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Abstract

We find generating functions for the number of words avoiding certain patterns
or sets of patterns with at most 2 distinct letters and determine which of them are
equally avoided. We also find exact numbers of words avoiding certain patterns and
provide bijective proofs for the resulting formulae.

Let [k] ={1,2,...,k} be a (totally ordered) alphabet on k letters. We call the elements
of [k]" words. Consider two words, o € [k|" and 7 € [¢(]™. In other words, o is an n-long
k-ary word and 7 is an m-long f-ary word. Assume additionally that 7 contains all letters
1 through ¢. We say that o contains an occurrence of 7, or simply that o contains 7, if
o has a subsequence order-isomorphic to 7, i.e. if there exist 1 <1i; < ... < i, < n such
that, for any relation ¢ € {<,=,>} and indices 1 < a,b < m, o(i,)pc(ip) if and only if
7(a)¢7(b). In this situation, the word 7 is called a pattern. If o contains no occurrences
of 7, we say that o avoids 7.

Up to now, most research on forbidden patterns dealt with cases where both ¢ and 7
are permutations, i.e. have no repeated letters. Some papers (Albert et al. [AH], Burstein
[B], Regev [R]) also dealt with cases where only 7 is a permutation. In this paper, we
consider some cases where forbidden patterns 7 contain repeated letters. Just like [B],
this paper is structured in the manner of Simion and Schmidt [SS], which was the first to
systematically investigate forbidden patterns and sets of patterns.

1 Preliminaries
Let [k]"(7) denote the set of n-long k-ary words which avoid pattern 7. If T is a set of
patterns, let [k]"(T") denote the set of n-long k-ary words which simultaneously avoid all

patterns in 7} that is [k]"(T") = Ner[k]™ (7).

THE ELECTRONIC JOURNAL OF COMBINATORICS 9(2) (2002), #R3 1



n

For a given set of patterns T, let fr(n, k) be the number of T-avoiding words in [£]",
ie. fr(n,k) = |[k]"(T)]. We denote the corresponding exponential generating function
by Fr(x;k); that is, Fr(z;k) = > <o fr(n,k)a™/n!. Further, we denote the ordinary
generating function of Fr(z;k) by Fr(z,y); that is, Fr(z,y) = > o, Fr(z;k)y". The
reason for our choices of generating functions is that k™ > |[k]™(T)| > n‘(fL) for any set
of patterns with repeated letters (since permutations without repeated letters avoid all
such patterns). We also let Gr(n;y) = > oo, fr(n, k)y*, then Fr(x,y) is the exponential
generating function of Gr(n;y).

We say that two sets of patterns T} and T belong to the same cardinality class, or
Wilf class, or are Wilf-equivalent, if for all values of k and n, we have fr,(n,k) = fr,(n, k).

It is easy to see that, for each 7, two maps give us patterns Wilf-equivalent to 7. One
map, r : 7(¢) — 7(m+1—1i), where 7 is read right-to-left, is called reversal; the other map,
where 7 is read upside down, ¢ : 7(i) — £+ 1 — 7(i), is called complement. For example,
if ¢ =3, m = 4, then r(1231) = 1321, ¢(1231) = 3213, r(c(1231)) = c(r(1231)) = 3123.
Clearly, cor =rocand r? = ¢> = (cor)? = id, so {r,c) is a group of symmetries of a
rectangle. Therefore, we call {7, r(7), ¢(7), r(c(7))} the symmetry class of T.

Hence, to determine cardinality classes of patterns it is enough to consider only rep-
resentatives of each symmetry class.

2 Two-letter patterns

There are two symmetry classes here with representatives 11 and 12. Avoiding 11 simply
means having no repeated letters, so

k) = (i)n' (W, Fu(zk) = (1+2)".

A word avoiding 12 is just a non-increasing string, so

), Fuo(a: ) = ﬁ

3 Single 3-letter patterns

n+k—1
n

frz(n, k) = (

The symmetry class representatives are 123, 132, 112, 121, 111. It is well-known [K] that

1

2n
5,0123)] = [5,(130) = €, = — (%)

the nth Catalan number. It was also shown earlier by the first author [B] that

k2 .
o n 4 2
fraa(n, k) = fisa(n, k) = 2" 22 Zak—w( j)’

. n
J=0
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where i
2t
=Y CpnDi—m, D= (t)
m=j

and

y 2y°
F123(1',?/) = F132($7y) =1+ +

l—z  (1-22)1—y)+ /(I -202—y)(1—y)

Avoiding pattern 111 means having no more than 2 copies of each letter. There are
0 < i < k distinct letters in each word o € [k]" avoiding 111, 0 < j < i of which occur
twice. Hence, 2j + (i — j) = n, so j = n — i. Therefore,

ko . k k
flll(n’k)zz<z>(n—z)2"’ ZQ"’n—Z (26 — n)! Zan—z

=0 1= =

(r+s)!
25(r — s)ls!
first kind. In particular, we note that fi11(n, k) =0 when n > 2k.

where (k); is the falling factorial, and B(r,s) = is the Bessel number of the

o\ k
Theorem 1 Fijq(z;k) = <1 +x+ %) )

Proof. This can be derived from the exact formula above. Alternatively, let o be any
word in [k]"(111). Since « avoids 111, the number of occurrences of the letter & in « is 0,
1 or 2. Hence, there are fi11(n,k—1), nfi;1(n—1,k—1) and (;)flll(n — 2,k —1) words
a with 0, 1 and 2 copies of k, respectively. Hence

fnl(n, ]{Z) = fln(n, k — 1) + Tlfnl(n — 1, k — 1) -+ (Z) fnl(n — 2, k — 1),

for all n,k > 2. Also, fi11(n,1) = 1 for n = 0,1,2, fi11(n,1) = 0 for all n > 3,
f111(0,k) = 1 and f111(1, k) = k for all k, hence the theorem holds. O

Finally, we consider patterns 112 and 121. We start with pattern 121.

If a word o € [k]™ avoids pattern 121, then it contains no letters other than 1 between
any two 1’s, which means that all 1’s in o, if any, are consecutive. Deletion of all 1’s from
o leaves another word o; which avoids 121 and contains no 1’s, so all 2’s in oy, if any, are
consecutive. In general, deletion of all letters 1 through j leaves a (possibly empty) word
oj on letters j + 1 through £ in which all letters j + 1, if any, occur consecutively.

If a word o € [k]|™ avoids pattern 112, then only the leftmost 1 of ¢ may occur before
a greater letter. The rest of the 1’s must occur at the end of o. In fact, just as in the
previous case, deletion of all letters 1 through j leaves a (possibly empty) word ¢; on
letters j 4+ 1 through £ in which all occurrences of j + 1, except possibly the leftmost one,
are at the end of o;. We will call all occurrences of a letter j, except the leftmost j, excess

J’s.
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The preceding analysis suggests a natural bijection p : [k]"(121) — [k]"(112). Given a
word o € [k]"(121), we apply the following algorithm of k steps. Say it yields a word o)
after Step 7, with ¢® = o. Then Step j (1 < j < k) is:

Step j. Cut the block of excess j’s, then insert it immediately before the final block
of all smaller excess letters of oU~1), or at the end of o= if there are no smaller excess
letters.

It is easy to see that, at the end of the algorithm, we get a word o*) € [k]"(112).

The inverse map, p~' : [k]"(112) — [k]™(121) is given by a similar algorithm of & steps.
Given a word o € [k]"(112) and keeping the same notation as above, Step j is as follows:

Step j. Cut the block of excess j’s (which are at the end of ¢U~Y), then insert it
immediately after the leftmost j in ¢U=1.

Clearly, we get o®) € [k]"(121) at the end of the algorithm.

Thus, we have the following

Theorem 2 Patterns 121 and 112 are Wilf-equivalent.

We will now find fi12(n, k) and provide a bijective proof of the resulting formula.
Consider all words ¢ € [k]™"(112) which contain a letter 1. Their number is

gllg(n, k’) = fllg(n, k‘) — |{0‘ € U{?]n(112) : 0 has no 17S}| = fllg(n, k‘) — fllg(n, k— 1) (1)

On the other hand, each such ¢ either ends on 1 or not.

If o ends on 1, then deletion of this 1 may produce any word in ¢ € [k]"7'(112),
since addition of the rightmost 1 to any word in ¢ € [k]"~*(112) does not produce extra
occurrences of pattern 112.

If o does not end on 1, then it has no excess 1’s, so its only 1 is the leftmost 1 which
does not occur at end of . Deletion of this 1 produces a word in ¢ € {2,...,k}""1(112).
Since insertion of a single 1 into each such ¢ does not produce extra occurrences of pattern
112, for each word & € {2,...,k}"1(112) we may insert a single 1 in n — 1 positions (all
except the rightmost one) to get a word o € [k]"(112) which contains a single 1 not at
the end.

Thus, we have

gr2(n, k) = fia(n —1,k) + (n — 1)|{o € [k]" ' (112) : 0 has no 1’s}| =
= fllg(n - 1, k’) + (n - 1)f112(n — 1, k— 1) (2)

Combining (1) and (2), we get
fug(n, k?) — f112(n, k— 1) = fug(n— 1, k?) + (TL — 1)f112(n — 1, k— 1), n Z 1, k Z 1. (3)

The initial values are fi15(n,0) = 0 for all n > 0 and f112(0,k) = 1, fi12(1, k) = k
for all £k > 0.
Therefore, multiplying (6) by ¥* and summing over k, we get

G112(n;y) — 0no — YGr12(n; y) = Griz(n — 1, y) — 610+ (0 — D) yGria(n — L;y), n > 1,
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hence,
(1 — y)Gllg(n; y) = (1 + (n — 1)y)G112(TL — 1; y), n Z 2.

Therefore,

1+ (n—1)

Ghiz(n;y) = 1=y Y Gualn —13y), n>2. (4)

AISO, Gm(O; y) =
repeatedly yields

1
and Gi2(1;y) = so applying the previous equation
-y

¥y
(1—y)*

y(I+y)(1+2y) - (14 (n— 1)y)
(1 —y)m*!

G112(7’L§ y) =

We have

iNumemc:m(n; D)= (14 9)A+20) 1+ (- 1)y) =" ] @ +j) _

n n

=" Z c(n, k) (5) = Z c(n, k)y" " =Y c(n,n—k)y",

k=0 k=0

where ¢(n, j) is the signless Stirling number of the first kind, and

Denom(Gria(n;y)) — (L—y)»tt kz:% ( " )y |

so f(n, k) is the convolution of the two coefficients:
k .
n+k—1 n+k—j—1 ,
k) = —k = g — 7).
fiiz2(n, k) <c(n,n ) * < " )) 2 < i )c(n,n 7)
Thus, we have a new and improved version of Theorem 2.

Theorem 3 Patterns 112 and 121 are Wilf-equivalent, and

K
fiza(n, k) = fuiz(n, k) Z(n+k_j—1)0(nan—j);
)

1 1— 1y
Fioi(z,y) = Fue(z,y) = 1—y (1_y_yxy) ’

We note that this is the first time that Stirling numbers appear in enumeration of
words (or permutations) with forbidden patterns.
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Proof. The first formula is proved above. The second formula can be obtained as the ex-
ponential generating function of G112(n;y) from the recursive equation (4). Alternatively,
multiplying the recursive formula (3) by z"~!/(n — 1)! and summing over n > 1 yields

d d
%FllQ(x; k?) = Fllg(.ilf; k?) + (1 + $)%Fn2($; k — 1)

Multiplying this by y* and summing over & > 1, we obtain

1

—F .
[ y— 112(2, y)

d
—F —
Ir 112(357 y)

1
Solving this equation together with the initial condition Fi12(0,y) = 1o yields the
-y

desired formula. O

We will now prove the exact formula (6) bijectively. As it turns out, a little more
natural bijective proof of the same formula obtains for feo;(n, k), an equivalent result
since 221 = ¢(112). This bijective proof is suggested by equation (3) and by the fact that
c(n,n — j) enumerates permutations of n letters with n — j right-to-left minima (i.e. with
Jj right-to-left nonminima), and ("+k7:j _1) enumerates nondecreasing strings of length n
on letters in {0,1,...,k —j—1}.

Given a permutation 7 € S,, which has n — j right-to-left minima, we will construct
a word o € [j + 1]"(221) with certain additional properties to be discussed later. The
algorithm for this construction is as follows.

Algorithm 1
1. Let d = (dy,...,d,), where d, = {

0, if r is a right-to-left minimum in 7,

1, otherwise.
2. Let s = (s1,82,...,8,), where s, =1+ > d,,r=1,...,n.
3. Let c =mos (ie. 0, = Srery, T=1,... ,n). This is the desired word o.

Example 1 Let 7 = 621/93/574/8/10 € Syp. Then n —j = 5,80 j+1 =6, d =
0100111010, s = 1222345566, so the corresponding word o = 4216235256 € [6]'°(221).

Note that each letter s, in o is in the same position as that of r in 7, i.e. 7 1(r).

Let us show that our algorithm does indeed produce a word o € [j + 1]"(221).

Since 7 has n — j right-to-left minima, only j of the d,’s are 1s, the rest are 0s. The
sequence {s,} is clearly nondecreasing and its maximum, s, = 1+ 1-j = j + 1. Thus,
o € [j 4+ 1]" and o contains all letters from 1 to j + 1.

Suppose now ¢ contains an occurrence of the pattern 221. This means 7 contains a
subsequence bca or cba, a < b < ¢. On the other hand, s, = s., 500 = s.— s, = Zi:b-l—l d,,
hence d. = 0 and ¢ must be a right-to-left minimum. But a < ¢ is to the right of ¢, so ¢
is not a right-to-left minimum; a contradiction. Therefore, o avoids pattern 221.

Thus, o € [j+1]"(221) and contains all letters 1 through j+ 1. Moreover, the leftmost
(and only the leftmost) occurrence of each letter (except 1) is to the left of some smaller
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letter. This is because s, = s,_1 means d, = 0, that is b is a right-to-left minimum, i.e.
occurs to the right of all smaller letters. Hence, sy, is also to the right of all smaller letters,
i.e. is a right-to-left minimum of 0. On the other hand, s, > s,_1; means d, = 1, that is b
is not a right-to-left minimum of 7, so s, is not a right-to-left minimum of o.

It is easy to construct an inverse of Algorithm 1. Assume we are given a word o as
above. We will construct a permutation 7m € S,, which has n — j right-to-left minima.

Algorithm 2
1. Reorder the elements of o in nondecreasing order and call the resulting string s.

2. Let m € S, be the permutation such that o, = s, r = 1,...,n, given that o, = o
(i.e. Sxa) = Sxp) implies m(a) < 7(b) & a < b). In other words, 7 is monotone
increasing on positions of equal letters. Then 7 is the desired permutation.

Example 2 Let 0 = 4216235256 € [6]'°(221) from our earlier example (so j + 1 = 6).
Then s = 1222345566, so looking at positions of 1s, 2s, etc., 6s, we get

(1) =6
7({2,5,8}) ={2,3,4} = w(2)=2, n(5)=3, 7(8) =4
m(3) =1
7({4,101) = {9,10} = 7(9) =4, x(10) = 10
w(6) =5

({7,9) = {7.8} = (7)=7, 7(9) =8

Hence, m = (6,2,1,9,3,5,7,4,8,10) (in the one-line notation, not the cycle notation) and
7w has n — j right-to-left minima: 10, 8, 4, 3, 1.

Note that the position of each s, in ¢ is 77!(r), i.e. again the same as 7 has in 7.
Therefore, we conclude as above that m has j +1 — 1 = j right-to-left nonminima, hence,
n — j right-to-left minima. Furthermore, the same property implies that Algorithm 2 is
the inverse of Algorithm 1.

Note, however, that more than one word in [k]"(221) may map to a given permutation
m € S, with exactly n — j right-to-left minima. We only need require that just the letters
corresponding to the right-to-left nonminima of 7 be to the left of a smaller letter (i.e. not
at the end) in o. Values of 0 and 1 of d, in Step 1 of Algorithm 1 are minimal increases
required to recover back the permutation 7 with Algorithm 2. We must have d,. > 1 when
we have to increase s,, that is when s, is not a right-to-left minimum of o, i.e. when r is
not a right-to-left minimum of 7. Otherwise, we don’t have to increase s,, so d, > 0.

Let o € [k]"(221), m = Alg2(0), 6 = Algl(m) = Algl(Alg2(o)) € [ + 1]™(221), and
n = o — & (vector subtraction). Note that e, = s,.(c) — s,(6) > 0 does not decrease (since
s,(0) cannot stay the same if s,(7) is increased by 1) and 0 <e; <...<e, <k—j—1

Since position of each e, in 7 is the same as position of s, in o (i.e. 7, = e,
e =ejey...e,), the number of such sequences 7 is the number of nondecreasing sequences
e of length n on letters in {0,...,k —j — 1}, which is (”+k_j_1).

n
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Thus, o € [k]"(221) uniquely determines the pair (7,e¢), and vice versa. This proves
the formula (6) of Theorem 3.
All of the above lets us state the following

Theorem 4 There are 3 Wilf classes of multipermutations of length 3, with representa-
tives 123, 112 and 111.

4 Pairs of 3-letter patterns
There are 8 symmetric classes of pairs of 3-letters words, which are
{111,112}, {111,121}, {112,121}, {112, 122}, {112, 211}, {112,212}, {112,221}, {121, 212}.

Theorem 5 The pairs {111,112} and {111,121} are Wilf equivalent, and

e~ 1 —y 1/y
Finao(2,y) = Finae(z,y) = -y (1 oy — my) ’

n k
f111112n/€ Z ()(k‘—l—z;j—l) (i,i—j).

Proof. To prove equivalence, notice that the bijection p : [k]"(121) — [k]"(112) preserves
the number of excess copies of each letter and that avoiding pattern 111 is the same as
having at most 1 excess letter j for each j = 1, ..., k. Thus, restriction of p to words with
< 1 excess letter of each kind yields a bijection p[q11: [k]"(111,121) — [k]™(111, 112).

Let a € [k]™(111,112) contain ¢ copies of letter 1. Since « avoids 111, we see that i €
{0,1,2}. Corresponding to these three cases, the number of such words «v is fi11.112(n, k —
1), nfiine(n — 1,k —1) or (n — 1) fi11112(n — 2,k — 1), respectively. Therefore,

f111,112(n, /f) = f111,112(n, k— 1) + nf111,112(n -1,k — 1) + (n - 1)f111,112(n -2,k — 1)7
for n,k > 1. Also, fi11112(n,0) = dn0 and fi11,112(0, k) = 1, hence

Fiie(es k) = (14 2) Figne(e k= 1) + /$F111,112(1'; k—1)dx,

where fi11112(0, k) = 1. Multiply the above equation by y* and sum over all k > 1 to get

1— Yy 1/y
Fuiae(r,y) =cly)e ™ - (17) ;
—y—-ry
1
which, together with Fi11 112(0,y) = T yields the generating function.

Notice that F111’112 (SL’, y) = e‘xFHg(x, y), hence, F111’112 (213'7 ]{7) = e_ang (SL’, /{3), SO
fi11,112(n, k) is the exponential convolution of (—1)™ and fi12(n, k). This yields the second
formula. U
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Theorem 6 Let Hyi101(7; k) = ano fiiza21(n, k)a™. Then for any k > 1,

1 d
Hy(z) = ——H k—1 _H k—1
k() 1= 112,121 (7 )+ I 112,121 (7 ),
and H1127121 (l’; O) = 1.
Proof. Let o € [k]"(112,121) such that contains j letters 1. Since a avoids 112 and 121,
we have that for j > 1, all j copies of letter 1 appear in « in positions n — j + 1 through
n. When j = 1, the single 1 may appear in any position. Therefore,

friiza21(ns k) = fiigpon(nsk — 1) + nfiioam(n — 1,k —1) + Z fiizaoi(n —js k= 1),

j=2
which means that
f112,121(n; k) = f112,121(n —1; /f) + f112,121(n§ k— 1)
+ (TL — 1)f1127121 (n — 1, k’ — 1) — (TL — 2)f112’121(n — 2, k’ — 1)
We also have fi12.121(n;0) = 1, hence it is easy to see the theorem holds. O

Theorem 7 Let Hyi9011 (75 k) = ano fii2011(n, k)a™. Then for any k > 1,

3

T d
—H k-1
1= + 0 112,211 (2 )

Higon(z k) =142+ 352)H1127211(1’; k—1)+

and H1127211($; O) = 1.

Proof. Let o € [k]"(112,211) such that contains j letters 1. Since o avoids 112 and
211 we have that 7 = 0,1,2,n. When j = 2, the two 1’s must at the beginning and
at the end. Hence, it is easy to see that for j = 0,1,2,n there are fi12011(n;k — 1),
nfieo(n —1;k —1), fiize1(n —2;k — 1) and 1 such «, respectively. Therefore,

frizonn(ns k) = fiioonn(nyk — 1) +nfioonn(n — 1Lk —1) + fiigon(n — 2,k — 1) + 3.

We also have fi12121(n;0) = 1, hence it is easy to see the theorem holds. O

Theorem 8 Let a, i = fi12212(n, k), then

n k—1n—d

Apk = Ap k—1 + E E QjrQp—d—j k—1—r

d=1 r=0 j=0

[y

and apy =1, ap; = 1.

Proof. Let a € [k]"(112,212) have exactly d letters 1. If d = 0, there are a,, 1 such a.
Let d > 1, and assume that a;, = 1 where d = 1,2,...j. Since a avoids 112, we have
io =n+2—d (if d =1, we define iy = n + 1), and since « avoids 212 we have that
Qg oy are different for all @ < i; < b < iy. Therefore, a avoids {112,212} if and only if
(o1, ..y, —1), and (Qgy 41, - .., @iy—1) are {112, 212}-avoiding. The rest is easy to obtain.
O
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Theorem 9

i k
fiizon(n, k) = Zj ‘j!< )

ot = ) 5

for allk >n > 2, and fi12201(0,k) =1, fi1200(1, k) = k.

Proof. Let a € [k]"(112,221) and j < n be such that oy, ..., «; are all distinct and j
is maximal. Clearly, j < k. Since a avoids {112,221} and j is maximal, we get that the
letters ajy1, . .., ay, if any, must all be the same and equal to one of the letters a4, ..., a;.
Hence, there are j j'(l;) such « if | for j <nor j =n > k. For j = n < k, there are

foralln > k+1,

n‘(ﬁ) such . Hence, summing over all possible j = 1,..., k, we obtain the theorem. O

fi21212(n, k) Z] ( )(?:i)

for k>0, n>1, and fi21212(0,k) =1 for k > 0.

Theorem 10

Proof. Let a € [k]"(121,212) contain exactly j distinct letters. Then all copies of each
letter 1 through j must be consecutive, or @ would contain an occurrence of either 121
or 212. Hence, « is a concatenation of j constant strings. Suppose the i-th string has
length n; > 0, then n = >7_ n;. Therefore, to obtain any a € [k]"(121,212), we can
choose j letters out of k in (';) ways, then choose any ordered partition of n into j parts
in (;‘j) ways, then label each part n; with a distinct number [; € {1,...,;j} in j! ways,
then substitute n; copies of letter [; for the part n; (i =1,..., 7). This yields the desired
formula. o
Unfortunately, the case of the pair (112, 122) still remains unsolved.

5 Some triples of 3-letter patterns

Theorem 11
e —1((1+x)k—1
Fiigao 011 (2 k) =1+ ( )(( - ) )’
Z—,(”+ )( ,), n>1,
fuzonon(n, k) = {577\ J n+1—j
17 n = 0
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Proof. Let a € [k]"(112,121,211) contain j letters 1. For j > 2, there are no letters
between the 1’s, to the left of the first 1 or to the right of the last 1, hence 7 = n. For
j=1,7=01itis easy to see from definition that there are nfi12121211(n — 1,k — 1) and
fi12.121.211(n, k — 1) such «, respectively. Hence,

f112,121,211(n7 k) = f112,121,211(n7 k— 1) + nf112,121,211(n -1,k — 1) +1,

for n,k > 2. Also, a(n,1) = a(n,0) = 1, a(0,k) = 1, and a(1,k) = k. Let b(n,k) =
fi12,121,211(n, k) /n!, then

1
b(n, k) = b(n,k = 1) +b(n — Lk — 1)+ —.

Let by(7) = >_,500(n, k)z", then it is easy to see that b(z) = (1 + x)bp_1(z) + € — 1.
Since we also have by(z) = €*, the theorem follows by induction. a

6 Some patterns of arbitrary length

6.1 Pattern 11...1

Let us denote by (a); the word consisting of [ copies of letter a.

Theorem 12 For any I,k > 0,

Proof. Let a € [k]"((1);) contain j letters 1. Since « avoids (1);, we have j <[ —1. If «
contains exactly j letters of 1, then there are (?) fay,(n — j, k — 1) such «, therefore

l—

fay(n k) =" (?) fay(n— g,k —1).

1
J=0

We also have fny,(n, k) = k™ for n <1 — 1, hence it is easy to see the theorem holds. O
In fact, [CS] shows that we have

n

Fan(n k) =Y My~ (n,)(k);,

1=1

where ML~ (n, ) is the number of partitions of an n-set into i parts of size <1 — 1.
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6.2 Pattern 11...121...11

Let us denote v,,; = 11...121...11, where m (respectively, ) is the number of 1’s on the
left (respectively, right) side of 2 in v,,,;. In this section we prove the number of words in
[E]" (V) is the same as the number of words in [k]"(vym410) for all m, 1 > 0.

Theorem 13 Let m,l >0, k > 1. Then forn > 1,

m—+l—1

Foms 2+ L) = fo (k) = 3 (2‘) foo(n1— gk —1).

J=0

Proof. Let a € [k]"(vs,,) contain exactly j letters 1. Since the 1’s cannot be part of
an occurrence of v,,; in a when 7 < m + 1 — 1, these 1’s can be in any j positions, so
there are (?)fvmyl(n,k — 1) such a. If j > m + [, then the m-th through (j —{ + 1)-
st (I-th from the right) 1’s must be consecutive letters in « (with the convention that
the 0-th 1 is the beginning of a and (j + 1)-st 1 is the end of «). Hence, there are

(n_fnmqjll_l) fom,(n — 7.k — 1) such a, and hence

"L (n & n—j+m+1i—-1
fvm,z(n;k): Z (j-)fvm,z(n_‘??ki_l)—{_lz ( ma+l—1 )fvm,z(n_]7k_1)'

J=0 j=m+l
Hence for all n > 1,

m+l—1 n
fUM,l(n + 17k) - fvm,l(n7 k) = Z <j)fvm,l(n+ 1 _j7k - 1)
§=0

An immediate corollary of Theorem 13 is the following.

Corollary 14 Let m,1 >0, k> 0. Then forn >0

Jomi (0 K) = foii0(n k).

In other words, all patterns v,,; with the same m + | are Wilf-equivalent.

Proof. We will give an alternative, bijective proof of this by generalizing our earlier
bijection p : [k]"(121) — [k]"(112). Let a € [k]"(vyn,). Recall that o is a word obtained
by deleting all letters 1 through j from « (with ag := «).

Suppose that a contains ¢ letters 7 + 1. Then all occurrences of 7 + 1 from m-th
through (¢ — [+ 1)-st, if any (i.e. if j > m+1), must be consecutive letters in o;. We will
denote as excess j’s the (m+ 1)-st through (i — [ + 1)-st copies of 7 when [ > 0, and m-th
through i-th copies of j when [ = 0.

Suppose that m + 1 = m' +{’. Then the bijection p, 1 @ [K]™ (Vi) — [K]" (V) is
an algorithm of k steps. Given a word a € [k]"(v,,,), say it yields a word al¥) after Step
4, with @ := .. Then Step j (1 < j < k) is as follows:

Step j.
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1. Cut the block of excess j’s from aU~Y; ; (which is immediately after the m-th
occurrence of 7), then insert it immediately after the m’-th occurrence of j if I > 0,
or at the end of aU=, | if I’ = 0.

2. Insert letters 1 through j — 1 into the resulting string in the same positions they are
in aU~Y and call the combined string o).

Clearly,

and at Step j, the j’s are rearranged so that no j can be part of an occurrence of v, .
Also, positions of letters 1 through j — 1 are the same in a¥) and a1, hence, no letter
from 1 to j can be part of v, in o) by induction. Therefore, oz(k) € [k]"(vpr) as
desired.

Clearly, this map is invertible, and ppymi = (Pmpmry) " This ends the proof. O

Theorem 15 Let p > 1 and dy( = [...[f(x)dx...dx (and we define do(f(z)) =
f(x))). Then for any k > 1,

p—1 ' p—1-3
Eyo(@i k) — /va,o(f; k)dz = ((—D’dp(vao ) > ,>,
j i=0 ’

J=0

8

~.

and F,, (2;1) = e, F, ,(0;k) = 1.

Proof. By definition, we have f, ,(n,1) =1 for all n > 0 so F, ,(x;1) = e”. On the
other hand, Theorem 13 yields immediately the rest of this theorem. O

Example 3 For p =1, Theorem 15 yields

S0y efﬂ( e

which means that, for any n > 0

,_.

.

wrazi= ("7 5T,

(cf. Section 2.)

Example 4 For p =2, Theorem 15 yields
FnQ(SL’; k?) =e". /(1 + :L’)e_anQ(,ZL’; k— 1)dl‘,

and FnQ(SL’; 0) = 1.
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Corollary 16 For anyp >0

P
F,.(r:2) =e Z i
j=0
Proof. From Theorem 15, we immediately get that
p—1 'p—l—j e
F, (2:2) - / Fopo(@:2)de =2 3 (-1 30 2
=0 i—0 U
which means that
d ( ( )) Pl
e"— (e"F, ,(x;2)) = ¢ —
D, ) [
dx =7
hence the corollary holds. O
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Corrigendum — submitted May 3, 2007

This is a correction of a bijection between two pattern-restricted sets that appeared in
our original paper (herein referred to as [BM]) and was also referred to in

S. Heubach, T. Mansour, Avoiding patterns of length three in compositions and multiset
permutations, Adv. Appl. Math. 36:2 (2006), 156-174.

Let [k] = {1,2,...,k}, then [k]" is the set of n-long words over [k]. A word in o € [k]"
is said to contain an occurrence (or instance) of a pattern T € [¢]™ if o has a subsequence
that is order-isomorphic to 7 (i.e. ¢ has the same pairwise comparisons as 7) and T
contains all letters in [¢]. If o has no occurrences of 7 then o is said to avoid 7. We
denote the set of 7-avoiding permutations in [k]™ by [k]"(7).

This corrigendum corrects the algorithm on page 4 of [BM] that yields a bijection
p: [k]"(112) — [K]™(121).

Let w = (a(1),a(2),...,a(n)) € [k]"(121). Define excess x as any letter z occurring
after the leftmost = and before a larger letter. Define excess j-block as follows: If a letter
7 occurs at least twice in w, then an excess j-block is the longest sequence of consecutive
letters starting from the second j from the left (say a(i) = j,a(i +1),...,a(i +v), v > 0))
satisfying the conditions:

L.a(i+r)<jforall 0 <r <w.
2. ifa(i+ 1) =a < j for some 0 <r <w, then a(i+ r) is not an excess a.

Then the following modification of the algorithm in [BM] will give a bijection. Let
w) be the subword of wU~1 consisting of all non-excess letters less than j and all letters
greater than j. Define p = p(w) as follows. Let p*) = w®). Now, for j from k& — 1 down
to 1, to obtain p¥) from pU*Y insert the leftmost j into pUtY) in the same position as that
of the leftmost j in pU), then insert the excess j-block at the end of pU*Y). Then append
the sequence of letters smaller than j that were previously at the end of w). Finally, let
p =pW. Then p € [k]"(112). Note that the movement of excess j-blocks must begin with
the smallest 7 = 1 successively to the largest j = k.

The following is a more concise version, bearing the crucial definition of excess j-block
in mind. Let w = (a(1),a(2),...,a(n)) € [k]"(121). Set p(w) = p®), where p¥) is given
by the following algorithm. Let p(® = w, and let pU~—Y be the result of applying the
algorithm j — 1 times. Then define p¥) as the word obtained from p~1 after successively
doing the following for each ¢ < j: “cut out the excess i-block and insert it immediately
before other excess t-blocks in pU~Y, where ¢t < i, or at the end of pU=1) if there is no
excess block there.” Then p(w) = p® € [k]"(112). The inverse map is now obvious
because of the strict definition of excess j-block, provided we return each to the position
immediately after the leftmost j, beginning from j = k£ down to 7 = 1 this time.

Thus 3311132224 € [4]'9(121) transforms through j = 0,1,2,3,4, respectively, as
follows:

[4]'°(121) > 3311132224 +— 3313222411 + 3313242211

7
— 3431322211 — 3431322211 € [4]'°(112). (7)
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Conversely, starting with 3431322211 € [4]'°(112), there is no excess 4-block, so we locate
the excess 3-block 3132 and insert it immediately after the leftmost 3, i.e., 3313242211,
then we similarly return the excess 2-block 22, and finally the excess 1-block 11 to recover
the original word.

Let r; denote the ith occurrence of letter r, and let w(j) be the word w without all
letters less than j (so w = w(1)). Then the j; (the leftmost j) in p(j) immediately follows
r; for some r > j if and only if j in w(j) immediately follows ;. Now the excess j’s occur
as a consecutive block immediately following j; in w(j) and at the end of p(j).

For example, w = 3135111513352125234; € [4]'°(121) is obtained as follows:

4y — 31393341 — 31323321292341 — 3132111513332125254; € [4]'°(121).

Thus, 4; and 3; are inserted in the beginning, the 2, is inserted after the 33, and the 1;
is inserted after the 3. Now p = p(w) € [4]'°(112) is obtained as follows:

41 — 31413233 — 31413233212223 — 31413211332122231213 € [4]10(112)

The authors would like to thank Augustine Munagi for bringing the error in the proof of
Theorem 2 to their attention as well as for his significant help in correcting it.

We also note that the second formula in Theorem 3 of [BM] for the generating function
Fi12(z,y) for the number of words in [k]™(112) is slightly incorrect. Indeed, the solution
of the second differential equation in the proof of Theorem 3 of [BM] is not Fi12(z, y), but
Fiia(x,y) — Fi12(x;0) = Fiia(z,y) — 1, since the preceding summation is over £ > 1, not
k > 0. Therefore, the correct generating function is

y 1—y 1y
F —F =1 .
o) = Ao =1+ 72 ()

The authors would like to thank Lara Pudwell for noticing this error.
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