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Definition 1 Let o € S,, and 7 € Sy be two permutations. Then « contains T if there
exists a subsequence 1 < iy < iy < ... < i < n such that (o, ..
to 7; in such a context T is usually called a pattern; o avoids T, or is T-avoiding, if

does not contain such a subsequence. The set of all T-avoiding permutations in S, s
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Abstract

A 321-k-gon-avoiding permutation 7 avoids 321 and the following four patterns:

k(k +2)(k+3) - (2k — 1)1(2k)23 - (k — 1)(k + 1),
k(k +2)(k +3) - (2k — 1)(2k)12--- (k — 1)(k + 1),
(k+1)(k+2)(k+3) - (2k — 1)1(2k)23 - - k,
(k+1)(k+2)(k+3) - (2k — 1)(2k)123- - k.

The 321-4-gon-avoiding permutations were introduced and studied by Billey and
Warrington [BW] as a class of elements of the symmetric group whose Kazhdan-
Lusztig, Poincaré polynomials, and the singular loci of whose Schubert varieties have
fairly simple formulas and descriptions. Stankova and West [SW1] gave an exact
enumeration in terms of linear recurrences with constant coeflicients for the cases
k = 2,3,4. In this paper, we extend these results by finding an explicit expression
for the generating function for the number of 321-k-gon-avoiding permutations on
n letters. The generating function is expressed via Chebyshev polynomials of the
second kind.

Introduction
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denoted by S, (T). For a collection of patterns T', a avoids T if o avoids all T € T'; the
corresponding subset of S, is denoted by S, (T).

While the case of permutations avoiding a single pattern has attracted much attention
(for example, see [BaWe, BWX S, SW2]), the case of multiple pattern avoidance remains
less investigated. In particular, it is natural to consider permutations avoiding pairs of
patterns 71, 75. The enumeration problem was solved completely for 71,75 € S3 (see
[SS]) and for 7, € S5 and 7, € Sy (see [W]). For 7,7 € Sy the classification into Wilf
classes has been completed and enumeration formulae are known for many Wilf classes
exact (see [Bol, Km] and references therein). Several recent papers [CW, MV1, Kr, MV2,
MV3, MV4]| deal with the case 71 € S, 73 € Sy for various pairs 71, 75. The tools involved
in these papers include Fibonacci numbers, Catalan numbers, Chebyshev polynomials,
continued fractions, and Dyck words, e.g. in [MV2]:

Theorem 2 (Mansour, Vainshtein) Let U,,(cosf) = sin(m + 1)0/sin 6 be the Cheby-
shev polynomial of the second kind. When 2 < d+ 1 < k, the generating function for the
number of permutations in S,(321,(d+1)---k12---d) is given by

Uk 1 < \/‘)
VU <7)
Recently, a special class of restricted permutations has arisen in representation theory.

Definition 3 A permutation w is k-gon-avoiding if it avoids each pattern in the set Py:

(k(k+2)(k+3) - (2k — 1)1(2k)23 - - (k — 1)(k + 1),
k(k+2)(k+3) - (2k — 1)(2k)12- - - (k — 1) (k + 1),
(k+1)(k +2)(k+3) - (2k — 1)1(2k)23 - - - k,
(k4 1)(k+2)(k+3) - (2k — 1)(2k)123 - - - k}.

We say that © is a 321-k-gon-avoiding permutation if it is both k-gon-avoiding and 321-
avoiding. The number of 321-k-gon-avoiding permutations in S, is denoted by fr.(n). The

corresponding generating function is fi(x) = 3, o fe(n)a™.

Figure 1: Bs: all four 5-gons

Note that fy(n) = n%rl (*") for n € 0,2k — 1], as these count the permutations in S, (321)
(see [Kn]).
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Billey and Warrington [BW] introduced the 321-4-gon-avoiding (or 321-hezagon-avo-
iding) permutations as a class in S,, whose Kazhdan-Lusztig and Poincaré polynomials,
and the singular loci of whose Schubert varieties have fairly simple formulas and descrip-
tions. Upon their request, Stankova and West [SW1] presented an exact enumeration for
the cases k = 2,3,4 by using generating trees, the symmetries in the set of the Py, and
the structure of the 321-avoiding permutations via Schensted’s 321-subsequences decom-
position.

Theorem 4 (Stankova,West) For k = 2,3,4, the sequences fr(n) satisfy the recursive
relations

fa(n) = 6fs(n —1) —11fs(n —2) + 9fs(n — 3) — 4fa(n — 4) — 4fs(n — 5) + fa(n — 6), n > 6;
f3(n) =4fs(n—1) —4f3(n —2) +3f3(n —3) + f3(n —4) — fs(n —5), n=5;
fo(n) =3fa(n —1) =3fa(n —2) + fo(n —3) = (n —1)2+1, n > 3.

In this paper we present an approach to the study of 321- k-gon- avoiding permutations
in S,, which generalizes the methods in [SW1] and [MV3]. As a consequence, we extend
the results in [SW1] to all 321-k-gon-avoiding permutations, and derive a number of other
related results. The main theorem of the paper is formulated as follows.

Theorem 5 Fork >3 and s > 1, define LF(s) = > (—1) (S;j)fk(n—j). When n > 2k,
j=0
this sequence satisfies the linear recursive relation with constant coefficients:

L2k —2) =Lk [(2k —2) + LF_4(2k —5) + LF_;(2k —4) + LE_,(2k —5) + Lk _,(2k — 4).

Corollary 6 For k > 3,

(14202 + ) Uiy (5 ) = VAL + 2)Unss (227

o) = Ve [(1 + 222 4 23) Uy (ﬁ) = Va1 +2)Us-3 <ﬁ)} |

The proofs of Theorem 5 and Corollary 6 are presented in Section 2. Note that
Corollary 6 implies the previously known results for the cases k = 3,4 (see [SW1]):

1 — 3z + 22% — 223 — 22*
1 —4a + 422 — 323 — 24 + 25’
1 — 5z + 72? — 53 4+ 2* + 32°
1— 62 + 1122 — 923 + 4ot + 425 — 26

fa(x) =

fa(z) =

In Section 3, we describe several generalizations of Theorem 5 and Corollary 6, following
similar arguments from their proofs.
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2 Proof of Theorem 5

2.1 Refinement of the numbers f;(n)

Definition 7 For m,n with 1 < m < n and distinct i1,1s,....1,, € N, we denote by
fr(nyiy, ... i) the number of 321-k-gon-avoiding permutations = € S,, which start with
T1lg - by’ MU+ Ty = G1lo -+~ ipy. LThe corresponding subset of S, is denoted by

Fr(nig, ... im).

Here follow basic properties of the numbers fi(n;ii, ..., i,), easily deduced from the
definitions.

Lemma 8 Letn>3, 1<m<nandl <3 <ip<--<ip <n.

(a) If m < n—2 and 3 < iy, then fr(n;iy,...,0m,J) =0 for 2 < j < i, — 1. Conse-
quently,

fk(ﬂ,ll,,lm) = fk(nvllyalm71) + Z fk(n;1177lm7‘7)

(b) If m <k—1 and 2 <y, then fr(n;iy,...,im,1) = fuln —1;i —1,.. . iy —1).
(c) If iy < k—1, then fr(nyiy, ... in) = fr(n —1yig —1,. .. iy — 1),

Proof For (a), observe that if 71 € Fr(n;iy,...,im, ) then the entry (i,,, j,1) gives an
occurrence of 321 in 7. For the second part of (a), consider the entry 1 of 7. Again,
avoiding 321 forces m,4+1 = 1 or muy1 > ipm. For (b), denote by 7' the permutation
obtained from 7 by deleting its smallest entry and decreasing all other entries by 1 and
the permutation 7 obtained from 7’ by 7 = (my +1,...,m, +1, 1,7, +1,...,m,_;+1).
Then 7 € Fr(n;iy, ..., im, 1) if and only if 7’ € Frp(n—1;4; —1,..., 4, — 1), since entry 1
placed as in (b) cannot be used in an occurrence of 321 or 7 € Py in 7. For (c), observe
that if mymg---m, = 11721, then the entry ¢; cannot appear in any occurrences of
T € Py; further, if there is an occurrence xyz of 321 such that x = ¢; then there is an
occurrence toyx of 321 in 7. O

Lemma 8 implies an explicit formula for fi.(n;s) for the first values of s.

Proposition 9 For 1 < s < min{k — 1,n},

J

Ju(n;s) = Szi(—l)j (8 - _j) fe(n =1 =)

J=0
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Proof By Lemma 8(a)-(c) the proposition holds for s = 1,2. For s > 3, Lemma 8(a)

says
fr(nis) = fr(n;s, 1) kan:sy
j=s+1
n n—1
= fi(n;s) = feln—1;s—1)+ Z fr(n—1;7-1) = Z fr(n—1;7).
Jj=s+1 j=s—1
Equivalently,
fe(n; s) = fu(n—1) kan—lj (1)

Using induction on s, we assume that the prop081t10n holds for all 1 < j < s—1. Then
(1) yields

Switching the summation for indices ¢ and j, applying the familiar equality

)+ (@) () -GE)

and finally relabelling the remaining index ¢ to j, we obtain for all 2 < s <k — 1
s—1 s — 1 —
fr(n;s) = feln—1) +Z ( j )fk(n—l—j)
7=1

S_1<—1>j (75

J

I
jing

Next we introduce objects Ag(n, m) which organize suitably the information about the
numbers fi(n; i1, 42, ..., i) and play an important role in the proof of the main result. O

Definition 10 Forl <d<n+1-—-mandl <m <n set

Ad(nam): Z fk(nazlaazm)

d<ii<ig<-<im<n

In the following subsections 2.2-2.3 we derive two expressions for Ay (n,k—1), compare
them in subsection 2.4, and thus complete the proof of Theorem 5.
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2.2 First expression of Ay(n,k—1)

The numbers A4(n, m) satisty the following recurrence.
Lemma 11 For2<d <k and1 <m <min{k — 1,n},
Ag(n,m) = Ag_1(n,m) — Ag_1(n—1,m—1).

Proof By Definition 4, for all 2 < d < k we have:
Ag(n,m) = Ag—1(n,m) — Z fr(nyd — 1,09, oy i),
d<ip<-<im<n
Lemma 8(c) and Definition 4 imply
Agln,m) = Ag_1(n,m) — Z fr(n —1ydg, 05 .. i)

d—1=ia<iz<-<im<n—1

= Ag1(n,m) — Ag1(n—1,m—1).

We next find an explicit expression for A;(n,m) in terms of fi(n).

Lemma 12 Let 1 <m < min{k — 1,n}. Then

Ai(n,m) = Z(—w( , j)fk(n_j).
=0 J
Proof For m =1, Ai(n,1) = >, -, fu(njir) = fx(n), which equals the required

expression. Assume the lemma for m and all appropriate n. Comparing the (m + 1)5t
entry j of m with 4,,,

im—1

Al(n,m):Al(n,m+1)+ Z ka(n;/Ll)/LQa)/Lmvj)

1<ii1<ig<...<im<n j=1

For the summation part on the right—hand side, avoidance of (321) implies that all num-
bers 1,2, ..., 7 — 1 appear before the entry 7, and hence 7 < m. From Lemma 8§,

Ai(n,m) = Aj(n,m+1 +Z > Fems 1,2, 5 = 15,0550, ey i, )

J=1 j+1§’i]'<ij+1 <...<tm<n

Z fk(n_j_'_l;ijaijJrla"'aimal)

J=1 2<i]'<i]'+1<...<imgn—j+1

Ms

= Ai(n,m+1)+

Ms

= Ai(n,m+1 Z Je(n = 3545, 0551, 0y im)
=1 1<4<ij41<...<tm<n—j

= Ai(n,m+1 Z (n—j,m~— j+1)=ZA1(n—j,m—j+1)
=1 =0
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Applying the above to A;(n — 1,m — 1), subtracting the results, using the induction
hypothesis and the Pascal triangle identity (m]_j) + (T_‘f) = (m_j?+1), we arrive at

Ai(n,m) = Ai(n,m+1)+A(n—1,m—1)
= Ai(n,m+1) = Ai(n,m)—Ai(n—1,m—1)

_ i(—l)j (mj_j)fk(n—j) —mzl(—l)j (m_ij N 1)fk(n— 1-7)

J=0 J=0 J
m+1 o

= Y (" ) )
j=0

O

Lemmas 11-12 can be combined to derive the following explicit expression for A4(n, m),
which is easily proven by induction on d.

Corollary 13 Let 1 <d <k, 1 <m <min{k — 1,n}. Then

dm (d+m—1—j

Agy(n,m) = Z (—1) )fk(n —7) = Lﬁ(d—l— m—1).

=0 J
In particular,
2k—2 .
2k — 2 — .
Atk = 1) = S0y (P72 ) o) = e -2,
j=0

2.3 Second expression of Ai(n,k—1)

We start by introducing three objects related to A4(n,m).
Definition 14 Forl <d<n—-m-+1and1l <m <n set

Ba(n,m) = Z fr(nsdyiy, ... im);
d+1<i1<ig < <im<n
Cd(n7m) = Z fk(nazla7zm7]—)a
d<i1 <ig<:<im<n
Dd(n,m) = Z fk(n;d,il,...,im,l).

d+1<i1 <io < <im<n

Note that by Lemma 8(a), for & > 2:
Ap(n,k—1) = Ar(n, k) + Cr(n, k — 1). (2)
The following Propositions 15-16 describe Ag(n, k) and Cy(n,k — 1) in terms of fi(n).
Proposition 15 Letn > k — 1. Then

(a) Cr(n,k—1)=Cr1(n—1,k— 1)+ Ap_1(n — 3,k — 2);
(b) C’k(n,k - 1) = C’k(n - 1,]{3 - 1) +Ak_2(n— 3,]6 - 2) —I—Ak_l(n - 3,]6 - 2)
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Proof For (a), similarly to Lemma 8(b) (with k& > 3), we have
Cr(n,k—1) = Z fr(nyin, oo ik, 1,2) + Z fre(nyin, ik, 1otg).

k<i1<-<ig_1<n k<i1<-<ip_1<ip<n
(3)

If 7w starts with 4y, ...,7,_1, 1,2 as in the first sum in (3), then the entry 2 cannot partic-
ipate in an occurrence of 321 or of 7 € P,. Hence

fk(n; il, c. ,ik_l, 1, 2) = fk(n - 1; il - 1, ey ik:—l - 1, 1) (4)
For the second sum in (3), if = starts with 4,...,ix_1, 1, i, avoidance of 321 and both

(k+1)(k+2)(k+3) - (2k — 1)1(2k)23 - - - k,
k(k +2)(k +3) -+ (2k — 1)1(2k)23 - (k — 1)(k + 1),

implies i1 = k and i, = k 4+ 1. Now, if 7 starts with k, k + 1,43,...,%x_1, 1,7, where
k+2 <13 <--- <1 <n, then note that no occurrence of 7 € P, can contain the entries
k or k + 1; further, an occurrence of 321 containing k will exist in 7 if and only if there
is such an occurrence containing k + 1. Using this and Lemma 8,

fk(na kak+ 177;37"'7ik717177;k+1) = fk(n_ 1ak723_ 17"'77;1671 - 17177;k+1 - 1)
= fk(n_Q;k_laiS_Qa"wikfl_27ik+1_2)
= fe(n—35i3—3,. .. g1 — 3,ik41 — 3).

Combining the last equality with (3), (4) and the definitions of Cy(n,m) and Agi(n, m),
we obtain the desired equality

Cr(n,k—1)=Cr_1(n—1,k = 1)+ Ag_1(n — 3,k — 2).
For (b), by definitions of Cy(n,m) and D4(n, m), we have
C’k_l(n - 1, k — 1) = C’k(n - 1, k — 1) + Dk_l(n - 1, k— 2)

Combining with (a), it is enough to show Dj_1(n—1,k —2) = Ax_s(n—3,k —2). To this
end, note that if 7 € Fr(n—1;k—1,41,...,05-2,1) where k+1 <i; < -+ <o <n—1,
then by Lemma 8

fk(n— 1,]{3 - 1,i1,...7ik_2,1) = fk(n— 3;i1 —2,...,ik_2 - 2)
By definitions of Dy(n,m) and Ay(n, m), we obtain the required equality. O

Proposition 16 Let n > k — 1. The sequences Ay, By, Cy and Dy, satisfy the relations:
(a) Ap(n,k) = Br(n— 1,k — 2);
(b) Be(n — 1,k —2) = Di(n—1,k—2)+ Bp(n — 1,k —1);
(¢) Be(n — 1,k — 1) = Bg(n — 2,k — 2);
(d) Dp(n—1,k—2) = Ag_o(n—4,k—2)+ Ap_1(n — 4,k — 2);
(e) Ap(n, k) — Ar(n — 1,k) = Aj_o(n — 4,k —2) + Ap_1(n — 4,k — 2).
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Proof For (a), if 7 € Fy(n;iy,ia,...,0) so that k& < i3 < s < -+ < i < n, then
avoidance of 321,

(k+1)(k+2)(k+3)---(2k —1)(2k)123- - -k,

and

k(k+2)(k+3)---(2k—1)(2k)12--- (k= 1)(k+ 1),
implies i1 = k and i, = k+1. Since no occurrence of 7 € Py, in 7 can contain both entries k
and k+1, it follows that fx(n;k, k+1,13,...,9) = fr(n—1;k,i3—1,...,ix—1), and hence
(a). For (b), if 7 € Fr(n — 1;k,dy,...,ig—2) so that K+ 1 < iy <ip < -+ <idgp_o <n—1,
then by Lemma 8(a)-(b) we get

n—1

fk(n_l;kaila'“aik72>:fk(n_l;kaila"'aikf%l)—i_ Z fk(n_l;kaila'“aikfl)a

lg—1=lg—2+1

so, if summing over £k + 1 < 1 < iy < -+- < i3_9 < n — 1 then by Definition 5 we have
(b). For (c), if m € Fp(n — 1;k,i1,...,9%—1) where k+ 1 < i3 < -+ <ip_y <n—1, then
avoidance of

321 and k(k +2)(k +3) - - (2k — 1)(2k)12- - (k — 1)(k + 1)

implies again iy = k+ 1. As in (a), fr(n — Lk, k4 1,40, ...,i5—1) = fr(n — 2;k,is —
1,... i1 — 1), and (c) follows. For (d), consider Dy(n — 1,k — 2) along with a similar
argument to the one in Lemma 8(b):

Dk(n—l,k—Q) = Z fk.(n, k,il,...,ikfg,l,Q)
k+1<i1 < <i_o<n
+ Z fk(na kaila"'aikf%laikfl)a

k+H1<ig<-<ip_1<n

Part (d) follows from here as in the proof of (4) and (5). Finally, (a)—(d) yield (e). O

2.4 Proofs of Theorem 5 and Corollary 6

By — N1 (5 i
Theorem 17 Fork > 3 ands > 1, define L} (s) = ]z::O( 1)7( ; ) fe(n—3). Whenn > 2k,
this sequence satisfies the linear recursive relation with constant coefficients:

LE©2k—2) =Lk [(2k —2) + LF_4(2k —5) + LF_s(2k —4) + LE_,(2k —5) + Lk _,(2k — 4).
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Proof By (2), Ax(n,k — 1) — Ax(n, k) = Ck(n,k — 1). Replacing n by n — 1 and
subtracting yields

(Ax(n, k—1)— Ag(n, k) — (Ag(n—1,k—=1)— Ar(n—1,k)) = Cx(n, k—1) = Cr(n—1,k—1),
= Ap(n,k—1)—Ax(n—1,k—1) = Ax(n, k) — Ax(n—1,k) + Cx(n, k—1) = Cr(n—1,k—1).
By Proposition 15(b) and Proposition 16(e),
Ap(nk—1)—Axin—1,k—1) = Aro(n—3,k—2)+ Ap_1(n—3,k—2) (5H)
+ Apo(n—4k—=2)+Ap1(n—4,k—2).
The result of Corollary 13 completes the proof. O

Corollary 18 For k > 3,
(1 + 2$2 + ZL‘S)UQk_g <ﬁ) - \/5(1 + I)ng_4 <ﬁ)

fulw) = Nz [(1 + 222 + 23) Usp—y (ﬁ) — Vel a)Uss <ﬁ)} |

Proof Let 1 <2k —5<s. Since fx(n) =¢, = #1(2:) forallm =0,1,...,2k — 1, we
have

> s =30 () (fk(w) - Zx> -

n>2k =0
Recall that the Chebyshev polynomials of the second kind satisfy the relation

0 (5m) - (77)

(see [Ri, page 75-76]), while the Catalan numbers satisfy the relation

i(_l)i(s;i)qi: (_1)1(3—;—l)

> (=) (8 Z Z) Z_: ey =) ' (—1)i(8 Z Z) i = Z(—x)l (8 B ll B l).

i=0
Therefore, for 1 < 2k —5 < s,

n s 1 . 1
2 Lus)a =, (577 o =20 (52 )

Finally, the Chebyshev polynomials of the second kind satisfy also the relation

() e () - o)

for all m > 2, hence by Theorem 5 we get the desired result. O
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3 Further results

In this section we describe several directions which generalize Theorem 5 by use of the
same arguments as in the proofs of Theorem 5 and Corollary 6.

3.1 First generalization

For any 1 <d <k —2, let X} ; be the set of all patterns
d+1,d+2,....k—1,1,2,....5,k,j+1,j+2,...,d)

for 7 = 0,1,2,...,d, plus the pattern 321. For example, X§,1 = {321,213,231}. Denote
the number of permutations in S, (321, X}, ;) by . 4(n).

Theorem 19 Letk >3 and 1 < d< k—2. Foralln >k,

Z P )kt = (250)

and for all 0 < n < k — 1, x}c’d(n) = L(2:) Thus, the generating function for

n+1
{21 4(n) fnz0 is

/2

) Uk—2 <2f) + Gyt
Z%,d(”)x = ) :
n>0 VUi <m)

Proof As in Subsection 2.1, we define

Ay(n,m) = > fra(yin, ... im)

s<i1 <2< <tm<n

where f,;d(n; i1, ... ,1m) is the number of permutations = € 5,,(321, X,iyd) which start with
U109+ * Uy T+ + * My = G102 - - - &y. Using the same arguments in the proof of Lemma 12
and Corollary 13 we obtain that

k—1

Agpi(n, bk —d—1) Z ( j ])filc,d(” ) (6)
Jj=

On the other hand, it is easy to verify that

Ad+1(n,k—d— 1) = Z $]1€7d(n;i1,...,ik,d,1,1).

d+1<i1 <io< - <ip_g_1<n

Since our permutations avoid X} ,, we set 4,41 = n. Thus, if 7 € X} ,(n;iy,...,ik_a_2,n,1)
withd+1<14 <---<ip_go<n-—1,then my_gy1 <--- < m,. This means

Ad“(n,k—d—l):(z:g:;) (7)
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Combining (6) and (7) yields the desired recursive relation. The rest of the theorem is
easy to derive by use of the same argument as in the proofs of Corollary 6. O

Example 20 For d =1 and k£ = 3, Theorem 19 yields
xél(n) - leal(n —1)=1, and xé,l(o) = lea,l(l) =1, lea,l(Q) =2.

Hence, z3,(n) = n for all n > 1 (see [SS]). For d = 1, k = 4 and n > 0, Theorem 19
yields
l1(n) = |5,(321,2341,2314)| = 2" — n,

while for d =2, k =4 and n > 2:

d,(n) = |5,(321,3412,3142,3124)| = 3- 272 — 1.

3.2 Second generalization

Let X} ,; consist of the three patterns 321, (d + 1)(d +2)---(k — 1)1k23---d, and (d +
1)(d+2)---(k—1)k12---d. The number of X} -avoiding permutations in S, is denoted

by wi,d(n)'

Theorem 21 Let k>4 and 2 < d <k —2. Then for all n > k,

2(—1)3*(1?_]1’—3‘)3;%@@ —j) = %_:(_1)j (k_;_j)fi,d(n —1-7)
i j:j(_ly(k?j)xi,d(” —3-7),

and 23 4(n) = —5 (®") for all0 < n < k—1. Thus, the generating function for {27 4(n) }nzo

n+1
is
. U () +oles ()
;xi,d(n)x = \/E[Uk ﬁ) + 2Ui_o (ﬁ)}

Proof As in Subsection 2.1, we define

Ay(n,m) = > fRa(niin, ... im)

s<i1 <2< <tm<n

where f,(n;i1,...,in) is the number of permutations 7 € S,(321, X} ;) which start
with 41ig- -4y, mme - T, = 1109 - - - 1,y,. Using the same arguments as in the proof of
Corollary 13 we arrive at

d+m—1 .
fdtm—1- |
Ausr(n,m) — 2304w( " ’)ddm—j»
=0
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for all m < kK —d — 1. On the other hand, the same arguments as in the proof of
Proposition 16 yield

Agir(mk—d—1) = Aga(n— Lk —d—1) + Ag_i(n — 3,k —d — 2).

k-1 k-1

> (=1 () ak aln = )

[e=]

(=17 (" )aRa(n —1-)

+ ,:0<—1>f'(’“*;**f')xi,d<n —3—j).

TS
N

Now, using the same arguments as in the proof of Corollary 6 we obtain the desired result.
O

Example 22 For d =2, k =4 and n > 3, Theorem 21 yields
2 a2 2 2 2 2 _ 2 _
Tyo(n) =375 5(n — 1) = 225 5(n — 2) + 2355(n — 3), and 73,(0) = 73,(1) = 1, 73,(2) = 2.

A comparison of Theorem 21 for different cases suggests that there should exist a
bijection between the sets S, (X} ,) and S, (132, X} ;) for any d such that 2 < d <k — 2.
Producing such a bijection remains yet an open question.

3.3 Third generalization

Let X}, consist of the two patterns 321 and (d + 1)(d +2)---(k — 1)1k23---d. The
number of X} ;avoiding permutations in S, is denoted by z ;(n). Similarly as in the
argument proofs of the main theorem in [MV3] and Theorem 5, we obtain

Theorem 23 Let k>4 and 2 < d <k —2. Then for all n > k,

k

S (* 7 atatn ) o,

=0

and z} 4(n) = =5 (*") for all0 < n < k—1. Thus, the generating function for {x} 4(n)}n=o

+1

18 ( >
Uk-1 (37

D Thalm)a" = ——~

n>0 VU <m)
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Proof Again, we define

As(n,m) = > fRanyin, ..o i),
s<11 <2< <tm<n
Cs(n,m) = 3 fRa(niin, .o i, 1)

s<i1 <2< <tm<n

where f? ;(n;j1,...,Jp) is the number of permutations 7 € S,(321, X} ;) which start
with jijo---jp: mime - My, = Jijo---Jp. Using the same arguments as in the proof of
Proposition 16 we obtain

Agii(n,m) — Age1(n,m + 1) = Cyp1(n,m) and Cypq(n,m) = Cq(n — 1,m),

foralm>k—d—1. So, forallm >k —d—1:

Agii(n,m) — Agei(nym+1) = Ag(n — 1,m) — Ag(n — 1,m + 1).
Adding over all m > k — d — 1 yields

Ager(nk—d—1) = Ag(n — 1,k —d — 1).

On the other hand, using the same arguments as in the proof of Corollary 13 we arrive at

d+m—1 .
(—1) (d +m—1—

Adgii(n,m) = Z j )wi,d(n —J),
§=0

for all m < k —d — 1. Hence,

k—1 _1_] k—2 —2—j
( )xid n—j) ( )xzd(n— 1—3),
J:0 :0

j
or equivalently,

i(—l)j (k . j)xi,d(n —Jj)=0.

J

Now, using the same arguments as in the proof of Corollary 6 we obtain the desired result.
O

Again, finding a direct bijection between the sets S, (X} ;) and S, (132, (d+1) ---k1- - -d)
forany £k >4 and 2 < d < k — 2 is, as of now, an open question.

Acknowledgments. The authors are grateful to the referees for the careful reading
of the manuscript and to M. Atkinson for his remarks. The final version of the paper
was written during the first author’s (T.M.) stay at Chalmers University of Technology
in Goteborg, Sweden. T.M. want to express his gratitude to Chalmers University of
Technology for the support.

THE ELECTRONIC JOURNAL OF COMBINATORICS 9(2) (2003), #R5 14



References

[BaWe]

[BWX]

[Bol]

[Bo2]

[(BW]

MV

IMV3]

IMVA4]

R]

[Ri]

[RWZ]

E. Babson and J. West, The permutations 123p, . ..p; and 321p, ... p, are Wilf-
equivalent, Graphs Comb. 16 (2000) 373-380.

E. Babson, J. West, and G. Xin, Wilf—equivalence for singelton classes, in Proc.
18th Conf. in Formal Power Series and Algebraic Combinatorics, Tempe 2001.

M. Béna, The permutation classes equinumerous to the smooth class, Electron.
J. Combin. 5 (1998) #R31.

M. Béna, The solution of a conjecture of Stanley and Wilf for all layered patterns,
J. Combin. Theory Ser. A, 85 (1999) 96-104.

S. C. Billey and G. S. Warrington, Kazhdan-lusztig polynomials for 321-hexagon-
avoiding permutations,

T. Chow and J. West, Forbidden subsequences and Chebyshev polynomials,
Discr. Math. 204 (1999) 119-128.

D.E. Knuth, The Art of Computer Programming, 2nd ed. Addison Wesley, Read-
ing, MA (1973).

D. Kremer, Permutations with forbidden subsequences and a generalized
Schréder number, Discr. Math. 218 (2000) 121-130.

C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Adv.
in Applied Math. 27 (2001) 510-530.

T. Mansour and A. Vainshtein, Restricted permutations, continued fractions,
and Chebyshev polynomials Electron. J. Combin. 7 (2000) #R17.

T. Mansour and A. Vainshtein, Restricted 132-avoiding permutations, Adwv.
Appl. Math. 126 (2001) 258-269.

T. Mansour and A. Vainshtein, Layered restrictions and Chebychev polynomials
(2000), Annals of Combinatorics 5 (2001) 451-458.

T. Mansour and A. Vainshtein, Restricted permutations and Chebyshev poly-
nomials, Séminaire Lotharingien de Combinatoire 47 (2002) Article B47c.

A. Robertson, Permutations containing and avoiding 123 and 132 patterns, Dis-
crete Mathematics and Theoretical Computer Science, 3 (1999) 151-154.

Th. Rivlin, Chebyshev polynomials. From approximation theory to algebra and
number theory, John Wiley, New York (1990).

A. Robertson, H. Wilf, and D. Zeilberger, Permutation patterns and continuous
fractions, Electron. J. Combin. 6 (1999) #R38.

THE ELECTRONIC JOURNAL OF COMBINATORICS 9(2) (2003), #R5 15



[SS] R. Simion, F.W. Schmidt, Restricted Permutations, Furop. J. of Combinatorics
6 (1985) 383-406.

[S] Z. Stankova, Classification of forbidden subsequences of length 4, Europ. J.
Comb. 17 (1996) 501-517.

[SW1]  Z. Stankova and J. West, Explicit enumeration of 321-hexagon-avoiding permu-
tations, Disc. Math., to appear.

[SW2]  Z. Stankova and J. West, A new class of Wilf-equivalent Permutations, J. Alg.
Comb. 15 (2002) 271-290.

[W] J. West, Generating trees and forbidden subsequences, Discr. Math. 157 (1996)
363-372.

THE ELECTRONIC JOURNAL OF COMBINATORICS 9(2) (2003), #R5 16



