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Abstract

There are just five Fra¥ classes of permutations (apart from the trivial class of per-
mutations of a singleton set); these are the identity permutations, reversing permutations,
composites (in either order) of these two classes, and all permutations. The paper also dis-
cusses infinite generalisations of permutations, and the connection witssdheory of
countable homogeneous structures, and states a few open problems. Links with enumera-
tion results, and the analogous result for circular permutations, are also described.

1 What is an infinite permutation?

There are several ways of viewing a permutation of the finitd Bet ., n}, giving rise to com-
pletely different infinite generalisations.

To an algebraist, a permutation is a bijective mapping foérto itself. This definition
immediately extends to an arbitrary set. The set of all permutations of any isead group
under composition, theymmetric grouBym(X).

A combinatorialist regards a permutation{df,...,n} in passive form, as the elements of
{1,...,n} arranged in a sequence;,ay,...,an). If we try to extend this definition to the
infinite, we are immediately faced with a problem: what kind of sequence should we use? For
example, should it be well-ordered?

A more satisfactory approach is to regard a permutatidipf ., n} as a pair of total orders,
where the first is the natural order and the second is the afdera, < --- < a, of the terms
in the sequence. Thus a permutation is a relational structure over the language with two binary
relational symbols (interpreted as total orders).

In this aspect, the infinite generalisation is clear, but the result is different from the other
two. On an infinite seX, a pair of total orders do not correspond to a single permutation, but
to a double coseb1 TG, in Sym(X), whereG; andG; are the automorphism groups of the two
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total orders. (In the finite case, of course, a total order is rigid, so this double coset contains just
the single permutatiort)

This representation also makes the notiosubpermutatiorlear; it is simply the induced
substructure on a subséf X (the restriction of the two total orders Y.

| will adopt this view of permutations here. Accordingly, a finite permutation will be re-
garded as a pair of total orders, each represented by a sequence. For example, the permutation
usually written in passive form &®,4,1,3) might be represented @abcd bdac. | will call
2413 thepatternof this structure. Thus, a finite permutation is the pattern of an isomorphism
class of finite structures (each consisting of a set with two total orders). The two total orders are
denoted<; and<s.

2 Ages and amalgamation

A relational structureX is homogeneous any isomorphism between finite substructures<of
can be extended to an automorphisnXofTheageof a relational structur¥ is the class of all
finite structures embeddableXn

The best-known homogeneous structure is the ordere@.s€rass [8], taking this as a
prototype, gave a necessary and sufficient condition for a class of finite structures to be the age
of a countable homogeneous relational structure. The four conditions are listed below; a class
¢ of finite structures satisfying them is calledraiss class

(a) ¢ is closed under isomorphism.
(b) € is closed under taking induced substructures.
(c) € has only countably many members (up to isomorphism).

(d) € has theamalgamation propertyif A B1,B, € € andf; : A— B; are embeddings far=
1,2, then there exi<E € € and embeddingg; : Bi — C fori = 1,2 such thatf1g; = fogo
(wherefi1g1 means the result of applying and therg,).

The amalgamation property informally says that two structures with a common substructure can
be glued together. Frs& further showed using a back-and-forth argument thdtidfa Frass

class, then the countable homogeneous strugtwrbose age i€ is unique up to isomorphism.

We call X theFraiss limit of €.

Some authors (for example, Hodges [9]) include alsojoie embedding properthere.

This is the following apparent weakening of the amalgamation property: gvd € &, there
existsC € € such that botlB; andB, can be embedded @. These authors usually require a
substructure to be non-empty; | will allow the empty structure (but assume that it is unique up
to isomorphism). With this convention, the joint embedding property is a special case of the
amalgamation property.

It is easy to see that conditions (a)—(c) above and the joint embedding property are necessary
and sufficient fok to be the age of some countable structure; but such a structure is by no means
unique in general.

See Hodges [9], Chapter 6, for further discussion of this material.
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Now we interpret (a)—(d) for the structures associated with permutations (sets with a pair
of total orders). Since a pattern specifies an isomorphism class, (a) means that such a class is
defined by a set of patterns. Condition (b), called theereditary propertyof course means
thatC is defined by a set of excluded subpermutations. Condition (c) is vacuous. So the amal-
gamation property is the crucial condition. We will not always distinguish carefully between a
class¢ of relational structures and the corresponding cdlas$ permutations!

The aim of this paper is to determine the IBE classes of permutations (and so, implicitly,
the countable homogeneous structures consisting of a set with a pair of total orders). The classes
will be described in the next section, and the theorem proved in the section following. Note that
Murphy [12] has considered the question of hereditary classes of permutations with the joint
embedding property (that is, ages of infinite permutations).

Countable homogeneous graphs, digraphs and posets have been determined [10, 4, 13]. The
result of this paper is analogous (though rather easier); but as far as | can see it does not follow
from existing classifications.

Much effort has been devoted to enumerating the permutations in various classes. In par-
ticular, the Stanley—Wilf conjecture [1] asserts that a hereditary class not containing all per-
mutations has at most' permutations om points, for some constait On the other hand,
Macpherson [11] showed that apyimitive Fras$ class of relational structures of arbitrary
signature (one whose members do not carry a natural equivalence relation derived from the
structure) has at least/p(n) members of given cardinality, provided that it has more than one
member of some cardinality. (Hecas an absolute constant greater than 1, pagolynomial.)
Examples where the growth is no faster than exponential are comparatively rare. It would ap-
pear that permutations would be a good place to look for such examples: this was part of the
motivation for the present paper. From this point of view, the main theorem of this paper is a
disappointment: of the five Fis classes of permutations defined beldvandJ * are trivial,

J/J* andJ*/J are imprimitive, andJ consists of all permutations.

3 The examples

We begin by defining five classes of finite permutations.

J: the class of identity permutations. This corresponds to two identical total orders, and is
defined by the excluded pattern 21.

J*: the class of reversals, of the fofm,n—1,...,1). This arises when the second order is the
converse of the first, and is defined by the excluded pattern 12.

J /J*: this is the class of increasing sequences of decreasing sequences of permutations, de-
fined by the excluded patterns 231 and 312.

J*/J: the class of decreasing sequences of increasing sequences, defined by the excluded
patterns 213 and 132.

U: the universal class of all finite permutations, where the two total orders are arbitrary.
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These are all Fia$® classes. Indeed, the countable homogeneous structures are clear in the
first four cases: the first and second &egwith the second order equal to or the reverse of
the first); the third and fourth are the lexicographic producfodvith itself, with the second
ordering reversed within blocks, resp. reversed between blocks. (Their automorphism groups
are Auf{Q) in the first two cases, and the wreath product (@)t Aut(Q) in the third and
fourth.) In the last case, since the orders are unrelated, we can amalgamate them independently.

The countable homogeneous structure corresponding tas an explicit description as
follows. The point set isQ?. Choose two real vector&@, b) and (c,d), with b/a andd/c
distinct irrationals satisfyingg/a+d/c # 0. Now set(x,y) <1 (u,V) if xa+yb < ua+ vb, and
(x,y) <2 (u,v) if xc+yd < uc+vd. (To see this, note first that given two points- (x,y) and
u = (u,v), the remaining pointép,q) fall into three intervals divided by andu with respect
to the first order, and three intervals with respect to the second order; all nine combinations
are non-empty. Using this, we find that all possible extensions of a given finite structure are
realised.)

4 The main theorem

Theorem 1 A class of finite permutations is a Fsze class if and only if it is one of the follow-
ing: the identity permutation of1},J,J*, J/J*, J*/J, or U.

Proof The trivial class is obviously a Fis& class, and we have observed that the same is true
for the other five classes. We have to show that anysBf&lass is one of these.

Let C be a Fra8< class of permutations, afitlits Frass limit. We may assume thét
contains permutations on more than one point.

First observe that, if contains 2-element structure on which the orders agree, then it con-
tains arbitrarily large such structures. For, by amalgamating a structure of larvgth one of
lengthn, where the last point of one is identified with the first point of the other, we obtain a
structure of lengtin-+n— 1. So, in this casd; contains].

Dually, if C contains a two-point structure on which the orders disagree, then it codtains

We conclude that, i€ is not equal to eithel or J*, then it contains both of them. We may
suppose that this is the case.

We further suppose th& # U. Then there is some structurenot contained irC; we
assume thak is minimal with this property. We show that has three or four points. For
suppose thatX| = n > 4. There aren— 1 pairs of elements which are consecutive in each of
the orders. Sinc¢)) > 2(n— 1), there are pointg,y € X consecutive in neither order. Then
the only amalgam oK \ {x} and X\ {y} (identifying X\ {x,y}) is the given structure ok,
since the relations betweearandy are determined by the other points. Thus C, contrary to
assumption.

Suppose first thaliX| = 3. We know that the patterns 123 and 321 certainly occur. Now
amalgamatingab,ab) with (bc,cb) shows that we have eithéabc ach) (pattern 132) or
(abc cab) (pattern 312). The other three possible ways of amalgamating the two 2-element
structures show that we have one of each of the following pairs:
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e 312 or 213;
e 213 or 231;
e 231 0r 132.

Thus one of the following holds:

(a) exactly two of these four patterns occur, necessarily either 132 and 213, or 312 and 231.

(b) exactly three of the four patterns occur; any one may be the missing one.

We begin with case (a). Lé&tandB be structures (carrying two total orders). We Asg” B
to denote the disjoint union & andB, witha <; banda <, bforallac A, b e B.

Lemma 2 Suppose thdl is a Fraiss class of permutations containid§2and213, Then, for
any structures B € C, we havgA " B) € C.

Proof First assume thg#\| = 1, sayA = {a}, and letx andy be the minimum elements &
in the two orders. Iix =y, then amalgamatB with (ax ax); otherwise, amalgamate it with
(axy,ayx) (of pattern 132).

Dually, the result holds ifB| = 1 (using the pattern 213).

Now for the general case, we first constrdct U B, with ¢ <1 B andc <2 B, and also
AuU{c}, with A <1 candA <, c. Amalgamating these structures gives the resut.

If both 312 and 231 are forbidden, then the binary relation defined Ay if the orders
disagree on{x,y} is an equivalence relation, and so the structure belongs to theJcld$s
Lemma 2 shows that every permutation in this class belon@s &oC =J /J*.

Dually, if 132 and 213 are forbidden, th€n=J*/J.

Now we turn to case (b) and show that this cannot occur. Suppose, without loss of generality,
that only 132 is forbidden. (Interchanging either or both of the orders transforms this case into
any of the others.) Now

e amalgamatingabc bac) (with pattern 213) with(bcd,dbc) (with pattern 312) gives
(abcd dbag);

e amalgamatingbde dbe (with pattern 213) with(abebea) (with pattern 231) gives
(abdedbea;

e amalgamatingabcd dbac) with (abdedbeg gives(abcdedbeag.

But the last structure contairibce bec) with the excluded pattern 132, a contradiction.

Next suppose thaiX| = 4. Our earlier argument shows that the forbidden patterns have
the property that each of the six 2-subsets in an excluded 4-set must be adjacent in one of the
two orders. The only permutations satisfying this condition are the two permutations 2413 and
3142.

But amalgamatingabce aceb (with pattern 1342) withacdedace (with pattern 3124)
gives (abcdedacel), containing(abdedaeb with pattern 3142. Similarly the other pattern
can be formed by amalgamatifabce beca with (acdeecad).
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Finally, if C contains all four-element structures, then there is no minimal excluded pattern,
and we hav€ = U. The proof is complete. m

5 Circular permutations

A circular order on a finite sefX is the ternary relation obtained by placing the points on a
circle and taking all triples in anticlockwise order. In general, a circular order can be defined
as a ternary relation such that the restriction to any finite set is a circular order (it suffices to
consider restrictions to sets with at most four points [2]).

Now, by analogy, we can definecacular permutatiorto be a finite set carrying two distinct
circular orders.

Since a circular order on points is not rigid but admits the cyclic groy, of ordern
as automorphism group, we see thagadtern(defining an isomorphism class of finite permu-
tations) is not a single permutation but a double c&gC,, for some permutatiom. The
number of patterns is asymptoticafly/n?; the exact values are given as sequence A002619 in
theEncyclopedia of Integer Sequendép

From the main theorem, we can deduce the classification ed€relasses of circular per-
mutations:

Theorem 3 There are just five Friz<£ classes of circular permutations containing structures
with more than two points.

Proof From any circular orde€ on a setA, and any poine € A, we obtain a derived total
orderC, onA\ {a}, where
Ca={(b,c): (a,b,c) €C}.

Moreover,C can be recovered uniquely fro@y,: for, if b < ¢ < d in the orderC,, then
(b,c,d) € C. Hence, from any circular permutation, dnand anya € A, we obtain a derived
permutation orA\ {a}. For any clas€ of finite circular permutations, lét’ be the class of
derived permutations; theh determine€’, andC’ determines at most one cldss

It is easy to see that each of the five classes of permutations in the main theorem is the
derived class of a class of circular permutations. For example, corresponding tptake
points on a circle partitioned into consecutive blocks; for the second circular order, reverse the
order of the points within each block.

The proof is completed using Theorem 1 and the following lemnma.

Lemma 4 A classC of circular permutations is a Fi@< class if and only if its derived class
C’is a Fraiss class of permutations.

Proof As usual, the hereditary and amalgamation properties are the only ones which require
attention. The argument here deals with the amalgamation property; the hereditary property is
similar but easier.

Suppose thaf has the amalgamation property. To amalgamate elenianBs of the de-
rived clas<C’ overA, add a pointito A and construct the corresponding circular permutations,
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and then amalgamate these and derive the result with respgcCunversely, suppose that
has the amalgamation property, and we wish to amalgaBwai# < C over the substructure
A. Without loss of generalityA # 0; choosea € A and amalgamate the derived structures with
respectt@a. m

6 Open problems

| conclude with some open problems arising from this paper.

Problem 1 Extend the main theorem of this paper to structures consistimg total orders,
wherem > 3.

The last three problems depend on the conceptrefiactof a relational structuréX,R ).

This is a relational structurgX,S ), whereS is a family of relations, each of which has a first-
order definition without parameters in the struct(XeR ). For example, ik is a total order on
X, and the betweenness relatiBiis defined by the rule th&(x,y, z) holds if and only if either
X<y<zorz<y<x then(X,B)is areduct of X, <).

In the case of countabte-categorical structurgs<,R ) (which includes countable homoge-
neous structures over finite relational languages), a reduct is simply a relational st(¥cfire
such that AutX,S) > Aut(X,R ). Moreover, in this case, a reduct is defined up to equivalence
by its automorphism group, where two relational structures are equivalent if each is a reduct of
the other. IfX is countable, then a subgroup of S{X) is closed in the topology of pointwise
convergence if and only if it is the automorphism group of a relational structure &o find-
ing the reducts ofX,R ) is equivalent to finding the closed overgroups of 3R ). | refer to
Hodges [9] for further detalils.

The universal homogeneous countable total ordéRis<); its reducts are itself, the derived
betweenness relation, circular order and separation relation, and the empty relation (correspond-
ing to the symmetric group) — see [2]. The reducts of the random graph were determined by
Thomas [14].

Problem 2 Determine all reducts of the universal homogeneous permutation (up to equiva-
lence).

There are 37 obvious reducts. Choosing independently a reduct of each order gives 25
possibilities; and reversals and interchange of the orders generate a dihedral group of order 8,
with 10 subgroups, and similarly for reversing and interchanging the two derived circular orders;
but we have now counted 8 reducts twice.

Among these reducts is a universal 2-dimensional poset (the intersectqraoid <,) and
a universal permutation graph (their agreement graph) — neither is homogeneous.

Are there any others?

Problem 3 Which infinite permutations are reducts of homogeneous structures over finite rela-
tional languages?

As an example to illustrate this problem, | note that the clagé-Ee permutationgthose
containing neither of the patterns 2413 and 3142) is the age of an infinite permutation which
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is a reduct of a homogeneous structure, even though it is not itselfissd-rdass, as we have
seen.

Let (T,r) be a finite rooted binary tree, in which the two children of each non-leaf are
ordered. Let be an arbitrary colouring of the internal verticeslofvith two colours (black and
white). LetX be the set of leaves df (excludingr if necessary). Fox,y € X, XY, letxAy
denote the last non-leaf common to the pathandry. Now consider the following relations
onX:

e Agraph, in whichx ~ yif XAy is black. This graph is aograph[5] or N-free graph6];
that is, it contains no induced path of length 3. Every N-free graph can be so represented,
though the representation is not unique.

e Aternary relation defined by the rule thayzif xAy =xAz#£yAz

Covington [6] showed that the structures consisting of the graph and ternary relation obtained
from all triples (T,r,c) in this way is a Fress€ class. Our class will be a slight variant of
Covington'’s.

From the datdT,r,c), we obtain a permutation as follows. Lej be the order oiX defined
in the usual way by depth-first searchlinand<, the order defined by the modified depth-first
search in which the children of a white non-leaf are visited in reverse order. The agreement
graph of this pair of orders is precisely the N-free graph defined above; so the permutation
excludes 2413 and 3142. Any permutation excluding these patterns can be so represented.

Let € be the class of structures with two total orders and a ternary relation, derived in this
way from triples(T,r,c), where(T,r) is a rooted binary tree antla 2-colouring of its non-
leaves. Ther® is a Fras< class. The proof is not given here, as it is almost identical to that
in [6]. If we take the Fr&<e limit and ignore the ternary relation, we obtain a universal N-free
permutation.

Problem 4 Which infinite circular permutations are reducts of homogeneous structures over
finite relational languages?

Note that, analogous to the N-free permutations, there is a class of pentagon-free circular
permutations (similar to the pentagon-free two-graphs defined in [3]).
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