
number of patterns is asymptoticallyn!/n2; the exact values are given as sequence A002619 in
theEncyclopedia of Integer Sequences[7].

From the main theorem, we can deduce the classification of Fra¨ıssé classes of circular per-
mutations:

Theorem 3 There are just five Fräısśe classes of circular permutations containing structures
with more than two points.

Proof From any circular orderC on a setA, and any pointa ∈ A, we obtain a derived total
orderCa onA\{a}, where

Ca = {(b,c) : (a,b,c) ∈C}.
Moreover,C can be recovered uniquely fromCa: for, if b < c < d in the orderCa, then
(b,c,d) ∈ C. Hence, from any circular permutation, onA and anya ∈ A, we obtain a derived
permutation onA\ {a}. For any classC of finite circular permutations, letC ′ be the class of
derived permutations; thenC determinesC ′, andC ′ determines at most one classC .

It is easy to see that each of the five classes of permutations in the main theorem is the
derived class of a class of circular permutations. For example, corresponding toJ /J ∗, take
points on a circle partitioned into consecutive blocks; for the second circular order, reverse the
order of the points within each block.

The proof is completed using Theorem 1 and the following lemma.

Lemma 4 A classC of circular permutations is a Fräısśe class if and only if its derived class
C ′ is a Fräısśe class of permutations.

Proof As usual, the hereditary and amalgamation properties are the only ones which require
attention. The argument here deals with the amalgamation property; the hereditary property is
similar but easier.

Suppose thatC has the amalgamation property. To amalgamate elementsB1,B2 of the de-
rived classC ′ overA, add a pointa to A and construct the corresponding circular permutations,
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and then amalgamate these and derive the result with respect toa. Conversely, suppose thatC ′
has the amalgamation property, and we wish to amalgamateB1,B2 ∈ C over the substructure
A. Without loss of generality,A 6= /0; choosea∈ A and amalgamate the derived structures with
respect toa.

6 Open problems

I conclude with some open problems arising from this paper.

Problem 1 Extend the main theorem of this paper to structures consisting ofm total orders,
wherem≥ 3.

The last three problems depend on the concept of areductof a relational structure(X,R ).
This is a relational structure(X,S), whereS is a family of relations, each of which has a first-
order definition without parameters in the structure(X,R ). For example, if< is a total order on
X, and the betweenness relationB is defined by the rule thatB(x,y,z) holds if and only if either
x < y < z or z< y < x, then(X,B) is a reduct of(X,<).

In the case of countableω-categorical structures(X,R ) (which includes countable homoge-
neous structures over finite relational languages), a reduct is simply a relational structure(X,S)
such that Aut(X,S)≥ Aut(X,R ). Moreover, in this case, a reduct is defined up to equivalence
by its automorphism group, where two relational structures are equivalent if each is a reduct of
the other. IfX is countable, then a subgroup of Sym(X) is closed in the topology of pointwise
convergence if and only if it is the automorphism group of a relational structure onX. So find-
ing the reducts of(X,R ) is equivalent to finding the closed overgroups of Aut(X,R ). I refer to
Hodges [9] for further details.

The universal homogeneous countable total order is(Q,<); its reducts are itself, the derived
betweenness relation, circular order and separation relation, and the empty relation (correspond-
ing to the symmetric group) – see [2]. The reducts of the random graph were determined by
Thomas [14].

Problem 2 Determine all reducts of the universal homogeneous permutation (up to equiva-
lence).

There are 37 obvious reducts. Choosing independently a reduct of each order gives 25
possibilities; and reversals and interchange of the orders generate a dihedral group of order 8,
with 10 subgroups, and similarly for reversing and interchanging the two derived circular orders;
but we have now counted 8 reducts twice.

Among these reducts is a universal 2-dimensional poset (the intersection of<1 and<2) and
a universal permutation graph (their agreement graph) – neither is homogeneous.

Are there any others?

Problem 3 Which infinite permutations are reducts of homogeneous structures over finite rela-
tional languages?

As an example to illustrate this problem, I note that the class ofN-free permutations(those
containing neither of the patterns 2413 and 3142) is the age of an infinite permutation which
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is a reduct of a homogeneous structure, even though it is not itself a Fra¨ıssé class, as we have
seen.

Let (T, r) be a finite rooted binary tree, in which the two children of each non-leaf are
ordered. Letc be an arbitrary colouring of the internal vertices ofT with two colours (black and
white). LetX be the set of leaves ofT (excludingr if necessary). Forx,y∈ X, x 6= y, let x∧y
denote the last non-leaf common to the pathsrx andry. Now consider the following relations
on X:

• A graph, in whichx∼ y if x∧y is black. This graph is acograph[5] or N-free graph[6];
that is, it contains no induced path of length 3. Every N-free graph can be so represented,
though the representation is not unique.

• A ternary relation defined by the rule thatx|yz if x∧y = x∧z 6= y∧z.

Covington [6] showed that the structures consisting of the graph and ternary relation obtained
from all triples (T, r,c) in this way is a Fra¨ıssé class. Our class will be a slight variant of
Covington’s.

From the data(T, r,c), we obtain a permutation as follows. Let<1 be the order onX defined
in the usual way by depth-first search inT, and<2 the order defined by the modified depth-first
search in which the children of a white non-leaf are visited in reverse order. The agreement
graph of this pair of orders is precisely the N-free graph defined above; so the permutation
excludes 2413 and 3142. Any permutation excluding these patterns can be so represented.

Let C be the class of structures with two total orders and a ternary relation, derived in this
way from triples(T, r,c), where(T, r) is a rooted binary tree andc a 2-colouring of its non-
leaves. ThenC is a Fra¨ıssé class. The proof is not given here, as it is almost identical to that
in [6]. If we take the Fra¨ıssé limit and ignore the ternary relation, we obtain a universal N-free
permutation.

Problem 4 Which infinite circular permutations are reducts of homogeneous structures over
finite relational languages?

Note that, analogous to the N-free permutations, there is a class of pentagon-free circular
permutations (similar to the pentagon-free two-graphs defined in [3]).
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