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Abstract

Several authors have examined connections between permutations which avoid
132, continued fractions, and Chebyshev polynomials of the second kind. In this
paper we prove analogues of some of these results for permutations which avoid 1243
and 2143. Using tools developed to prove these analogues, we give enumerations and
generating functions for permutations which avoid 1243, 2143, and certain additional
patterns. We also give generating functions for permutations which avoid 1243 and
2143 and contain certain additional patterns exactly once. In all cases we express
these generating functions in terms of Chebyshev polynomials of the second kind.

Keywords: Restricted permutation; pattern-avoiding permutation; forbidden
subsequence; continued fraction; Chebyshev polynomial

1 Introduction and Notation

Let Sn denote the set of permutations of {1, . . . , n}, written in one-line notation, and
suppose π ∈ Sn and σ ∈ Sk. We say a subsequence of π has type σ whenever it has all
of the same pairwise comparisons as σ. For example, the subsequence 2869 of the permu-
tation 214538769 has type 1324. We say π avoids σ whenever π contains no subsequence
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of type σ. For example, the permutation 214538769 avoids 312 and 2413, but it has 2586
as a subsequence so it does not avoid 1243. If π avoids σ then σ is sometimes called
a pattern or a forbidden subsequence and π is sometimes called a restricted permutation
or a pattern-avoiding permutation. In this paper we will be interested in permutations
which avoid several patterns, so for any set R of permutations we write Sn(R) to de-
note the elements of Sn which avoid every pattern in R and we write S(R) to denote
the set of all permutations (including the empty permutation) which avoid every pat-
tern in R. When R = {π1, π2, . . . , πr} we often write Sn(R) = Sn(π1, π2, . . . , πr) and
S(R) = S(π1, π2, . . . , πr).

Several authors [4, 8, 9, 12, 17] have shown that generating functions for S(132) with
respect to the number of subsequences of type 12 . . . k, for various collections of values
of k, can be expressed as continued fractions. The most general result along these lines,
which appears as [4, Theorem 1], states that∑

π∈S(132)

∏
k≥1

x
τk(π)
k =

1

1 − x1

1 − x1x2

1 − x1x
2
2x3

1 − x1x
3
2x

3
3x4

1 − x1x
4
2x

6
3x

4
4x5

1 − · · ·

. (1)

Here τk(π) is the number of subsequences of type 12 . . . k in π. Generating functions for
S(132) have also been found to be expressible in terms of Chebyshev polynomials of the
second kind [5, 9, 12, 13]. One result along these lines, which appears as [9, Theorem 2],
[12, Theorem 3.1], and [5, Theorem 3.6, second case], states that

∞∑
n=0

|Sn(132, 12 . . . k)|xn =
Uk−1

(
1

2
√

x

)
√

xUk

(
1

2
√

x

) . (2)

Here Un(x) is the nth Chebyshev polynomial of the second kind, which may be defined by

Un(cos t) =
sin((n + 1)t)

sin t
. Another result along these lines, which appears as [9, Theorem

3], states that

∑
π

x|π| =
∑ b∏

i=2

(
li−1 + li − 1

li

)(Uk−1

(
1

2
√

x

))l1−1

(
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(
1

2
√

x

))l1+1
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2
(l1−1)+

bP
j=2

lj
. (3)

Here the sum on the left is over all permutations in S(132) which contain exactly r
subsequences of type 12 . . . k, the quantity |π| is the length of π, and the sum on the right
is over all sequences l1, l2, . . . , lb of nonnegative integers such that

∑b
i=1 li

(
k+i−2
k−1

)
= r. For

other results involving S(132) and continued fractions or Chebyshev polynomials, see [15]
and the references therein.
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Permutations which avoid 1243 and 2143 are known to have many properties which are
analogous to properties of permutations which avoid 132. For instance, it is well known
that |Sn(132)| = Cn for all n ≥ 0, where Cn is the nth Catalan number, which may be
defined by C0 = 1 and

Cn =

n∑
i=1

Ci−1Cn−i (n ≥ 1).

(The Catalan number Cn may also be defined by Cn = 1
n+1

(
2n
n

)
.) As a result, for all

n ≥ 0, the set Sn(132) is in bijection with the set of Catalan paths. These are the
lattice paths from (0, 0) to (n, n) which contain only east (1, 0) and north (0, 1) steps
and which do not pass below the line y = x. Kremer [10, Corollary 9] has shown that
|Sn(1243, 2143)| = rn−1 for all n ≥ 1, where rn is the nth Schröder number, which may
be defined by r0 = 1 and

rn = rn−1 +
n∑

i=1

ri−1rn−i (n ≥ 1).

As a result, for all n ≥ 0, the set Sn+1(1243, 2143) is in bijection with the set Sn of
Schröder paths. These are the lattice paths from (0, 0) to (n, n) which contain only east
(1, 0), north (0, 1), and diagonal (1, 1) steps and which do not pass below the line y = x.
We write S to denote the set of all Schröder paths (including the empty path). In view
of this relationship, we refer to permutations which avoid 1243 and 2143 as Schröder
permutations. (For more information on pattern-avoiding permutations counted by the
Schröder numbers, see [3, 7, 10, 20]. For generalizations of some of these results, see
[3, 11]. For a partial list of other combinatorial objects counted by the Schröder numbers,
see [19, pp. 239–240].)

Motivated by the parallels between S(132) and S(1243, 2143), in this paper we prove
analogues of (1), (2), (3), and several similar results for S(1243, 2143). We begin with
some results concerning S(1243, 2143) and continued fractions. We first define statistics
τk, k ≥ 1, on S and S(1243, 2143). On S(1243, 2143), the statistic τk is simply the
number of subsequences of type 12 . . . k. On S, the statistic τk is a sum of binomial
coefficients over east and diagonal steps. We then give a combinatorial definition of a
bijection ϕ : S → S(1243, 2143) with the property that τk(ϕ(π)) = τk(π) for all k ≥ 1
and all π ∈ S. Using ϕ and a result of Flajolet [6, Theorem 1], we prove the following
analogue of (1).∑

π∈S(1243,2143)

∏
k≥1

x
τk(π)
k = 1 +

x1

1 − x1 −
x1x2

1 − x1x2 −
x1x

2
2x3

1 − x1x
2
2x3 − · · ·

. (4)

By specializing the xis in (4), we obtain continued fraction expansions for several other
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statistics on S(1243, 2143). In particular, we show that for all k ≥ 1,

∞∑
n=0

|Sn(1243, 2143, 12 . . . k)|xn = 1 +
x

1 − x − x

1 − x − x

1 − x · · ·

.

Here the continued fraction on the right has k − 1 denominators. Following [4], we then
define a Schröder continued fraction to be a continued fraction of the form

1 +
m0

1 − m0 −
m1

1 − m1 −
m2

1 − m2 −
m3

1 − m3 − · · ·

,

where mi is a finite monic monomial in a given set of variables for all i ≥ 0. We prove that
the multivariate generating function for a countable family of statistics on S(1243, 2143)
can be expressed as a Schröder continued fraction if and only if each statistic is a (possibly
infinite) linear combination of the τks and each τk appears in only finitely many of these
linear combinations. This result is an analogue of [4, Theorem 2].

We then turn our attention to analogues of (2) and (3). For any k ≥ 2 and any σ ∈
Sk−1 we give the generating function for |Sn(1243, 2143, kσ)| in terms of the generating
function for |Sn(1243, 2143, σ)|. Using this result, we show that

∞∑
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|Sn(1243, 2143, 12 . . . k)|xn = 1 +
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)
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)
for all k ≥ 1. Both of these results are analogues of (2). We then use ϕ and some
well-known results concerning lattice paths to show that

∑
π

x|π| =
∑ b∏

i=0

(
li + li+1 + mi − 1

li+1 + mi

)(
li+1 + mi

mi

)(Uk−2

(
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2
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x

))l0−1

(
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2
√

x

))l0+1
x

1
2
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bP
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.

Here the sum on the left is over all permutations in S(1243, 2143) which contain exactly
r subsequences of type 12 . . . k and the sum on the right is over all sequences l0, l1, . . . , lb,
and m0, m1, . . . , mb of nonnegative integers such that r =

∑b
i=0(li+mi)

(
k+i−1
k−1

)
. This result

is an analogue of (3).
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In the next two sections of the paper we give enumerations and generating functions
for various sets of permutations in S(1243, 2143). For instance, we show that

∞∑
n=0

|Sn(1243, 2143, 2134 . . . k)|xn = 1 + x
fk−1(x)

fk(x)
(5)

and ∞∑
n=0

|Sn(1243, 2143, 3214 . . . k)|xn = 1 + x
gk−1(x)

gk(x)
(6)

for all k ≥ 3. Here f2(x) = (x − 1)2,

fk(x) = (1 − 2x)2(
√

x)k−3Uk−3

(
1 − x

2
√

x

)
− (1 − x)2(

√
x)k−2Uk−4

(
1 − x

2
√

x

)
for all k ≥ 3, and

gk(x) = −(1 + 2x− x2)(
√

x)k+2Uk

(
1 − x

2
√

x

)
+ (x4 − 4x3 + 2x2 + 1)(

√
x)k−1Uk−1

(
1 − x

2
√

x

)
for all k ≥ 2. Setting k = 3 in (5) and (6), we find that

|Sn(1243, 2143, 231)| = (n + 2)2n−3 (n ≥ 2) (7)

and

|Sn(1243, 2143, 321)| =
(

n − 1

0

)
+

(
n − 1

1

)
+ 2

(
n − 1

2

)
+ 2

(
n − 1

3

)
(n ≥ 1). (8)

It is an open problem to provide combinatorial proofs of (7) and (8). We also show that

∑
π

x|π| =
x(1 + x)(1 − x)2(

Uk−1

(
1−x
2
√

x

))2 ,

where the sum on the left is over all permutations in S(1243, 2143) which contain exactly
one subsequence of type 213 . . . k. It is an open problem to give the sum

∑
π

x|π| in

closed form when it is over all permutations in S(1243, 2143) which contain exactly r
subsequences of type 213 . . . k, where r ≥ 2.

We conclude the paper by collecting several open problems related to this work.

2 Statistics and a Product for Schröder Paths

In this section we define a family of statistics on Schröder paths. We then recall the
first-return product on Schröder paths and describe the behavior of our statistics with
respect to this product. We begin by recalling the height of an east or diagonal step in a
Schröder path.
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Definition 2.1 Let π denote a Schröder path, let s denote a step in π which is either east
or diagonal, and let (x, y) denote the coordinates of the left-most point in π. We define
the height of s, written ht(s), by setting ht(s) = y − x.

We now define our family of statistics on Schröder paths.

Definition 2.2 For any Schröder path π and any positive integer k we write

τk(π) =

(
0

k − 1

)
+
∑
s∈π

(
ht(s)

k − 1

)
, (9)

where the sum on the right is over all east and diagonal steps in π. Here we take
(

i
j

)
= 0

whenever j < 0 or i < j. For notational convenience we set τ0(π) = 0 for any Schröder
path π.

Example 2.3 Let π denote the Schröder path given in Figure 1, so that π is given by
π = NDEDNNNNDNEENEDEEE. Then τ1(π) = 12, τ2(π) = 28, τ3(π) = 35,
τ4(π) = 24, τ5(π) = 8, τ6(π) = 1, and τk(π) = 0 for all k ≥ 7.

Figure 1: The Schröder path of Example 2.3.

Before we recall the first-return product for Schröder paths, we make an observation
regarding those paths in Sn which begin with a diagonal step.

Proposition 2.4 (i) For all n ≥ 1, the map

Sn−1 −→ Sn

π 7→ D, π

is a bijection between Sn−1 and the set of Schröder paths in Sn which begin with a
diagonal step.
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(ii) τ1(D, π) = 1 + τ1(π) for all π ∈ S.

(iii) τk(D, π) = τk(π) for all k ≥ 2 and all π ∈ S.

Proof. (i) This is immediate.
(ii),(iii) From (9) we find that for all k ≥ 1,

τk(D, π) =

(
0

k − 1

)
+

(
0

k − 1

)
+
∑
s∈π

(
ht(s)

k − 1

)

=

(
0

k − 1

)
+ τk(π).

Now (ii) and (iii) follow. 2

We now define the first-return product on Schröder paths.

Definition 2.5 For any Schröder paths π1 and π2 we write

π1 ∗ π2 = Nπ1Eπ2.

Proposition 2.6 Let i and n denote positive integers such that 1 ≤ i ≤ n. Then the
following hold.

(i) The map
Si−1 × Sn−i −→ Sn

(π1, π2) 7→ π1 ∗ π2

is a bijection between Si−1 × Sn−i and the set of Schröder paths in Sn which begin
with a north step and first touch the line y = x at (i, i).

(ii) For all k ≥ 1, all π1 ∈ Si−1, and all π2 ∈ Sn−i we have

τk(π1 ∗ π2) = τk(π1) + τk−1(π1) + τk(π2). (10)

Proof. (i) This is immediate.
(ii) Fix k ≥ 1. Using (9) we have

τk(π1 ∗ π2) =

(
0

k − 1

)
+
∑
s∈π1

(
ht(s) + 1

k − 1

)
+

(
1

k − 1

)
+
∑
s∈π2

(
ht(s)

k − 1

)

=

(
0

k − 1

)
+
∑
s∈π1

(
ht(s)

k − 1

)
+
∑
s∈π1

(
ht(s)

k − 2

)
+

(
0

k − 2

)
+

(
0

k − 1

)
+
∑
s∈π2

(
ht(s)

k − 1

)

= τk(π1) + τk−1(π1) + τk(π2),

as desired. 2
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3 Statistics and a Product for Schröder Permuta-

tions

In this section we define a natural family of statistics on Schröder permutations which
is analogous to the family of statistics we have defined on Schröder paths. We then
describe a “product” on Schröder permutations which behaves nicely with respect to our
statistics. This product is analogous to the first-return product for Schröder paths given
in the previous section. We begin with our family of statistics.

Definition 3.1 For any positive integer k and any permutation π, we write τk(π) to
denote the number of increasing subsequences of length k which are contained in π. For
notational convenience we set τ0(π) = 0 for any permutation π.

Observe that for any permutation π, the quantity τ1(π) is the length of π; we sometimes
write |π| to denote this quantity.

Example 3.2 If π = 71824356 then τ1(π) = 8, τ2(π) = 16, τ3(π) = 16, τ4(π) = 9,
τ5(π) = 2, and τk(π) = 0 for all k ≥ 6.

Observe that we have now defined τk(π) when π is a Schröder permutation and when
π is a Schröder path. This will not cause confusion, however, since it will always be clear
from the context which definition is intended.

Before we describe our product for Schröder permutations, we make an observation
regarding those Schröder permutations whose largest element appears first.

Proposition 3.3 (i) For all n ≥ 1, the map

Sn−1(1243, 2143) −→ Sn(1243, 2143)
π 7→ n, π

is a bijection between Sn−1(1243, 2143) and the set of permutations in Sn(1243, 2143)
which begin with n.

(ii) τ1(n, π) = 1 + τ1(π) for all n ≥ 1 and all π ∈ Sn−1(1243, 2143).

(iii) τk(n, π) = τk(π) for all k ≥ 2, all n ≥ 1, and all π ∈ Sn−1(1243, 2143).

Proof. (i) It is clear that the given map is one-to-one and that if n, π is a permu-
tation in Sn(1243, 2143) then π ∈ Sn−1(1243, 2143), so it is sufficient to show that
if π ∈ Sn−1(1243, 2143) then n, π avoids 1243 and 2143. To this end, suppose π ∈
Sn−1(1243, 2143). Since π avoids 1243 and 2143, in any pattern of either type in n, π the
n must play the role of the 4. But this is impossible, since the n is the left-most element
of n, π, but 4 is not the left-most element of 1243 or 2143. Therefore n, π avoids 1243 and
2143.

(ii) This is immediate, since τ1(π) is the length of π for any permutation π.
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(iii) Since n is both the largest and the left-most element in n, π, it cannot participate
in an increasing subsequence of length two or more. Therefore any such subsequence in
n, π is contained in π, and (iii) follows. 2

We now describe our product for Schröder permutations. To do so, we first set some
notation.

Let π1 and π2 denote nonempty Schröder permutations. We write π̃1 to denote the
sequence obtained by adding |π2| − 1 to every entry in π1 and then replacing |π2| (the
smallest entry in the resulting sequence) with the left-most entry of π2. We observe that
π̃1 has type π1. We write π̃2 to denote the sequence obtained from π2 by removing its
left-most element.

Definition 3.4 For any nonempty Schröder permutations π1 and π2, we write

π1 ∗ π2 = π̃1nπ̃2,

where n = |π1|+ |π2| and π̃1 and π̃2 are the sequences described in the previous paragraph.

Example 3.5 If π1 = 3124 and π2 = 15342 then π̃1 = 7168, π̃2 = 5342, and π1 ∗ π2 =
716895342.

Proposition 3.6 Let i and n denote positive integers such that 1 ≤ i ≤ n− 1. Then the
following hold.

(i) The map

Si(1243, 2143)× Sn−i(1243, 2143) −→ Sn(1243, 2143)
(π1, π2) 7→ π1 ∗ π2

is a bijection between Si(1243, 2143)×Sn−i(1243, 2143) and the set of permutations
in Sn(1243, 2143) for which π(i + 1) = n.

(ii) For all k ≥ 1, all π1 ∈ Si(1243, 2143), and all π2 ∈ Sn−i(1243, 2143) we have

τk(π1 ∗ π2) = τk(π1) + τk−1(π1) + τk(π2). (11)

Proof. (i) It is routine to verify that if π1 ∈ Si(1243, 2143) and π2 ∈ Sn−i(1243, 2143)
then π1 ∗π2 ∈ Sn(1243, 2143), so it is sufficient to show that the given map is a bijection.
We do this by describing its inverse.

Suppose π ∈ Sn(1243, 2143) and π(i + 1) = n. Let f1(π) denote the type of the
subsequence π(1), π(2), . . . , π(i) of π and let f2(π) denote the permutation of 1, 2, . . . , n−i
which appears in π. Since π ∈ Sn(1243, 2143) and π contains subsequences of type f1(π)
and f2(π) we find that f1(π) ∈ Si(1243, 2143) and f2(π) ∈ Sn−i(1243, 2143). We now
show that the map π 7→ (f1(π), f2(π)) is the inverse of the map (π1, π2) 7→ π1 ∗ π2.

It is clear from the construction of π1 ∗π2 that f1(π1 ∗π2) = π1 and f2(π1 ∗π2) = π2, so
it remains to show that f1(π) ∗ f2(π) = π. To this end, observe that since π avoids 1243
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and 2143 and has π(i + 1) = n, exactly one of 1, 2, . . . , n − i appears to the left of n in
π. (If two or more of 1, 2, . . . , n − i appeared to the left of n then two of these elements,
together with n and some element to the right of n, would form a subsequence of type
1243 or 2143.) Therefore, the remaining elements among 1, 2, . . . , n − i are exactly those
elements which appear to the right of n. It follows that f1(π) ∗ f2(π) = π. Therefore the
map π 7→ (f1(π), f2(π)) is the inverse of the map (π1, π2) 7→ π1 ∗ π2, so the latter is a
bijection, as desired.

(ii) Let π̃1 be as in the paragraph above Definition 3.4. Observe that since π̃1 consists
of exactly those elements of π1 ∗ π2 which are to the left of n, there is a one-to-one
correspondence between increasing subsequences of length k − 1 in π̃1 and increasing
subsequences of length k in π1 ∗ π2 which involve n. Since π̃1 and π1 have the same type,
there are τk−1(π1) of these subsequences. Now observe that if an increasing subsequence
of length k in π1 ∗ π2 does not involve n, and involves an element of π̃1 other than
the smallest element, then it is entirely contained in π̃1. Similarly, observe that if an
increasing subsequence of length k in π1 ∗π2 involves an element of π2 other than the left-
most element, then it is entirely contained in π2. Therefore every increasing subsequence
of length k in π1 ∗ π2 which does not involve n is an increasing subsequence of length k
in π̃1 or in π2. Since π̃1 and π1 have the same type, there are τk(π1) + τk(π2) of these
subsequences. Now (ii) follows. 2

Although the results we have given in this section are sufficient for our current pur-
poses, we remark that there are more general results along the same lines. For example,
following [3] and [11], let Tk (k ≥ 3) denote the set of all permutations in Sk which end
with k, k − 1. Observe that T3 = {132} and T4 = {1243, 2143}. Then there are natural
analogues of all of the results in this section for S(Tk), where k ≥ 5.

4 A Bijection Between Sn and Sn+1(1243, 2143)

Comparing Propositions 3.3 and 3.6 with Propositions 2.4 and 2.6 respectively, we see that
for all n ≥ 0 there exists a bijection ϕ : Sn → Sn+1(1243, 2143) such that τk(π) = τk(ϕ(π))
for all π ∈ Sn. So far, we have only seen how to compute this bijection recursively. In
this section we use techniques of Bandlow and Killpatrick [2] and Bandlow, Egge, and
Killpatrick [1] to compute this bijection directly.

To define our bijection, we first need to introduce some notation. For all n ≥ 0 and
all i such that 1 ≤ i ≤ n− 1, we write si to denote the map from Sn to Sn which acts by
interchanging the elements in positions i and i+1 of the given permutation. For example,
s1(354126) = 534126 and s4(354126) = 354216. We apply these maps from right to left,
so that sisj(π) = si(sj(π)).

Suppose π ∈ Sn. We now describe how to construct the image ϕ(π) of π under our
bijection ϕ. To illustrate the procedure, we give a running example in which the Schröder
path π is given by π = NDNNEEENNDENEE, which is illustrated in Figure 2 below.

To begin, label each upper triangle (i.e. each triangle whose vertices have coordinates
of the form (i − 1, j − 1), (i − 1, j), (i, j)) which is below π and above the line y = x
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Figure 2: The Schröder path π used in the running example.

with an si, where i is the x-coordinate of the upper right corner of the triangle. In
Figure 3 below we have labeled the appropriate triangles for π with the subscripts for
the sis. Now let σ1 denote the sequence of sis which begins with the si furthest up and

1

2

2

2 3 4

3

5

5

6

6

7

87

Figure 3: The Schröder path π with triangles labeled.

to the right and extends diagonally to the lower left, immediately above the line y = x,
proceeding until it reaches a north step. Let σ2 denote the sequence of sis which begins
immediately to the left of the beginning of σ1 and extends diagonally to the lower left,
immediately above σ1, until it reaches a north step. Construct σ3, σ4, . . . in this fashion
until all of the sis above and to the left of σ1 have been read. Repeat this process with
the part of the path below the last east step before the north step which ended σ1. In
this way we obtain a sequence σ1, . . . , σk of maps on Sn. In Figure 4 below we have
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indicated the sequences σ1, σ3, σ4, and σ5 for our example path π. In this example we

1

2

2

2 3 4

3

5

5

6

6

7

87

Figure 4: The Schröder path π with σ1, σ3, σ4, and σ5 indicated.

have σ1 = s8s7s6s5, σ2 = s7, σ3 = s6s5, σ4 = s4s3s2s1, σ5 = s3s2, and σ6 = s2.
We this set-up in mind, we can now define ϕ(π).

Definition 4.1 For any Schröder path π, let σ1, σ2, . . . , σk denote the maps determined
as in the discussion above. Then we write

ϕ(π) = σkσk−1 . . . σ1(n + 1, n, n − 1, . . . , 3, 2, 1).

Summarizing our running example, we have the following.

Example 4.2 Let π denote the Schröder path in Figure 2 above, so that π is given by π =
NDNNEEENNDENEE. Then σ1 = s8s7s6s5, σ2 = s7, σ3 = s6s5, σ4 = s4s3s2s1, σ5 =
s3s2, σ6 = s2, and ϕ(π) = 836791425.

Example 4.3 Let π denote the Schröder path given by π = DNEDDNNENDEE.
Then σ1 = s8s7s6s5, σ2 = s7s6, σ3 = s5, σ4 = s2, and ϕ(π) = 978624135.

Example 4.4 Let π denote the Schröder path given by π = NNENDNNEDEEDE.
Then σ1 = s8s7s6s5s4s3s2s1, σ2 = s6s5s4s3s2, σ3 = s5s4s3, σ4 = s3, σ5 = s1, and
ϕ(π) = 683425719.

Our goal for the remainder of this section is to show that the map ϕ is a bijection
which preserves the statistics τk for all k ≥ 1. To do this, we first consider the value of ϕ
on a Schröder path which begins with a diagonal step.
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Proposition 4.5 For all n ≥ 0 and all π ∈ Sn we have

ϕ(D, π) = n + 1, ϕ(π). (12)

Proof. Observe that by the construction of ϕ(D, π) no s1 will appear in σkσk−1 . . . σ1.
Therefore the left-most element of n+1, n, n−1, . . . , 2, 1 will not be moved by σkσk−1 . . . σ1.
Now the result follows. 2

Next we consider the value of ϕ on a product of two Schröder paths.

Proposition 4.6 For all Schröder paths π1 and π2 we have

ϕ(π1 ∗ π2) = ϕ(π1) ∗ ϕ(π2). (13)

Proof. In the construction of ϕ(π1∗πn), let σ1, . . . , σj denote the strings of sis constructed
from triangles below π2, and observe that the next string constructed will be sisi−1 . . . s1,
where π1 ends at (i − 1, i − 1). Now let σj+2, . . . σk denote the remaining strings and let
a denote the left-most element of ϕ(π2). Then we have

σ(π1 ∗ π2) = σk . . . σj+2sisi−1 . . . s1σj . . . σ1(n + 1, n, . . . , 2, 1)

= σk . . . σj+2sisi−1 . . . s1(n + 1, n, . . . , n − i + 1, a, ˜ϕ(π2))

= σk . . . σj+2(n, n − 1, . . . , n − i + 1, a, n + 1, ˜ϕ(π2))

= ˜ϕ(π1), n + 1, ˜ϕ(π2)

= ϕ(π1) ∗ ϕ(π2),

as desired. 2

We now show that ϕ is a bijection from Sn to Sn+1(1243, 2143).

Proposition 4.7 (i) For all π ∈ S, we have ϕ(π) ∈ Sn+1(1243, 2143).

(ii) For all n ≥ 0 the map ϕ : Sn −→ Sn+1(1243, 2143) is a bijection.

Proof. (i) Observe that ϕ(∅) = 1, ϕ(D) = 21, and ϕ(NE) = 12, so (i) holds for all π ∈ S0

and all π ∈ S1. Arguing by induction, suppose (i) holds for all π ∈ Si, where 0 ≤ i < n,
and fix π ∈ Sn. If π begins with a diagonal step then π = D, π1 and by (12) we have
ϕ(π) = n + 1, ϕ(π1) ∈ Sn+1(1243, 2143). If π does not begin with a diagonal step then
by Proposition 2.6(i) there exist π1 ∈ Si−1 and π2 ∈ Sn−i, where 1 ≤ i ≤ n, such that
π = π1 ∗ π2. Then by (13) we have ϕ(π) = ϕ(π1) ∗ ϕ(π2) ∈ Sn+1(1243, 2143). Now (i)
follows.

(ii) First observe that by (i) and since |Sn| = |Sn+1(1243, 2143)| for all n ≥ 0, it is
sufficient to show that ϕ is surjective. To do this, we argue by induction on n.
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It is routine to verify that ϕ is surjective for n = 0 and n = 1, so suppose by induction
that ϕ is surjective for 1, 2, . . . , n − 1 and fix π ∈ Sn+1(1243, 2143). If π(1) = n + 1
then by Proposition 3.3(i) there exists π1 ∈ Sn(1243, 2143) such that π = n + 1, π1. By
induction there exists α1 ∈ Sn−1 such that ϕ(α1) = π1. We now have

ϕ(D, α1) = n + 1, π1 (by (12))

= π.

If π(1) 6= n + 1 then there exists i, 1 ≤ i ≤ n − 1, such that π(i + 1) = n + 1. By
Proposition 3.6(i) there exist π1 ∈ Si(1243, 2143) and π2 ∈ Sn−i+1(1243, 2143) such that
π = π1 ∗ π2. By induction there exist α1 ∈ Si−1 and α2 ∈ Sn−i such that ϕ(α1) = π1 and
ϕ(α2) = π2. We now have

ϕ(α1 ∗ α2) = π1 ∗ π2 (by (13))

= π.

It follows that ϕ is surjective, as desired. 2

We now show that ϕ preserves the statistics τk for all k ≥ 1.

Proposition 4.8 For any k ≥ 1 and any Schröder path π we have

τk(ϕ(π)) = τk(π). (14)

Proof. Suppose π ∈ Sn; we argue by induction on n. The cases n = 0 and n = 1 are
routine to verify, so suppose the result holds for all π ∈ Si, where i ≤ n − 1, and fix
π ∈ Sn. If π begins with a diagonal step then π = D, π1 for some π1 ∈ Sn−1 and we have

τk(ϕ(π)) = τk(ϕ(D, π1))

= τk(n + 1, ϕ(π1)) (by (12))

= δk1 + τk(ϕ(π1)) (by Proposition 3.3(ii),(iii))

= δk1 + τk(π1) (by induction)

= τk(D, π1) (by Proposition 2.4(ii),(iii))

= τk(π).

If π does not begin with a diagonal step then π = π1 ∗π2 for some π1 ∈ Si−1 and π2 ∈ Sn−i
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and we have

τk(ϕ(π)) = τk(ϕ(π1 ∗ π2)) (by Proposition 2.6(i))

= τk(ϕ(π1) ∗ ϕ(π2)) (by (13))

= τk(ϕ(π1)) + τk−1(ϕ(π1)) + τk(ϕ(π2)) (by (11))

= τk(π1) + τk−1(π1) + τk(π2) (by induction)

= τk(π1 ∗ π2) (by (10))

as desired. 2

In view of Proposition 4.8, the map ϕ also relates the Schröder paths of height at
most k − 2 with Schröder permutations which avoid 12 . . . k. In particular, we have the
following result.

Corollary 4.9 Fix k ≥ 2 and let Sn,k denote the set of Schröder paths in Sn which do
not cross the line y − x = k − 2. Then the restriction of ϕ to Sn,k is a bijection between
Sn,k and Sn+1(1243, 2143, 12 . . . k).

Proof. Observe that π ∈ Sn+1(1243, 2143) avoids 12 . . . k if and only if τk(π) = 0. By
(14) this occurs if and only if τk(ϕ

−1(π)) = 0, which occurs if and only if ϕ−1(π) does not
cross the line y − x = k − 2. 2

For all n ≥ 0, let Dn denote the set of all Schröder paths from (0, 0) to (n, n) which
contain no diagonal steps. (Such paths are sometimes called Catalan paths, because |Dn|
is the well-known Catalan number Cn = 1

n+1

(
2n
n

)
for all n ≥ 0.) In [9] Krattenthaler gives

a bijection φ : Sn(132) −→ Dn such that

τk(π) = τk(φ(π))

for all k ≥ 1, all n ≥ 0, and all π ∈ Sn(132). Krattenthaler’s bijection φ is closely
related to our bijection ϕ. For any permutation π, let π̂ denote the sequence obtained by
adding one to every entry in π. Observe that the map ω : Sn(132) −→ Sn+1(1243, 2143)
given by ω(π) = 1, π̂ for all π ∈ Sn(132) is a bijection between Sn(132) and the set of
permutations in Sn+1(1243, 2143) which begin with 1. The bijections φ and ϕ are related
in that

φ(π) = ϕ−1(ω(π))

for all n ≥ 0 and all π ∈ Sn(132).

5 The Continued Fractions

In this section we will encounter several continued fractions, for which we will use the
following notation.
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Definition 5.1 For any given expressions ai (i ≥ 0) and bi (i ≥ 0) we write

a0

b0 +

a1

b1 +

a2

b2 +

a3

b3 +
. . .

to denote the infinite continued fraction

a0

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + · · ·

.

We use the corresponding notation for finite continued fractions.

Several authors [4, 8, 9, 12, 15, 17] have described how to express the generating
function for Sn(132) with respect to various τk (k ≥ 1) as a continued fraction. The
most general of these results is the following, which appears explicitly as [4, Theorem
1]. A special case of this result appears as [17, Theorem 1], the result is implicit in [12,
Proposition 2.3], and it can be proved by modifying slightly the techniques of [8, Corollary
7] and [9, Theorem 1].

Theorem 5.2 (Brändén, Claesson, and Steingŕımsson [4, Theorem 1]) For all i ≥ 1, let
xi denote an indeterminate. Then we have

∑
π∈S(132)

∏
k≥1

x
τk(π)
k =

1

1 −
x1

1 −
x1x2

1 −
x1x

2
2x3

1 − . . . −

∏
k≥1

x
(n

k)
k

1 − . . . .

In the same paper, Brändén, Claesson, and Steingŕımsson define a Catalan continued
fraction to be a continued fraction of the form

1

1 −
m0

1 −
m1

1 −
m2

1 − . . . ,

where for all i ≥ 0, the expression mi is a monic monomial in a given set of variables.
Roughly speaking, Brändén, Claesson, and Steingŕımsson show [4, Theorem 2] that the
multivariate generating function for S(132) with respect to a given countable family of
statistics may be expressed as a Catalan continued fraction if and only if each statistic
in the family is a (possibly infinite) linear combination of the τks and each τk appears in
only finitely many of these linear combinations.

In this section we prove analogues of these results for permutations which avoid 1243
and 2143. We begin by adapting Krattenthaler’s approach in [9], using our bijection ϕ and
a result of Flajolet to express the generating function for S(1243, 2143) with respect to τk,
k ≥ 1, as a continued fraction. For convenience, we first recall the relevant specialization
of Flajolet’s result.
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Theorem 5.3 (Flajolet [6, Theorem 1]) For all i ≥ 1, let xi denote an indeterminate.
Then we have

∑
π∈S

∏
k≥1

x
τk(π)
k =

x1

1 − x1 −
x1x2

1 − x1x2 −
x1x

2
2x3

1 − x1x2
2x3 − . . . −

n∏
i=0

x
(n

i)
i

1 −
n∏

i=0

x
(n

i)
i

− . . . . (15)

Combining ϕ with Theorem 5.3, we obtain the following analogue of Theorem 5.2.

Theorem 5.4 For all i ≥ 1, let xi denote an indeterminate. Then we have

∑
π∈S(1243,2143)

∏
k≥1

x
τk(π)
k = 1+

x1

1 − x1 −
x1x2

1 − x1x2 −
x1x

2
2x3

1 − x1x2
2x3 − . . . −

n∏
i=0

x
(n

i)
i

1 −
n∏

i=0

x
(n

i)
i

− . . . .

(16)

Proof. This is immediate from Theorem 5.3, in view of Propositions 4.7 and 4.8. 2

Using (16), we can express the generating function for |Sn(1243, 2143, 12 . . . k)| as a
(finite) continued fraction.

Corollary 5.5 For all k ≥ 1 we have

∞∑
n=0

|Sn(1243, 2143, 12 . . . k)|xn = 1 +
x

1 − x −
x

1 − x − . . . −
x

1 − x︸ ︷︷ ︸
k−1 terms

. (17)

Proof. In (16) set x1 = x, x2 = x3 = . . . = xk−1 = 1 and xi = 0 for all i ≥ k. 2

Curiously, as we prove in Proposition 6.10, the continued fraction on the right side of
(17) is also equal to the generating function for |Sn(1243, 2143, 213 . . . k)|.

Using (16), we can also express the generating function for S(1243, 2143) with respect
to the total number of increasing subsequences as a continued fraction.

Corollary 5.6 For any permutation π, let m(π) denote the number of nonempty increas-
ing subsequences in π. Then

∑
π∈S(1243,2143)

qm(π)x|π| = 1 +
xq

1 − xq −
xq2

1 − xq2 −
xq4

1 − xq4 − . . . −
xq2n

1 − xq2n − . . . .
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Proof. In (16), set x1 = xq and xi = q for all i ≥ 2 and use the fact that m =
∑
k≥1

τk. 2

By specializing the xis in (16) in various ways, one can obtain continued fractions of
many other interesting forms. As an example, we have the following result.

Corollary 5.7 For any permutation π, let m(π) denote the length of π plus the number
of noninversions in π. Then

∑
π∈S(1243,2143)

qm(π) = 1 +
q

1 − q −
q2

1 − q2 −
q3

1 − q3 −
q4

1 − q4 − . . . .

Proof. In (16), set x1 = x2 = q and xi = 1 for all i ≥ 3 and use the fact that m = τ1 + τ2.
2

We now turn our attention to the question of which statistics on S(1243, 2143) have
generating functions which can be expressed as continued fractions like the one in (16).
We begin by specifying which continued fractions we wish to consider.

By a Schröder continued fraction we mean a continued fraction of the form

1 +
m0

1 − m0 −
m1

1 − m1 −
m2

1 − m2 − . . . ,

in which mi is a monic monomial in a given set of variables for all i ≥ 0. Observe that if
f1, f2, f3, . . . are (possibly infinite) linear combinations of the τks with the property that
each τk appears in only finitely many fi, then by specializing the xis appropriately in (16)
we can express the generating function∑

π∈S(1243,2143)

x|π|∏
k≥1

q
fk(π)
k

as a Schröder continued fraction. For instance, when only f1 is present, we have the
following corollary of Theorem 6.5.

Corollary 5.8 Let λ1, λ2, . . . denote nonnegative integers and let f denote the statistic

f =
∑
k≥1

λkτk

on S(1243, 2143). Then∑
π∈S(1243,2143)

qf(π)x|π| =

1 +
xqf(1)

1 − xqf(1) −
xqf(12)−f(1)

1 − xqf(12)−f(1) −
xqf(123)−f(12)

1 − xqf(123)−f(12) −
xqf(1234)−f(123)

1 − xqf(1234)−f(123) − . . . .
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Proof. In (16) set x1 = xqλ1 and xi = qλi for all i ≥ 2 to obtain

∑
π∈S(1243,2143)

qf(π)x|π| = 1 +
xqλ1

1 − xqλ1 −
xqλ1+λ2

1 − xqλ1+λ2 −
xqλ1+2λ2+λ3

1 − xqλ1+2λ2+λ3 − . . . .

Now the result follows from the fact that f(123 . . . k) − f(12 . . . k − 1) =
k−1∑
i=0

(
k−1

i

)
λi for

all k ≥ 2. 2

Modifying the proof of [4, Theorem 2] slightly, we now show that linear combinations
of the τks are the only statistics on S(1243, 2143) whose generating functions can be
expressed as Schröder continued fractions. In order to do this, we first set some notation.

Let A denote the ring of matrices with integer entries whose rows and columns are
indexed by the positive integers, and which have the property that in any row only finitely
many entries are nonzero. Then each element of A corresponds to an infinite family of
statistics on S(1243, 2143).

Definition 5.9 For all A ∈ A and all n ≥ 1, let τA,n denote the linear combination of
the τks whose coefficients appear in the nth column of A. That is,

τA,n =
∑
k≥1

Aknτk (18)

for all A ∈ A and all n ≥ 1.

Since each element of A corresponds to a family of statistics on S(1243, 2143), each
element also has an associated multivariate generating function.

Definition 5.10 For all i ≥ 1, let qi denote an indeterminate. For all A ∈ A, we write
FA(q) to denote the generating function given by

FA(q) =
∑

π∈S(1243,2143)

∏
k≥1

q
τA,k(π)
k . (19)

We also associate with each element of A a Schröder continued fraction.

Definition 5.11 For all i ≥ 1, let qi denote an indeterminate. For all A ∈ A, we write
CA(q) to denote the continued fraction given by

CA(q) = 1 +

∏
k≥1

qA1k
k

1 −
∏
k≥1

qA1k
k

−

∏
k≥1

qA2k
k

1 −
∏
k≥1

qA2k
k

−

∏
k≥1

qA3k
k

1 −
∏
k≥1

qA3k
k

− . . . . (20)

We now give our analogue of [4, Theorem 2]. Although the proof is nearly identical
to the proof of [4, Theorem 2], we include it here for completeness.
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Theorem 5.12 Let B denote the matrix in A which satisfies Bij =
(

i−1
j−1

)
. (Here we use

the convention that
(

i
j

)
= 0 whenever i < j.) Then for all A ∈ A,

FA(q) = CBA(q) (21)

and
CA(q) = FB−1A(q). (22)

In particular, the set of Schröder continued fractions is exactly the set of generating func-
tions for countable families of statistics on S(1243, 2143) in which each statistic is a
(possibly infinite) linear combination of the τks and each τk appears in only finitely many
statistics.

Proof. To prove (21), we apply (16) with xi =
∏
j≥1

q
Aij

j for all i ≥ 1. We have

CBA(q) = 1 +
x1

1 − x1 −
x1x2

1 − x1x2 −
x1x

2
2x3

1 − x1x
2
2x3 − . . . (by (20))

=
∑

π∈S(1243,2143)

∏
k≥1

x
τk(π)
k (by (16))

=
∑

π∈S(1243,2143)

∏
k≥1

(∏
j≥1

q
Akj

j

)τk(π)

=
∑

π∈S(1243,2143)

∏
j≥1

q

P
k≥1

Akjτk(π)

j

= FA(q) (by (18) and (19)),

as desired. To prove (22), observe that (B−1)ij = (−1)i+j
(

i−1
j−1

)
so B−1 ∈ A. Therefore we

may replace A with B−1A in (21) to obtain (22). 2

Remark There is a result for finite Schröder continued fractions which is analogous
to Theorem 5.12. Specifically, fix k ≥ 2 and let Ak denote the ring of k − 1 by
k − 1 matrices with integer entries. If we replace A with Ak and S(1243, 2143) with
S(1243, 2143, 12 . . . k) in Definitions 5.9 and 5.9 then the resulting analogue of Theorem
5.12 follows by an argument almost identical to the proof of Theorem 5.12.

6 Generating Functions Involving Chebyshev Poly-

nomials

In this section we will be interested in connections between pattern-avoiding permutations
and Chebyshev polynomials of the second kind. We begin by recalling these polynomials.
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Definition 6.1 For all n ≥ −1, we write Un(x) to denote the nth Chebyshev polynomial

of the second kind, which is defined by U−1(x) = 0 and Un(cos t) =
sin((n + 1)t)

sin t
for

n ≥ 0. These polynomials satisfy

Un(x) = 2xUn−1(x) − Un−2(x) (n ≥ 1). (23)

We will find it useful to reformulate the recurrence in (23) as follows.

Lemma 6.2 For all n ≥ 1,

Un

(
1 − x

2
√

x

)
=

1 − x√
x

Un−1

(
1 − x

2
√

x

)
− Un−2

(
1 − x

2
√

x

)
. (24)

Proof. This is immediate from (23). 2

Chebyshev polynomials of the second kind have been found to have close connections
with S(132); see, for instance, [5, 9, 12, 13, 15]. Two such connections are given in the
following results.

Theorem 6.3 (Krattenthaler [9, Theorem 2], Mansour and Vainshtein [12, Theorem
3.1], Chow and West [5, Theorem 3.6, second case]) For all k ≥ 1 we have

∞∑
n=0

|Sn(132, 12 . . . k)|xn =
Uk−1

(
1

2
√

x

)
√

xUk

(
1

2
√

x

) .

Theorem 6.4 (Krattenthaler [9, Theorem 3], Mansour and Vainshtein [12, Theorems
3.1 and 4.1]) Let r ≥ 1, b ≥ 1, and k ≥ 2 satisfy

(
k+b−1

k

)
≤ r <

(
k+b
k

)
. Then the

generating function for the number of 132-avoiding permutations which contain exactly r
subsequences of type 12 . . . k is given by

∑ b∏
i=2

(
li−1 + li − 1

li

)(Uk−1

(
1

2
√

x

))l1−1

(
Uk

(
1

2
√

x

))l1+1
x

1
2
(l1−1)+

bP
j=2

lj
,

where the sum on the left is over all sequences l1, l2, . . . , lb of nonnegative integers such
that

b∑
i=1

li

(
k + i − 2

k − 1

)
= r.

In this section we prove analogues of Theorems 6.3 and 6.4 for Sn(1243, 2143). We
begin with an analogue of Theorem 6.3.
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Theorem 6.5 For all k ≥ 1 we have

∞∑
n=0

|Sn(1243, 2143, 12 . . . k)|xn = 1 +

√
xUk−2

(
1−x
2
√

x

)
Uk−1

(
1−x
2
√

x

) (25)

and
∞∑

n=0

|Sn(1243, 2143, 213 . . . k)|xn = 1 +

√
xUk−2

(
1−x
2
√

x

)
Uk−1

(
1−x
2
√

x

) . (26)

Before pressing on to the proof of Theorem 6.5, we observe that when we set k = 3 in
(25) and (26) we find that

∞∑
n=0

|Sn(2143, 123)|xn = 1 + x
1 − x

1 − 3x + x2

and ∞∑
n=0

|Sn(1243, 213)|xn = 1 + x
1 − x

1 − 3x + x2
.

These generating functions were originally found by West [21, Example 9 and Table 1],
using generating trees.

Our next result is the key to our proof of Theorem 6.5. To state it, we first set some
notation.

Definition 6.6 For any set R of permutations, let Rn denote the set of permutations
obtained by appending the smallest possible positive integer to each permutation in R.

Example 6.7 If R = {42531, 4231, 312} then Rn = {425316, 42315, 3124}.

Theorem 6.8 Let R denote a nonempty set of permutations and set

P (x) =

∞∑
n=0

|Sn(1243, 2143, R)|xn (27)

and

Q(x) =

∞∑
n=0

|Sn(1243, 2143, Rn)|xn. (28)

Then

Q(x) =
2 − P (x)

2 − x − P (x)
. (29)
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Proof. Arguing as in the proof of Proposition 3.3(i), we find that for all n ≥ 0 the map

Sn(1243, 2143, Rn) −→ Sn+1(1243, 2143, Rn)
π 7→ n + 1, π

is a bijection between Sn(1243, 2143, Rn) and the set of all permutations in Sn+1(1243, 2143, Rn)
which begin with n + 1. Arguing as in the proof of Proposition 3.6(i), we find that for all
i and all n such that 1 ≤ i ≤ n − 1, the map

Si(1243, 2143, R)× Sn−i(1243, 2143, Rn) −→ Sn(1243, 2143, Rn)
(π1, π2) 7→ π1 ∗ π2

is a bijection between Si(1243, 2143, R) × Sn−i(1243, 2143, Rn) and the set of permuta-
tions in Sn(1243, 2143, Rn) for which π(i + 1) = n. Combining these two bijections, we
find that

Q(x) = 1 + xQ(x) + (P (x) − 1)(Q(x) − 1).

Solving this last equation for Q(x), we obtain (29). 2

As we show next, if P (x) is a rational function then Q(x) has a simple form.

Corollary 6.9 Let R denote a nonempty set of permutations. If

∞∑
n=0

|Sn(1243, 2143, R)|xn = 1 + x
f(x)

g(x)

then ∞∑
n=0

|Sn(1243, 2143, Rn)|xn = 1 + x
g(x)

(1 − x)g(x) − xf(x)
.

Proof. By (29) we have

∞∑
n=0

|Sn(1243, 2143, Rn)|xn =

1 − x
f(x)

g(x)

1 − x + x
f(x)

g(x)

= 1 + x
g(x)

(1 − x)g(x) − xf(x)
,

as desired. 2

Using Corollary 6.9 it is now routine to prove Theorem 6.5.
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Proof of Theorem 6.5. We argue by induction on k. It is routine to verify that (25) holds
for k = 1 and k = 2, so we assume (25) holds for k − 2 and k − 1. Then by Corollary 6.9
and (24) we have

∞∑
n=0

|Sn(1243, 2143, 12 . . . k)|xn = 1 +

√
xUk−1

(
1−x
2
√

x

)
1−x√

x
Uk−1

(
1−x
2
√

x

)
− Uk−2

(
1−x
2
√

x

)

= 1 +

√
xUk−2

(
1−x
2
√

x

)
Uk−1

(
1−x
2
√

x

) ,

as desired. The proof of (26) is similar to the proof of (25). 2

We now have a corollary of Theorem 6.5 involving the continued fraction which appears
in (17).

Corollary 6.10 For all k ≥ 2 we have

∞∑
n=0

|Sn(1243, 2143, 2134 . . . k)|xn = 1 +
x

1 − x −
x

1 − x − . . . −
x

1 − x︸ ︷︷ ︸
k−1 terms

.

Proof. This is immediate from Theorem 6.5 and Corollary 5.5. 2

Next we turn our attention to our analogue of Theorem 6.4.

Theorem 6.11 Fix r ≥ 1, k ≥ 2, and b ≥ 0 such that
(

k+b
k

)
≤ r <

(
k+b+1

k

)
. Then we

have

∑
π

x|π| =
∑ b∏

i=0

(
li + li+1 + mi − 1

li+1 + mi

)(
li+1 + mi

mi

)(Uk−2

(
1−x
2
√

x

))l0−1

(
Uk−1

(
1−x
2
√

x

))l0+1
x

1
2
(1−l0)+

bP
j=0

(lj+mj)

.

(30)
Here the sum on the left is over all permutations in S(1243, 2143) which contain exactly
r subsequences of type 12 . . . k. The sum on the right is over all sequences l0, l1, . . . , lb,
and m0, m1, . . . , mb of nonnegative integers such that

r =

b∑
i=0

(li + mi)

(
k + i − 1

k − 1

)
. (31)

Throughout we adopt the convention that
(

a
0

)
= 1 and

(
a
−1

)
= 0 for any integer a.

To prove this theorem, we first need to set some notation and prove some preliminary
results. We begin with a certain matrix.
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Definition 6.12 For all k ≥ 0, we write Ak to denote the k + 1 by k + 1 tridiagonal
matrix given by

Ak =




x
√

x 0 0 0 · · · 0 0 0 0√
x x

√
x 0 0 · · · 0 0 0 0

0
√

x x
√

x 0 · · · 0 0 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

0 0 0 0 0 · · ·
√

x x
√

x 0
0 0 0 0 0 · · · 0

√
x x

√
x

0 0 0 0 0 · · · 0 0
√

x x




.

The matrix Ak is closely related to generating functions for various sets of Schröder
paths. To describe this relationship, we let S(r, s) denote the set of lattice paths involving
only east (1, 0), north (0, 1), and diagonal (1, 1) steps which begin at a point at height r,
end at a point at height s, and do not cross the lines y − x = k and y = x. For any such
path π which begins at (x1, y1) and ends at (x2, y2), we write l(π) = 1

2
(x2 + y2 − x1 − y1).

The next lemma summarizes the relationship between Ak and the generating function for
S(r, s) with respect to l.

Lemma 6.13 For all k ≥ 0 and all r and s such that 0 ≤ r, s ≤ k we have

∑
π∈S(r,s)

xl(π) =
(−1)r+s det(I − Ak; s, r)

det(I − Ak)
.

Here I is the identity matrix of the appropriate size and det(I − Ak; s, r) is the minor of
I − Ak in which the sth row and rth column have been deleted.

For the sake of brevity we omit the proof of Lemma 6.13. An outline of this proof can
be obtained by modifying slightly the outline of the proof of [9, Theorem A2].

The matrix Ak is also closely connected with Chebyshev polynomials of the second
kind. In particular, we have the following result.

Lemma 6.14 For all k ≥ 0,

(
√

x)k+1Uk+1

(
1 − x

2
√

x

)
= det(I − Ak).

Proof. We argue by induction on k. It is routine to verify that the result holds for k = 0
and k = 1, so we assume the result holds for k − 2 and k − 1. By expanding det(I −Ak)
along the bottom row, one can show that (

√
x)−(k+1) det(I − Ak) satisfies (24). By our

induction assumption we find the result holds for k, as desired. 2
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As a warm-up for our proof of Theorem 6.11, we use Lemmas 6.13 and 6.14 to give
another proof of (25).

Another proof of (25). First observe that if F (x) is the generating function on the
left side of (25) and G(x) is the generating function for Schröder paths from (0, 0) to
(n, n) which do not exceed height k − 2, then in view of (14) we have F (x) = 1 + xG(x).

Combining Lemmas 6.13 and 6.14 we find that G(x) =
Uk−2

(
1−x
2
√

x

)
√

xUk−1

(
1−x
2
√

x

) . Now (25) follows.

2

We now prove Theorem 6.11.

Proof of Theorem 6.11. First observe that if F (x) is the generating function on the left
side of (30) and G(x) is the generating function for the set of Schröder paths from (0, 0)
to (n, n) for which τk(π) = r, then in view of (14) we have F (x) = xG(x). With this in
mind, we find G(x).

To compute G(x), we observe that any Schröder path π with τk(π) = r can be con-
structed by the following procedure in exactly one way.

1. Choose l0, l1, . . . , lb, and m0, m1, . . . , mb such that (31) holds. Construct a sequence
of east and diagonal steps which contains exactly li east steps at height k + i − 1
and mi diagonal steps at height k + i − 1 for 0 ≤ i ≤ b and which satisfies both of
the following.

(a) The step immediately preceeding a step at height j is either an east step at
height j + 1 or less, or a diagonal step at height j or less.

(b) All steps after the last east step at height j are at height j − 1 or less.

2. After each east step at height k − 1 except the last, insert an (possibly empty)
upside-down Schröder path of height at most k − 2.

3. Before the first step insert a path from height 0 to height k − 2 which does not
exceed height k − 2.

4. After the last step insert a path from height k−2 to height 0 which does not exceed
height k − 2.

Since the choice at each step is independent of the choices at the other steps, and since
every sequence of choices results in a path of the type desired, G(x) is the product of the
generating functions for each step.

To compute the generating function for step 1, suppose we have fixed l0, l1, . . . , lb,
and m0, m1, . . . , mb; then each of the resulting partial paths will have generating function

x

bP
j=0

(li+mi)

. To count these paths, we construct them from the top down. That is, we first
arrange the mb diagonal steps at height b; there is one way to do this. We then place the
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lb east steps at height b so that one of these steps occurs after all of the diagonal steps.
There are

(
lb+mb−1

mb

)
ways to do this. We then place the mb−1 diagonal steps at height b−1

so that none of these steps immediately follows a diagonal step at height b. There are(
lb+mb−1

mb−1

)
ways to do this. Proceeding in this fashion, we find that the generating function

for step 1 is ∑ b∏
i=0

(
li + li+1 + mi − 1

li+1 + mi

)(
li+1 + mi

mi

)
x

bP
j=0

(li+mi)

, (32)

where the sum is over all sequences l0, l1, . . . , lb, and m0, m1, . . . , mb of nonnegative integers
which satisfy (31). Using Lemmas 6.13 and 6.14, we find that the generating function for
step 2 is equal to 

 Uk−2

(
1−x
2
√

x

)
√

xUk−1

(
1−x
2
√

x

)



l0−1

(33)

and the generating functions for steps 3 and 4 are both equal to

(−1)k−2

√
xUk−1

(
1−x
2
√

x

) . (34)

Taking the product of x, the quantities in (32) and (33), and the square of the quantity
in (34), we obtain (30), as desired. 2

The following special case of Theorem 6.11 is of particular interest.

Corollary 6.15 For all k ≥ 2 we have∑
π

x|π| =
x(

Uk−1

(
1−x
2
√

x

))2 . (35)

Here the sum on the left is over all permutations in S(1243, 2143) which contain exactly
one subsequence of type 12 . . . k.

Proof. Set r = 1 in Theorem 6.11. 2

7 Permutations in S(1243, 2143) Which Avoid Another

Pattern

In Section 6 we used Theorem 6.8 to obtain generating functions for Sn(1243, 2143, σ34 . . . k),
where σ ∈ S2. In this section we use Theorem 6.8 to obtain generating functions for
Sn(1243, 2134, σ) for other interesting choices of σ; in some cases we give explicit enu-
merations. We begin with σ = 231.
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Proposition 7.1 For all n ≥ 2,

|Sn(1243, 2143, 231)| = (n + 2)2n−3. (36)

Moreover,
∞∑

n=0

|Sn(1243, 2143, 231)|xn = 1 + x
(x − 1)2

(2x − 1)2
. (37)

Proof. We first prove (37). Let S(x) denote the generating function on the left side of (37).
Observe that if π ∈ Sn(1243, 2143, 231) then π−1(n) = 1, π−1(n) = 2, or π−1(n) = n.
Therefore we may partition S(1243, 2143, 321) into the following four sets:

T1 = {π ∈ S(1243, 2143, 231) | |π| ≤ 3};

T2 = {π ∈ S(1243, 2143, 231) | |π| ≥ 4 and π(1) = |π|};
T3 = {π ∈ S(1243, 2143, 231) | |π| ≥ 4 and π(2) = |π|};
T4 = {π ∈ S(1243, 2143, 231) | |π| ≥ 4 and π(|π|) = |π|}.

The generating function for T1 is 1 + x + 2x2 + 5x3. The map from Sn−1(1243, 2143, 231)
which carries π to n, π is a bijection between Sn−1(1243, 2143, 231) and the set of permu-
tations in T2 which have length n, so the generating function for T2 is x(S(x)−1−x−x2).
Now observe that if n ≥ 4 and π ∈ Sn(1243, 2143, 231) has π(2) = n then π(1) = 1. It
follows that the map from Sn−2(132, 231) to Sn(1243, 2143, 231) which carries π to 1, n, π̂,
where π̂ is the sequence obtained from π by adding one to every entry, is a bijection be-
tween Sn−2(132, 231) and the set of permutations in T3 which have length n. By [18,

Proposition 9], the generating function for Sn(132, 231) is 1 +
x

1 − 2x
, so the generating

function for T3 is x2

(
1 +

x

1 − 2x
− 1 − x

)
. Finally, the map from Sn−1(1243, 2143, 231)

to Sn(1243, 2143, 231) which carries π to π, n is a bijection between Sn−1(1243, 2143, 231)
and the set of permutations in T4 which have length n. Therefore the generating function
for T4 is x(S(x) − 1 − x − 2x2). Combine these observations to find that

S(x) = 1+x+2x2+5x3+x(S(x)−1−x−2x2)+x2

(
1 +

x

1 − 2x
− 1 − x

)
+x(S(x)−1−x−2x2).

Solve this equation for S(x) to obtain (37).
Line (36) is immediate from (37). 2

Combining Proposition 7.1 with Theorem 6.8 and arguing as in the proof of Theorem
6.5, we find the generating function for Sn(1243, 2143, 2314 . . . k) for any k ≥ 4.

Proposition 7.2 Set r2(x) = (x − 1)2 and

rk(x) = (1 − 2x)2(
√

x)k−3Uk−3

(
1 − x

2
√

x

)
− (1 − x)2(

√
x)k−2Uk−4

(
1 − x

2
√

x

)
(k ≥ 3).
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Then for all k ≥ 3 we have

∞∑
n=0

|Sn(1243, 2143, 2314 . . . k)|xn = 1 + x
rk−1(x)

rk(x)
.

Next we consider σ = 321. We begin with a lemma concerning which products π1 ∗ π2

avoid 321.

Lemma 7.3 Fix i and n such that 1 ≤ i ≤ n − 2, fix π1 ∈ Si(1243, 2143, 321), and fix
π2 ∈ Sn−i(1243, 2143, 321). Then π1 ∗ π2 ∈ Sn(1243, 2143, 321) if and only if all of the
following hold.

(i) At least one of π1 and π2 begins with 1.

(ii) The entries 2, 3, . . . , i are in increasing order in π1.

(iii) The entries π2(2), π2(3), . . . , π2(n − i) are in increasing order in π2.

Proof. (=⇒) Suppose π1 ∗ π2 ∈ Sn(1243, 2143, 321). If (i) does not hold then the entries
(π1∗π2)(1), n−i, 1 form a subsequence of type 321 in π1∗π2. If (ii) does not hold then the
smallest entry to the right of n, together with two of the entries among 2, 3, . . . , i which
are in decreasing order, form a subsequence of type 321 in π1 ∗ π2. If (iii) does not hold
then the n, together with two of the entries among π2(2), π2(3), . . . , π2(n− i) which are in
decreasing order, form a subsequence of type 321 in π1 ∗π2. Since we have a contradiction
in each case, we find (i),(ii), and (iii) hold.

(⇐=) By Proposition 3.6(i), the permutation π1 ∗ π2 avoids 1243 and 2143. Now
observe that by (i)–(iii), one of the following holds.

1. There exists k, 1 ≤ k ≤ i − 1, such that

π1 ∗π2 = n− i+1, n− i+2, . . . , n− i+k, 1, n− i+k+1, . . . , n−1, n, 2, 3, . . . , n− i.

2. There exists k, 1 ≤ k ≤ n − i, such that

π1 ∗ π2 = k, n − i + 1, n − i + 2, . . . , n − 1, n, 1, 2, . . . , k − 1, k + 1, . . . , n − i.

It is routine to verify that in either case, π1 ∗ π2 avoids 321. Therefore π1 ∗ π2 ∈
Sn(1243, 2143, 321), as desired. 2

We can now enumerate Sn(1243, 2143, 321).

Proposition 7.4 For all n ≥ 1 we have

|Sn(1243, 2143, 321)| =
(

n − 1

0

)
+

(
n − 1

1

)
+ 2

(
n − 1

2

)
+ 2

(
n − 1

3

)
. (38)

Moreover,
∞∑

n=0

|Sn(1243, 2143, 321)|xn = 1 + x
1 − 2x + 3x2

(1 − x)4
. (39)
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Proof. We first prove (39). Let S(x) denote the generating function on the left side of
(39). By Lemma 7.3, we may partition S(1243, 2143, 321) into the following four sets:

T1 = {π ∈ S(1243, 2143, 321) | π = ∅ or π(1) = n};

T2 = {π ∈ S(1243, 2143, 321) | |π| ≥ 2 and π(|π|) = |π|};
T3 = {π ∈ S(1243, 2143, 321) | π = π1 ∗ π2, |π2| ≥ 2, π1(1) = 1};

T4 = {π ∈ S(1243, 2143, 321) | π = π1 ∗ π2, |π2| ≥ 2, π1(1) 6= 1, π2(1) = 1}.
Observe that T1 consists of exactly those permutations of the form n, 1, 2, 3 . . . , n − 1, so

the generating function for T1 is
1

1 − x
. Observe that the map from Sn−1(1243, 2143, 321)

to Sn(1243, 2143, 321) which carries π to π, n is a bijection from Sn−1(1243, 2143, 321) to
the set of permutations in T2 which have length n, so the generating function for T2 is
x(S(x)−1). Observe that if π = π1 ∗π2 and π ∈ T3 then π1 has the form 1, 2, . . . , |π1| and
π2 has the form k, 1, 2, . . . , k−1, k+1, . . . , |π2| for some k, 1 ≤ k ≤ |π2|. It follows that the

generating function for T3 is

(
x

1 − x

)(
x

(1 − x)2
− x

)
. Finally, observe that if π = π1∗π2

and π ∈ T4 then π2 has the form 1, 2, . . . , |π2| and there exists k, 2 ≤ k ≤ |π1|, such that
π1 has the form 2, 3, . . . , k, 1, k +1, . . . , |π1|. It follows that the generating function for T4

is

(
x2

(1 − x)2

)(
x2

1 − x

)
. Combine these observations to find that

S(x) =
1

1 − x
+ x(S(x) − 1) +

x2

(1 − x)3
− x2

1 − x
+

x4

(1 − x)3
.

Solve this equation for S(x) to obtain (39).
Line (38) is immediate from (39). 2

Combining Proposition 7.4 with Theorem 6.8 and arguing as in the proof of Theorem
6.5, we find the generating function for Sn(1243, 2143, 3214 . . . k) for any k ≥ 4.

Proposition 7.5 For all k ≥ 2, set

rk(x) = −(1 + 2x− x2)(
√

x)k+2Uk

(
1 − x

2
√

x

)
+ (x4 − 4x3 +2x2 +1)(

√
x)k−1Uk−1

(
1 − x

2
√

x

)
.

Then for all k ≥ 3 we have

∞∑
n=0

|Sn(1243, 2143, 3214 . . . k)|xn = 1 + x
rk−1(x)

rk(x)
.

At the end of Section 3 we remarked that the results of that section can be generalized
to S(Tk), where Tk is the set of all permutations in Sk which end with k, k − 1. Our
results in this section build almost exclusively on the results of Section 3, so they can also
be generalized to S(Tk).
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8 Permutations in S(1243, 2143) Which Contain An-

other Pattern

In Section 7 we used Theorem 6.8 to obtain generating functions for Sn(1243, 2143, σ)
for various σ; these results are elaborations on Theorem 6.5. In this section we prove
an analogue of Theorem 6.8 for permutations in Sn(1243, 2143) which contain a given
pattern σ exactly once. We then use this result to prove several results which elaborate
on Theorem 6.11. We begin by setting some notation.

Definition 8.1 Fix a nonempty permutation τ ∈ S(1243, 2143) and set k = |τ |+ 1. We
write Gτ (x) to denote the generating function for those permutations in S(1243, 2143)
which contain exactly one subsequence of type τ . We write Hτ (x) to denote the generating
function for those permutations in S(1243, 2143) which avoid τ . We write Jτ (x) to denote
the generating function for those permutations in S(1243, 2143) which avoid τ, k and
contain exactly one subsequence of type τ .

Our analogue of Theorem 6.8 is the following result, which gives Gτ,k(x) in terms of
Jτ (x) and Hτ (x).

Theorem 8.2 Fix a nonempty permutation τ ∈ S(1243, 2143) and set k = |τ |+1. Then

Gτ,k(x) =
xJτ (x)

(2 − x − Hτ (x))2
. (40)

Proof. Observe that we may partition the set of permutations in S(1243, 2143) which
contain exactly one subsequence of type τ, k into the following three subsets.

T1 = {π | π begins with |π|};

T2 = {π | π = π1 ∗ π2; π1 contains exactly one τ and no τ, k; π2 avoids τ, k};
T3 = {π | π = π1 ∗ π2; π1 avoids τ ; π2 contains exactly one τ, k}.

The generating function for T1 is xGτ,k(x), the generating function for T2 is Jτ (x)(Hτ,k(x)−
1), and the generating function for T3 is Gτ,k(x)(Hτ (x)− 1). Combine these observations
to find that

Gτ,k(x) = xGτ,k(x) + Jτ (x)(Hτ,k(x) − 1) + Gτ,k(x)(Hτ (x) − 1).

Solve this last equation for Gτ,k(x) and use Theorem 6.8 to eliminate Hτ,k(x). Simplify
the result to obtain (40). 2

Theorem 8.2 is particularly useful when Jτ (x) = Gτ (x); next we describe for which τ
this occurs.

Proposition 8.3 Fix a permutation τ ∈ S(1243, 2143) such that |τ | ≥ 1. Then Jτ (x) =
Gτ (x) if and only if the last entry of τ is |τ |.
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Proof. (=⇒) Suppose Jτ (x) = Gτ (x) and observe that this implies that if π contains
exactly one subsequence of type τ then π avoids τ, |τ | + 1. However, if the last entry of
τ is not |τ | then τ, |τ | + 1 itself contains exactly one subsequence of type τ and does not
avoid τ, |τ | + 1. This contradiction implies that the last entry of τ is |τ |.

(⇐=) Suppose the last entry of τ is |τ |. If π contains τ and τ, |τ | + 1 then π contains
at least two subsequences of type τ . Therefore if π contains exactly one subsequence of
type τ then it avoids τ, |τ | + 1; it follows that Jτ (x) = Gτ (x). 2

Using Theorem 8.2 and Proposition 8.3, one can compute Gσ(x) for several infi-
nite families of permutations. Nevertheless, we content ourselves here with computing
G12...k(x) and G213...k(x). We begin by computing G12...k(x), which amounts to giving
another proof of Corollary 6.15.

Another Proof of Corollary 6.15 We argue by induction on k. To prove the result for
k = 2, set τ = 1 in (40) and observe that J1(x) = x and H1(x) = 1. Now suppose the
result holds for k − 1. Using (40), Proposition 8.3, (25), and (24) we find

G12...k(x) =
xG12...k−1(x)(

1 − x − x
Uk−3

“
1−x
2
√

x

”

√
xUk−2

“
1−x
2
√

x

”
)2

=
x(

1−x√
x
Uk−2

(
1−x
2
√

x

)
− Uk−3

(
1−x
2
√

x

))2

=
x(

Uk−1

(
1−x
2
√

x

))2 ,

as desired. 2

We now compute G213...k(x).

Proposition 8.4 For all k ≥ 3 we have

G213...k(x) =
x(1 + x)(1 − x)2(

Uk−1

(
1−x
2
√

x

))2 . (41)

Proof. First observe that the only permutations in S(1243, 2143) which contain exactly
one subsequence of type 21 and do not contain a subsequence of type 213 are 21 and
132, so J21(x) = x2 + x3. Now the result follows from (40), Proposition 8.3, and (24) by
induction on k. 2

We conclude this section by showing that in a certain sense, there is no analogue of ϕ
which behaves as nicely with respect to 213 . . . k as ϕ does with respect to 12 . . . k.
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Corollary 8.5 There is no bijection ω : Sn −→ Sn+1(1243, 2143) such that for every
π ∈ Sn, the quantity τk(π) is equal to the number of subsequences of type 213 . . . k in
ω(π).

Proof. If such a bijection existed then we would have G12...k(x) = G213...k(x) for all k ≥ 3,
which contradicts (35) and (41). 2

We remark that one can also prove Corollary 8.5 by observing that if such a bijection
existed, then there would be the same number of permutations in S4(1243, 2143) which
contain exactly one subsequence of type 123 as there are containing exactly one subse-
quence of type 213. However, there are 6 of the former (2314, 1423, 2341, 1342, 4123,
3124) and only 5 of the latter (3241, 2413, 1324, 3142, 4213). As this example illustrates,
subsequences of type 213 . . . k are more plentiful in Sn(1243, 2143) than subsequences of
type 12 . . . k.

9 Open Problems

We conclude with some open problems suggested by the results in this paper.

1. In view of (25), (26) and Corollary 4.9, there exists a bijection ρ : Sn −→ Sn+1(1243, 2143)
such that for all k ≥ 2, the Schröder path π has height k − 2 or less if and only
if ρ(π) avoids 213 . . . k. Give a combinatorial description of such a bijection. Then
give a combinatorial description of the statistic αk, where αk(π) = τk(ρ

−1(π)) for
all π ∈ Sn(1243, 2143). Alternatively, give a bijection ω : Sn(1243, 2143) −→
Sn(1243, 2143) such that for all k ≥ 0 and any permutation π ∈ Sn(1243, 2143), we
have that π avoids 12 . . . k if and only if ω(π) avoids 213 . . . k.

2. For any permutation π ∈ Sn(1243, 2143) let Tπ(x) denote the generating function
given by

Tπ(x) =
∞∑

n=0

|Sn(1243, 2143, π)|xn.

Then the case of Theorem 6.8 in which |R| = 1 amounts to a recurrence relation
giving Tπ∗1(x) in terms of Tπ(x). Find similar relations for Tπ1∗π2(x) in terms of
Tπ1(x) and Tπ2(x) and for Tnπ(x) in terms of Tπ(x). Alternatively, find an analogue
of [14, Theorem 2.1] for S(1243, 2143).

3. Give a combinatorial proof of the fact that

|Sn(1243, 2143, 231)| = (n + 2)2n−3 (n ≥ 2).

4. Give a combinatorial proof of the fact that

|Sn(1243, 2143, 321)| =
(

n − 1

0

)
+

(
n − 1

1

)
+ 2

(
n − 1

2

)
+ 2

(
n − 1

3

)
(n ≥ 1).
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5. For k ≥ 3 and r ≥ 2, find the generating function for the number of permutations
in Sn(1243, 2143) which contain exactly r subsequences of type 213 . . . k.

Remark After this paper appeared in preprint form, several of the problems above were
solved by Reifegerste in [16].
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