.EQ delim $$ define not= '= back 40 /^' gsize 12 .EN .nr PS 16 .LP .DS C \fBSmall Ramsey Numbers\fP .DE .nr PS 12 .nr VS 15 .sp 1.5 .LP .ds CH .ds CF - \\n% - .DS C Stanis\(l/aw P. Radziszowski Department of Computer Science Rochester Institute of Technology Rochester, NY 14623, spr@cs.rit.edu \s-2\fHhttp://www.cs.rit.edu/~spr\fP\s0 first version: June 11, 1994; revision #15: February 3, 2017 \s-2\fHhttp://www.combinatorics.org\fP\s0 .DE .nr LL 5.5i .sp .RS .RS .LP \fBABSTRACT:\fP We present data which, to the best of our knowledge, includes all known nontrivial values and bounds for specific graph, multicolor and hypergraph Ramsey numbers, where the avoided graphs are complete or complete without one edge. Many results pertaining to other more studied cases are also presented. We give references to all cited bounds and values, as well as to previous similar compilations. We do not attempt complete coverage of asymptotic behavior of Ramsey numbers, but rather we concentrate on their specific values. .RE .RE .nr LL 6.5i .sp .nr LT 6.5i .RS .IP Mathematical Reviews Subject Number 05C55 .ds RH "\s10T\s-2HE\s0 E\s-2LECTRONIC\s0 J\s-2OURNAL OF\s0 C\s-2OMBINATORICS\s0 (2017), DS1\s-2.15 .RS .sp .5 .nr PS 10 .nr VS 12 .LP .SH Revisions .RS .DS L 1993, February preliminary version, RIT-TR-93-009 [Ra2] 1994, July 3 posted on the web at the \fIElJC\fP 1994, November 7 \fIElJC\fP revision #1 1995, August 28 \fIElJC\fP revision #2 1996, March 25 \fIElJC\fP revision #3 1997, July 11 \fIElJC\fP revision #4 1998, July 9 \fIElJC\fP revision #5 1999, July 5 \fIElJC\fP revision #6 2000, July 25 \fIElJC\fP revision #7 2001, July 12 \fIElJC\fP revision #8 2002, July 15 \fIElJC\fP revision #9 2004, July 4 \fIElJC\fP revision #10 2006, August 1 \fIElJC\fP revision #11 2009, August 4 \fIElJC\fP revision #12 2011, August 22 \fIElJC\fP revision #13 2014, January 12 \fIElJC\fP revision #14 2017, February 3 \fIElJC\fP revision #15 .DE .RE .RE .RE .bp .EQ gsize 9 .EN .nr PS 10 .nr VS 11 .RS .SH Table of Contents 2 .RS .RS .DS L \fB1. Scope and Notation 3\fP .sp .3 \fB2. Classical Two-Color Ramsey Numbers 4\fP .sp .2 2.1 $~$Values and bounds for $R(k,^l)$, $k^<=~10,~l^<=~15$ $~^$4 2.2 $~$Bounds for $R(k,^l)$, higher parameters $~^$6 2.3 $~$General results on $R(k,^l)$ $~^$8 .sp .3 \fB3. Two Colors:\fP $K sub n ^-^e$, $K sub 3$, $K sub {m,^n}$ \fB11\fP .sp .2 3.1 $~$Dropping one edge from complete graph 11 3.2 $~$Triangle versus other graphs 13 3.3 $~$Complete bipartite graphs 14 .sp .3 \fB4. Two Colors: Numbers Involving Cycles 18\fP .sp .2 4.1 $~$Cycles, cycles versus paths and stars 18 4.2 $~$Cycles versus complete graphs 19 4.3 $~$Cycles versus wheels 21 4.4 $~$Cycles versus books 23 4.5 $~$Cycles versus other graphs 24 .sp .3 \fB5. General Graph Numbers in Two Colors 25\fP .sp .2 5.1 $~$Paths 25 5.2 $~$Wheels 25 5.3 $~$Books 26 5.4 $~$Trees and forests 27 5.5 $~$Stars, stars versus other graphs 28 5.6 $~$Paths versus other graphs 28 5.7 $~$Fans, fans versus other graphs 29 5.8 $~$Wheels versus other graphs 30 5.9 $~$Books versus other graphs 31 5.10 Trees and forests versus other graphs 31 5.11 Cases for $n(G),~n(H)~<=~5$ 32 5.12 Mixed cases 33 5.13 Multiple copies of graphs, disconnected graphs 33 5.14 General results for special graphs 34 5.15 General results for sparse graphs 35 5.16 General results 36 .sp .3 \fB6. Multicolor Ramsey Numbers 38\fP .sp .2 6.1 $~^$Bounds for classical numbers 38 6.2 $~^$General results for complete graphs 40 6.3 $~^$Cycles 41 6.4 $~^$Paths, paths versus other graphs 46 6.5 $~^$Special cases 48 6.6 $~^$General results for special graphs 49 6.7 $~^$General results 50 .sp .3 \fB7. Hypergraph Numbers 52\fP .sp .2 7.1 $~^$Values and bounds for numbers 52 7.2 $~^$Cycles and paths 53 7.3 $~^$General results for 3-uniform hypergraphs 54 7.4 $~^$General results 55 .sp .3 \fB8. Cumulative Data and Surveys 56\fP .sp .2 8.1 $~^$Cumulative data for two colors 56 8.2 $~^$Cumulative data for three colors 57 8.3 $~^$Electronic resources 58 8.4 $~^$Surveys 58 .sp .3 \fB9. Concluding Remarks 60\fP .sp .3 \fBReferences 61-104\fP .DE .RE .RE .RE .EQ gsize 12 .EN .nr PS 12 .nr VS 15 .NH Scope and Notation .sp .PP There is vast literature on Ramsey type problems starting in 1930 with the original paper of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an exciting development of Ramsey Theory. The subject has grown amazingly, in particular with regard to asymptotic bounds for various types of Ramsey numbers (see the survey papers [GrR\o'o\(:a', Ne\o's\(be', ChGra2, Ros2]), but the progress on evaluating the basic numbers themselves has been unsatisfactory for a long time. In the last three decades, however, considerable progress has been obtained in this area, mostly by employing computer algorithms. The few known exact values and several bounds for different numbers are scattered among many technical papers. This compilation is a fast source of references for the best results known for specific numbers. It is not supposed to serve as a source of definitions or theorems, but these can be easily accessed via the references gathered here. .PP Ramsey Theory studies conditions when a combinatorial object contains necessarily some smaller given objects. The role of Ramsey numbers is to quantify some of the general existential theorems in Ramsey Theory. .PP Let $G sub 1 ,^G sub 2 ,...,^G sub m$ be graphs or $s$-uniform hypergraphs ($s$ is the number of vertices in each edge). $R(^G sub 1 ,^G sub 2 ,...,^G sub m ^;^s)$ denotes the $m$-color .B Ramsey number .R for $s$-uniform graphs/hypergraphs, avoiding $G sub i$ in color $i$ for $1^<=~i^<=~m$. It is defined as the least integer $n$ such that, in any coloring with $m$ colors of the $s$-subsets of a set of $n$ elements, for some $i$ the $s$-subsets of color $i$ contain a sub-(hyper)graph isomorphic to $G sub i$ (not necessarily induced). The value of $R(^G sub 1 ,^G sub 2 ,...,^G sub m ^;^s)$ is fixed under permutations of the first $m$ arguments. If $s^=^2$ (standard graphs) then $s$ can be omitted. If $G sub i$ is a complete graph $K sub k$, then we may write $k$ instead of $G sub i$, and if $G sub i ^=^G$ for all $i$ we may use the abbreviation $R sub m (G;^s)$ or $R sub m (G)$. For $s^=^2$, $K sub k -^e$ denotes a $K sub k$ without one edge, and for $s^=^3$, $K sub k -^t$ denotes a $K sub k$ without one triangle (hyperedge). .PP The graph $nG$ is formed by $n$ disjoint copies of $G$, $G up 20 {size 7 union} ^H$ stands for vertex disjoint union of graphs, and the \fBjoin\fP $G+^H$ is obtained by adding all of the edges between vertices of $G$ and $H$ to $G up 20 {size 7 union} ^H$. $P sub i$ is a \fBpath\fP on $i$ vertices, $C sub i$ is a \fBcycle\fP of length $i$, and $W sub i$ is a \fBwheel\fP with $i-1$ spokes, i.e. a graph formed by some vertex $x$, connected to all vertices of the cycle $C sub i-1$ (thus $W sub i ~=~K sub 1 ^+^C sub i-1$). $K sub n,m$ is a complete $n$ by $m$ bipartite graph, in particular $K sub 1,n$ is a \fBstar\fP graph. The \fBbook\fP graph $B sub i ^=^ K sub 2 ^+^ K bar sub i ^=^ K sub 1 ^+^K sub 1,i$ has $i+^2$ vertices, and can be seen as $i$ triangular pages attached to a single edge. The \fBfan\fP graph $F sub n$ is defined by $F sub n ~=~ K sub 1 ^+~ nK sub 2$. For a graph $G$, $n(G)$ and $e(G)$ denote the number of vertices and edges, respectively, and $delta (G)$ and $DELTA (G)$ minimum and maximum degree of $G$. Finally, $chi (G)$ denotes the chromatic number of $G$. In general, we follow the notation used by West [West]. .PP Section 2 contains the data for the classical two color Ramsey numbers $R(k,^l)$ for complete graphs, section 3 for the much studied two color cases of $K sub n ^-^e$, $K sub 3$, $K sub {m,^n}$, and section 4 for numbers involving cycles. Section 5 lists other often studied two color cases for general graphs. The multicolor and hypergraph cases are gathered in sections 6 and 7, respectively. Finally, section 8 gives pointers to cumulative data and to other surveys. .NH Classical Two-Color Ramsey Numbers .sp .NH 2 Values and bounds for $R(k,^l)$, $k^<=^10,~l^<=^15$ .nr PS 10 .nr VS 12 .LP .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8| rp8 . ,$size 8 l$,$~ size 8 3$,4,5,6,7,8,9,10,11,12,13,14,15 \fIk\fP,,,,,,,,,,,,,, = .sp .2 3,,6,9,14,18,23,28,36,40,47,53,60,67,74 \^,,\^,\^,\^,\^,\^,\^,\^,42,50,59,68,77,87 _ 4,,,18,25,36,49,59,73,92,102,128,138,147,155 \^,,,\^,\^,41,61,84,115,149,191,238,291,349,417 _ 5,,,,43,58,80,101,133,149,183,203,233,267,269 \^,,,,48,87,143,216,316,442,633,848,1138,1461,1878 _ 6,,,,,102,115,134,183,204,256,294,347,,401 \^,,,,,165,298,495,780,1171,1804,2566,3703,5033,6911 _ 7,,,,,,205,217,252,292,405,417,511 \^,,,,,,540,1031,1713,2826,4553,6954,10578,15263,22112 _ 8,,,,,,,282,329,343,,,817,,865 \^,,,,,,,1870,3583,6090,10630,16944,27485,41525,63609 _ 9,,,,,,,,565,581,,,,, \^,,,,,,,,6588,12677,22325,38832,64864 _ 10,,,,,,,,,798,,,,,1265 \^,,,,,,,,,23556,45881,81123 .TE .nr PS 12 .nr VS 15 .DS C Table I. Known nontrivial values and bounds for two color Ramsey numbers $R(k,^l)~=~R(k,^l^;^2)$. .DE .sp .nr PS 10 .nr VS 12 .LP .TS box center tab(,); cp8 cp8 || cp8 | cp8 | cp8 | cp8 | cp8 | cp8 | cp8 | cp8 | cp8 | cp8 | cp8| cp8 . ,$size 8 l$,$~ size 8 4$,5,6,7,8,9,10,11,12,13,14,15 \fIk\fP,,,,,,,,,,,,,, = .sp .2 3,,GG,GG,K\o'e\(aa'ry,Ka2,GR,Ka2,Ex5,Ex20,Kol1,Kol1,Kol2,Kol2 \^,,\^,\^,\^,GrY,McZ,GR,GoR1,GoR1,Les,GoR1,GoR1,GoR1 _ 4,,GG,Ka1,Ex19,Ex3,ExT,Ex16,HaKr1,ExT,SuLL,ExT,ExT,ExT \^,,\^,MR4,MR5,Mac,Mac,Mac,Mac,Spe4,Spe4,Spe4,Spe4,Spe4 _ 5,,,Ex4,Ex9,CaET,HaKr1,Kuz,ExT,Kuz,Kuz,Kuz,Kuz,ExT \^,,,AnM,HZ1,HZ1,Spe4,Mac,Mac,HW+,HW+,HW+,HW+,HW+ _ 6,,,,Ka2,ExT,ExT,Kuz,Kuz,Kuz,Kuz,Kuz,,2.3.h \^,,,,Mac,HZ1,Mac,Mac,Mac,HW+,HW+,HW+,HW+,HW+ _ 7,,,,,She2,XSR2,Kuz,Kuz,XXER,XSR2,XuXR \^,,,,,Mac,HZ1,HZ2,Mac,HW+,HW+,HW+,HW+,HW+ _ 8,,,,,,BurR,Kuz,Kuz,,,XXER,,2.3.h \^,,,,,,Mac,Ea1,HZ2,HW+,HW+,HW+,HW+,HW+ _ 9,,,,,,,She2,XSR2,,,,, \^,,,,,,,ShZ1,Ea1,HW+,HW+,HW+ _ 10,,,,,,,,She2,,,,,2.3.h \^,,,,,,,,Shi2,HW+,HW+ .TE .nr PS 12 .nr VS 15 .DS C References for Table I; HW+ abbreviates HWSYZH, as enhanced by Boza [Boza5], see 2.1.m. .DE .sp .PP We split the data into the table of values and a table with corresponding references. In Table I, known exact values appear as centered entries, lower bounds as top entries, and upper bounds as bottom entries. For some of the exact values two references are given when the lower and upper bound credits are different. .IP (a) The task of proving $R(3,^3) ~<=~ 6$ was the second problem in Part I of the William Lowell Putnam Mathematical Competition held in March 1953 [Bush]. .IP (b) Greenwood and Gleason [GG] established the initial values $R(3,^4)~=~9$, $R(3,^5)~=~14$ and $R(4,^4)~=~18$ in 1955. .IP (c) K\o'e\(aa'ry [K\o'e\(aa'ry] proved that $R(3,^6)~=~18$ in 1964, but only in 2007 an elementary and self-contained proof of this result appeared in English [Car]. .IP (d) All of the critical graphs for the numbers $R(k,^l)$ (graphs on $R(k,^l)^-^1$ vertices without $K sub k$ and without $K sub l$ in the complement) are known for $k^=^3$ and $l^=^$3, 4, 5 [K\o'e\(aa'ry], 6 [Ka2], 7 [RaK2, McZ], 8 [BrGS] and 9 [GoR1], and there are 1, 3, 1, 7, 191, 477142, and 1 of them, respectively. All $(3,^k)$-graphs, for $k~<=~6$, were enumerated in [RaK2], and all (4,4)-graphs in [MR2]. There exists a unique critical graph for $R(4,4)$ [Ka2]. Until 2015, there were 350904 known critical graphs for $R(4,^5)$ [MR4], but the full set of such graphs was computed in 2016 [McK3], and there are 352366 of them. of them. .IP (e) In [MR5], strong evidence is given for the conjecture that $R(5,^5)~=~43$ and that there exist exactly 656 critical graphs on 42 vertices. The upper bound of 49 was established in 1997. Angeltveit and McKay improved it by 1 to 48 in 2016 [AnM]. .IP (f) The graphs constructed by Exoo in [Ex9, Ex12-Ex20], and some others, are available electronically from \s-2\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. Fujita [Fuj1] maintains a website with some lower bound constructions; in particular, it presents the bound $R(4,8)~>=~58$ obtained independently from Exoo. .IP (g) $Cyclic$ (or $circulant$) graphs are often used for Ramsey graph constructions. Several cyclic graphs establishing lower bounds were given in the Ph.D. dissertation by J.G. Kalbfleisch in 1966, and many others were published in the next few decades (see [RaK1]). Harborth and Krause [HaKr1] presented all best lower bounds up to 102 from cyclic graphs avoiding complete graphs. In particular, no lower bound in Table I can be improved with a cyclic graph on less than 102 vertices, except possibly for $R(3,^k)$ for $k~>=~13$. See also item 2.3.k and section 5.16 [HaKr1]. Several best lower bounds from \fIdistance colorings\fP, a slightly more general concept than circular graphs, are presented in [HaKr2]. .IP (h) The claim that $R(5,^5)~=~50$ posted on the web [Stone] is in error, and despite being shown to be incorrect more than once, this value is still being cited by some authors. The bound $R(3,^13)~>=~60$ [XieZ] cited in the 1995 version of this survey was shown to be incorrect in [Piw1]. Another incorrect construction for $R(3,^10)~>=~41$ was described in [DuHu]. .IP (i) There are really only two general upper bound inequalities useful for small parameters, namely 2.3.a and 2.3.b. Stronger upper bounds for specific parameters were difficult to obtain, and they often involved massive computations, like those for the cases of (3,8) [McZ], (3,10) [GoR1], (4,5) [MR4], (4,6) and (5,5) [MR5, AnM]. The bound $R(6,^6)~<=~166$, only 1 more than the best known [Mac], is an easy consequence of a theorem in [Walk] (2.3.b) and $R(4,^6)~<=~41$. .IP (j) T. Spencer [Spe4], Mackey [Mac], and Huang and Zhang [HZ2], using the bounds for minimum and maximum number of edges in (4,5) Ramsey graphs listed in [MR3, MR5], were able to establish new upper bounds for several higher Ramsey numbers, improving on all of the previous longstanding best results by Giraud [Gi3, Gi5, Gi6]. .IP (k) Only some of the higher bounds implied by 2.3.* are shown, and more similar bounds could be derived. In general, we show bounds beyond the contiguous small values if they improve on results previously reported in this survey or published elsewhere. Some easy upper bounds implied by 2.3.a are marked as [Ea1]. .IP (l) In 2009, we have recomputed the upper bounds in Table I marked [HZ2] using the method from the paper [HZ2], because the bounds there relied on an overly optimistic personal communication from T. Spencer. Further refinements of this method are studied in [HZ3, ShZ1, Shi2]. The paper [Shi2] subsumes the main results of the manuscripts [ShZ1, Shi2]. .IP (m) In 2013, Boza [Boza5] using the method of [HWSYZH], which is abbreviated as HW+ in Table I, computed the bounds marked HW+ by starting from better upper bounds for smaller parameters. Most of the currently shown bounds are thus better than those originally listed in [HWSYZH, HZ3]. Five upper bounds not shown in Table I can be obtained similarly but they are larger than $10 sup 5$. .IP (n) In 2015, Exoo and Tatarevic obtained a large number of lower bounds improvements in Tables I and II, marked [ExT], by using some modifications of general circulant constructions, but especially related to the quadratic residues Paley graph $Q sub 101$ and the cubic residues graph $G sub 127$. In 2016, Kuznetsov [Kuz] obtained several further new lower bounds also building up on circulant graphs. Also in 2015 and 2016, somewhat surprisingly, Kolodyazhny [Kol1, Kol2] improved four longstanding lower bounds on $R(3,^k)$ in Table I. .IP (o) Some lower bounds in Table I, like for $R(6,8)$ or $R(8,8)$, may seem rather weak, yet they are not easy to improve. For comments on $R(8,8)$ see [ExT]. .sp .5 .NH 2 Bounds for $R(k,^l)$, higher parameters .IP (a) The upper bounds in Tables I and IIa marked [GoR1, Les, Back1] were obtained mainly by deriving lower bounds for several cases of $e(3,^k,^n)$, which denotes the minimum number of edges in $n$-vertex triangle-free graphs with independence number less than $k$. The study of $e(3,^k,^n)$ was also the main tool for the results obtained in [GrY, GR, RaK2, RaK3, GoR2]. .IP (b) \fIRamsey Calculus\fP [Back1], is an extensive manuscript by Backelin, which, among other goals, addresses the derivation of $e(3,^k,^n)$ and the corresponding realisers while avoiding reliance on computer assisted results as far as possible. It achieves the derivation of several lower bounds for $e(3,^k+^1,^n)$ better than those in [GoR1, RaK3, RaK4] for $n$ close to and above $13k/4$. Better lower bounds on $e(3,^k,^n)$ sometimes lead to better upper bounds on $R(3,^l)$, like for $l~=~18$ and $l~=~20^$ [Back4]. .nr PS 10 .nr VS 12 .LP .sp .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . ,$size 8 l$,$~ size 8 15$,16,17,18,19,20,21,22,23 \fIk\fP = 3,,74,82,92,99,106,111,122,131,139 \^,,Kol2,Ex21,W1+,Ex16,W1+,Ex16,W1+,W2+,XWCS \^,,87,97,109,120,132,145,157,171,185 \^,,GoR1,Back3,Back1,Back4,Back3,Les,Back4,Back2,Back2 _ 4,,155,166,200,205,213,234,242,314 \^,,ExT,ExT,Lia+,2.3.e,2.3.g,Ex16,SLZL,LinCa _ 5,,269,293,388,396,411,424,441,485,521 \^,,ExT,ExT,XSR2,2.3.g,XSR2,XSR2,2.3.h,2.3.h,2.3.h _ 6,,401,434,548,614,710,878,,1070 \^,,2.3.h,SLLL,SLLL,SLLL,SLLL,SLLL,,SLLL _ 7,,,617,711,797,908,,1214 \^,,,2.3.h,2.3.g,2.3.h,SLLL,,SLLL _ 8,,865,,965,1045,1236,,1617 \^,,2.3.h,,2.3.h,2.3.g,2.3.g,,2.3.h .TE .nr PS 12 .nr VS 15 .LP .DS C Table IIa. Known bounds for higher two-color Ramsey numbers $R(k,^l)$, with references. Lower and upper bounds are given for $k^=^3$, only lower bounds for $k^>=^4$; Lia+, W1+ and W2+ abbreviate LiaWXS, WWY1 and WSLX2, respectively. .DE .nr PS 10 .nr VS 12 .LP .sp .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . ,$size 8 l$,$~ size 8 24$,25,26,27,28,29,30,31 \fIk\fP = 3,,143,154,159,172,177,190,195,206 \^,,WSLX1,WSLX2,WSLX1,LiLi,LiLi,LiLi,LiLi,LiLi .TE .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . ,$size 8 l$,$~ size 8 32$,33,34,35,36,37,38,$~^ size 8 39$,$~^ size 8 40$ \fIk\fP = .sp .2 3,,217,224,229,236,241,246,259 \^,,LiLi,LiLi,LiLi,LiLi,LiLi,LiLi,LiLi .TE .nr PS 12 .nr VS 15 .LP .DS C Table IIb. Known lower bounds for higher Ramsey numbers $R(3,^l)~$ for $l~>=~24$. .DE .nr PS 10 .nr VS 12 .LP .sp .TS box center tab(,); rp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . $size 8 k$,$~ size 8 11$,12,13,14,15,16,17 lower bound,1597,1639,2557,2989,5485,5605,8917 reference,2.2.c,XSR2,2.2.c,2.2.c,2.2.c,2.2.c,LuSL .sp .1 _ $size 8 k$,$~ size 8 18$,19,20,21,22,23,24 lower bound,11005,17885,19069,27077,29941 reference,LuSL,LuSL,Lia+,Lia+,Lia+ .TE .nr PS 12 .nr VS 15 .LP .DS C Table IIc. Known lower bounds for diagonal Ramsey numbers $R(k,^k)~$ for $k~>=~11$; Lia+ abbreviates LiaWXCS, see also 2.2.c below. .DE .sp .5 .IP (c) The construction by Mathon [Mat] and Shearer [She2] (see also items 2.3.i, 6.2.k and 6.2.l), using the data obtained by Shearer [She4] for primes up to 7000, implies the lower bounds in Table IIc marked 2.2.c. The first two bounds credited in Table IIc to [LuSL] also follow similarly from the data in [She4]. The same approach does not improve on the bound $R(12,12)~>=~1639$ [XSR2]. The bounds in [Lia+] were obtained by extending data for Payley graphs beyond [Sha4]. .IP (d) The lower bounds marked [XuXR], [XXER], [XSR2], 2.3.e and 2.3.h need not be cyclic. Several of the Cayley colorings from [Ex16] are also non-cyclic. All other lower bounds listed in Table IIab were obtained by construction of cyclic graphs. .IP (e) The graphs establishing lower bounds marked 2.3.g can be constructed by using appropriately chosen graphs $G$ and $H$ with a common $m$-vertex induced subgraph, similarly as it was done in several cases in [XuXR]. .IP (f) Yu [Yu2] constructed a special class of triangle-free cyclic graphs establishing several lower bounds for $R(3,^k)$, for $k^>=^61$. All of these bounds can be improved by the inequalities in 2.3.c and data from Tables I and II. .IP (g) Unpublished bound $R(4,^22)~>=~314$ [LiSLW] improved over 282 given in [SuL]. [LinCa] obtained the same bound, and also $R(4,^25)~>=~458$. Not yet published bounds $R(3,^23)~>=~139$ [XWCS] and $R(4,^17)~>=~200$ [LiaWXS] improve over 137 and 182 obtained in [WSLX2] and [LuSS1], respectively. .IP (h) Two special cases which improve on bounds listed in earlier revisions: $R(9,^17)~>=~1411$ is given in [XuXR] and $R(10,^15)~>=~1265$ can be obtained using 2.3.h. .IP (i) One can expect that the lower bounds in Table II are weaker than those in Table I, especially smaller ones, in the sense that some of them should not be that hard to improve, in contrast to the bounds in Table I. .sp .NH 2 General results on $R(k,^l)$ .sp .IP (a) $R(k,^l)~<=~R(k-1,^l)^+^R(k,^l-1)$, with strict inequality when both terms on the right hand side are even [GG]. There are obvious generalizations of this inequality for avoiding graphs other than complete. .IP (b) $R(k ,^k )~<=~4R(k ,^k^-^2 )^+^2$ [Walk]. .IP (c) Explicit construction for $R(3,^3k^+^1)~>=~4R(3,^k^+^1)^-^3$, for all $k^>=^2^$ [CleDa], .br explicit construction for $R(3,^4k^+^1)~>=~6R(3,^k^+^1)^-^5$, for all $k^>=^1^$ [ChCD]. .IP (d) Explicit triangle-free graphs with independence $k$ on $~OMEGA (k sup {down 20 {3/^2}} ^)$ vertices [Alon2, CoPR]. For other constructive results in relation to $R(3,^k)^$ see [BrBH1, BrBH2, Fra1, Fra2, FrLo, GoR1, Gri, KlaM1, Loc, RaK2, RaK3, RaK4, Stat, Yu1]. See also 2.3.(3) and 2.3.(4) below. .IP (e) The study of bounds for the difference between consecutive Ramsey numbers was initiated in [BEFS], where the bound $R(k,^l)~>=~R(k,^l^-^1)~+~2k^-^3~$, for $k,^l~>=~3$, was established by a construction. In 1980, Erd\o'o\(hu's and S\o'o\(aa's (cf. [Erd2,ChGra2]) asked: If we set $DELTA sub {^k,^l} ~=~ R(k,^l)~-~R(k,^l^-^1)$, then is it true that $DELTA sub {^k,^k^+^1}^/^k^ -> ~inf^$ as $k^ -> ~inf^$? Only easy bounds on $DELTA sub {^k,^l}$ are known, in particular $3~<=~ DELTA sub {^3,^l}~<=~l~$ for $k~=~3$. For some discussion of the latter see [XSR2, GoR2, ZhuXR]. It is also known that $R(3,^k) ~>=~R(3,^K sub k-1^-^e)^+^4$ [ZhuXR]. .sp .2 .IP (f) By taking a disjoint union of two critical graphs one can easily see that $R(k,^p)^>=^s$ and $R(k,^q)^>=^t$ imply $R(k,^p+^q-1)~>=~s+^t-1$. Xu and Xie [XuX1] improved this construction to yield better general lower bounds, in particular $R(k,^p+^q-1)~>=~s+^t^+^k^-^3$. .IP (g) For $2^<=^p^<=^q$ and $3^<=^k$, if $(k,^p)$-graph $G$ and $(k,^q)$-graph $H$ have a common induced subgraph on $m$ vertices without $K sub up 20 {k-1}$, then $R(k,^p+^q^-^1)^>$ $n(G)^+$ $n(H)^+^m$. In particular, this implies the bounds $R(k,^p+^q^-^1)~>=~R(k,^p)~+~R(k,^q)^+^k^-^3$ and $R(k,^p+^q^-^1)~>=$ $R(k,^p)~+~R(k,^q)^+^p^-^2$ [XuX1, XuXR], with further small improvements in some cases, such as using the term $k^-~2$ instead of $k^-^3$ in the previous bound [XSR2]. .IP (h) $R(2k^-^1,^l)~>=~4R(k,^l^-^1)~-~3~$ for $l~>=~5$ and $k~>=~2$, and in particular for $k^=^3$ we have $R(5,^l)~>=~4R(3,^l^-^1)~-~3~$ [XXER]. .IP (i) If the quadratic residues Paley graph $Q sub up 20 p$ of prime order $p^=~4t^+^1$ contains no $K sub k$, then $R(k,^k) ~>=~p^+^1$ and $R(k^+^1,^k^+^1) ~>=~2p^+^3$ [She2, Mat]. Data for larger $p$ was obtained in [LuSL]. See also 3.1.c, and items 6.2.k and 6.2.l for similar multicolor results. .IP (j) Study of Ramsey numbers for large disjoint unions of graphs [Bu1, Bu9], in particular .br $R(nK sub k ,^nK sub l )~=~n(k^+^l^-^1)~+~R(K sub k-1 ,^K sub l-1 )~-~2$, for $n$ large enough [Bu8]. .IP (k) $R(k,^l)~>=~L(k,^l)~+~1$, where $L(k,^l)$ is the maximal order of any cyclic $(k,^l)^-$graph. .br A compilation of many best cyclic bounds was presented in [HaKr1]. .IP (l) The graphs critical for $R(k,^l)$ are $(k^-^1)^-$vertex connected and $(2k^-^4)^-$edge connected, for $k,^l~>=~3$ [BePi]. This was improved to vertex connectivity $k$ for $k~>=~5$ and $l~>=~3$ in [XSR2]. .IP (m) All Ramsey-critical $(k,^l)^-$graphs are Hamiltonian for $k~>=~l^-^1~>=~1$ and $k~>=~3$, except when $(k,^l)~=~(3,^2)~$ [XSR2]. .IP (n) Two-color lower bounds can be obtained by using items 6.2.m, 6.2.n and 6.2.o with $r~=~2$. Some generalizations of these were obtained in [ZLLS]. .sp .PP In the last seven items (1)-(7) of this section we only briefly mention some pointers to the literature dealing with asymptotics of Ramsey numbers. This survey was designed mostly for small, finite, and combinatorial results, but still we wish to give the reader some useful and representative references to more traditional papers studying the infinite. .sp .IP (1) In 1947, Erd\o'o\(hu's gave a simple probabilistic proof that $R(k,^k)~>=~ck2 sup {down 20 {^k/^2}}$ [Erd1]. Spencer [Spe1] improved the constant $c$ to $down 5 sqrt up 5 {^2^}/e$. More probabilistic asymptotic lower bounds for other Ramsey numbers were obtained in [Spe1, Spe2, AlPu]. .IP (2) The limit of $R(k,^k) sup {^1^/^k}$, if it exists, is between $down 5 sqrt up 5 {^2^}$ and $4~$ [GRS, GrR\o'o\(:a', ChGra2]. .IP (3) In 1995, Kim obtained a breakthrough result by proving that $R(3,^k)~=~THETA (k sup {down 20 2} /^ log^k)$ [Kim]. The best known lower and upper bounds constants are 1/4 [BohK2] and 1 (implicit in [She1]), respectively. An independent proof of the lower bound constant 1/4 and a conjecture that it is the best possible are presented in [FizGM]. .IP (4) Other asymptotic and general results on triangle-free graphs in relation to $R(3,^k)$ can be found in [Boh, AlBK, AjKS, Alon2, CleDa, ChCD, CoPR, Gri, FrLo, Loc, She1, She3]. .IP (5) Explicit constructions yielded the lower bounds $R(4,^k)~>=~OMEGA (k sup {down 20 {8/^5}} )$, $R(5,^k)~>=~OMEGA (k sup {down 20 {5/^3}} )$ and $R(6,^k)~>=~OMEGA (k sup {down 20 {2}} )~$ [KosPR]. For the same cases of $k$ classical probabilistic arguments give $OMEGA ((k/^roman log ^k) sup {down 20 {5/^2}} )$, $OMEGA ((k/^roman log ^k) sup {down 20 3} )$ and $OMEGA ((k/^roman log ^k) sup {down 20 {7/^2}} )$, respectively [Spe2]. These were improved to $OMEGA (k sup {down 20 {5/^2}} /^( roman log ^k) sup {down 20 2} )$, $OMEGA (k sup {down 20 3} /^( roman log ^k) sup {down 20 {8/^3}} )$ and $OMEGA (k sup {down 20 {7/^2}} /^( roman log ^k) sup {down 20 {13/^4}} )$, respectively, in [Boh, BohK1], and in general to $R(s,^t)~>=~OMEGA (t sup { down 20 {(s+1)/^2}}^/^ ( roman log ^t) sup {down 20 {(s sup 2 -^s-^4)/(2s-^4)}})$, for fixed $s$ and large $t~$ [BohK1]. .IP (6) Explicit construction of a graph with clique and independence $k$ on $2 sup down 10 { ^c log sup {down 20 2} ^k^/ ^log^log^k}^$ vertices was presented by Frankl and Wilson [FraWi], and further constructions by Chung [Chu3] and Grolmusz [Grol1, Grol2]. In 2012, the best explicit construction for large $k$ by Barak et al. [BarRSW] improved over [FraWi] by giving such a graph on $2 sup down 7 {2 sup down 7 {(^log^log^k) sup C}}^$ vertices for some $c^>^1$, or equivalently, on $n$ vertices, where $log^log^n~=~(^log^log^k) sup c$. This was improved to $log^log^n~=~(^log^k) sup d$, for a positive constant $d$, by Cohen [Coh] in 2016. Explicit constructions such as these are usually weaker than known probabilistic results. .sp .1 .IP (7) In 2010, Conlon [Con1] obtained the best until now upper bound for the diagonal case: .EQ R(k^+^1,^k^+^1)~<=~ down 30 left ( cpile { 2k above k} right ) k sup down 20 { ^-^c log ^k^/ ^log^log^k} .EN Other asymptotic bounds can be found, for example, in [Chu3, McS, Boh, BohK1] (lower bound) and [Tho] (upper bound), and for many other bounds in the general case of $R(k,^l)$ consult [Spe2, GRS, GrR\o'o\(:a', Chu4, ChGra2, LiRZ1, AlPu, Kriv, ConFS7]. .bp .NH Two Colors: $K sub n ^-^e$, $K sub 3$, $K sub {m,^n}$ .sp .4 .NH 2 Dropping one edge from complete graph .sp .4 .LP This section contains known values and nontrivial bounds for the two color case when the avoided graphs are complete or have the form $K sub k -^e$, but not both are complete. .sp .IP (a) 0.35i The exact values in Table IIIa involving $K sub 3 ^-^e$ are obvious, since one can easily see that $R(K sub 3 ^-^e,^K sub k ^)~=~R(K sub 3 ^-^e,^K sub k+1 ^-^e )~=~2k^-^1~$ for all $k^>=^2$. .IP (b) More bounds (beyond those shown in Tables IIIa/b) can be easily obtained using Table I, an obvious generalization of the inequality $R(k,^l)~<=~R(k-1,^l)~+~R(k,^l-1)$, and by monotonicity of Ramsey numbers, in this case $R(K sub k-1 ,^G)~<=~R(K sub k ^-^e,^G)~<=~R(K sub k ,^G)$. .IP (c) If the quadratic residues Paley graph $Q sub up 20 p$ of prime order $p^=~4t^+^1$ contains no $K sub k ^-^e$, then $R(K sub k+1 ^-^e,^K sub k+1 ^-^e) ~>=~2p^+^1$. In particular, $R(K sub 14 ^-^e,^K sub 14 ^-^e)~>=~2987$ [LiShen]. This was generalized to $K sub k ^-^F$ for some small graphs $F$ instead of an edge $e^(=^K sub 2 )^$ [WaLi]. See also item 2.3.i. .sp 1.5 .nr PS 10 .nr VS 11 .EQ gsize 8 .EN .LP .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . ,$H$,$K sub 3 ^-^e$,$K sub 4 ^-^e$,$K sub 5 ^-^e$,$K sub 6 ^-^e$,$K sub 7 ^-^e$,$K sub 8 ^-^e$,$K sub 9 ^-^e$,$K sub 10 ^-^e$,$K sub 11 ^-^e$ $G$,,,,,,,,,, = $K sub 3 ^-^e$,,3,5,7,9,11,13,15,17,19 \^,,\^,\^,\^,\^,\^,\^,\^,\^,\^ _ .sp .1 $K sub 3$,,5,7,11,17,21,25,31,37,42 \^,,\^,\^,\^,\^,\^,\^,\^,\^,45 _ $K sub 4 ^-^e$,,5,10,13,17,28,29,34,41 \^,,\^,\^,\^,\^,\^,38,53,67,86 _ $K sub 4$,,7,11,19,30,37,49 \^,,\^,\^,\^,33,52,74,105,138,183 _ $K sub 5 ^-^e$,,7,13,22,31,40 \^,,\^,\^,\^,39,66,100,152,211,297 _ $K sub 5$,,9,16,30,43,58 \^,,\^,\^,33,66,110,180,275,404,577 _ $K sub 6 ^-^e$,,9,17,31,45,59 \^,,\^,\^,39,70,135,218,369,551,848 _ $K sub 6$,,11,21,37,58 \^,,\^,\^,53,110,205,371,620,999,1538 _ .sp .1 $K sub 7 ^-^e$,,11,28,40,59 \^,,\^,\^,66,135,251,469,807,1331,2142 _ $K sub 7$,,13,28,51,80 \^,,\^,30,83,192,388,746,1325,2281,3726 _ $K sub 8$,,15,29 \^,,\^,42,123,300,657,1345,2556,4698,8177 .TE .nr PS 12 .nr VS 15 .EQ gsize 12 .EN .LP .DS C Table IIIa. Two types of Ramsey numbers $R(G,^H)$, includes all known nontrivial values. .DE .nr PS 10 .nr VS 11 .EQ gsize 8 .EN .LP .TS box center tab(,); cp8 cp8 || cp8 | cp8 | cp8 | cp8 | cp8 | cp8 | cp8 | cp8 . .sp .5 ,$H$,$K sub 4 ^-^e$,$K sub 5 ^-^e$,$K sub 6 ^-^e$,$K sub 7 ^-^e$,$K sub 8 ^-^e$,$K sub 9 ^-^e$,$K sub 10 ^-^e$,$K sub 11 ^-^e$ $G$,,,,,,,,, = .sp .2 $K sub 3$,,ChH2,Clan,FRS1,GrH,Ra1,Ra1,MPR,WWY2 \^,,\^,\^,\^,\^,\^,\^,GoR2,GoR2 _ .sp .1 $K sub 4 ^-^e$,,ChH1,FRS2,McR,McR,Ea1,Ex14,Ex14 \^,,\^,\^,\^,\^,HZ3,HT+,HT+,HT+ _ $K sub 4$,,ChH2,EHM1,Boza6,Ex14,Ea1 \^,,\^,\^,Boza7,HZ3,BZ7,BZ2,BZ7,BZ7 _ $K sub 5 ^-^e$,,FRS2,CE+,Ex14,Ex14 \^,,\^,\^,Ea1,HZ3,HT+,HT+,HT+,HT+ _ $K sub 5$,,BoH,Ex6,Ea1,Ea1 \^,,\^,BZ7,BZ7,BZ7,BZ7,BZ7,BZ7,BZ7 _ $K sub 6 ^-^e$,,McR,Ex14,Ex14,Ex14 \^,,\^,Ea1,HZ3,HZ3,HT+,HT+,HT+,HT+ _ $K sub 6$,,McN/,Ex14,Ea1 \^,,ShWR,BZ1,BZ7,ShZ2,BZ7,BZ7,BZ7,BZ7 _ $K sub 7 ^-^e$,,McR,Ex14,Ex14 \^,,\^,HZ3,HZ3,ShZ1,HT+,HT+,HT+,HT+ _ $K sub 7$,,Ea1,Ex14,Ea1 \^,,BoPo,Ea1,BZ7,BZ7,BZ7,BZ7,BZ7,BZ7 _ $K sub 8$,,Ea1 \^,,BZ1,BZ1,BZ7,BZ7,BZ7,BZ7,BZ7,BZ7 .TE .nr PS 12 .nr VS 15 .EQ gsize 12 .EN .LP .DS C References for Table IIIa; CE+ abbreviates ClEHMS, HT+ abbreviates HTHZ1 (see also 3.1.m below), for some details on BZ1, BZ2 and BZ7 see item 3.1.d. .DE .nr PS 10 .nr VS 12 .LP .sp .TS box center tab(,); cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . $size 8 k$,$~ size 8 11$,12,13,14,15,16 .sp 0.2 = .sp 0.1 lower,42,47,55,60,69,74 bound,WWY2,Ea1,GoR2,Ea1,WWY2,Ea1 _ upper,45,53,62,71,80,91 bound,GoR2,GoR2,GoR2,GoR2,GoR2,GoR2 _ .TE .nr PS 12 .nr VS 15 .LP .DS C Table IIIb. Lower and upper bounds for $R(K sub 3 ,^K sub k ^-^e )~$ for $11~<=~k~<=~16$; lower bounds for $k~=~12,^14,^16$ are the same as for $R(K sub 3 ,^K sub k-1 )$. .DE .sp 1.5 .IP (d) This item follows personal communication from Boza [Boza5]. The upper bounds marked [BZ1] were obtained until 2012, while ones marked [BZ2] are from 2013. Several other improvements were obtained by Boza [Boza7] in 2014, marked also as [BZ7]. They are implied by [Boza6], the previous work [Boza1, Boza3, BoPo], the method of [HZ3], and the bounds given in [GoR2]. The enumeration of all $(K sub 6 ,^K sub 4 ^-^e)$-graphs [ShWR] is used in [BoPo]. .IP (e) All $(K sub 3 ,^K sub k ^-^e)$-graphs were enumerated for $k~<=~6$ [Ra1] and $k~=~7$ [Fid2, GoR2]. Full sets of $(K sub l ,^K sub k ^-^e)$-graphs were posted for the parameters $(K sub 3 ,^K sub k ^-^e)^$ for $k~<=~7$, $(K sub 4 ,^K sub k ^-^e)^$ for $k~<=~5$, and $(K sub 5 ,^K sub k ^-^e)^$ for $k~<=~4~$ at [Fid2], and other full and restricted families at [BrCGM, Fuj1]. .IP (f) The number of $(K sub 3 ,^K sub l ^-^e)$-critical graphs for $l^=~4,^5$ and 8 is 4, 2 and 9, respectively [MPR]. There are 7 critical graphs for $R(K sub 3 ,^K sub 9 ^-^e)$, and at least 40 such graphs for $R(K sub 3 ,^K sub 10 ^-^e)~$ [GoR2]. .IP (g) The critical graphs are unique for: $R(K sub 3 ,^K sub l ^-^e)$ for $l^=^$3 [Tr], 6 and 7 [Ra1], $R(K sub 4 ^-^e ,^K sub 4 ^-^e )~$ [FRS2], $R(K sub 5 ^-^e ,^K sub 5 ^-^e )~$ [Ra3] and $R(K sub 4 ^-^e ,^K sub 7 ^-^e )~$ [McR]. .IP (h) All of the critical graphs for the cases $R(K sub 4 ^-^e ,^K sub 4 ^)$ [EHM1], $R(K sub 4 ^-^e ,^K sub 5 ^)$ and $R(K sub 5 ^-^e ,^K sub 4 ^)$ [DzFi1] are known, and there are 5, 13 and 6 of them, respectively. The unpublished value of $R(K sub 4 ^-^e ,^K sub 6 ^)$ [McN] was confirmed in [ShWR], where in addition all 24976 critical graphs were found. .IP (i) It is known that $R(K sub 4 ,^K sub 12 ^-^e) ~>=~128$ [Shao] by using one color of the $(4,4,4;127)$- coloring defined in [HiIr]. .IP (j) $R(K sub k ^-^e,^K sub k ^-^e) ~<=~ 4R(K sub k-2 ,^K sub k ^-^e)~-~2$ [LiShen]. .br For a similar inequality for complete graphs see 2.3.b. .IP (k) Study of the cases $R(K sub m ,^K sub n ^-^K sub 1,s )$ and $R(K sub m ^-^e ,^K sub n ^-^K sub 1,s )$, with several exact values for special parameters [ChaMR]. .IP (l) The upper bounds from [ShZ1, ShZ2] are subsumed by a later article [Shi2]. .IP (m) The upper bounds in [HZ3] were obtained by a reasoning generalizing the bounds for classical numbers in [HZ2]. Several other results from section 2.3 apply, though checking in which situation they do may require looking inside the proofs whether they still hold for $K sub n ^-^e$. The upper bounds in the manuscript [HTHZ1] (abbreviated as HT+ in Table IIIa) are based on [HZ3]. .sp .NH 2 Triangle versus other graphs .sp .IP (a) $R(3,^k)~=~THETA (k sup {down 20 2} /^ log^k)$ [Kim]. .br For more comments on asymptotics see section 2.3 and the item 3.2.p/q below. .IP (b) Explicit construction for $R(3,^3k^+^1)~>=~4R(3,^k^+^1)^-~3$, for all $k^>=^2^$ [CleDa], .br explicit construction for $R(3,^4k^+^1)~>=~6R(3,^k^+^1)^-~5$, for all $k^>=^1^$ [ChCD]. .IP (c) Explicit triangle-free graphs with independence $k$ on $OMEGA (k sup {down 20 3/2} ^)$ vertices [Alon2, CoPR]. .IP (d) $R(K sub 3 ,^K sub 7 ^-^2P sub 2 ^)~=~R(K sub 3 ,^K sub 7 ^-^3P sub 2 ^)~=~18$ [SchSch2]. .IP (e) $R(K sub 3 ,^K sub 3 ^+~ K bar sub m ) ~=~ R(K sub 3 ,^K sub 3 ^+~ C sub m ) ~=~2m^+^5$ for $m^>=~212^$ [Zhou1]. .IP (f) $R(K sub 3 ,^K sub 2 ^+~ T sub n ) ~=~2n^+^3~$ for $n$-vertex trees $T sub n$, for $n^>=~4^$ [SonGQ]. .sp .2 .IP (g) $R(K sub 3 ,^G)~=~2n(G)^-^1$ for any connected $G$ on at least 4 vertices and with at most $(17n(G)^+^1)/15$ edges, in particular for $G^=~P sub i$ and $G^=~C sub i$, for all $i^>=~4^$ [BEFRS1]. .sp .2 .IP (h) $R(K sub 3 ,^Q sub n )~=~2 sup n+1 ^-^1^$ for large $n^$ [GrMFSS], where $Q sub n$ is the $n$-dimensional hypercube. For related publications on the general case of $R(K sub m ,^Q sub n )$ see [FizGMSS, ConFLS] and item 5.15.n. .sp .2 .IP (i) Relations between $R(3,^k)$ and graphs with large $chi (G)^$ [BiFJ], .br further detailed study of the relation between $R(3,^k)$ and the chromatic gap [GySeT]. .sp .2 .IP (j) $R(K sub 3 ,^G)~<=~2e(G)^+^1$ for any graph $G$ without isolated vertices [Sid3, GoK]. .IP (k) $R(K sub 3 ,^G)^<=^n(G)^+^e(G)$ for all $G$, a conjecture [Sid2]. .IP (l) $R(K sub 3 ,^G)$ for all connected $G$ up to 9 vertices [BrBH1, BrBH2]. .IP (m) $R(K sub 3 ,^G)$ for all graphs $G$ on 10 vertices [BrGS], except 10 cases (three of which, including $G^=^K sub 10 ^-^e$, were solved [GoR2]). See also section 8.1. .IP (n) $R(nK sub 3 ,^nK sub 3 ^)~=~5n$ for $n^>=^2$, $R(mK sub 3 ,^nK sub 3 ^)~=~3m^+^2n$ for $m^>=^n^>=^2$ [BES], and $R(c(nK sub 3^),^c(nK sub 3^))~=~7n^-^2$ for $n^>=^2$, where $c(nK sub 3^)$ is any connected graph containing $n$ vertex disjoint triangles [GyS\o'a\(aa'3]. .IP (o) Formulas for $R(nK sub 3 ,^mG)$ for all $G$ of order 4 without isolates [Zeng]. .IP (p) For every positive constant $c,$ $DELTA$, and $n$ large enough, there exists graph $G$ with $DELTA (G)~<=~DELTA~$ for which $R(K sub 3 ,^G)~>~cn~$ [Bra3]. .IP (q) $R(K sub 3 ,^K sub k,k )~=~THETA (k sup {down 20 2} /^ log^k)^$ [LinLi2]. .IP (r) For $R(K sub 3 ,^K sub n )$ see section 2, and for $R(K sub 3 ,^K sub n ^-^e)$ see section 3.1. .IP (s) Since $B sub 1 ~=~F sub 1 ~=~C sub 3 ~=~W sub 3 ~=~K sub 3$, other sections apply. See also [Boh, AjKS, BrBH1, BrBH2, FrLo, Fra1, Fra2, BiFJ, Gri, GySeT, Loc, KlaM1, LiZa1, RaK2, RaK3, RaK4, She1, She3, Spe2, Stat, Yu1]. .EQ delim $$ gsize 12 .EN .nr LL 6.5i .nr LT 6.5i .nr PS 12 .nr VS 15 .sp .LP .NH 2 Complete bipartite graphs .sp .5 .LP Note: This subsection gathers information on Ramsey numbers where specific bipartite graphs are avoided in edge colorings of $K sub n$ (as everywhere in this survey), in contrast to the often studied bipartite Ramsey numbers, which are not covered in this survey, where the edges of complete bipartite graphs $K sub {n,^m}$ are colored. .sp .NH 3 Numbers .sp .2 .LP The following Tables IVa and IVb gather information mostly from the surveys by Lortz and Mengersen [LoM3, LoM4]. All cases involving $K sub 1,2 ~=~ P sub 3$ are solved by a formula for $R(P sub 3 ,^G)$, which holds for all isolate-free graphs $G$, derived in [ChH2]. All star versus star numbers are given below in the item 3.3.2.a and in section 5.5. .sp .8 .nr PS 10 .nr VS 12 $gsize 8$ .LP .TS box center tab(-); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 || rp8 | rp8 | rp8 | rp8 || rp8 | rp8 . -$p,^q$-$~~~1,^2$-1, 3-1, 4-1, 5-1, 6-2, 2-2, 3-2, 4-2, 5-3, 3-3, 4 $m,^n$- .sp .2 = .sp .2 2, 2--4-6-7-8-9-6 \^--ChH2-ChH2-Par3-Par3-FRS4-ChH1 _ 2, 3--5-7-9-10-11-8-10 \^--ChH2-FRS4-Stev-FRS4-FRS4-HaMe4-Bu4 _ 2, 4--6-8-9-11-13-9-12-14 \^--ChH2-HaMe3-Stev-HaMe4-LoM4-HaMe4-ExRe-EHM2 _ 2, 5--7-9-11-13-14-11-13-16-18 \^--ChH2-HaMe3-Stev-Stev-LoM4-HaMe4-LoM3-LoM1-EHM2 _ 2, 6--8-10-11-14-$15 sup down 20 *$-12-14-17-20 \^--ChH2-HaMe3-Stev-Stev-Shao-HaMe4-LoM3-LoM3-LoM1 .sp .2 = .sp .2 3, 3--7-8-11-12-13-11-13-16-18-18 \^--ChH2-HaMe3-LoM4-LoM4-LoM4-Lortz-HaMe3-LoM4-LoM4-HaMe3 _ 3, 4--7-9-11-13-14-11-14-17-$<=^21$-$<=^25$-$<=^30$ \^--ChH2-HaMe3-LoM4-LoM4-LoM4-Lortz-LoM4-Sh1+-LoM4-LoM2-LoM2 _ 3, 5--9-10-13-15--14-$17 sup down 20 *$--$>= 21$-$<=^28$-$<=^33$ \^--ChH2-HaMe3-Sh1+-Sh1+--HaMe4-Shao--Sh2+-LoM2-LoM2 .sp .2 .TE .nr PS 12 .nr VS 15 $gsize 12$ .DS C Table IVa. Ramsey numbers $R(K sub {m,^n} ,^K sub {p,^q} ^)$; unpublished results are marked with a *, and Sh1+, Sh2+ abbreviate ShaXBP, ShaoWX. .DE .sp .nr PS 10 .nr VS 12 $gsize 8$ .LP .sp .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . ,$m$,2,3,4,5,6,7,8,9,10,11 $n$, .sp .2 = .sp .2 6,,12,14,17,20,21 \^,,HaMe4,LoM3,LoM3,LoM1,EHM2 _ 7,,14,17,19,21,24,26 \^,,HaMe4,LoM3,LoM3,LoM3,LoM1,EMH2 _ 8,,15,18,20,$22 sup down 20 *$-23,24-25,28,30 \^,,HaMe4,LoM3,LoM3,LoM3,LoM3,LoM1,EMH2 _ 9,,16,19,22,$25 sup down 20 *$,$27 sup down 20 *$,$29 sup down 20 *$,32,33 \^,,HaMe4,LoM3,LoM3,Shao,Shao,Shao,LoM1,EHM2 _ 10,,17,21,24,27,27-29,28-31,32-33,36,38 \^,,HaMe4,LoM3,LoM3,LoM3,LoM3,LoM3,LoM3,LoM1,EHM2 _ 11,,18,,,,,,$<=^35$,36-37,40,42 \^,,HaMe4,,,,,,LoM3,LoM3,LoM1,EHM2 .sp .2 .TE .nr PS 12 .nr VS 15 $gsize 12$ .DS C Table IVb. Known Ramsey numbers $R(K sub {2,^n} ,^K sub {2,^m} ^)~$ for $6~<=~n~<=~11,~~2~<=~m~<=~11$; unpublished results improving over [LoM3] are marked with a *. .DE .sp 2 .IP (a) The next few easily computed values of $R(K sub 1,n ,^K sub 2,2 ^)$, extending data in the first row of Table IVa, are 13, 14, 21 and 22 for $n$ equal to 9, 10, 16 and 17, respectively. See function $f(n)$ in 3.3.2.c of the next subsection below. .IP (b) Formula for $R(K sub {1,^n} ,^K sub {k sub 1 ,^k sub 2 ,^... ,^k sub t ,^m}^)$ for $m$ large enough, in particular for $t^=^1,^k sub 1 ^=^2$ with $n^<=^5,^m^>=^3$ and $n^=^6,^m^>=^11$, for example $R(K sub 1,5 ,^K sub 2,7 ^)~=~15~$ [Stev]. .IP (c) The values and bounds for higher cases of $R(K sub 2,2 ,^K sub 2,n ^)$ are 20, 22, 22, 24, 25, 26, 27/28, 28/29, 30 and 32 for $12~<=~n~<=~21^$, respectively. All of them were given in [HaMe4], except those for $n~=~14$, 15 and 18, which were obtained in [Dyb1]. More exact values for prime powers ${down 3 \(lc} down 20 sqrt up 20 {^n} {down 3 \(rc}$ and ${down 3 \(lc} down 20 sqrt up 20 {^n} {down 3 \(rc}^+^1~$ can be found in [HaMe4]. .IP (d) The known values of $R(K sub 2,2 ,^K sub 3,n ^)$ are 15, 16, 17, 20 and 22 for $6~<=~n~<=~10^$ [Lortz], and $R(K sub 2,2 ,^K sub 3,12 ^)~=~24$ [Shao]. See Tables IVa and IVb for the smaller cases, and [HaMe4] for upper bounds and values for some prime powers ${down 3 \(lc} down 20 sqrt up 20 {^n} {down 3 \(rc}$. .IP (e) $R(K sub 2,n ,^K sub 2,n )$ is equal to 46, 50, 54, 57 and 62 for $12~<=~n~<=~16$, respectively. .br The first open diagonal case is $65~<=~R(K sub 2,17 ,^K sub 2,17 ^)~<=~66~$ [EHM2]. .br The status of all higher cases for $n^<~30$ is listed in [LoM1]. .IP (f) $R(K sub 1,4 ,^K sub 4,4 ^)~=~R(K sub 1,5 ,^K sub 4,4 ^)~=~13~~$ [ShaXPB] .br $R(K sub 1,4 ,^K sub 1,2,3 ^)~=~R(K sub 1,4 ,^K sub 2,2,2 ^)~=~11~$ [GuSL] .br $R(K sub 1,7 ,^K sub 2,3 ^)~=~13~~$ [Par4, Par6] .br $R(K sub 1,15 ,^K sub 2,2 ^)~=~20~$ [La2] .br $R(K sub 2,2 ,^K sub 4,4 ^)~=~14~~$ [HaMe4] .br $R(K sub 2,2 ,^K sub 4,5 ^)~=~15~~$ [Shao] .br $R(K sub 2,2 ,^K sub 4,6 ^)~=~16~~$ [Shao] .br $R(K sub 2,2 ,^K sub 5,5 ^)~=~R(K sub 2,3 ,^K sub 3,5 ^)~=~17~~$ [Shao] .IP (g) A number of general upper and lower bounds for $R(K sub s,t ,^K sub s,t )$, in particular for small fixed $s,$ and for some slightly off-diagonal cases were obtained in [LoM2]. They can be used to derive the upper bounds for the cases listed in (h) and (i) below. .IP (h) Several lower bounds of the form $R(K sub s,t ,^K sub s,t )~>=~m$ from distance colorings, a slightly more general concept than circular graphs, were presented in [HaKr2] for the following triples $(s,^t,^m)$: (3,6,38), (3,7,42), (3,8,43), (3,9,54), (4,5,42), (4,6,43), (4,7,54), (5,5,54). .IP (i) $30~<=~R(K sub 3,5 ,^K sub 3,5 ^)~<=~38~~$ [HaKr2][LoM2] .br $30~<=~R(K sub 4,4 ,^K sub 4,4 ^)~<=~62~~$ [HaKr2][LoM2] .sp .NH 3 General results .sp .5 .IP (a) $R(K sub 1,n ,^K sub 1,m )~=~ n^+^m^-^epsilon$, where $epsilon ^=^1$ if both $n$ and $m$ are even and $epsilon ^=^0$ otherwise [Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1]. .IP (b) $R(K sub 1,3 ,^K sub {m,^n} ^)~=~m^+^n^+^2~$ for $~m,^n~>=~1~$ [HaMe3]. .IP (c) $R(K sub 1,n ,^K sub 2,2 ^)~=~f(n)~<=~n^+^ down 10 sqrt up 10 {^n} ~+^1$, with $f(q sup down 30 2 ^)~=~q sup down 30 2 ^+^q^+^1$ and $f(q sup down 30 2 ^+^1^)~=~q sup down 30 2 ^+^q^+^2$ for every $q$ which is a prime power [Par3]. Furthermore, $f(n)~>=~n^+^down 10 sqrt up 10 {^n} ~-~6n sup down 20 {11^/^40} ~$ [BEFRS4]. For more bounds on $f(n)$ see [Par5, Chen, ChenJ, MoCa, WuSZR, ZhaBC1]. Summary of what is known and further progress are reported in two 2017 papers [ZhaCC2, ZhaCC3]. Also note item 4.3.e. .IP (d) $R(K sub {1,{n+^1}} ,^K sub 2,2 ^)~<=~R(K sub 1,n ,^K sub 2,2 ^)~+^2~$ [Chen]. .IP (e) $R(K sub {2, lambda +1},^K sub {1, v-^k+1}^)$ is either $v^+^1$ or $v^+~2$ if there exists a $(v,^k,^lambda )$-difference set. This and other related results are presented in [Par4, Par5]. See also [GoCM, GuLi]. .IP (f) Formulas and bounds on $R(K sub 2,2 ,^K sub 2,n )$, and bounds on $R(K sub 2,2 ,^K sub m,n )$. In particular, we have $R(K sub 2,2 ,^K sub 2,k )~=~n^+^k down 20 sqrt up 20 {^n} ^+^c$, for $k^=^2,^3,^4$, some prime powers ${down 3 \(lc} down 20 sqrt up 20 {^n} {down 3 \(rc}$ and ${down 3 \(lc} down 20 sqrt up 20 {^n} {down 3 \(rc}~+^1$, and some $-^1~<=~c~<=~3~$ [HaMe4]. An improvement of the latter for some special cases of $n$ was obtained in [Dyb1]. .IP (g) $R(K sub 2,n ,^K sub 2,n )~<=~4n^-^2$ for all $n~>=~2$, and the equality holds if and only if there exists a strongly regular $(4n^-^3,^2n^-^2,^n^-^2,^n^-^1 ^)$-graph [EHM2]. .IP (h) Conjecture that $4n^-^3~<=~R(K sub 2,n ,^K sub 2,n )~<=~4n^-^2$ for all $n~>=~2$. Many special cases are solved and several others are discussed in [LoM1]. .IP (i) $R(K sub 2,n-1 ,^K sub 2,n )~<=~4n^-~4~$ for all $n^>=~3$, with the equality if there exists a symmetric Hadamard matrix of order $4n^-~4$. There are only 4 cases in which the equality is still open for $3^<=~n^<=~58$, namely 30, 40, 44 and 48 [LoM1]. .IP (j) $R(K sub 2,n-s ,^K sub 2,n )~<=~4n^-^2s^-^3~$ for $s^>=~2^$ and $^n^>=~s^+^2$, with the equality in many cases involving Hadamard matrices or strongly regular graphs. Asymptotics of $R(K sub 2,n ,^K sub 2,m )$ for $m >> n~$ [LoM3]. .IP (k) Some algebraic lower and upper bounds on $R(K sub s,n ,^K sub t,m )$ for various combinations of $n$, $m$ and $1 ~<=~t,^s ~<=~3~$ [BaiLi, BaLX]. A general lower bound $R(K sub {m,n} )~>=~2 sup m (n^-~n sup {down 15 0.525})$ for large $n~$ [Dong]. .IP (l) Upper bounds for $R(K sub 2,2 ,^K sub m,n ^)$ for $m,^n^>=^2^$, with several cases identified for which the equality holds. Special focus on the cases for $m~=~2~$ [HaMe4]. .IP (m) Bounds for the numbers of the form $R(K sub k,n ,^K sub k,m )$, specially for fixed $k$ and close to the diagonal cases. Asymptotics of $R(K sub 3,n ,^K sub 3,m )^$ for $m >> n~$ [LoM2]. .IP (n) $R(nK sub 1,3 ,^mK sub 1,3 ^)~=~4n^+^m^-^1$ for $n^>=~m^>=^1,~n^>=~2~$ [BES]. .IP (o) Asymptotics for $K sub 2,m$ versus $K sub n$ [CaLRZ]. Upper bound asymptotics for $K sub k,m$ versus $K sub n$ [LiZa1] and for some bipartite graphs $K sub n$ [JiSa]. .IP (p) Special two-color cases apply in the study of asymptotics for multicolor Ramsey numbers for complete bipartite graphs [ChGra1]. .bp .LP .NH Two Colors: Numbers Involving Cycles .NH 2 Cycles, cycles versus paths and stars .sp 0.3 .LP Note: The paper \fI Ramsey Numbers Involving Cycles\fP [Ra4] is based on the revision #12 of this survey. It collects and comments on the results involving cycles versus any graphs, in two or more colors. It contains some more details than this survey, but only until 2009. .sp .4 .LP \fBCycles\fP .sp .2 .IP (a) $R(C sub 3 ,^C sub 3^)~ =~6~$ [GG, Bush], .br $R(C sub 4 ,^C sub 4^)~ =~6~$ [ChH1]. .IP (b) $R(C sub 3 ,^C sub n^)~ =~2n^-^1$ for $n~>=~4,$ $R(C sub 4 ,^C sub n^)~ =~n^+^1$ for $n~>=~6$, .br $R(C sub 5 ,^C sub n^)~ =~2n^-^1$ for $n~>=~5$, and $R(C sub 6 ,^C sub 6^)~ =~8~$ [ChaS]. .sp .2 .IP (c) Result obtained independently in [Ros1] and [FS1], a new simpler proof in [K\o'a\(aa'Ros]: .sp 1.5 .EQ R(C sub m ,^C sub n ) ~ =~ down 25 left { up 25 { ~ lpile { down 20 {2n^-^1} above {n^-^1^+^m/^2} above up 20 { max roman "{"^ n^-^1^+^m/^2,^2m^-^1 roman "}" } } ~~~lpile { down 20 { roman for ~~3~<=~m^<=~n,~m~roman odd,~(m,^n)~ not= ~(3,3),} above { roman for ~~4~<=~m^<=~n,~m~and~n~roman even,~(m,^n)~ not= ~(4,4),} above up 20 { roman for ~~4~<=~m^<^n,~m~roman even~and~n~roman odd.} } } .EN .sp 1.5 .IP (d) Characterization of all graphs critical for $R(C sub 4 ,^C sub n )^$ [WuSR]. .IP (e) $R(mC sub 3 ,^nC sub 3 ^)~ =~3n^+~2m$ for $n^>=~m^>=~1,~n^>=~2^$ [BES]. .IP (f) $R(mC sub 4 ,^nC sub 4 ^)~ =~2n^+~4m^-^1$ for $m^>=~n^>=~1,~(n,^m)^ not= ^(1,1)^$ [LiWa1]. .IP (g) Formulas for $R(mC sub 4 ,^nC sub 5 ^)^$ [LiWa2]. .IP (h) Formulas and bounds for $R(nC sub m ,^nC sub m )~$ [Den2, Biel1]. .IP (i) Study of $R( S sub 1 ,^S sub 2 )$, where $S sub 1$ and $S sub 2$ are sets of cycles [Hans]. .IP (j) Unions of cycles, formulas and bounds for various cases including diagonal, different lengths, different multiplicities [MiSa, Den2], powers of cycles [AllBS], disjoint cycles versus $K sub n^$ [Fuj2], and their relation to 2-local Ramsey numbers [Biel1]. .sp .LP \fBCycles versus paths\fP .sp .2 .LP Result obtained by Faudree, Lawrence, Parsons and Schelp in 1974 [FLPS]: .sp 2.3 .EQ L ~~~R(^C sub m ,^P sub n ) ~ =~ down 50 left { up 50 { ~ lpile { {2n^-~1} above {n^-~1^+~m/^2} above { max roman "{"^ m^-~1^+~ down 10 \(lf n/^2 down 10 \(rf ^,^2n^-~1 roman "}" } above {m^-~1^+~ down 10 \(lf n/^2 down 10 \(rf } } ~~~lpile { { roman for ~~3~<=~m~<=~n,~~m~ roman odd,} above { roman for ~~4~<=~m~<=~n,~~m~ roman even,} above { roman for ~~2~<=~n~<=~m,~~m~ roman odd,} above { roman for ~~2~<=~n~<=~m,~~m~ roman even.} } } .EN .sp 1.5 .LP For all $n$ and $m$ it holds that $R(^P sub m ,^P sub n )~<=~R(^C sub m ,^P sub n ) ~<=~ R(C sub m ,^C sub n )$. Each of the two inequalities can become an equality, and, as derived in [FLPS], all four possible combinations of $~<~$ and $~=~$ hold for an infinite number of pairs $(m,^n)$. For example, if both $m$ and $n$ are even, and at least one of them is greater than 4, then $R(^P sub m ,^P sub n ) ~=~ R(^C sub m ,^P sub n ) ~=~ R(C sub m ,^C sub n )$. For related generalizations see [BEFRS2]. .sp .LP \fBCycles versus stars\fP .sp .2 .LP Only partial results for $C sub m$ versus stars are known. Lawrence [La1] settled the cases for odd $m$ and for long cycles (see also [Clark, Par6]). The case for short even cycles is open, and it is related in particular to bipartite graphs. Partial results for $C sub 4 ~=~K sub 2,2$ are pointed to in subsections 3.3.1 and 3.3.2, especially in the item 3.3.2.c. The most known exact result [La1] is: .sp 1 .EQ R(C sub m ,^K sub {1,^n} ) ~ =~ down 45 left { up 20 { ~ lpile { down 10 {2n^+^1} above up 10 {m} } ~~~lpile { down 10 { roman for ~ roman odd ~m~<=~2n^+^1,} above up 10 { roman for ~m~>=~2n.} } } .EN .sp Some new cases for even $m$ not too small with respect to $n$ were settled in 2016, in particular all of $R(C sub 6 ,^K sub {1,^n} )$ are now known for $n^<=^11^$ [ZhaBC5]. .sp .NH 2 Cycles versus complete graphs .sp .7 .PP Since 1976, it was conjectured that $R(C sub n ,^K sub m ^)~=~(n^-^1)(m^-^1)~+~1~$ for all $n^>=~m^>=~3$, except $n^=~m^=~3$ [FS4, EFRS2]. Various parts of this conjecture were proved as follows: for $n~>=~m sup {down 20 2} ^-^2$ [BoEr], for $n~>~3~=~m$ [ChaS], for $n~>=~4~=~m$ [YHZ1], for $n~>=~5~=~m$ [BolJY+], for $n~>=~6~=~m$ [Schi1], for $n~>=~m~>=~7$ with $n~>=~m(m^-^2)$ [Schi1], for $n~>=~7~=~m$ [ChenCZ1], and for $n~>=~4m^+^2,~m~>=~3$ [Nik]. Open conjectured cases are marked in Table V by "conj." .sp .5 .IP (a) The first column in Table V gives data from the first row in Table I. .IP (b) Joint credit [He2/JR4] in Table V refers to two cases in which Hendry [He2] announced the values without presenting the proofs, which later were given in [JR4]. The special cases of $R(C sub 6 ,^K sub 5 ^)~=~21$ [JR2] and $R(C sub 7 ,^K sub 5^)~=~25$ were solved independently in [YHZ2] and [BolJY+]. The double pointer [JaBa/ChenCZ1] refers to two independent papers, similarly as [JaAl1/ZZ3], except that in the latter case [ZZ3] refers to an unpublished manuscript. For joint credits marked in Table V with "-", the first reference is for the lower bound and the second for the upper bound. .IP (c) Erd\o'o\(hu's et al. [EFRS2] asked what is the minimum value of $R(C sub n ,^K sub m )^$ for fixed $m$, and they suggested that it might be possible that $R(C sub n ,^K sub m )^$ first decreases monotonically, then attains a unique minimum, then increases monotonically with $n$. .IP (d) There exist constants $c sub 1 ,^c sub 2 ^>^0$ such that $c sub 1 ( m sup {3/^2} / ^log ^m ) ~<=~R(C sub 4 ,^K sub m )~<=$ $c sub 2 ( m / ^log ^m ) sup 2 .$ The lower bound, recently obtained by Bohman and Keevash ([BohK1], see also 4.2.h below) improved over an almost 40 years old bound $c ( m / ^log ^m ) sup {3/^2}$ by Spencer [Spe2], using the probabilistic method. The upper bound was reported in a paper by Caro, Li, Rousseau and Zhang [CaLRZ], who in turn give the credit to an unpublished work by Szemer\o'e\(aa'di from 1980. .EQ delim $$ gsize 8 .EN .nr PS 10 .nr VS 12 .LP .TS box center tab(,); rp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 rp8 . ,$C sub 3$,$C sub 4$,$C sub 5$,$C sub 6$,$C sub 7$,\ $C sub 8$,$~~~~~~~C sub 9$, ... ,$C sub n$ $roman for$ $n ^>=^m$ = .sp .2 $K sub 3$,6,7,9,11,13,15,17, ... , $2n^-^1$ \^,GG-Bush,ChaS, ... ,,,,, ... ,ChaS _ $K sub 4$,9,10,13,16,19,22,25, ... , $3n^-^2$ \^,GG,ChH2,He4/JR4,JR2,YHZ1, ... ,, ... ,YHZ1 _ $K sub 5$,14,14,17,21,25,29,33, ... , $4n^-^3$ \^,GG,Clan,He2/JR4,JR2,$~$YHZ2,BolJY+, ... , ... ,BolJY+ _ $K sub 6$,18,18,21,$~~~~~~~26$,31,36,41, ... , $5n^-^4$ \^,K\o'e\(aa'ry,Ex2-RoJa1,JR5,Schi1, ... ,,, ... ,Schi1 _ $K sub 7$,23,22,25,31,37,43,49, ... , $6n^-^5$ \^,Ka2-GrY,RaT-JR1,Schi2,CheCZN,CheCZN,JaBa/Ch+,Ch+, ... ,Ch+ _ $K sub 8$,28,26,29-33,36,43,50,57, ... , $7n^-^6$ \^,GR-McZ,RaT,JaAl2,ChenCX,ChenCZ1,JaAl1/ZZ3,BatJA, ... ,conj. _ $K sub 9$,36,30,,,,,65, ... , $8n^-^7$ \^,Ka2-GR,RaT-LaLR,,,,,conj., ... ,conj. _ $K sub 10$,40-42,36,,,,,, ... , $9n^-^8$ \^,Ex5-GoR1,LaLR,,,,,,\^,conj. _ $K sub 11$,47-50,39-44,,,,,, ... , $10n^-^9$ \^,Ex20-GoR1,LaLR,,,,,,\^,conj. .TE .nr PS 12 .nr VS 15 .EQ gsize 12 .EN .LP .DS C Table V. Known Ramsey numbers $R(C sub n ,^K sub m )$; Ch+ abbreviates ChenCZ1, for comments on joint credits see 4.2.b. .DE .sp .IP (e) Erd\o'o\(hu's, in 1981, in the Ramsey problems section of the paper [Erd3] formulated a challenge by asking for a proof of $R(C sub 4 ,^K sub m )~<~m sup down 15 {2~-~ epsilon}~$, for some $epsilon ~>~0$. To date, no such proof is known. .IP (f) Let $C sub <=m$ be the set of cycles of length at most $m$, and let the \fIgirth\fP $g(G)$ be the length of the shortest cycle in graph $G$. Probabilistic lower bound asymptotics for $R(C sub <=m ,^K sub k )$ [Spe2] currently is the same as for $R(C sub m ,^K sub k )$, for fixed $m$. However, there are clear differences already for girth 4 and 5 and small $k$: Backelin [Back1, Back2] found that $R(C sub <=4 ,^K sub k )$ = 6, 8, 11, 15, 18 for $k$ = 3, 4, 5, 6, 7, and that $R(C sub <=5 ,^K sub k )$ = 5, 8, 10, 13, 15, also for $k$ = 3, 4, 5, 6, 7, respectively. .IP (g) Erd\o'o\(hu's et al. [EFRS2] proved various facts about $R(C sub <=m ,^K sub k )$, and in particular that it is equal to $2n^-^1$ for $m^>=^2n^-^1$, and to $2n$ for $n^<^m^<^2n^-^1$. The upper asymptotics for $R(C sub <=m ,^K sub k )$ is implied in the study of independence number in graphs with odd girth $m$ [Den1]. .IP (h) The best known lower bound asymptotics $R(C sub n ,^K sub m )~=~OMEGA ( m sup { down 20 {(n-1)/(n-2)}}^/^roman log ^m )$, for fixed $n$ and large $m$, was obtained by Bohman and Keevash [BohK1]. Note that for $n^=~4$ it gives the lower bound in 4.2.d above. See also [Spe2, FS4, AlR\o'o\(:a'] for previous results. .IP (i) Upper bound asymptotics [BoEr, FS4, EFRS2, CaLRZ, Sud1, LiZa2, AlR\o'o\(:a', DoLL2]. .NH 2 Cycles versus wheels .sp .7 .LP Note: In this survey the wheel graph $W sub n ~=~ K sub 1 ^+~C sub n-1$ has $n$ vertices, .br while some authors use the definition $W sub n ~=~ K sub 1 ^+~C sub n$ with $n^+^1$ vertices. .br For the cases involving $W sub 3 ~=~ C sub 3$ versus $C sub m$ see sections 3.2 and 4.2. .EQ delim $$ gsize 8 .EN .nr PS 10 .nr VS 12 .LP .sp 1.5 .TS box center tab(,); rp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 || rp8 rp8 . ,$C sub 3$,$C sub 4$,$C sub 5$,$~~~C sub 6$,$C sub 7$,\ $~~~~~~C sub 8$,$C sub m$,for = $W sub 4$,9,10,13,16,19,22,$3m^-^2$,$m^>=~4$ \^,GG,ChH2,He4,JR2,YHZ1,...,...,YHZ1 _ $W sub 5$,11,9,9,11,13,15,$2m^-^1$,$m^>=~5$ \^,Clan,Clan,He2,JR2,SuBB2,...,...,SuBB2 _ $W sub 6$,11,10,13,16,19,22,$3m^-^2$,$m^>=~4$ \^,BuE3,JR3,ChvS,SuBB2,SuBB2,...,...,SuBB2 _ $W sub 7$,13,9,13,11,13,,$2m^-^1$,$m^>=~10$ \^,BuE3,Tse1,LuLL,LuLL,LuLL,,...,Ch1 _ $W sub 8$,15,11,15,16,19,22,$3m^-^2$,$m^>=~6$ \^,BuE3,Tse1,LuLL,LuLL,Ch2,...,...,Ch2 _ $W sub 9$,17,12,17,13,17,,$2m^-^1$,$m^>=~13$ \^,BuE3,Tse1,LuLL,LuLL,LuLL,,,Ch1 _ $W sub 10$,19,13,,16,19,,$3m^-^2$,$m^>=~9$ \^,BuE3,Tse1,,Z1,Z2,,,Ch2 = ,...,,,,,,,cycles $W sub n$,$2n^-^1$,,$2n^-^1$,,$2n^-^1$ for,$n^>=~6$,,$n^>=~19$,,$n^>=~29$,,large ,BuE3,,Zhou2,,Zhou2,,wheels .TE .nr PS 12 .nr VS 15 .EQ gsize 12 .EN .LP .DS C Table VI. Ramsey numbers $R(W sub n ,^C sub m ^)~$ for $n^<=~10,~m^<=~8$; Ch1, Ch2, Z1, Z2 abbreviate ChenCMN, ChenCNZ, ZhaBC5, ZhaZZ, respectively. .DE .sp .5 .IP (a) $R(C sub 3 ,^W sub n ^)~=~2n^-^1$ for $n^>=~6~$ [BuE3]. All critical graphs have been enumerated. .br The critical graphs are unique for $n^=~3,^5,~$ and for no other $n^$ [RaJi]. .IP (b) $R(C sub 4 ,^W sub n ^)~=$ 14, 16, 17 for $n~=$ 11, 12, 13, respectively [Tse1], .br $R(C sub 4 ,^W sub n ^)~=$ 18, 19, 20, 21 for $n~=$ 14, 15, 16, 17, respectively [DyDz2], and several higher values and bounds, including 9 cases of $n$ between 18 and 44 [WuSR, WuSZR]. .IP (c) $R(C sub 4 ,^W sub n ^)~<=~n^+~{down 8 \(lc} (n^-^1)^/^3 {down 8 \(rc}^$ for $n^>=~7~$ [SuBUB], which was improved to .br $R(C sub 4 ,^W sub n ^)~<=~n^+~sqrt{n^-^2} ~+^1^$ for $n^>=~11^~$ [DyDz2]. .IP (d) $R(C sub 4 ,^W sub {q sup 2 +^1})~=~q sup 2^+~q^+^1~$ for prime power $q^>=~4^$ [DyDz2], .br exact values of $R(C sub 4 ,^W sub {q sup 2 +^2})$ and $R(C sub 4 ,^W sub {q sup 2 -^i})^$ for special $q$ and small $i^$ [WuSZR]. .IP (e) $R(C sub 4 ,^W sub n ^)~=~R(C sub 4 ,^K sub {1,n-1}^)^$ for $n^>=^7^$ [ZhaBC1, ZhaBC2]. .IP (f) Tight bounds on $R(C sub 4 ,^W sub n )^$ for $46~<=~n^<=~93~$ [NoBa]. .IP (g) $R(C sub 7 ,^W sub n ^)~=~2n^-^1$ for $n^=^9,^10,^11^$ [ZhaZZ]. .IP (h) $R(W sub n ,^C sub m )~=~2n^-^1$ for odd $m$ with $n^>=~5m^-^6^$ [Zhou2]. .br The range of $n$ was extended in [ZhaZC]. .IP (i) $R(W sub n ,^C sub m )~=~3m^-^2$ for even $n^>=~4$ with $m^>=~n^-^1,~m not= 3$, was conjectured by Surahmat et al. [SuBT1, SuBT2, Sur]. Parts of this conjecture were proved in [SuBT1, ZhaCC1, Shi5, ZhaBC2, ZhaZC], and the proof was completed in [ChenCNZ]. .IP (j) Conjecture that $R(W sub n ,^C sub m )~=~2m^-^1$ for odd $n^>=~3$ and all $m^>=~5$ with $m^>^n^$ [Sur]. It was proved for $2m^>=~5n^-^7^$ [SuBT1], and improved to $2m^>=~3n^-^1^$ in [ChenCMN]. For further progress see also [Shi5, ZhaBC2,Sanh, RaeZ, Alw]. .IP (k) Observe apparently four distinct situations with respect to parity of $m$ and $n$. .IP (l) Cycles are Ramsey unsaturated for some wheels [AliSur], .br see also comments on [BaLS] in subsection 5.16. .IP (m) Study of cycles versus generalized wheels $W sub {k,^n}^$ [Sur, SuBTB, Shi5, ZhaBC2, BieDa]. .bp .LP .NH 2 Cycles versus books .LP .EQ delim $$ gsize 8 .EN .nr PS 10 .nr VS 12 .sp .5 .LP .TS box center tab(,); rp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 || rp8 rp8 . ,$C sub 3$,$C sub 4$,$C sub 5$,$C sub 6$,$C sub 7$,\ $C sub 8$,$C sub 9$,$C sub 10$,$C sub 11$,$C sub m$,for = $B sub 2$,7,7,9,11,13,15,17,19,21,$2m^-^1$,$m^>=^4$ \^,RoS1,F\fIal\fP6,C\fIal\fP,F\fIal\fP8,...,,,,,...,F\fIal\fP8 _ $B sub 3$,9,9,10,11,13,15,17,19,21,$2m^-^1$,$m^>=^6$ \^,RoS1,F\fIal\fP6,F\fIal\fP8,JR2,Shi5,F\fIal\fP8,...,,,...,F\fIal\fP8 _ $B sub 4$,11,11,11,12,13,15,17,19,21,$2m^-^1$,$m^>=^7$ \^,RoS1,F\fIal\fP6,F\fIal\fP8,S\fIal\fP1,S\fIal\fP1,Shi5,Shi5,F\fIal\fP8,...,...,F\fIal\fP8 _ $B sub 5$,13,12,13,14,15,15,17,19,21,$2m^-^1$,$m^>=^8$ \^,RoS1,F\fIal\fP6,F\fIal\fP8,S\fIal\fP1,S\fIal\fP1,S\fIal\fP2,S\fIal\fP2,Shi5,Shi5,...,F\fIal\fP8 _ $B sub 6$,15,13,15,16,17,18,18,,21,$2m^-^1$,$m^>=^11$ \^,RoS1,F\fIal\fP6,F\fIal\fP8,S\fIal\fP2,S\fIal\fP2,S\fIal\fP2,S\fIal\fP2,,Shi5,...,Shi5 _ $B sub 7$,17,16,17,16,19,20,21,,,$2m^-^1$,$m^>=^13$ \^,RoS1,F\fIal\fP6,F\fIal\fP8,S\fIal\fP2,S\fIal\fP2,S\fIal\fP2,S\fIal\fP2,,,,Shi5 _ $B sub 8$,19,17,19,17,19,22,$>=^23$,,,$2m^-^1$,$m^>=^14$ \^,RoS1,Tse1,F\fIal\fP8,S\fIal\fP2,S\fIal\fP2,S\fIal\fP2,S\fIal\fP2,,,,Shi5 _ $B sub 9$,21,18,21,18,,,$>=^25$,$>=^26$,,$2m^-^1$,$m^>=^16$ \^,RoS1,Tse1,F\fIal\fP8,S\fIal\fP2,,,S\fIal\fP2,S\fIal\fP2,,,Shi5 _ $B sub 10$,23,19,23,19,,,,$>=^28$,,$2m^-^1$,$m^>=^17$ \^,RoS1,Tse1,F\fIal\fP8,S\fIal\fP2,,,,S\fIal\fP2,,,Shi5 _ $B sub 11$,25,20,25,,,,,,,$2m^-^1$,$m^>=^19$ \^,RoS1,Tse1,F\fIal\fP8,,,,,,,,Shi5 = ,...,,...,,,,,,,,cycles $B sub n$,$2n^+^3$,$approx ^n$,$2n^+^3$,,$2n^+^3$,,$2n^+^3$,,$2n^+^3$ for,$n^>=^2$,some,$n^>=^4$,,$n^>=^15$,,$n^>=^23$,,$n^>=^31$,large ,RoS1,(c),F\fIal\fP8,,F\fIal\fP8,,F\fIal\fP8,,F\fIal\fP8,books .TE .nr PS 12 .nr VS 15 .EQ gsize 12 .EN .DS C Table VII. Ramsey numbers $R(B sub n ,^C sub m )~$ for $n,^m^<=~11$; \fIet al.\fP abbreviations: F\fIal\fP/FRS, C\fIal\fP/ChRSPS, S\fIal\fP1/ShaXBP, S\fIal\fP2/ShaXB. .DE .sp 1.5 .IP (a) For the cases of $B sub 1 ~=~K sub 3$ versus $C sub m$ see section 4.2. .br The exact values for the cases $(3,7),~(4,8),~(4,9),~(5,10),~(5,11)^$ were obtained independently in [S\fIal\fP1, S\fIal\fP2]/[ShaXBP, ShaXB] using computer algorithms. .IP (b) $R(C sub 4 ,^B sub 12 ^)~=~21~$ [Tse1], $R(C sub 4 ,^B sub 13 ^)~=~22~$, $R(C sub 4 ,^B sub 14 ^)~=~24~$ [Tse2]. .br $R(C sub 4 ,^B sub 8 ^)~=~17$ [Tse2] (it was reported incorrectly in [FRS7] to be 16). .IP (c) $q sup 2 ^+~q^+^2 ~<=~R(C sub 4 ,^B sub {q sup 2 ^-~q^+^1}^)~<=~q sup 2 ^+~q^+~4$ for prime power $q$ [FRS7]. $B sub n$ is a subgraph of $B sub {n+^1}$, hence likely $R(C sub 4 ,^B sub n ^)~=~n^+~O( down 10 sqrt up 10 {^n} )$ (compare to $R(C sub 4 ,^K sub 2,n )$ in section 3.3). .IP (d) $R(B sub n ,^C sub m^)~=~2n^+~3~$ for odd $m^>=~5$ with $n^>=~4m^-^13~$ [FRS9]. .IP (e) $R(B sub n ,^C sub m^)~=~2m^-^1~$ for $n^>=^1,~m^>=~2n^+^2~$ [FRS9]. The range of $m~$ was extended to $m^>=~2n^-^1~>=~7~$ in [ShaXB], and to $m^>~(6n^+^7)^/^4~$ in [Shi5]. .IP (f) $R(B sub n ,^C sub n )~>=~3n~-~2~$ and $~R(B sub {n^-^1},^C sub n )~>=~3n~-~4$ for $n^>=^3~$ [ShaXB]. .IP (g) More theorems on $R(B sub n ,^C sub m^)$ in [FRS7, FRS9, NiRo4, Zhou1]. .IP (h) Cycles versus some generalized books [Shi5]. Exact asymptotics of odd cycles versus generalized books [LiuLi]. .sp .8 .NH 2 Cycles versus other graphs .sp .5 .IP (a) $C sub 4$ versus stars [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa, WuSZR]. For several exact results see $K sub {2,2}$ in Tables IVa and IVb, and for general results see items 3.3.1.a, 3.3.2.c, 3.3.2.d and 4.3.e. .IP (b) $C sub 4$ versus unions of stars [HaABS, Has] .IP (c) $C sub 4$ versus trees [EFRS4, Bu7, BEFRS4, Chen] .IP (d) $C sub 4$ versus all graphs on six vertices [JR3] .IP (e) $C sub 4$ versus various types of complete bipartite graphs, see section 3.3 .IP (f) $R(C sub 4 ,^G)~<=~2q^+^1$ for any isolate-free graph $G$ with $q$ edges [RoJa2] .IP (g) $R(C sub 4 ,^G)~<=~p^+^q^-^1$ for any connected graph $G$ on $p$ vertices and $q$ edges [RoJa2] .sp .5 .IP (h) $R(C sub 5 ,^K sub 6 ^-^e)~=~17^$ [JR4] .IP (i) $R(C sub 5 ,^K sub 4 ^-^e)~=~9^$ [ChRSPS] .IP (j) $C sub 5$ versus all graphs on six vertices [JR4] .IP (k) $R(C sub 6 ,^K sub 5 ^-^e)~=~17^$ [JR2] .IP (l) $C sub 6$ versus all graphs on five vertices [JR2] .sp .5 .IP (m) $R(C sub 2m+1 ,^G)~=~2n^-^1^$ for sufficiently large sparse graphs $G$ on $n$ vertices, in particular $R(C sub 2m+1 ,^T sub n ^)~=~2n^-^1^$ for all $^n^>^1512m^+^756$, for $n$-vertex trees $T sub n ~$ [BEFRS2]. .br The range of $n$ for trees was extended to $^n^>=~25(2m^+^1)^$ in [Bren2]. .IP (n) $R(C sub n ,^G)~<=~2q^+~{down 8 \(lf} ^n/^2^ {down 8 \(rf} ~-^1$, for $3^<=~n^<=~5$, for any isolate-free graph $G$ with $q^>^3$ edges. It is conjectured that it also holds for other $n^$ [RoJa2]. .IP (o) Cycles versus trees [BEFRS2, FSS1] .IP (p) Cycles versus fans [Shi5] .IP (q) Exact asymptotics of odd cycles versus generalized fans [LiuLi] .IP (r) Monotone paths and cycles [Lef] .IP (s) Cycles versus $K sub up 15 {n,m}$ and multipartite complete graphs [BoEr] .IP (t) Cycles versus generalized books and wheels [Shi5, Sur, SuBTB] .IP (u) Cycles versus special graphs of the form $K sub n +^G$ with small $n~<=~3$ and sparse $G~$ [Shi5] .sp .NH General Graph Numbers in Two Colors .PP This section includes data with respect to general graph results. We tried to include all nontrivial values and identities regarding exact results, or references to them, but only those out of general bounds and other results which, in our opinion, may have a direct connection to the evaluation of specific numbers. If some small value cannot be found below, it may be covered by the cumulative data gathered in section 8, or be a special case of a general result listed in this section. Note that $P sub 2 ~=~K sub 2$, $B sub 1 ~=~F sub 1 ~=~C sub 3 ~=~W sub 3 ~=~K sub 3$, $B sub 2 ~=~K sub 4 ^-^e$, $P sub 3 ~=~K sub 3 ^-^e$, $W sub 4 ~=~ K sub 4$ and $C sub 4 ~=~ K sub 2,2$ imply other identities not mentioned explicitly. .sp .8 .NH 2 Paths .RS .LP $R(P sub m ,^P sub n )~=~$ $n^+~ {down 10 \(lf} ^m/^2^ {down 10 \(rf} ~-^1~~$ for all $n^>=~m^>=^2~~$ [GeGy] .sp .5 .LP Classification of $R(P sub m ,^P sub n )$-critical graphs [Hook] .sp .2 .LP Stripes $mP sub 2$ [CocL1, CocL2, Lor] .LP Disjoint unions of paths (also called linear forests) [BuRo2, FS2] .LP Monotone paths [CaYZ], ordered path powers [Mub2] .RE .NH 2 Wheels .LP Note: In this survey the wheel graph $W sub n ~=~ K sub 1 ^+^C sub n-1$ has $n$ vertices, .br while some authors use the definition $W sub n ~=~ K sub 1 ^+^C sub n$ with $n^+^1$ vertices. .nr PS 10 .nr VS 12 $gsize 8$ .LP .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 . ,$n$,$~~~3$,4,5,6,7 $m$, .sp .2 = .sp .2 3,,6,9,11,11,13 \^,,,GG,Clan,BuE3,BuE3 _ 4,,,18,17,19 \^,,,GG,He3,FM _ 5,,,,15,17 \^,,,,He2,FM _ 6,,,,,17 \^,,,,,FM .TE .nr PS 12 .nr VS 15 $gsize 12$ .DS C Table VIII. Ramsey numbers $R(^W sub m ,^W sub n )~$ for $m^<=~n^<=~7$. .DE .sp .IP (a) $R(W sub 3 ,^W sub n )^=^2n-1$ for all $n^>=^6$ [BuE3], .br All critical colorings for $R(W sub 3 ,^W sub n )$ for all $n^>=^3$ [RaJi]. .IP (b) The value $R(W sub 5 ,^W sub 5 ^)^=^15$ was given in the Hendry's table [He2] without a proof. .br Later the proof was published in [HaMe2]. .IP (c) All critical colorings (2, 1 and 2) for $R(W sub n ,^W sub 6 ^)$, for $n$ = 4, 5, 6 [FM]. .IP (d) $R(W sub 6 ,^W sub 6 ^)~=~17$, $R(4,4)~=~18$ and $^chi (W sub 6 ^)~=~4$ give a counterexample $G^=^W sub 6$ .br to the Erd\o'o\(hu's conjecture (Erd2, see also [GRS]) that $R(G,^G)~>=~R(K sub { chi (G) } ,^K sub { chi (G) } ^)$. .NH 2 Books .nr PS 10 .nr VS 12 $gsize 8$ .LP .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . ,$n$,$~~~~~1$,$~~~~~~~2$,$~~~~~~~3$,$~~~~~~~4$,$~~~~~~~5$,$~~~~~~~6$,$~~~~~~~~7$ $m$, .sp .2 = .sp .2 1,,6,7,9,11,13,15,17 \^,,,ChH2,Clan,RoS1,RoS1,RoS1,RoS1 _ 2,,,10,11,13,16,17,18 \^,,,ChH1,Clan,Rou,RoS1,Rou,BlLR _ 3,,,,14,15,17 \^,,,,RoS1,Sh1+,RoS1 _ 4,,,,,18,$<=^20$,22 \^,,,,,RoS1,RoS1,RoS1 _ 5,,,,,,21 \^,,,,,,RoS1 _ 6,,,,,,,26 \^,,,,,,,RoS1 .TE .nr PS 12 .nr VS 15 $gsize 12$ .DS C Table IX. Ramsey numbers $R(^B sub m ,^B sub n )~$ for $m,^n^<=~7$; Sh1+ abbreviates ShaXBP. .DE .sp 2 .IP (a) $254~<=~R(B sub 37 ,^B sub 88 ^)~<=~255^$ [Par6]. .IP (b) Unpublished result $R(B sub 2 ,^B sub 6 ^)~=~17~$ [Rou] was confirmed in [BlLR]. .IP (c) There are 4 Ramsey-critical graphs for $R(B sub 2 ,^B sub 3 ^)$, a unique graph for $R(B sub 3 ,^B sub 4 ^)~$ [ShaXBP], 3 for $R(B sub 2 ,^B sub 6 ^)$ and 65 for $R(B sub 2 ,^B sub 7 ^)~$ [BlLR]. .IP (d) $R(B sub 1 ,^B sub n )^=^2n^+^3$ for all $n>1$ [RoS1]. .IP (e) $R(B sub n ,^B sub m ) ~=~ 2n^+^3$ for all $n^>=^cm$ for some $c^<^10 sup 6 ~$ [NiRo2, NiRo3]. .IP (f) $R(B sub n ,^B sub n ) ~=~ (4^+^o(1))n$ [RoS1, NiRS]. .IP (g) In general, $R(B sub n ,^B sub n )~=~4n^+^2$ for $4n^+^1$ a prime power. Several other specific values (like $R(B sub 62 ,^B sub 65 ^)~=~256$) and general equalities and bounds for $R(B sub n ,^B sub m )$ can be found in [RoS1, FRS8, Par6, NiRS, LiRZ2]. .NH 2 Trees and forests .LP In this subsection $T sub n$ and $F sub n$ denote $n$-vertex tree and forest, respectively. .sp 0.3 .IP (a) $R(T sub n ,^T sub n ^)~<=~4n^+^1^$ [ErdG]. .IP (b) $R(T sub n ,^T sub n ^)~>=~{down 8 \(lf} (4n^-^1) ^/^3 {down 8 \(rf}$ [BuE2], see also section 5.15. .IP (c) Conjecture that $R(T sub n ,^T sub n ^)$ is at most $2n^-^2^$ for even $n$ and $2n^-^3^$ for odd $n$ [BuE2]. Note that this is the same as asking if $R(T sub n ,^T sub n ^)~<=~R(K sub 1,n-1 ,^K sub 1,n-1 ^)$. Zhao [Zhao] proved that $R(T sub n ,^T sub n ^)~<=~2n^-^2^$ and thus confirmed the conjecture for even $n$. Independently, Ajtai et al. [AjKSS] announced a full proof for large $n$. This recent progress subsumes some of the results pointed to in items (d)-(m) below. .IP (d) For general discussion of related problems see [Bu7, FSS1, ChGra2], in particular of the conjecture that $R(T sub m ,^T sub n )~<=~n^+^m^-^2$ holds for all trees [FSS1]. .IP (e) If $DELTA (T sub m )~=~m^-^2$ and $DELTA (T sub n )~=~n^-^2$ then the exact values of $R(T sub m ,^T sub n )$ are known, and they are between $n^+^m^-^5$ and $n^+^m^-^3$ depending on $n$ and $m$. In particular, for $n^=~2k^+^1$ we have $R(T sub 2k+1 ,^T sub 2k+1 ^)~=~2n^-^5^$ [GuoV]. .IP (f) Examples of families $T sub m$ and $T sub n$ (including $P sub n$) for which $R(T sub m ,^T sub n^)~=~n^+~m^-^c$, $c~=~3,~4,~5~$ [SunZ1], extending the results in [GuoV]. .IP (g) View the tree $T$ as a bipartite graph with parts $t sub 1$ and $t sub 2$, $t sub 2 ~>=~t sub 1$, then define $b(T)~=~max roman "{" ^2t sub 1^+^t sub 2^-^1,^2t sub 2 ^-^1 roman "}"$. Then the bound $R(T,^T)~>=~b(T)$ holds always, $R(T,^T)~=~b(T)$ holds for many classes of trees [EFRS3, GeGy], and asymptotically [Ha\(L/T], but cases for inequality have been found [GrHK]. .IP (h) Comments in [BaLS] about some conjectures on Ramsey saturation of non-star trees, which would imply that $R(T sub n ,^T sub n ^)~<=~2n^-^2^$ holds for sufficiently large $n$. .IP (i) Formulas for $R(T sub m ,^T sub n )$ for some subcases of when $T sub m$ and $T sub n$ satisfy $DELTA (T sub m )~=~m^-^3$ and $DELTA (T sub n )~>=~n^-^3^$ [SunWW]. .sp 0.3 .IP (j) $R(T sub m ,^K sub 1,n ^)~<=~m^+^n^-^1^$, with equality for $(m^-^1)^|^(n^-^1)$ [Bu1]. .IP (k) $R(T sub m ,^K sub 1,n ^)~=~m^+^n^-^1^$ for sufficiently large $n$ for almost all trees $T sub m$ [Bu1]. Many cases were identified for which $R(T sub m ,^K sub 1,n ^)~=~m^+^n^-^2^$ [Coc, ZhZ1], see also [Bu1]. .IP (l) $R(T sub m ,^K sub 1,n ^)~<=~m^+^n^$ if $T sub n$ is not a star and $(m^-^1)^| back 43 /^ (n^-^1)$, .br some classes of trees and stars for which the equality holds [GuoV]. .IP (m) In a sequence of papers [SunZ1, SunZ2, SunW, SunWW], Zhi-Hong Sun et al. obtain several exact results for $R(S,^T)$, where the trees $S$ and $T$ have high maximum degree $DELTA ^>=^n^-3^$, or one of them has high maximum degree and the other is a path. .IP (n) Formulas for some cases of brooms [EFRS3], extended to all diagonal cases [YuLi]. .IP (o) $R(F sub n ,^F sub n ^)^>^n^+^ roman log sub 2 n ^-^O( roman loglog ^n)^$ [BuE2], forests are tight for this bound [CsKo]. .IP (p) Forests, linear forests (unions of paths) $~$[BuRo2, FS3, CsKo]. .IP (q) Tables of values of $R(T sub m ,^T sub n )$ for $6~<=^m,^n^<=~8$, for concrete pairs of trees [RamMCG]. .IP (r) Tristars and fountains [BroNN]. .IP (s) Paths versus trees [FSS1], see also other parts of this survey involving special graphs, .br in particular sections 5.5, 5.6, 5.10, 5.12 and 5.15. .NH 2 Stars, stars versus other graphs .RS .LP $R(K sub 1,n ,^K sub 1,m )~=~ n^+^m^-^epsilon$, where $epsilon ^=^1$ for even $n$ and $m$, and $epsilon ^=^0$ otherwise [Har1]. This is also a special case of multicolor numbers for stars 6.6.e obtained in [BuRo1]. .sp .5 $R(K sub 1,n ,^K sub m )~=~ n(m^-^1)^+^1$ by Chv\o'a\(aa'tal's theorem [Chv]. .sp .5 .br Stars versus $C sub 4 ~$ [Par3, Par4, Par5, BEFRS4, Chen, ChenJ], until 2002 .br Stars versus $C sub 4 ~$ [GoMC, MoCa, WuSZR, ZhaBC1, ZhaCC2, ZhaCC3], since 2004 .br Stars versus $K sub up 20 2,n$ [Par4, GoMC] .br Stars versus $K sub up 20 {n,^m}$ [Stev, Par3, Par4] .br See also section 3.3 .sp .4 .LP $R(K sub 1,4 ,^B sub 4 ^)~=~11^$ [RoS2] .br $R(K sub 1,4 ,^K sub 1,2,3 ^)~=~R(K sub 1,4 ,^K sub 2,2,2 ^)^=^11^$ [GuSL] .sp .br Stars versus paths [Par2, BEFRS2] .br Stars versus cycles [La1, Clark, ZhaBC5], see also [Par6] and section 4.1 .br Stars versus $2K sub 2$ [MeO] .br Stars versus stripes $mP sub 2$ [CocL1, CocL2, Lor] .br Stars versus bistars [AlmHS] .br Stars versus kipas [LiZB] .sp .3 .br Stars versus $W sub 5$ and $W sub 6$ [SuBa1] .br $nK sub 1,m$ versus $W sub 5$ [BaHA] .br Stars versus $W sub 9$ [Zhang2, ZhaCZ1] .br Stars versus wheels [HaBA1, ChenZZ2, Kor, LiSch, HagMa] .br Stars versus books [ChRSPS, RoS2] .br Stars versus fans [ZhaBC3] .br Stars versus trees [Bu1, Cheng, Coc, GuoV, SunZ1, SunZ2, SunWW, ZhZ1] .br Stars versus $K sub n ^-~tK sub 2$ [Hua1, Hua2] .br Union of two stars [Gros2] .br Asymptotics for double stars [NoSZ] .br Double stars versus $K sub 2,q$ and $sK sub 2$ versus $K sub s ^+^C sub n^$ [SuAUB] .br Unions of stars versus $C sub 4$ and $W sub 5~$ [HaABS, Has] .br Unions of stars versus wheels [BaHA, HaBA2, SuBAU1] .RE .NH 2 Paths versus other graphs .LP Note: for cycles versus $P sub n$ see section 4.1. .sp .3 .RS .LP $P sub 3$ versus all isolate-free graphs [ChH2] .br Paths versus stars [Par2, BEFRS2] .br Paths versus trees [FS4, FSS1, SunZ1, SunZ2, SunWW] .br Paths versus books [RoS2] .br Paths versus $K sub n ^$ [Par1] .br Paths versus $2K sub n ^$ [SuAM, SuAAM] .br Paths versus $K sub n,m ^$ [H\o'a\(:a'g] .br Paths versus some balanced complete multipartite graphs [Pokr] .br .sp .2 Paths versus $W sub 5$ and $W sub 6 ^$ [SuBa1] .br Paths versus $W sub 7$ and $W sub 8 ^$ [Bas] .br Paths versus wheels [BaSu, ChenZZ1, SaBr3, Zhang1] .br Paths versus wheels, the last piece completed [LiNing2] .br .sp .2 $R(P sub n ,^m W sub 4 )~=~2n^+^m^-^2^$ [Sudar1] .br .sp .1 Paths versus beaded wheels [AliBT2] .br Paths versus sunflower graphs [AliTJ] .br Paths versus powers of paths [Pokr, AllBS] .br Paths versus fans [SaBr2] .br Paths versus $K sub 1 ^+^ P sub m~$ [SaBr1, SaBr4] .br Paths versus kipas [LiZBBH] .br Paths versus $K sub 1^+^F$, where $F$ is a linear forest [LiNing1] .br Paths versus Jahangir graphs [SuTo] .br Paths and cycles versus trees [FSS1] .sp .2 Powers of paths [AllBS] .br Unions of paths [BuRo2] .br Paths and unions of paths versus $tK sub n^$ [Sudar2] .br Paths and unions of paths versus Jahangir graphs [AliBas, AliBT1, AliSur] .br Paths and unions of paths versus $K sub {2m} -~ mK sub 2~$ [AliBB] .sp .2 Goodness of paths for $tK sub n^$ [Sudar3] .br Goodness of paths, results on graphs $H$ for which $P sub n$ is $H$-good [PoSu] .br Sparse graphs versus paths and cycles [BEFRS2] .br Graphs with long tails [Bu2, BuG] .br Long paths versus other good graphs [PeiLi] .br Paths versus generalized wheels [BieDa] .br Monotone paths [Lef, CaYZ] and monotone cycles [Lef] .RE .NH 2 Fans, fans versus other graphs .LP The fan graph $F sub n$ is defined by $F sub n ~=~ K sub 1 ^+~ nK sub 2$. .sp .5 .RS .LP $R(F sub 1 ,^F sub n ^)~=~R(K sub 3 ,^F sub n ^)~=~4n^+^1~$ for $n^>=~2^$, and bounds for $R(F sub m ,^F sub n ^)^$ [LiR2, GuGS] .sp .3 $R(F sub 2 ,^F sub n ^)~=~4n^+^1~$ for $n^>=~2$ and $R(F sub m ,^F sub n ^)~<=~4n^+^2m$ for $n^>=~m^>=~2^$ [LinLi1] .sp .1 $R(K sub 4 ,^F sub n ^)~=~6n^+^1$ for $n^>=~3^$ [SuBB3] .br $R(K sub 5 ,^F sub n ^)~=~8n^+^1$ for $n^>=~5^$ [ZhaCh] .sp .3 A conjecture that $R(K sub m ,^F sub n ^)~=~2mn^-^2n^+^1^$ for $n^>=^m^>=^4^$ [SuBB3] .sp .3 Fans versus paths, formulas for a number of cases including $R(P sub 6 ,^F sub n^)~$ [SaBr2]. .br Missing case $R(P sub 6 ,^F sub 4^)~=~12~$ solved in [Shao]. .sp .3 $R(F sub m ,^K sub n )~=~(1^+^o(1))n sup 2 /^log ^n~$ [LiR2] .sp .3 Fans versus cycles [Shi5] .br Exact asymptotics of odd cycles versus generalized fans [LiuLi] .br Fans versus wheels [ZhaBC4] .br Fans versus trees and stars [ZhaBC3, Bren1] .br Fans versus unicyclic graphs [Bren1] .br Lower bounds on $R(F sub 2 ,^K sub n ^)$ from cyclic graphs for $n^<=^9$ [Shao] .RE .NH 2 Wheels versus other graphs .LP Notes: In this survey the wheel graph $W sub n ~=~ K sub 1 ^+^C sub n-1$ has $n$ vertices, while some authors use the definition $W sub n ~=~ K sub 1 ^+^C sub n$ with $n^+^1$ vertices. For cycles versus $W sub n ^$ see section 4.3. Consider also similarity of wheels to other graphs, like fans, kipas [LiZBBH], sunflower [AliTJ], and Jahangir graphs [SuTo]. .sp .5 .RS .LP $R(W sub 5 ,^K sub 5 ^-^e)~=~17$ [He2][YH] .br $R(W sub 5 ,^K sub 5 ^)~=~27$ [He2][RaST] .br $R(W sub 5 ,^K sub 6 ^)~>=~33$, $R(W sub 5 ,^K sub 7 ^)~>=~43^$ [Shao, ShaoWX] .br $W sub 5$ and $W sub 6$ versus stars and paths [SuBa1] .br $W sub 5$ versus $nK sub 1,m$ [BaHA] .br $W sub 5$ versus unions of stars [Has] .br $W sub 5$ and $W sub 6$ versus trees [BaSNM] .br $W sub 7$ and $W sub 8$ versus paths [Bas] .sp .3 $W sub 7$ versus trees $T sub n$ with $DELTA (T sub n )~>=~n^-^3$, other special trees $T$, .br and for $n^<=^8^$ [ChenZZ3, ChenZZ5, ChenZZ6] .sp .3 $W sub 7$ and $W sub 8$ versus trees [ChenZZ4, ChenZZ5] .br $W sub 9$ versus stars [Zhang2, ZhaCZ1, ZhaCC4] .br $W sub 9$ versus trees of high degree [ZhaCZ2] .sp .3 $R(C sub 4 ,^W sub n ^)~=~R(C sub 4 ,^K sub {1,n-1}^)^$ for $n^>=^7^$ [ZhaBC1]. .sp .5 Wheels versus stars [HaBA1, ChenZZ2, Kor, LiSch, HagMa] .br Wheels $W sub n$, for even $n$, versus star-like trees [SuBB1] .br Wheels versus paths [BaSu, ChenZZ1, SaBr3, Zhang1] .br Wheels versus paths, the last piece completed [LiNing2] .br Wheels versus fans and wheels [ZhaBC4] .br Wheels versus some trees [RaeZ, ZhuZL] .br Wheels versus books [Zhou3] .br Wheels versus unions of stars [BaHA, HaBA2, SuBAU1] .br Wheels versus linear forests (disjoint unions of paths) [SuBa2] .br Some cases of wheels versus $K sub n ^-^K sub {1,s}^$ [ChaMR] .br Generalized wheels versus cycles [Shi5, BieDa] .br Upper asymptotics for $R(W sub n ,^K sub m )^$ [Song5, SonBL] .br Upper asymptotics for generalized wheels versus $K sub n$ [Song9] .RE .NH 2 Books versus other graphs .LP Note: for cycles versus $B sub n$ see section 4.4. .sp .5 .RS .LP $R(B sub 3 ,^K sub 4 ^)^=^14$ [He3] .br $R(B sub 3 ,^K sub 5 ^)^=^20$ [He2][BaRT] .br $R(B sub 4 ,^K sub 1,4 ^)^=^11^$ [RoS2] .sp .2 Cyclic lower bounds for $R(B sub m ,^K sub n ^)$ for $m^<=^7,~n<=~9$ .br and for $R(B sub 3 ,^K sub n ^-^e)$ for $n^<=~7^$ [Shao, ShaoWX] .sp .2 Books versus paths [RoS2] .br Books versus stars [ChRSPS, RoS2] .br Books versus trees [EFRS7] .br Books versus $K sub n$ [LiR1, Sud2] .br Books versus wheels [Zhou3] .br Books versus $K sub 2 ^+~ C sub n$ [Zhou3] .br Books and $(K sub 1 ^+~ tree)$ versus $K sub n$ [LiR1] .br Generalized books $K sub 3 ^+~qK sub 1$ versus cycles [Shi5] .br Generalized books $K sub r ^+~qK sub 1$ versus $K sub n$ [NiRo1, NiRo4] .RE .NH 2 Trees and forests versus other graphs .LP In this subsection $T sub n$ and $F sub n$ denote $n$-vertex tree and forest, respectively. .RS .LP $R(T sub n ,^K sub m )~=~ (n^-^1)(m^-^1)^+^1~$ [Chv] .LP $R(C sub 2m+1 ,^T sub n ^)~=~2n^-^1^$ for all $^n^>^1512m^+^756$, for $n$-vertex trees $T sub n ~$ [BEFRS2]. .br The range of $n$ was extended to $^n^>=~25(2m^+^1)^$ in [Bren2]. .LP $R(T sub n ,^B sub m ^)~=~2n^-^1^$ for all $^n^>=^3m^-^3~$ [EFRS7] .sp .2 .LP $R(F sub nk ,^K sub m )~=~(n^-^1)(m^-^2)^+^nk~$ for all forests $F sub nk$ consisting of $k$ trees with .br $n$ vertices each, also exact formula for all other cases of forests versus $K sub m ^$ [Stahl] .sp .2 .LP Exact results for almost all small ($n(G)^<=^5)$ connected graphs $G$ versus all trees [FRS4] .sp .5 .br Trees versus stars [Bu1, Cheng, Coc, GuoV, ZhZ1] .br Trees versus paths [FS4, FSS1] .br Trees versus $C sub 4$ [EFRS4, Bu7, BEFRSS5, Chen] .br Trees versus cycles [FSS1, EFRS6] .br Trees versus books [EFRS7] .br Trees versus fans [ZhaBC3] .br Trees versus $W sub 5$ and $W sub 6$ [BaSNM] .br Trees versus $W sub 7$ and $W sub 8$ [ChenZZ4, ChenZZ5] .br Some trees versus wheels [RaeZ, ZhuZL] .br Trees versus wheels [ZhaBC4] .sp .5 Trees $T sub n$ with $DELTA (T sub n )~>=~n^-^3$, other special trees $T$, .br and for $n^<=~8$ versus $W sub 7~$ [ChenZZ3, ChenZZ5, ChenZZ6] .br Trees $T sub n$ with $DELTA (T sub n )~>=~n^-^4$ versus $W sub 9~$ [ZhaCZ2] .sp .5 Star-like trees versus odd wheels [SuBB1, ChenZZ3] .br Trees versus $K sub n ^+~K bar sub m$ [RoS2, FSR] .br Trees versus bipartite graphs [BEFRS4, EFRS6] .br Trees versus almost complete graphs [GoJa2] .br Trees versus multipartite complete graphs [EFRS8, BEFRSGJ] .sp .5 Linear forests versus $3K sub 3$ and $2K sub 4 ~$ [SuBAU2] .br Linear forests versus $2K sub m ^$ [SuAAM] .br Linear forests versus $tK sub n^$ [Sudar2, Sudar3] .br Linear forests versus wheels [SuBa2] .br Forests versus almost complete graphs [ChGP] .br Forests versus complete graphs [BuE1, Stahl, BaHA] .sp .2 .LP Goodness of bounded degree trees [BalPS] .sp .2 .LP Study of graphs $G$ for which all or almost all trees are $G$-good [BuF, BEFRSGJ], .br see also section 5.15 and 5.16, item [Bu2], for the definition and more pointers. .LP See also various parts of this survey for special trees, and section 5.4. .RE .NH 2 Cases for $n(G),~n(H)~<=~5$ .LP Clancy [Clan], in 1977, presented a table of $R(G,^H)$ for all isolate-free graphs $G$ with $n(G)~=~5$ and $H$ with $n(H)~<=~4$, except 5 entries. All five of the open entries have been solved as follows: .LP .RS $R(B sub 3 ,^K sub 4 ^)~=~14$ [He3] .br $R(K sub 5 ,^K sub 4 ^-^e )~=~16$ [BoH] .br $R(W sub 5 ,^K sub 4 ^)~=~17$ [He2] .br $R(K sub 5 ^-^e ,^K sub 4 ^)~=~19$ [EHM1] .br $R(K sub 5 ,^K sub 4 ^)~=~R(4,^5)~=~25$ [MR4] .RE .sp .5 .LP An interesting case in [Clan] is: .LP .RS $R(K sub 4 ,^K sub 5 ^-^P sub 3 )~=~R(K sub 4 ,^K sub 4 ^+^e)~=~R(4,^4)~=~18$ .RE .LP Hendry [He2], in 1989, presented a table of $R(G,^H)$ for all graphs $G$ and $H$ on 5 .br vertices without isolates, except 7 entries. Five of the open entries have been solved: .LP .RS $R(K sub 5 ,^K sub 4 ^+^e)~=~R(4,^5)~=~25$ [Ka1][MR4] .br $R(K sub 5 ,^K sub 5 ^-~P sub 3^)~=~25$ [Ka1][Boza2, CalSR] .br $R(K sub 5 ,^B sub 3 ^)~=~20$ [He2][BaRT] .br $R(K sub 5 ,^W sub 5 ^)~=~27$ [He2][RaST] .br $R(W sub 5 ,^K sub 5 ^-^e)~=~17$ [He2][YH] .RE .sp .5 .LP The still open cases for $K sub 5$ versus $K sub 5 ^-^e$ and $K sub 5$ are: .LP .RS $30~<=~R(K sub 5 ,^K sub 5 ^-^e^)~<=~34$ [Ex6][Ex8] .br $43~<=~R(K sub 5 ,^K sub 5 ^)~<=~49$ [Ex4][MR5] .RE .sp .5 .LP All critical colorings for the case $R(C sub 5 ^+^e,^K sub 5 ^)~=~17$ were found by Hendry [He5]. .NH 2 Mixed cases .RS .LP $12~<=~R(Q sub 3 ^,^Q sub 3 ^),~$ where $Q sub 3$ is the 8-vertex 3-dimensional cube graph, .br $19~<=~R(P,^P),~$ where $P$ is the 10-vertex Petersen graph, .br $30~<=~R(K sub 2,2,2 ^,^K sub 2,2,2 ^),~$ where $K sub 2,2,2$ is the octahedron [HaKr2]. .sp .2 .LP Unicyclic graphs [Gros1, K\o'o\(:a'h, KrRod] .br $K sub 2,m$ and $C sub 2m$ versus $K sub n$ [CaLRZ] .br $K sub 2,n$ versus any graph [RoJa2] .br Union of two stars [Gros2] .br Double stars$up 15 \s10*\s0$ [GrHK, BahS, NoSZ] .FS .sp 0.1 \s10* double star is a union of two stars with their centers joined by an edge\s0 .FE .br Formulas for some cases of brooms$up 25 \s10+\s0$ [EFRS3], extended to all diagonal cases [YuLi] .FS \s10+ broom is a star with a path attached to its center\s0 .FE .br Graphs with bridge versus $K sub n$ [Li1] .br Multipartite complete graphs [BFRS, FRS3, Stev] .br Multipartite complete graphs versus trees [EFRS8, BEFRSGJ] .br Multipartite complete graphs versus sparse graphs [EFRS4] .br Graphs with long tails [Bu2, BuG] .RE .NH 2 Multiple copies of graphs, disconnected graphs .sp 0.3 .IP (a) $2K sub 2$ versus all isolate-free graphs [ChH2] .IP (b) $nK sub 2$ versus $mK sub 2$, in particular $R(nK sub 2 ,^nK sub 2 ^)~=~3n^-^1$ for $n^>=^1$ [CocL1, CocL2, Lor] .IP (c) $R(nK sub 3 ,^nK sub 3 ^)~=~5n$ for $n^>=^2$, $R(mK sub 3 ,^nK sub 3 ^)~=~3m^+^2n$ for $m^>=^n^>=^2$ [BES]. .IP (d) Let $c(nK sub k^)$ denote the set of connected graphs containing $n$ vertex disjoint $K sub k$'s. Then: .br $R(c(nK sub 3^),^c(nK sub 3^))~=~7n^-^2$ for $n^>=^2~$ [GyS\o'a\(aa'3], and .br $R(c(nK sub k^),^c(nK sub k^))~=~(k sup 2^-^k^+^1)^n^-^k^+^1^$ for $k^>=^4$ and $n^>=^R(k,^k)~$ [Rob]. .IP (e) $nK sub 3$ versus $mK sub 4$ [LorMu] .IP (f) $nK sub 1,m$ versus $W sub 5$ [BaHA] .IP (g) $R(nK sub 4 ,^nK sub 4 ^)~=~7n^+^4$ for large $n$ [Bu8] .IP (h) Stripes $mP sub 2$ [CocL1, CocL2, Lor] .IP (i) $R(G,^H)$ for all disconnected isolate-free graphs $H$ on at most 6 vertices versus all $G$ on at most 5 vertices, except 3 cases [LoM5]. Missing cases were completed in [KroMe]. .IP (j) $R(F,^G up 20 {size 7 union} ^H)~<=~ roman max roman "{" ^R(F,^G)^+^n(H),~R(F,^G)^ roman "}"~$ [Par6] .IP (k) $R(mG,^nH)~<=~(m^-^1) n(G)~+~(n^-^1) n(H)~+~R(G,^H)~$ [BES] .IP (l) Formulas for $R(nK sub 3 ,^mG)$ for all isolate-free graphs $G$ on 4 vertices [Zeng] .IP (m) Variety of results for numbers of the form $R(nG,^mH)$ [Bu1, BES, HaBA2, SuBAU1, SuAUB, Sudar2, Sudar3]. .IP (n) Disjoint unions of paths (linear forests) [BuRo2, FS2], .br Linear forests versus $3K sub 3 ^up 20 {size 7 union} ^2K sub 4~$ [SuBAU2] .IP (o) Forests versus $K sub n ~$ [Stahl, BaHA] and $W sub n ~$ [BaHA]. Generalizations to forests versus other graphs $G$ in terms of $chi (G)$ and the chromatic surplus of $G~$ [Biel4], and for linear forests versus $2K sub n~$ [SuAM]. .IP (p) Disconnected graphs versus other graphs [BuE1, GoJa1] .IP (q) See section 4.1 for cases involving unions of cycles .IP (r) See also [Bu9, BuE1, LorMu, MiSa, Den2, Biel1, Biel2] .NH 2 General results for special graphs .sp 0.3 .IP (a) $R(K sub m sup p ,^K sub n sup q ) ~=~R(K sub m ,^K sub n )$ for $m,~n^>=~3$, $m^+~n^>=~8$, $p^<=~m/(n^-^1)$ and $q^<=~n/(m^-^1)$, where $K sub s sup t$ is a $K sub s$ with additional vertex connected to it by $t$ edges [BEFS]. Some applications can be found in [BlLR]. .IP (b) $R(K sub 2,k ,^G)~<=~kq ^+^ 1$, for $k^>=^2$, for isolate-free graphs $G$ with $q^>=^2$ edges [RoJa2]. .IP (c) $R(W sub 6 ,^W sub 6 ^)~=~17$ and $chi (W sub 6 ^)~=~4^$ [FM]. This gives a counterexample $G^=^W sub 6$ to the Erd\o'o\(hu's conjecture (see [GRS]) $~R(G,G)~>=~R(K sub { chi (G) } ,^K sub { chi (G) } ^)$, since $R(4,4)~=~18$. .IP (d) $R(G^+^K sub 1 ,^H)~<=~R(K sub {1,^R(G,^H)} ,^H)^$ [BuE1]. .IP (e) $R( K bar sub 2 ^+^G,^K bar sub 2 ^+^G)~<=~ 4R(G,^K bar sub 2 ^+^G)~-~2^$ [LiShen]. .IP (f) Study of $R(G^+^K sub 1 ,^nH^+^K sub 1 )^$ [LinLD]. Further lower bounds based on the Paley graphs, in particular for $R(K sub 3^+^K bar sub n ,^K sub 3^+^K bar sub n )^$ [LinLS]. .IP (g) $R(K sub up 20 {p^+^1},^B sub up 20 q sup down 20 r ^)~=~p(q^+^r^-^1)~+~1$ for generalized books $B sub up 20 q sup down 20 r ~=~K sub up 20 r ^+~qK sub up 20 1$, for sufficiently large $q^$ [NiRo1]. .IP (h) Study of the cases $R(K sub m ,^K sub n ^-^K sub 1,s )$ and $R(K sub m ^-^e ,^K sub n ^-^K sub 1,s )$, with several exact values for special parameters [ChaMR]. .IP (i) Study of $R(T^+^K sub 1 ,^K sub n )$ for trees $T^$ [LiR1]. Asymptotic upper bounds for $R(T^+^K sub 2 ,^K sub n )^$ [Song7], see also [SonGQ]. .IP (j) Bounds on $R(H^+^K bar sub n ,^K sub n )$ for general $H^$ [LiR3]. Also, for fixed $k$ and $m$, as $n -> ~inf$, $R(K sub k ^+^K bar sub m ,^K sub n )~<=~ (m^+^o(1))^n sup {down 20 k} /^( roman log ^n) sup {down 20 k-1}^$ [LiRZ1]. .IP (k) Asymptotics of $R(H^+^K bar sub n ,^K sub n )$. In particular, the order of magnitude of $R(K sub {m,^n} ,^K sub n )$ is $n sup {down 20 m+1} /^( roman log ^n) sup {down 20 m}^$ [LiTZ]. Upper asymptotics for $R(K sub s ^+^ K sub {m,^n} ,^K sub k )^$ [Song9]. .IP (l) Study of the largest $k$ such that if the star $K sub {1,k}$ is removed from $K sub r$, $r~=~R(G,^H)$, any edge 2-coloring of the remaining part still contains monochromatic $G$ or $H$, as for $K sub r$, for various special $G$ and $H^$ [HoIs]. .IP (m) Let $G ''$ be a graph obtained from $G$ by deleting two vertices with adjacent edges. Then $R(G,^H)~<=~A+^B+^2^+^2^ down 15 sqrt up 15 {(^A sup down 15 2 ^+~AB^+~B sup down 15 2 ^)^/^3^}$, where $A^=~R(G '',^H)$ and $B^=~R(G,^H '')$ [LiRZ2]. .NH 2 General results for sparse graphs .sp 0.3 .IP (a) $R(K sub n ,^T sub m )~=~(n-1)(m-1)^+^1$ for any tree $T sub m$ on $m$ vertices [Chv]. .IP (b) Graphs yielding $R(K sub n ,^G)~=~(n-1)(n(G)^-^1)^+^1$, called Ramsey $n$-good [BuE3], and related results [EFRS5]. An extensive survey and further study of $n$-goodness appeared in [NiRo4], 2009. More results on goodness of bounded degree trees [BalPS], 2016, and paths [PoSu], 2017. .IP (c) $R(C sub 2m+1 ,^G)~=~2n^-^1^$ for sufficiently large sparse graphs $G$ on $n$ vertices, little more complicated formulas for $P sub 2m+1$ instead of $C sub 2m+1^$ [BEFRS2]. .IP (d) $R(G,G)~<=~c sub d n(G)$ for all $G$, where constant $c sub d$ depends only on the maximum degree $d$ in $G^$ [ChRST]. The constant was improved in [GRR1, FoxSu1]. Tight lower and upper bounds for bipartite $G$ [GRR2, Con2, ConFS7, ConFS8]. Further improvements of the constant $c sub d$ in general were obtained in [ConFS4], and for graphs with bounded bandwidth in [AllBS]. .IP (e) Study of $L$-sets, which are sets of pairs of graphs whose Ramsey numbers are linear in the number of vertices. Conjecture that Ramsey numbers grow linearly for $d$-degenerate graphs (graph is $d$-degenerate if all its subgraphs have minimum degree at most $d$) [BuE1]. Progress towards this conjecture was obtained by several authors, including [KoR\o'o\(:a'1, KoR\o'o\(:a'2, KoSu, FoxSu1, FoxSu2]. Further progress was obtained in 2016 in relation to the chromatic number [Lee]. .IP (f) $R(G,G)~<=~c sub d n$ for all $d$-arrangeable graphs $G$ on $n$ vertices, in particular with the same constant for all planar graphs [ChenS]. The constant $c sub d$ was improved in [Eaton]. An extension to graphs not containing a subdivision of $K sub d^$ [R\o'o\(:a'Th]. .IP (g) Conjecture that $R(G,G)~<=~12 n(G)$ for all planar $G$, for sufficiently large $n^$ [AllBS]. .IP (h) Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs, arrangeable graphs, crowns, graphs with bounded maximum degree, planar graphs, and graphs without any topological minor of a fixed clique [Shi3]. .IP (i) Discussion of various old and new classes of Ramsey linear graphs [NeOs]. .IP (j) Study of graphs $G$, called .I Ramsey size linear, .R for which there exists a constant $c sub G$ such that for all $H$ with no isolates $R(G,^H)~<=~c sub G e(H)^$ [EFRS9]. An overview and further results were given in [BaSS]. .IP (k) $R(G,^G)~<~6 n$ for all $n$-vertex graphs $G$, in which no two vertices of degree at least 3 are adjacent [LiRS]. This improves the result $R(G,^G)~<=~12 n$ in [Alon1]. In an early paper by Burr and Erd\o'o\(hu's [BuE1] it was proved that if any two points of degree at least 3 are at distance at least 3 then $R(G,^G)~<=~18 n$. .IP (l) $R(G sub a,b ,^G sub a,b )~=~(3/^2^+^o(1))ab$, where $G sub a,b$ is the rectangular $a times ^b$ grid graph. Other similar results follow for bipartite planar graphs with bounded degree and grids of higher dimension [MoSST]. .sp 0.1 .IP (m) $R(Q sub n ,^Q sub n )~<=~2 sup down 5 {(3^+^ sqrt{5})n/^2^+^o(n)}$, for the $n$-dimensional hypercube $Q sub n$ with $2 sup down 20 n$ vertices [Shi1]. This bound can also be derived from a theorem in [KoR\o'o\(:a'1]. An improvement was obtained in [Shi4], a further one to $R(Q sub n ,^Q sub n )~<=~2 sup down 5 {2n+^5} n$ in [FoxSu1], and another decrease of the upper bound to $2 sup down 5 {2n+^6}^$ in [ConFS8]. A lower bound construction for $12~<=~R(Q sub 3 ,^Q sub 3 )^$ was presented in [HaKr2]. .IP (n) $R(K sub m ,^Q sub n )~=~(m^-^1)(2 sup n ^-^1)^+^1^$ for every fixed $m$ and sufficiently large $n^$ [FizGMSS]. This improves on the results in [ConFLS] and [GrMFSS]. The apparent contradiction with publication years is due to the timing of publication processes. .IP (o) Conjecture that $R(G,G)~=~2n(G)^-^1$ if $G$ is unicyclic of odd girth [Gros1]. Further support for the conjecture was given in [K\o'o\(:a'h, KrRod]. .IP (p) See also earlier subsections 5.* for various specific sparse graphs. .NH 2 General results .sp 0.3 .IP (a) $R(G,^H)~>=~ (^ chi (G)^-^1)(c(H)^-^1)^+^1$, where $chi (G)$ is the chromatic number of $G$, and $c(H)$ is the size of the largest connected component of $H$. [ChH2]. .IP (b) $R(G,^G)~>~ (s2 sup down 20 {^e(G)^-^1)}^) sup down 15 {^1^/^n(G)}^$, where $s$ is the number of automorphisms of $G$. Hence $R(K sub n,n ,^K sub n,n ^)~>~2 sup down 15 {^n}$, see also item 6.7.k [ChH3]. .IP (c) $R(G,^G)~>=~^ {down 8 \(lf} (4n(G)^-^1) ^/^3 {down 8 \(rf}$ for any connected $G$, and $R(G,^G)~>=~2n^-^1$ for any connected nonbipartite $G$. These bounds can be achieved for all $n^>=~4^$ [BuE2]. .IP (d) Graphs $H$ yielding $R(G,^H)~=~( chi (G) ^-^1)(n(H)^-^1)^+^s(G)$, where $s(G)$ is the chromatic surplus of $G$, defined as the minimum number of vertices in some color class under all vertex colorings in $chi (G)$ colors (such $H$'s are called $G$-good) [Bu2]. This idea is a basis of a number of exact results for $R(G,^H)$ for large and sparse graphs $H$ [BuG, BEFRS2, BEFRS3, Bu5, FaSi, EFRS4, FRS3, BEFSRGJ, BuF, LiR4, Biel2, SuBAU3, Song6, AllBS, PeiLi, LiBie, BalPS, PoSu]. Surveys of this area appeared in [FRS5, NiRo4]. .IP (e) Graph $G$ is Ramsey saturated if $R(G^+^e,^G^+^e)~>~R(G,^G)$ for every edge $e$ in $G bar$. The paper [BaLS] contains several theorems involving cycles, cycles with chords and trees on Ramsey saturated and unsaturated graphs, and also seven conjectures including one stating that almost all graphs are Ramsey unsaturated. Some classes of graphs were proved to be Ramsey unsaturated [Ho]. Special cases involving cycles and Jahangir graphs were studied in [AliSur]. .IP (f) Relations between $R(3,^k)$ and graphs with large $chi (G)$ [BiFJ]. Further detailed study of the relation between $R(3,^k)$ and the chromatic gap [GySeT]. .IP (g) $R(G,^H) ~>~h(G,^d)^n(H)$ for all nonbipartite $G$ and almost every $d$-regular $H$, for some $h$ unbounded in $d^$ [Bra3]. .IP (h) Lower asymptotics of $R(G,^H)$ depending on the average degree of $G$ and the size of $H^$ [DoLL1]. This continued the study initiated in [EFRS5], later much enhanced for both lower and upper bounds in [Sud3]. .IP (i) Lower bound asymptotics of $R(G,^H)$ for large dense $H^$ [LiZa1]. .sp .2 .IP (j) A conjecture posed by Erd\o'o\(hu's in 1983 that there exists a constant $c$ such that $R(G,^G)~<=~2 sup down 5 {^c down 5 sqrt {^e(G)}} ~$ for all isolate-free graphs $G^$ [Erd4]. Discussion of this conjecture and partial results, proof for bipartite graphs and progress in other cases are included in [AlKS]. In 2011, Sudakov [Sud4] completed the proof of this conjecture. An extension of the latter to some off-diagonal cases is presented in [MaOm], and an improvement of the constant for bipartite graphs is given in [JoPe]. For the multicolor case see item 6.7.j. .sp .2 .IP (k) Lower bound on $R(G,^K sub n )$ depending on the density of subgraphs of $G$ [Kriv]. This construction for $G^=~K sub m$ produces a bound similar to the best known probabilistic lower bound by Spencer [Spe2]. Further lower and upper bounds on $R(G,^K sub n )$ in terms of $n$ and $e(G)^$ can be found in [Sud3]. .IP (l) Upper bounds on $R(G,^K sub n )$ for dense graphs $G^$ [Con3]. .IP (m) The graphs $K sub n$ and $K sub n +~K sub n-1$ are Ramsey equivalent for $n^>=^4$, i.e. every graph either arrows both of them or none of them [BlLi]. .IP (n) Relations between the cases of $G$ or $G ^+^ K sub 1$ versus $H$ or $H ^+^ K sub 1^$ [BuE1]. .IP (o) Study of cyclic graphs yielding lower bounds for Ramsey numbers. Exact formulas for paths and cycles, and values for small complete graphs and for graphs with up to five vertices [HaKr1]. .sp .4 .IP (p) Relations between some Ramsey graphs and block designs [Par3, Par4]. .IP (q) Relations between the Shannon capacity of noisy communication channels and graph Ramsey numbers [Li2]. See also section 6 in [Ros2], and [XuR3]. .IP (r) Given integer $m$ and graphs $G$ and $H$, determining whether $R(G,^H)~<=~m$ holds is NP$^-^$hard [Bu6]. Further complexity results related to Ramsey theory were presented in [Bu10]. .IP (s) Ramsey arrowing is $PI sub {^2} sup up 20 p ^-^$complete, a rare natural example of a problem higher than NP in the polynomial hierarchy of computational complexity theory [Scha]. .IP (t) Special cases of multicolor results listed in section 6. .IP (u) See also surveys listed in section 8. .EQ define not= '= back 38 /^' .EN .bp .NH Multicolor Ramsey Numbers .sp .DS L The only known value of a multicolor classical Ramsey number: $R sub 3 (3) ~=~ R(3,3,3)~=~R(3,3,3^;^2)~=~17$ [GG] 2 critical colorings (on 16 vertices) [KaSt, LayMa] 2 colorings on 15 vertices [Hein] 115 colorings on 14 vertices [PR1] .DE .sp .NH 2 Bounds for classical numbers .sp .LP General upper bound, implicit in [GG]: .EQ (a) R(k sub 1 ,^. ..^,^k sub r )~^<=^~ 2 ~-~ r ~+~ up 8 sum from {up 30 {i^=^1}} to {down 1 r} R(k sub 1 ,^. ..^,^k sub {i-^1} ,^k sub i ^-^1,^ k sub {i+^1} ,^. ..^,^k sub r ) .EN .sp .5 .LP Inequality in (a) is strict if the right hand side is even and at least one of the terms in the summation is even. It is suspected that this upper bound is never tight for $r ^>=~3$ and $k sub i ^>=~3$, except for $r^=~k sub 1 ^=~k sub 2 ^=~k sub 3 ^=~3$. However, only two parameter cases are known to improve over (a), namely $R sub 4 (3)~<=~62$ [FeKR], and $R(3,3,4)~<=~31$ [PR1, PR2], $R(3,3,4)~<=~30$ [CodFIM], for which (a) produces the bounds of 66 and 34, respectively. .sp .LP \fBDiagonal Cases\fP .nr PS 10 .nr VS 12 .LP .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . ,$size 8 m$,$~ size 8 3$,4,5,6,7,8,9 \fIr\fP = 3,,17,128,417,1070,3214,6079,13761 \^,,GG,HiIr,Ex16,Mat,XuR1,XSR2,XXER _ 4,,51,634,3049,15202,62017 \^,,Chu1,XXER,Xu,XXER,XXER _ 5,,162,3416,26912 \^,,Ex10,XXER,Xu _ 6,,538 \^,,FreSw _ 7,,1682 \^,,FreSw .TE .nr PS 12 .nr VS 15 .LP .DS C Table X. Known non-obvious lower bounds for diagonal multicolor Ramsey numbers $R sub r (m)$, with references. .DE .sp The best published bounds corresponding to the entries in Table X marked as personal communications [Ex16] and [Xu] are $415~<=~R sub 3 (5)$, $2721~<=~R sub 4 (5)$ and $26082~<=~R sub 5 (5)$ [XXER]. There are other not listed obvious lower bounds, which are implied by the monotonicity of Ramsey numbers or general constructions such as those listed in section 6.2. .sp 2 The most studied and intriguing open case is .DS L [Chu1] $51~<=~R sub 4 (3)~=~R(3,3,3,3)~<=~62$ [FeKR] .DE The construction for $51~<=~R sub 4 (3)$ as described in [Chu1] is correct, but be warned of a typo found by Christopher Frederick in 2003 (there is a triangle (31,7,28) in color 1 in the displayed matrix). The inequality 6.1.a implies $R sub 4 (3)~<=~66$, Folkman [Fol] in 1974 improved this bound to 65, and S\o'a\(aa'nchez-Flores [S\o'a\(aa'n] in 1995 proved $R sub 4 (3)~<=~64$. .PP The upper bounds in $162~<=~R sub 5 (3)~<=~307$, $538~<=~R sub 6 (3)~<=~1838$, $1682~<=~R sub 7 (3)~<=~12861$, $128~<=~R sub 3 (4)~<=~230$ and $634~<=~R sub 4 (4)~<=~6306$ are implied by 6.1.a (we repeat lower bounds from Table X just to see easily the ranges). All the latter and other upper bounds obtainable from known smaller bounds and 6.1.a can be computed with the help of a LISP program written by Kerber and Rowat [KerRo]. .sp 2 \fBOff-Diagonal Cases\fP .sp .LP Three colors: .nr PS 10 .nr VS 12 .LP .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . ,$size 8 m$,$~ size 8 4$,5,6,7,8,9,10,11,12,13,14,15,16 \fIk\fP = 3,,30,45,61,85,103,129,150,174,194,217,242,269,291 \^,,Ka2,Ex2,ExT,Ex18,Ex18,Ex18,ExT,ExT,ExT,ExT,ExT,ExT,ExT _ 4,,55,89,117,152,193,242 \^,,KrLR,Ex17,Ex17,ExT,6.2.f,ExT _ 5,,89,139,181,241 \^,,Ex17,Ex17,Ex17,6.2.f .TE .nr PS 12 .nr VS 15 .LP .DS C Table XI. Known nontrivial lower bounds for 3-color Ramsey numbers of the form $R(3,^k,^m)$, with references. See also 6.1.b/c/d below. .DE .sp .IP (b) In addition to Table XI, the bounds $303~<=~R(3,6,6)$, $609~<=~R(3,7,7)$ and $1689~<=~R(3,9,9)$ were derived in [XXER] (used there for building other lower bounds for some diagonal cases). .IP (c) In several past revisions of this survey we wrote: "The other most studied, and perhaps the only open case of a classical multicolor Ramsey number, for which we can anticipate exact evaluation in the not-too-distance future is .DS L [Ka2] $30~<=~R(3,3,4)~<=~31$ [PR1, PR2] .DE In [PR1] it was conjectured that $R(3,3,4)~=~30$, and the results in [PR2] eliminate some cases which could give $R(3,3,4)~=~31$". Since 2016, we can write that $R(3,3,4)~=~30$ due to the computations completed by Codish, Frank, Itzhakov and Miller [CodFIM]. .IP (d) The upper bounds in $45~<=~R(3,3,5)~<=~57$, $55~<=~R(3,4,4)~<=~77$, and $89~<=~R(3,4,5)~<=~158$ are implied by 6.1.a. We repeat lower bounds from Table XI to show explicitly the current ranges. .IP (e) In 2015, Exoo and Tatarevic obtained several lower bounds improvements marked [ExT] in Table XI. The same paper improves also on many classical two-color cases in Table I, see also comments 2.1.n and 2.1.o. .sp .LP Four colors: .DS L $~^97~<=~R(3,3,3,4)~<=~~^149$ [Ex17], 6.1.a $171~<=~R(3,3,4,4)~<=~~^450$ [Ex15, XXER], 6.1.a $381~<=~R(3,4,4,4)~<=~1577$ 6.2.j, 6.1.a $162~<=~R(3,3,3,5)$ [XXER] $513~<=~R(3,3,3,10)$ 6.2.f $597~<=~R(3,3,3,11)$ 6.2.f $681~<=~R(3,4,5,5)$ [XXER] .DE .sp .PP Lower bounds for higher numbers can be obtained by using general constructive results from section 6.2 below. For example, the bounds $261~<=~R(3,3,15)$ and $247 ~<=~ R(3,3,3,7)$ were not published explicitly but are implied by 6.2.f and 6.2.g, respectively. .sp .NH 2 General results for complete graphs .sp .IP (a) 0.35i $R(k sub 1 ,^. ..^,^k sub r )~^<=^~ 2 ~-~ r ~+~ up 8 sum from {up 30 {i^=^1}} to {down 1 r} R(k sub 1 ,^. ..^,^k sub {i-^1} ,^k sub i ^-^1,^ k sub {i+^1} ,^. ..^,^k sub r )~$ [GG]. .sp -.3 .IP (b) 0.35i $R sub r (3)~>=~3R sub {r-^1} (3) ~^+~^R sub {r-^3} (3) ~-~3~$ [Chu1]. .sp .2 .IP (c) $R sub up 5 r (m) ~>=~c sub up 5 m (2m^-^3) sup r$, and some slight improvements of this bound for small values of $m$ were described in [AbbH, Gi1, Gi2, Song2]. For $m~=~3$, the best known lower bound is $R sub r (3)~>=~(3.199 ...) sup {^r}^$ [XXER]. .IP (d) $R sub r (3)~<=~r! (e^-~e sup {-^1}^+^3^)^/^2~approx ~2.67^r!^$ [Wan], which improved over the classical upper bound $3r!^$ [GRS], was further improved to $R sub r (3)~<=~r! ^(e^- 1/^6 )~+^1~approx ~2.55^r!^$ [XuXC]. .IP (e) The limit $L~=~lim from {r -> ^inf} ~R sub r (3) sup {1/^r}$ exists, though it can be infinite [ChGri]. .br It is known that $3.199~<~L$, as implied by (c) above. For more related results, mostly on the asymptotics of $R sub r (3)^$, see [AbbH, Fre, Chu2, GRS, GrR\o'o\(:a']. .sp .4 .IP (f) 0.35i $R(3,^k,^l)~>=~ 4R(k,^l^-^1)~-~3^$ for $k^>=~3, ~l^>=~5$, and in general for $r^>=~2$ and $k sub i ^>=~2$ it holds .sp .2 $R(3,^k sub 1 ,^. ..^,^k sub r )~>=~ 4 R(k sub 1 ^-^1,^k sub 2 ,^. ..^,^k sub r ) ~-~3~$ for $^k sub 1 ^>=~5$, and .sp .2 $R(k sub 1 ,^2k sub 2 ^-^1,^k sub 3 ,^. ..^,^k sub r )~>=~ 4 R(k sub 1 ^-^1,^k sub 2 ,^. ..^,^k sub r ) ~-~3~$ for $^k sub 1 ^>=~5~$ [XuX2, XXER]. .sp .2 .IP (g) 0.35i $R(3,^3,^3,^k sub 1 ,^. ..^,^k sub r )~>=~ 3 R(3,^3,^k sub 1 ,^. ..^,^k sub r ) ~ +~ R(k sub 1 ,^. ..^,^k sub r ) ~-~3~$ [Rob2]. .IP (h) For $r^+^1$ colors, avoiding $K sub 3$ in the first $r$ colors and avoiding $K sub m$ in the last color, $R(3,^. ..^,^3,^m )~<=~r!^m sup {r+^1} ^$ [S\o'a\(aa'r1]. .sp .4 .IP (i) 0.35i $R(k sub 1 ,^. ..^,^k sub r )~>=~ S(k sub 1 ,^. ..^,^k sub r )~+~2$, where $S(k sub 1 ,^. ..^,^k sub r )$ is the generalized Schur number [AbbH, Gi1, Gi2]. In particular, the special case $k sub 1 ^=^ . ..^=^k sub r ^=^3$ has been widely studied [Fre, FreSw, Ex10, Rob3]. .IP (j) 0.35i $R(k sub 1 ,^. ..^,^k sub r )~>=~ L(k sub 1 ,^. ..^,^k sub r )~+~1$, where $L(k sub 1 ,^. ..^,^k sub r )$ is the maximal order of any cyclic $(k sub 1 ,^. ..^,^k sub r )-$coloring, which can be considered a special case of Schur partitions defining (symmetric) Schur numbers. Many lower bounds for Ramsey numbers were established by cyclic colorings. The following recurrence can be used to derive lower bounds for higher parameters. For $k sub i ~>= ~3^$ [Gi2], .EQ L(k sub 1 ,^. ..^,^k sub r ,^k sub {r+^1}^ )~>=~ (2k sub {r+^1} ^-~3)L(k sub 1 ,^. ..^,^k sub r ) ~-~k sub {r+^1} ~+~2. .EN .IP (k) 0.35i $R sub r (m) ~>= ~^p^+^1$ and $R sub r (m^+^1) ^>= ~r(^p^+^1)^+^1$ if there exists a $K sub m -$free cyclotomic $r-^$class association scheme of order $p~$ [Mat]. .IP (l) If the quadratic residues Paley graph $Q sub p$ of prime order $p^=~4t^+^1$ contains no $K sub k$, then $R(s,^k^+^1,^k^+^1) ~>=~4ps^-^6p^+^3~$ [XXER]. .IP (m) $R sub r (^pq^+^1) ~>~ (R sub r (^p^+^1)^-^1)(R sub r (q^+^1)^-^1)~$ [Abb1] .IP (n) $R sub r (^pq^+^1) ~>~ R sub r (^p^+^1)(R sub r (q^+^1)^-^1)~~$ for $p~>=~q$ [XXER] .IP (o) $R(^p sub 1 q sub 1 +^1,^. ..^,^p sub r q sub r +^1)~>~ (R(^p sub 1 +^1,^. ..^,^p sub r +^1) ^-^1) (R(q sub 1 +^1, ^. ..^,^q sub r +^1) ^-^1)$ [Song3] .IP (p) $R sub {r+^s} (m) ~>~ (R sub r (m)^-^1)(R sub s (m)^-^1)~$ [Song2] .IP (q) $R(k sub 1 ,^k sub 2 ,^. ..^,^k sub r )~>~ (R(k sub 1 ,^. ..^,^k sub i ) ~-~1) (R(k sub i+1 ,^. ..^,^k sub r ) ~-~1)~$ in [Song1], see [XXER]. .IP (r) $R(k sub 1 ,^k sub 2 ,^. ..^,^k sub r )~>~ (k sub 1 ~+~1) (R(k sub 2 ~-~k sub 1 ~+~1,^k sub 3 ,^. ..^,^k sub r ) ~-~1)~$ [Rob4] .IP (s) Further lower bound constructions, though with more complicated assumptions, were presented in [XuX2, XXER]. .IP (t) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wilson [FraWi] (item 2.3.6) to more colors and to hypergraphs [Grol3] (item 7.4.l). .IP (u) $R(n,^n,^n)~<=~R(n^-^2,^n,^n)^+^8R(n^-^1,^n^-^1,^n)~-~6^$ for $n^>=~3^$ [HTHZ2]. .IP (v) Exact asymptotics of a very special but important case is known, namely $R(3,^3,^n )~=~THETA (n sup 3 roman {^poly-log} ^n )~$ [AlR\o'o\(:a']. For general upper bounds and more asymptotics see in particular [Chu4, ChGra2, ChGri, GRS, GrR\o'o\(:a']. .sp .5 .PP All lower bounds in (b) through (t) above are constructive. Item (g) generalizes (b), (o) generalizes both (m) and (q), and (q) generalizes (p). (n) is stronger than (m). Finally, we note that the construction in (o) with $q sub 1 ^=^. ..^=^q sub i ^=^1^=~p sub i+1 ^=^. ..^=~p sub r$ is the same as (q). .sp .7 .NH 2 Cycles .LP Note: The paper \fI Ramsey Numbers Involving Cycles\fP [Ra4] is based on the revision #12 of this survey. It collects and comments on the results involving cycles versus any graphs, in two or more colors. It contains some more details than this survey, but only until 2009. .sp .3 .NH 3 Three colors .nr PS 10 .nr VS 10 $gsize 8$ .LP .TS box center tab(;); cp8 | cp8 rp8 | lp8 . .sp .2 $m~n~k$;$R(C sub m ,^C sub n ,^C sub k )$;references;general results .sp .2 = .sp .2 \fB3 3 3;17\fP;GG;2 critical colorings [KaSt, LayMa] 3 3 4;17;ExRe; 3 3 5;21;Sun1+/Tse3;$5k^-^4$ for $k^>=^5,~m^=^n^=^3~$ [Sun1+] 3 3 6;26;Sun1+; 3 3 7;31;Sun1+; _ 3 4 4;12;Schu; 3 4 5;13;Sun1+/Rao/Tse3; 3 4 6;13;Sun1+/Tse3; 3 4 7;15;Sun1+/Tse3; _ 3 5 5;$>=^17$;Tse3; 3 5 6;21;Sun1+; 3 5 7;25;Sun1+; _ 3 6 6;;; 3 6 7;21;Sun1+; 3 7 7;;; .sp .2 = .sp .2 \fB4 4 4;11\fP;BiaS;1000 critical colorings [Ra4] 4 4 5;12;Sun2+/Tse3; 4 4 6;12;Sun2+/Tse3;$k^+^2$ for $k^>=^11,~m^=^n^=^4~$ [Sun2+] 4 4 7;12;Sun2+/Tse3;values for $k^=^8,^9,^10$ are 12, 13, 13 [Sun2+] _ 4 5 5;13;Tse3; 4 5 6;13;Sun1+; 4 5 7;15;Sun1+; _ 4 6 6;11;Tse3; 4 6 7;13;Sun1+/Tse3; 4 7 7; .sp .2 = .sp .2 \fB5 5 5;17\fP;YR1;1701746176 critical colorings [Nar] 5 5 6;21;Sun1+; 5 5 7;25;Sun1+; 5 6 6;;; 5 6 7;21;Sun1+; 5 7 7; .sp .2 = .sp .2 \fB6 6 6;12\fP;YR2;$R sub 3 ^(C sub 2q )~>=~4q$ for $q^>=~2~$ [DzNS] 6 6 7;15;Sun1+;see 6.3.1.a for larger parameters 6 7 7;;;see 6.3.1.a for larger parameters \fB7 7 7;25\fP;FSS2;$R sub 3 ^(C sub 2q+1 ^)~=~8q^+^1$ for large $q~$ [KoSS1, KoSS2] .sp .2 = .sp .2 \fB8 8 8;16\fP;Sun/SunY;$R sub 3 ^(C sub 2q )~=~4q$ for large $q~$ [BenSk] .TE .nr PS 12 .nr VS 15 $gsize 12$ .DS C Table XII. Ramsey numbers $R(C sub m ,^C sub n ,^C sub k )~$ for $m,^n,^k~<=~7$ and $m^=~n^=~k^=~8$; Sun1+ abbreviates SunYWLX, Sun2+ abbreviates SunYLZ2, the work in [SunYWLX] and [SunYLZ2] is independent from [Tse3]. .DE .sp 1.5 .bp .IP (a) One long cycle. .sp .3 The first larger paper in this area by Erd\o'o\(hu's, Faudree, Rousseau and Schelp [EFRS1] appeared in 1976. It gives several formulas and bounds for $R(C sub m ,^C sub n ,^C sub k )$ and $R(C sub m ,^C sub n ,^C sub k ,^C sub l )$ for large $m$. For three colors [EFRS1] includes: .sp .2 $R(C sub m ,^C sub {2p+1} ,^C sub {2q+1} )~=~4m-~3~$ for $p^>=^2,~q^>=^1$, .sp .1 $R(C sub m ,^C sub {2p} ,^C sub {2q+1} )~=~2(m+~p)^-~3~$ and .sp .1 $R(C sub m ,^C sub {2p} ,^C sub {2q} )~=~m^+~p^+^q^-^2~$ for $p,~q^>=^1~$ and large $m$. .IP (b) Triple even cycles. .sp .3 $R sub 3 ^(C sub 2m )~>=~4m$ for all $m^>=~2~$ [DzNS], see also 6.3.2.d/e/f. It was proven that $R(C sub n ,^C sub n ,^C sub n )~=~(2^+^o(1))^n$ for even $n$ [Fi\(L/u1, GyRSS], which was improved to exactly $2n$, for large $n$, by Benevides and Skokan [BenSk]. In 2005, Dzido [Dzi1] conjectured that $R sub 3 (C sub 2m )~=~4m$ for all $m^>=~3$. The first open case is for $R sub 3 (C sub 10 )$, known to be at least 20. A more general result holds for some off-diagonal cases [Fi\(L/u1]: .sp .5 .I $~~R(C sub {2^ down 10 \(lf alpha sub 1 n down 10 \(rf}^ , ^C sub {2^ down 10 \(lf alpha sub 2 n down 10 \(rf}^ , ^C sub {2^ down 10 \(lf alpha sub 3 n down 10 \(rf}^ )~=~$ .br $(^ alpha sub 1 ~+~alpha sub 2 ~+~alpha sub 3 ~+~max roman "{" alpha sub 1 ,^alpha sub 2 ,^alpha sub 3 roman "}" ~+~ o(1))^n,~$ for all $~alpha sub 1 ,^alpha sub 2 ,^alpha sub 3 ^>~0$. .br .R .sp .5 The conjectured equality $R sub 3 (C sub 2m )~=~4m$, whenever true, implies $R sub 3 (P sub 2m+1 )~=~4m^+^1~$ [DyDR] (see also section 6.4). For general mixed-parity case see 6.3.1.d/e below. .sp .5 .IP (c) Triple odd cycles. .sp .2 Bondy and Erd\o'o\(hu's conjectured that $R(C sub n ,^C sub n ,^C sub n )~<=~4n^-^3$ for all $n~>=~4$ (see for example [Erd2]). If true, then for all odd $n~>=~5$ we have $R(C sub n ,^C sub n ,^C sub n )~=~4n^-^3$. The first open case is for $R sub 3 (C sub 9 )$, known to be at least 33. Erd\o'o\(hu's [Erd3] and other authors credit this conjecture to Bondy and Erd\o'o\(hu's, often pointing to a 1973 paper [BoEr]. Interestingly, however, the conjecture is not mentioned in this paper. .sp .2 \(L/uczak proved that $R(C sub n ,^C sub n ,^C sub n )~<=~(4^+^o(1))^n$, with equality for odd $n$ [\(L/uc]. The result $R sub 3 (C sub 2m+1 ^)~=~8m^+^1$ for all sufficiently large $m$, or equivalently $R(C sub n ,^C sub n ,^C sub n )~=~4n^-^3~$ for large odd $n$, was announced with an outline of the proof by Kohayakawa, Simonovits and Skokan [KoSS1], followed by the full proof in [KoSS2]. .sp .3 .IP (d) Three mixed-parity cycles. .sp .2 Ferguson [Ferg] shows that $R(C sub m ,^C sub n ,^C sub k )~=~max roman "{" 2m^+^n,^2n^+^m,^(n^+^m)/^2^+^k^-^2 roman "}"$, for all $m,^n,^k$ sufficiently large, which generalizes and improves on all even case in [Fi\(L/u1]. The reference [Ferg] consists of a Ph.D. thesis and three long arXiv preprints. .sp .2 .IP (e) Asymptotics for triples of cycles of mixed parity similar in form to (b) [Fi\(L/u2]. .IP (f) $R(C sub 3 ,^C sub 3 ,^C sub k )~=~5k^-~4$ for $k^>=~5~$ [SunYWLX], and $R(C sub 4 ,^C sub 4 ,^C sub k )~=~k^+^2$ for $k^>=~11~$ [SunYLZ2]. All exceptions to these formulas for small $k$ are listed in Table XII. .IP (g) Almost all of the off-diagonal cases in Table XII required the use of computers. .NH 3 More colors .nr PS 10 .nr VS 12 $gsize 8$ .LP .TS box center tab(,); cp8 cp8 || rp8 | rp8 | rp8 | rp8 | rp8 | rp8 . ,$m$,3,$~~~4$,$~~~5$,$~~~6~$,$~~~7~$,$~~~8~$ $k$, .sp .1 = .sp .1 3,,17,11,17,12,25,16 \^,,\^,\^,\^,\^,\^,\^ _ 4,,51,18,33,18,49,20 \^,,62,\^,137,20 _ 5,,162,27,65,26,97,28 \^,,307,29,,\^ _ 6,,538,34,129,,193 \^,,1838,43 .TE .nr PS 12 .nr VS 15 $gsize 12$ .DS C Table XIII. Known values and bounds for $R sub k (C sub m )$ for small $k,^m$; .DE .IP (a) For the entries in the row $k~=~3$ and in the column $m~=~3$ in Table XIII, more details and all corresponding references are in sections 6.3.1 and 6.1, respectively. The lower bounds for $m~=~5,^7$ are implied by 6.3.2.l. The bound $R sub 4 (C sub 5 )~<=~158$ follows directly from 6.3.2.k, but using a reasoning as in [Li4] and the equality $R sub 3 (C sub 5 )~=~17$, one can obtain $R sub 4 (C sub 5 )~<=~137$. The references to other cases with $k,^m^>=~4$ can be found below in this section. .DS L $R sub 4 (C sub 4 ^) ~=~ 18$ [Ex2] [SunYLZ1] $18 ^<=$ $R sub 4 (C sub 6 ^) ~<=~ 20$ [SunYJLS][ZhaSW] $27 ^<=$ $R sub 5 (C sub 4 ^) ~<=~ 29$ [LaWo1] $R sub 5 (C sub 6 ^) ~=~ 26$ [SunYJLS] [SunYW] $34 ^<=$ $R sub 6 (C sub 4 ^)$ [Ex22] .DE .sp -.5 .DS L $24~<=~R(C sub 3 ,^C sub 4 ,^C sub 4 ,^C sub 4 ^)~<=~27$ [DyDz1] [XuR2] $30~<=~R(C sub 3 ,^C sub 3 ,^C sub 4 ,^C sub 4 ^)~<=~36$ [DyDz1] [XuR2] $49~<=~R(C sub 3 ,^C sub 3 ,^C sub 3 ,^C sub 4 ^)$ 6.7.g .DE .sp -.6 .DS L $18~<=~R(C sub 4 ,^C sub 6 ,^C sub 6 ,^C sub 6 ^)~<=~20$ [ZhaSW] $18~<=~R(C sub 4 ,^C sub 4 ,^C sub 6 ,^C sub 6 ^)~<=~20$ [ZhaSW] $~~~~~^~R(C sub 4 ,^C sub 4 ,^C sub 4 ,^C sub 6 ^)~=~19$ [ZhaSW] .DE .IP (b) $R sub k (C sub 4 ^) ~<=~k sup {down 20 2} ^+~k^+^1$ for all $k~>=^1$, $R sub k (C sub 4 ^) ~>=~k sup {down 20 2} ^-~k^+~2$ for all $k~-~1$ which is a prime power [Ir, Chu2, ChGra1], and $R sub k (C sub 4 ^) ~>=~^k sup {down 20 2} ^+~2$ for odd prime power $k$ [LaWo1]. The latter was extended to any prime power $k$ in [Ling, LaMu]. .IP (c) Formulas for $R(C sub m ,^C sub n ,^C sub k ,^C sub l )$ for large $m~$ [EFRS1]. .sp .5 .LP Bounds in (d)-(j) below cover different situations and each is interesting in some respect. .IP (d) $R sub k (C sub 2m ^)~>=~(k^+^1)^m^$ for odd $k$ and $m^>=~2$, and .br $R sub k (C sub 2m ^)~>=~(k^+^1)^m^-^1^$ for even $k$ and $m^>=~2~$ [DzNS]. .IP (e) $R sub k (C sub 2m ^)~>=~2(k^-^1)(m^-^1)~+~2~$ [SunYXL]. .IP (f) $R sub k (C sub 2m ^)~>=~k sup 2 ~+~2m~-~k$ for $2m~>=~k^+^1$ and prime power $k~$ [SunYJLS]. .IP (g) $R sub k (C sub 2m ^)~=~ THETA (k sup {m/(m^-^1)})~$ for fixed $m~=~2,^3$ and $5~$ [LiLih]. .IP (h) $R sub k (C sub 2m ^)~<=~201km~$ for $^k~<=~10^ sup m / ^201^m~$ [ErdG]. .IP (i) $R sub k (C sub 2m ^)~<=~2km ~+~o(m)~$ for all fixed $k^>=~2~$ [\(L/ucSS]. .IP (j) $R sub k (C sub 2m ^)~<=~2(k^-^c sub k )^m ~+~o(m)~$ for some $c sub k ^>^0$, for all fixed $k^>=~2~$ [S\o'a\(aa'r2, DavJR]. .sp .4 .IP (k) $R sub k (C sub 5 ^)~<~ down 10 sqrt {up 10 18 sup {down 5 k} up 5 k!}^/^10~$ [Li4]. .IP (l) $2 sup down 17 k m ~<~ R sub k (C sub {2m+1} ^)~<=~ (k^+^2)! (2m^+^1)~$ [BoEr]. .sp .1 Better upper bound $R sub k (C sub {2m+1} ^)~<~2(k^+^2)! ^m^$ was obtained in [ErdG]. .sp .1 Still better upper bound $R sub k (C sub {2m+1} ^)~<=~ (c sup k k!) sup {1/^m}$, for some positive constant $c$, .br if all Ramsey-critical colorings for $C sub {2m+1}$ are not far from regular, was obtained in [Li4]. .IP (m) For each fixed $m~>=~3$, there exists a positive constant $c$ such that for every $k~>=~3$, $R sub k (C sub {2m+1} ^)~<~c sup k-1 (k!) sup {1/2^+^delta}$, where $delta$ is approaching 0 for large $m^$ [LinCh]. .IP (n) $R sub k (C sub {2m+1} ^)~<=~k2 sup k (2m^+^1) ~+~o(m)~$ for all fixed $k^>=~4~$ [\(L/ucSS]. .IP (o) Conjecture that $R sub k (C sub {2m+1} ^)~=~2 sup k m ~+~1$ for all $m~>=~2$ was credited by several authors to Bondy and Erd\o'o\(hu's [BoEr], though only lower bound, not the conjecture, is in this paper. After more than 40 years, Jenssen and Skokan [JenSk] posted on arXiv a proof of the conjecture for each fixed $k$ with sufficiently large $m$. On the other hand, the work by Day and Johnson [DayJ] shows that the lower bound of the conjecture does not hold for each $m$ and sufficiently large $k$. .IP (p) $R(C sub n ,^C sub {l sub 1} ,^. ..^,^C sub {l sub k} ^) ~=~ 2 sup k (n^-^1) ~+~1~$ for all $l sub i$'s odd with $l sub i ~>~2 sup i$, and sufficiently large $n$, and support for the conjecture that $R sub k (C sub n )~=~2 sup {k-1} (n^-^1) ~+~1$ for large odd $n~$ [AllBS]. .sp .3 .IP (q) Progress of asymptotic bounds for $R sub k (C sub n ^)~$ [Bu1, GRS, ChGra2, Li4, LiLih, \(L/ucSS]. .IP (r) Survey of multicolor cycle cases [Li3]. .sp .7 .NH 3 Cycles versus other graphs .sp .2 .IP (a) Some cases involving $C sub 4$: .DS L $20~<=~R(C sub 4 ,^C sub 4 ,^K sub 4 ^)~<=~22$ [DyDz1] [XSR1] $27~<=~R(C sub 3 ,^C sub 4 ,^K sub 4 ^)~<=~32$ [DyDz1] [XSR1] $52~<=~R(C sub 4 ,^K sub 4 ,^K sub 4 ^)~<=~72$ [XSR1] $34~<=~R(C sub 4 ,^C sub 4 ,^C sub 4 ,^K sub 4 ^)~<=~50$ [DyDz1] [XSR1] $43~<=~R(C sub 3 ,^C sub 4 ,^C sub 4 ,^K sub 4 ^)~<=~76$ [DyDz1] [XSR1] $87~<=~R(C sub 4 ,^C sub 4 ,^K sub 4 ,^K sub 4 ^)~<=~179$ [XSR1] .DE .sp -.5 .DS L $R(K sub 1,3 ,^C sub 4 ,^K sub 4 ^)~=~16$ [KlaM2] $R(C sub 4 ,^C sub 4 ,^K sub 4 ^-^e^)~=~16$ [DyDz1] $R(C sub 4 ,^C sub 4 ,^C sub 4 ,^T)~=~16^$ for $^T^=^P sub 4$ and $T^=^K sub 1,3$ [ExRe] .DE .sp .2 .IP (b) Study of $R(C sub n ,^K sub {^t sub 1} ,^. ..^,^K sub {^t sub k})$ and $R(C sub n ,^K sub {^t sub 1 ,^s sub 1} ,^. ..^,^K sub {^t sub k ,^s sub k})~$ for large $n~$ [EFRS1]. .IP (c) $R(C sub n ,^K sub {^t sub 1} ,^. ..^,^K sub {^t sub k}) ~=~(n^-^1)(r^-~1)^$ for $n^>=~4r^+^2$, where $r~=~R(K sub {^t sub 1} ,^. ..^,^K sub {^t sub k})^$ [OmRa2]. .IP (d) Study of asymptotics for $R(C sub m ,^. ..^,^C sub m ,^K sub n )$, in particular for any fixed number of colors $k~>=~4$ we have $R(C sub 4 ,^C sub 4 ,^. ..^,^C sub 4 ,^K sub n )~=^$ $THETA (^n sup 2 ^/^ roman {log sup 2} n )^$ [AlR\o'o\(:a']. .IP (e) Study of asymptotics for $R(C sub 2m ,^C sub 2m ,^K sub n )~$ for fixed $m^$ [AlR\o'o\(:a', ShiuLL], in particular $R(C sub 4 ,^C sub 4 ,^K sub n )~=~THETA (^n sup 2 roman {^poly-log} ^n )^$ [AlR\o'o\(:a']. .IP (f) Monotone paths and cycles [Lef]. .IP (g) For combinations of $C sub 3$ and $K sub n$ see sections 2.2, 3.2, 4.2, 6.1 and 6.2. .NH 2 Paths, paths versus other graphs .sp .2 .LP In 2007, Gy\o'a\(aa'rf\o'a\(aa's, Ruszink\o'o\(aa', S\o'a\(aa'rk\o'o\(:a'zy and Szemer\o'e\(aa'di [GyRSS] established that for all $n$ large enough we have .EQ R(P sub n ,^P sub n ,^P sub n )~=~2n^-^2^+~(n^ roman mod ~2). .EN .sp .2 Faudree and Schelp [FS2] conjectured that the latter holds for all $n ~>=~ 1$. It is true for $n ~<=~ 9$ (see (c) below), and the first open case is that for $P sub 10$. The conjectured equality $R(C sub 2m ,^C sub 2m ,^C sub 2m )~=~4m$ (see 6.3.1.a), whenever true, implies the above for three paths $P sub 2m+1$ [DyDR]. .NH 3 Three-color path and path-cycle cases .sp .5 .IP (a) $R(P sub m ,^P sub n ,^P sub k )~=~m^+~ {down 8 \(lf} ^n/^2^ {down 8 \(rf} ~+~ {down 8 \(lf} ^k/^2^ {down 8 \(rf} ~-^2~$ for $^m~>=~6(^n^+~k) sup {^2}~$ [FS2], .sp .2 the equality holds asymptotically for $m^>=^n^>=^k^$ with an extra term $o(^m)~$ [Fi\(L/u1], .br extensions of the range of $m,^n,^k$ for which (a) holds were obtained in [Biel3]. .IP (b) $R(P sub 3 ,^P sub m ,^P sub n )~=~ m^+~ {down 8 \(lf} ^n/^2^{down 8 \(rf} ~-^1~$ for $^m~>=~n$ and $(m,^n)~ not= ~(3,^3),^(4,^3)~$ [MaORS2]. .IP (c) $R sub 3 (P sub 3 )~=~5^$ [Ea1], $~R sub 3 (P sub 4 )~=~6^$ [Ir], .br $R(P sub m ,^P sub n ,^P sub k )~=~5^$ for other $m-n-k$ combinations with $3~<=~m,~n,~k~<=~4^$ [ArKM], .br $R sub 3 (P sub 5 )~=~9^$ [YR1], $~R sub 3 (P sub 6 )~=~10^$ [YR1], and $~R sub 3 (P sub 7 )~=~13^$ [YY], .br $R sub 3 (P sub 8 )~=~14$, $R sub 3 (P sub 9 )~=~17$ [DyDR]. .sp .2 .IP (d) $R(P sub 4 ,^P sub 4 ,^P sub 2n ^)~=~2n^+^2~$ for $n^>=^2$, .br $R(P sub 5 ,^P sub 5 ,^P sub 5 ^)~=~$ $R(P sub 5 ,^P sub 5 ,^P sub 6 ^)~=~9$, .br $R(P sub 5 ,^P sub 5 ,^P sub n ^)~=~n~+~2^$ for $n~>=~7$, .br $R(P sub 5 ,^P sub 6 ,^P sub n ^)~=~ R(P sub 4 ,^P sub 6 ,^P sub n ^)~=~n~+~3^$ for $n~>=~6~$, .br $R(P sub 6 ,^P sub 6 ,^P sub 2n ^)~=~$ $R(P sub 4 ,^P sub 8 ,^P sub 2n ^)~=~2n~+~4^$ for $n~>=~14~$ [OmRa1]. .sp .5 .IP (e) $R(P sub m ,^P sub n ,^C sub k ^)~=~2n^+~2^{down 8 \(lf} ^m/^2^ {down 8 \(rf}~-~3^$ for large $n$ and odd $m^>=^3~$ [DzFi2], .br improvements on the range of $m,^n,^k~$ [Biel3, Fid1]. .sp .2 .IP (f) $R(P sub 3 ,^P sub 3 ,^C sub m ^)~=~$5, 6, 6, for $m~=~3$, 4 [ArKM], 5, .br $R(P sub 3 ,^P sub 3 ,^C sub m ^)~=~m^$ for $m^>=~6~$ [Dzi2]. .sp .2 $R(P sub 3 ,^P sub 4 ,^C sub m ^)~=~7^$ for $m^=~3$, 4 [ArKM] and 5, .br $R(P sub 3 ,^P sub 4 ,^C sub m )~=~m^+~1~$ for $m ~>=~6~$ [Dzi2]. .sp .2 $R(P sub 4 ,^P sub 4 ,^C sub m ^)~=~9,$ 7, 9 for $m^=~3$, 4 [ArKM] and 5 [Dzi2], .br $R(P sub 4 ,^P sub 4 ,^C sub m )~=~m^+~2~$ for $m ~>=~6~$ [DzKP]. .sp .2 .IP (g) $R(P sub 3 ,^P sub 5 ,^C sub m ^)^=~$9, 7, 9, 7, 9 for $m~=~3$, 4, 5, 6, 7 [Dzi2, DzFi2], .br $R(P sub 3 ,^P sub 5 ,^C sub m )~=~m^+~1~$ for $m ~>=~8~$ [DzKP]. .sp .1 A table of $R(P sub 3 ,^P sub k ,^C sub m )$ for all $3~<=~k^<=~8$ and $3~<=~m^<=~9~$ [DzFi2]. .sp .2 .IP (h) $R(P sub 4 ,^P sub 5 ,^C sub m ^)~=~11$, 7, 11, 11, and $m^+~2^$ for $m~=~3$, 4, 5, 7 and $m^>=^23~$, .sp .1 $R(P sub 4 ,^P sub 6 ,^C sub m ^)~=~13$, 8, 13, 13, and $m^+~3^$ for $m~=~3$, 4, 5, 7 and $m^>=^18~$ [ShaXSP]. .sp .3 .IP (i) $R(P sub 3 ,^P sub n ,^C sub 4 ^)~=~n^+~1$ for $n ~>=~6^$ [DzFi2], .br $R(P sub 3 ,^P sub n ,^C sub 6 ^)~=~n^+~2$ for $n ~>=~6^$, .br $R(P sub 3 ,^P sub n ,^C sub 8 ^)~=~n^+~3$ for $n ~>=~7^$ [Fid1], .br $R(P sub 3 ,^P sub n ,^C sub k ^)~=~2n^-~1$, and .br $R(P sub 4 ,^P sub n ,^C sub k ^)~=~2n^+~1$ for odd $k^>=~3$ and $n^>=~k^$ [DzFi2]. .sp .3 .IP (j) $R(P sub 3 ,^P sub 6 ,^C sub m ^)~=~m~+~2~$ for $m~>=~23$, .br $R(P sub 6 ,^P sub 6 ,^C sub m ^)~=~ R(P sub 4 ,^P sub 8 ,^C sub m ^)~=~m~+~4~$ for $m~>=~27$, .br $R(P sub 6 ,^P sub 7 ,^C sub m ^)~=~m~+~4~$ for $m~>=~57$, .sp .2 $R(P sub 4 ,^P sub n ,^C sub 4 ^)~=~ R(P sub 5 ,^P sub n ,^C sub 4 ^)~=~n~+~2~$ for $n~>=~5~$ [OmRa1]. .sp .5 .IP (k) $R(P sub 3 ,^C sub 3 ,^C sub 3 ^)~=~11~$ [BuE3], $~R(P sub 3 ,^C sub 4 ,^C sub 4 ^)~=~8~$ [ArKM], $~R(P sub 3 ,^C sub 6 ,^C sub 6 ^)~=~9~$ [Dzi2], .sp .1 $R(P sub 3 ,^C sub m ,^C sub m )~=~R(C sub m ,^C sub m )~=~2m^-^1^$ for odd $m ~>=~5$ [DzKP] (for $m^=~5,~7^$ [Dzi2]), .IP (l) $R(P sub 3 ,^C sub n ,^C sub m )~=~R(C sub n ,^C sub m )~$ for $n~>=~7$ and odd $m$, $5~<=~m~<=~n$, and .br some values and bounds on $R(P sub 3 ,^C sub n ,^C sub m )$ in other cases [Fid1]. .sp .2 .IP (m) $R(P sub 3 ,^C sub 3 ,^C sub 4 ^)~=~8~$ [ArKM], $~~R(P sub 3 ,^C sub 3 ,^C sub 5 ^)~=~9$, $~~R(P sub 3 ,^C sub 3 ,^C sub 6 ^)~=~11$, .br $R(P sub 3 ,^C sub 3 ,^C sub 7 ^)~=~13$, $~~R(P sub 3 ,^C sub 4 ,^C sub 5 ^)~=~~8$, $~~R(P sub 3 ,^C sub 4 ,^C sub 6 ^)~=~~8$, .br $R(P sub 3 ,^C sub 4 ,^C sub 7 ^)~=~~^8$, $~~R(P sub 3 ,^C sub 5 ,^C sub 6 ^)~=~11$, $~~R(P sub 3 ,^C sub 5 ,^C sub 7 ^)~=~13$ and .br $R(P sub 3 ,^C sub 6 ,^C sub 7 ^)~=~11~$ [Dzi2]. .sp .3 .IP (n) Formulas for $R(^pP sub 3 ,^qP sub 3 ,^rP sub 3 ^)$ and $R(^pP sub 4 ,^qP sub 4 ,^rP sub 4 ^)~$ [Scob]. .IP (o) $R(P sub 3 ,^K sub 4 ^-^e,^K sub 4 ^-^e^)~=~11~$ [Ex7]. All colorings which can form any color neighborhood for the open case $R sub 3 (K sub 4 ^-^e)~$ (see section 6.5) were found in [Piw2]. .NH 3 More colors .IP (a) $R sub k (P sub 3 ^)~=~k^+^1^+^(^k^ roman mod ~2),~$ $~R sub k (2P sub 2 ^)~=~k^+~3^$ for all $k^>=^1~$ [Ir]. .IP (b) $R sub k (P sub 4 ^)~=~2k^+^c sub k$ for all $k$ and some $0~<=~c sub k~<=~2$. If $k$ is not divisible by 3 then $c sub k~=~3^-~k^ roman mod ~3^$ [Ir]. Wallis [Wall] showed $R sub 6 (P sub 4 ^)~=~13$, which already implied $R sub 3t (P sub 4 ^)~=~6t^+^1$, for all $t^>=~2$. Independently, the case $R sub k (P sub 4 ^)$ for $k ^not= ^3 sup down 5 m$ was completed by Lindstr\o'o\(:a'm in [Lind], and later Bierbrauer proved $R sub up 10 { 3 sup down 5 m } (P sub 4 ^)~=~2(3 sup down 5 m )~+~1$ for all $m^>^1$. $R sub 3 (P sub 4 )~=~6$ [Ir]. .sp .1 .IP (c) $R sub k (P sub n ^)~<=~(k^-^c sub k )^n~$ for some $c sub k ^>^0$, for all fixed $k^>=~2$ and large $n^$ [S\o'a\(aa'r2, DavJR]. .IP (d) Formula for $R(P sub {n sub 1} ,^. ..^,^P sub {n sub k} ^)$ for large $n sub 1^$ [FS2], and some extensions [Biel3]. .br Conjectures about $R(P sub {n sub 1} ,^. ..^,^P sub {n sub k} ^)$ when all or all but one of $n sub i$'s are even [OmRa1]. .IP (e) Formulas for $R(P sub {n sub 1} ,^. ..^,^P sub {n sub k} ,^C sub m ^)$ for some cases, for large $m$ [OmRa1]. .IP (f) Formula for $R(n sub 1 P sub 2 ,^. ..^,^n sub k P sub 2 ^)$, in particular $R(nP sub 2 ,^nP sub 2 ,^nP sub 2 ^)~=~4n^-~2~$ [CocL1]. .br Note how close the latter is to $R(C sub 2n ,^C sub 2n ,^C sub 2n ^)~=~4n$, see an earlier item 6.3.1.b. .IP (g) Cockayne and Lorimer [CocL1] found the exact formula for $R(n sub 1 P sub 2 ,^. ..^,^n sub k P sub 2 )$, and later Lorimer [Lor] extended it to a more general case of $R(K sub m ,^n sub 1 P sub 2 ,^. ..^,^n sub k P sub 2 )$. More general cases of the latter, with multiple copies of the complete graph, paths, stars and forests, were studied in [Stahl, LorSe, LorSo, GyRSS]. A special 3-color case $R(P sub 3 ,^mP sub 2 ,^nP sub 2 ^)~=~2m^+^n^-~1~$ for $~m~>=~n~>=~3$ is given in [MaORS2]. The general case of multicolor combinations of stars and stripes is completed in [OmRR]. .IP (h) Multicolor cases for one large path or cycle involving small paths, cycles, complete and complete bipartite graphs [EFRS1]. .IP (i) See sections 6.5 and 8.2, especially [ArKM, BoDD], for a number of cases for triples of small graphs. .NH 2 Special cases .LP Denote $K sub 3 ^+^e~=~K sub 4 ^-~P sub 3$. .DS L $R sub 3 (K sub 3 ^+^e)~=~R sub 3 (K sub 3 )~~[=^17]$ [YR3, ArKM] $R(K sub 3 ^+^e ,^K sub 3 ^+^e ,^K sub 4 ^-^e)~=~R(K sub 3 ,^K sub 3 ,^K sub 4 ^-^e)~=~17$ [ShWR] $R(K sub 3 ^+^e ,^K sub 3 ^+^e ,^K sub 5 ^-^P sub 3 )~=~R(K sub 3 ,^K sub 3 ,^K sub 4 )~~[=^30]$ [ShWR] .DE .sp -.4 .DS L If $R sub 4 (K sub 3 )~=~51$ then $R sub 4 (K sub 3 ^+^e)~=~52$, and if $R sub 4 (K sub 3 )~>~51$ then $R sub 4 (K sub 3 ^+^e)~=~R sub 4 (K sub 3 )$ [ShWR] .DE .sp -.4 .DS L $28~<=~R sub 3 (K sub 4 ^-^e)~<=~30$ [Ex7] [Piw2] $R(P sub 3 ,^K sub 4 ^-^e,^K sub 4 ^-^e^)~=~11$ [Ex7], all colorings [Piw2] $R(P sub 3 ,^K sub 4 ^-^e,^K sub 4 )~=~17$ [ArKM] $R(P sub 3 ,^K sub 4 ,^K sub 4 )~=~35$ [BuE3], special case of 6.7.c .DE .sp -.4 .DS L $472~<=~R sub 3 (K sub 6 ^-^e)$ [HeLD] $1102~<=~R sub 3 (K sub 7 ^-^e)$ [HeLD] .DE .sp -.4 .DS L $21~<=~R(K sub 3 ,^K sub 4 ^-^e,^K sub 4 ^-^e^)~<=~27$ [ShWR] $30~<=~R(K sub 3 ,^K sub 4 ,^K sub 4 ^-^e^)~<=~41$ [Ea1][BoDD] $33~<=~R(K sub 4 ,^K sub 4 ^-^e,^K sub 4 ^-^e^)~<=~59$ [ShWR][BoDD] $55~<=~R(K sub 4 ,^K sub 4 ,^K sub 4 ^-^e^)~<=~113$ [Ea1][BoDD] .DE .sp -.4 .DS L $R(C sub 4 ,^P sub 4 ,^K sub 4 ^-^e^)~=~11$ [ArKM] $R(C sub 4 ,^P sub 4 ,^K sub 4 )~=~14$ [BoDD] $R(C sub 4 ,^C sub 4 ,^K sub 4 ^-^e^)~=~16$ [DyDz1] $R(C sub 4 ,^K sub 3 ,^K sub 4 ^-^e^)~=~17$ [BoDD] $R(C sub 4 ,^K sub 4 ^-^e,^K sub 4 ^-^e^)~=~19$ [BoDD] .DE .sp -.4 .DS L $28~<=~R(C sub 4 ,^K sub 4 ,^K sub 4 ^-^e^)~<=~36$ [BoDD] $52~<=~R(C sub 4 ,^K sub 4 ,^K sub 4 )~<=~72$ [XSR1] .DE .LP See also section 8.2 for pointers to cumulative data for three colors. .NH 2 General results for special graphs .sp .2 .IP (a) Formulas for $R sub k (G)$, where $G$ is one of the graphs $P sub 3$, $2K sub 2$ and $K sub 1,3$, for all $k$, and for $P sub 4$ if $k$ is not divisible by 3 [Ir]. For some details see section 6.4.2.b. .sp .2 .IP (b) $tk sup {down 20 2} ^+^1~<=~ R sub k (K sub {2,^t+1} ) ~<=~ tk sup {down 20 2} ^+^k ^+^2$, where the upper bound is general, and the lower bound holds when both $t$ and $k$ are prime powers [ChGra1, LaMu]. .sp .2 .IP (c) $(m^-^1)^ {down 8 \(lf} (k+1)^/^2 {down 8 \(rf} ~<~ R sub k (T sub m ^)~<=~2km^+1~$ for any tree $T sub m$ with $m$ edges [ErdG], see also [GRS]. The lower bound can be improved for special large $k^$ [ErdG, GRS]. The upper bound was improved to $R sub k (T sub m ^)^<^(m^-^1)(k ^+^ down 6 sqrt { up 6 {k(k^-^1)}} ^)^+^2~$ in [GyTu]. .sp .2 .IP (d) $k( down 10 sqrt {up 10 m} ^-^1)^/^2 ^<^ R sub k (F sub m ^)^<^4km~$ for any forest $F sub m$ with $m$ edges [ErdG], see [GRS]. See also pointers in items (p) and (r) below. .IP (e) $R(S sub 1 ,^. ..^,^S sub k )~=~n^+^epsilon$, where $S sub i$'s are arbitrary stars, $n~=~n(S sub 1 )^+^. ..^+^n(S sub k )~-~2k$, and we set $epsilon ~=~1$ if $n$ is even and some $n(S sub i )$ is odd, and $epsilon ~=~2$ otherwise [BuRo1]. See also [GauST, Par6]. .IP (f) Formula for $R(S sub 1 ,^. ..^,^S sub k ,^K sub n )$, where $S sub i$'s are arbitrary stars [Jaco]. It was generalized to a formula for $R(S sub 1 ,^. ..^,^S sub k ,^K sub {k sub 1} ,^. ..^,^K sub {k sub r})~$ expressed in terms of $R(k sub 1 ,^. ..^,^k sub r )^$ and star orders [BoCGR]. A much shorter proof of the latter was presented in [OmRa2]. Special cases for bistars [AlmHS], and bounds for stars and trees instead of stars [Bai]. .IP (g) Formula for $R(S sub 1 ,^. ..^,^S sub k ,^nK sub 2 )$, where $S sub i$'s are arbitrary stars [CocL2], and a formula for $R(n sub 1 K sub 2 ,^. ..^,^n sub k K sub 2 )^$ [CocL1]. See also cases involving $P sub 2$ in section 6.4.2. .IP (h) Formula for $R(S sub 1 ,^. ..^,^S sub k ,^G )$, where $S sub i$'s are stars and $G$ is a tree [ZhZ1], or $G$ is a cycle or wheel [RaeZ]. Special cases when $S sub i$'s are trees and $G$ is a wheel [RaeZ]. .IP (i) Formulas for $R(S sub 1 ,^. ..^,^S sub k ^)$, where each $S sub i$'s is a star or $m sub i K sub 2 ~$ [ZhZ2, ErdG, OmRR], .br formula for the case $R(S,^mK sub 2 ,^n K sub 2 )~$ [GyS\o'a\(aa'2]. .IP (j) $R(F sub n ,^K sub {k sub 1} ,^. ..^,^K sub {k sub r})~=~ (n^-^1)R(K sub {k sub 1} ,^. ..^,^K sub {k sub r})^+^1^$ for any $n$-vertex forest $F sub n^$ [AlmB]. .IP (k) Bounds on $R sub k (G)$ for unicyclic graphs $G$ of odd girth. .br Some exact values for special graphs $G$, for $k^=~3$ and $k^=~4~$ [KrRod]. .IP (l) For prime $p~=~3q^+^1$, if the cubic residues Paley graph $Q sub p$ contains no $K sub k ^-^e$, then $R sub 3 (K sub k+1 ^-^e)~>~3p^$ [HeLD]. The cases $k^=^5$ and $k^=^6$ give two bounds listed in section 6.5. Also based off Paley graphs, several new lower bounds for $R sub 3 (K sub 1 ^+^G)$, and in particular for $R sub 3 (B sub n )$, were derived in [LinLS]. .IP (m) $R sub k (K sub {3,3} ^)~=~(1^+^o(1))^k sup 3~$ [AlR\o'o\(aa'S]. .IP (n) Bounds on $R sub k (K sub {s,^t} ^)$, in particular for $K sub 2,2 ^=^C sub 4$ and $K sub {2,^t}$ [ChGra1, AxFM]. Asymptotics of $R sub k (K sub {s,^t} ^)$ for fixed $k$ and $s~$ [DoLi, LiTZ]. Upper bounds on $R sub k (K sub {s,^t} ^)$ [SunLi]. .IP (o) Exact asymptotics $R(K sub t,s ,^K sub t,s ,^K sub t,s ,^K sub m )~=~ THETA (m sup t / roman {^log} sup t m )$, for any fixed $t^>^1$ and large $s^>=^(t^-^1)!^+^1~$ [AlR\o'o\(:a']. .IP (p) Variety of asymptotic results on $R(K sub 2,s ,^. ..^,^K sub 2,s ,^K sub m )^$ [LeMu]. .IP (p) Bounds on $R sub k (G)$ for trees, forests, stars and cycles [Bu1]. .IP (q) Bounds for trees $R sub k (T)$ and forests $R sub k (F)$ [ErdG, GRS, BierB, GyTu, Bra1, Bra2, SwPr]. .IP (r) $R sub 3 (G sub a,b )~=~(2^+^o(1))ab$, where $G sub a,b$ is the rectangular $a times ^b$ grid graph. Lower and upper bounds on $R sub 3 (G)$ for graphs $G$ with small bandwidth and bounded $DELTA (G)~$ [MoSST]. .sp .2 .IP (s) Study of the case $R(K sub m ,^n sub 1 P sub 2 ,^. ..^,^n sub k P sub 2 )~$ [Lor]. Other similar results include $R(P sub 3 ,^mK sub 2 ,^nK sub 2 ^)~=~2m^+^n^-~1~$ for $~m~>=~n~>=~3^$ [MaORS2] and $R(S sub n ,^nK sub 2 ,^nK sub 2 ^)~=~$ $3n-~1~$ [GyS\o'a\(aa'2]. More general cases, with multiple copies of the complete graph, stars and forests, were investigated in [Stahl, LorSe, LorSo, GyRSS, OmRR]. See also section 6.4.2. .IP (t) See section 8.2, especially [ArKM, BoDD], for a number of cases for other small graphs, similar to those listed in sections 6.3 and 6.4. .NH 2 General results .IP (a) Szemer\o'e\(aa'di's Regularity Lemma [Szem] states that the vertices of every large graph can be partitioned into similar size parts so that the edges between these parts behave almost randomly. This lemma has been used extensively in various forms to prove the upper bounds, including those studied in [BenSk, GyRSS, GySS1, Ha\(L/P1+, Ha\(L/P2+, KoSS1, KoSS2]. .sp .1 .IP (b) $R(m sub 1 G sub 1 ,^. ..^,^m sub k G sub k )~<=~ R(G sub 1 ,^. ..^,^G sub k )~+~ up 8 sum from {up 30 {i^=^1}} to {down 1 k} n(G sub i )(m sub i ^-~1 )$, exercise 8.3.28 in [West]. .IP (c) If $G$ is connected and $R(K sub k ,^G)~=~(k^-^1)(n(G)^-^1)^+^1$, in particular if $G$ is any $n$-vertex tree, then $R(K sub {k sub 1} ,^. ..^,^K sub {k sub r},^G )$ = $(R(k sub 1 ,^. ..^,^k sub r )~-~1)(n~-~1)~+~1$ [BuE3]. A generalization for connected $G sub 1 ,^. ..^,^G sub n$ in place of $G$ appeared in [Jaco]. .sp 0.2 .IP (d) Conjecture that $R sub 3 (H) ~<=~2 sup {DELTA sup {1^+^o(1)}} n$, where $DELTA~=~DELTA (H)~$ [ConFS7]. .IP (e) For connected graphs $G sub 1 ,^. ..^,^G sub n$, $s~=~R(G sub 1 ,^. ..^,^G sub n )$, $t~=~R(K sub k sub 1 ,^. ..^,^K sub k sub r )$, if $m^>=^2$ and $R(G sub 1 ,^. ..^,^G sub n ,^K sub m )~=~(s^-^1)(m^-^1)^+^1$, then $R(G sub 1 ,^. ..^,^G sub n ,^K sub k sub 1 ,^. ..^,^K sub k sub r )~=~(s^-^1)(t^-^1)^+^1^$ [OmRa2]. This generalizes a result in [BoCGR]. .sp .2 .IP (f) If $F,^G,^H$ are connected graphs then $R(F,^G,^H)~>=$$~(R(F,^G)^-^1)$$( chi (H)^-^1)^+^$ $roman min roman "{"^R(F,^G),^s(H)^roman "}"$, where $s(G)$ is the chromatic surplus of $G$ (see item [Bu2] in section 5.16). This leads to several formulas and bounds for $F$ and $G$ being stars and/or trees when $H~=~K sub n$ [ShiuLL]. .sp .1 .IP (g) $R(K sub {k sub 1} ,^. ..^,^K sub {k sub r} ,^G sub 1 ,^. ..^,^G sub s )~>=~ (R(k sub 1 ,^. ..^,^k sub r )^-^1) (R(G sub 1 ,^. ..^,^G sub s )^-^1)~+^1~$ for arbitrary graphs $G sub 1 ,$$. ..^,$$G sub s ~$ [Bev]. This generalizes 6.2.q. .IP (h) Constructive bound $R(G sub up 15 1 ,^...,^G sub up 20 { t sup {down 20 {n-1}} }^)~>=~t sup {down 20 n} +^1$ for decompositions of $K sub { up 20 t sup n }$ [LaWo1, LaWo2]. .IP (i) $R(G sub 1 ,^. ..^,^G sub k ) ~<=~ 32 DELTA ^k sup DELTA ^n$, where $n~>=~n(G sub i )$ and $DELTA~>=~DELTA (G sub i )$ for all $1^<=~i^<=~k$, .br $R(G sub 1 ,^. ..^,^G sub k ) ~<=~ k sup { 2^k DELTA ^q} n$, where $q^>=~chi (G sub i )$ for all $1^<=~i^<=~k~$ [FoxSu1]. .sp .1 .IP (j) $R sub k (G)~<=~k sup {6e(G) sup {2/^3} k}$ for all isolate-free graphs $G$ and $k^>=~3^$ [JoPe]. .br For the original two-color conjecture, now a theorem, see item [Erd4] in section 5.16. .IP (k) $R sub k (G)~>~ (sk sup down 20 {^e(G)^-^1)}^) sup down 15 {^1^/^n(G)}^$, where $s$ is the number of automorphisms of $G~$ [ChH3]. Other general bounds for $R sub k (G)~$ [ChH3, Par6]. .IP (l) Study of $R(G sub 1 ,^. ..^,^G sub k ,^G )$ for large sparse $G$ [EFRS1, Bu3]. .IP (m) Study of asymptotics for $R(C sub n ,^. ..^,^C sub n ,^K sub m )~$ [AlR\o'o\(:a']. See also sections 6.3.3.d/e. .IP (n) Relations between the Shannon capacity of noisy communication channels and graph Ramsey numbers. A lower bound construction for $R sub k (m)$ implying that supremum of the Shannon capacity over all graphs with bounded independence cannot be achieved by any finite graph power [XuR3]. For some other links between Shannon capacity and Ramsey numbers see section 6 in [Ros2], and [Li2]. .IP (o) See surveys listed in section 8. .bp .NH Hypergraph Numbers .NH 2 Values and bounds for numbers .sp -.6 .DS L The only known value of a classical Ramsey number for hypergraphs: $R(4,4^;^3)~=~13$ [MR1] .DE .sp -.6 .DS L there are exactly 434714 critical colorings on 12 points, none of which extends to a 2-coloring of all triples in $K sub 13 ^-^t$ without monochromatic $K sub 4$ [McK2] .DE .sp -.1 .LP The computer evaluation of $R(4,4^;^3)$ in 1991 consisted of an improvement of the upper bound from 15 to 13. This result followed an extensive theoretical study of this number by several authors [Gi4, Isb1, Sid1]. .sp .5 .DS L (a) $35~<=~R(4,^5^;^3)$ [Dyb2], previous bound 33 [Ex13] $58~<=~R(4,^6^;^3)$ [Ex18] $82~<=~R(5,^5^;^3)$ [Ex18] $56~<=~R(4,4,4^;^3)$ [Ex8] $163~<=~R(5,5,5^;^3)$ [BudHR] $34~<=~R(5,^5^;^4)$ [Ex11] .DE .sp -.6 .DS L (b) $R(K sub 4 ^-^t,^K sub 4 ^-^t;^3)~=^7$ [Ea2] $R(K sub 4 ^-^t,^K sub 4 ^;^3)~=^8$ [Sob, Ex1, MR1] $14~<=~R(K sub 4 ^-^t,^K sub 5 ^;^3)$ [Ex1] $13~<=~R(K sub 4 ^-^t,^K sub 4 ^-^t,^K sub 4 ^-^t^;^3)~<=~16$ [Ex1] [Ea3] .DE .IP (c) The first bound on $R(4,^5^;^3)~>=~24$ was obtained by Isbell [Isb2]. Shastri [Shas] gave a weak bound $R(5,^5^;^4)~>=~19$ (now 34 in [Ex11]), nevertheless his lemmas, the stepping-up lemmas by Erd\o'o\(hu's and Hajnal (see [GRS, GrR\o'o\(:a'], also 7.4.a below), and others in [Ka3, Abb2, GRS, GrR\o'o\(:a', HuSo, SonYL] can be used to derive better lower bounds for higher numbers. .IP (d) Several lower bound constructions for 3-uniform hypergraphs were presented in [HuSo]. Study of lower bounds on $R(^p,^q;^4)$ can be found in [Song3] and [SonYL, Song4] (the latter two papers are almost the same in contents). Most of the concrete lower bounds in these papers can be easily improved by using the same techniques, but starting with better constructions for small parameters as listed above. .IP (e) Lower bound constructions introducing a new color [BudHR]. .IP (f) $R(^p,^q;^4)~>=~2R(^p^-^1,^q;^4)~-~1^$ for $p,^q^>^4$, and .br $R(^p,^q;^4)~>=~(^p^-^1)R(^p^-^1,^q;^4)~-~p^+^2^$ for $p^>=^5,~q^>=^7^$ [SonYL]. .br Lower bound asymptotics for $R(^p,^q;^4)~$ [SonLi]. .IP (g) $R(K sub 1,1,c ,^K sub 1,1,c ;^3)~=~c^+^2~$ for $2~<=~c~<=~4$, and .br a conjecture that this equality also holds for all $c~>=~5~$ [MiPal]. .IP (h) Lower bound asymptotics for $R(4,^n;^3)~$ [ConFS2], .br Lower bound asymptotics for $R(5,^n;^4)~$ [MuSuk2], .br Lower and upper bounds on $R(K sub 4 ^-^t,^K sub 4 ^-^t;^3)^$ [ErdH, MuSuk2]. .IP (i) $R sub k (5;3)$ is equal to at least 82, 163, 131073, 262145 or 524289, for $k~=~$ 2, 3, 4, 5 and 6 colors, respectively [BudHR]. .NH 2 Cycles and paths .sp .5 .LP \fBDefinitions\fP. $P sub n sup {r,^s}$ is called an $s$-$path$ in an $r$-uniform hypergraph $H$, if it consists of $n$ hyperedges {$e sub 1 ,^. ..,^e sub n$} in $E(H)$, such that $|e sub i up 25 {size 7 inter} ^e sub i+1 |^=~s$ for all $1^<=~i^<^n$, and all other vertices in $e sub j$'s are distinct [Peng]. An $s$-$cycle$ $C sub n sup {r,^s}$ is defined analogously. Several authors use the terms of $loose$ paths and $loose$ cycles, which are 1-path and 1-cycles, and $tight$ paths and $tight$ cycles, the latter most often for 3-uniform hypergraphs when they are 2-paths and 2-cycles, respectively. A 3-uniform $Berge$ cycle is formed by $n$ distinct vertices, such that all consecutive pairs of vertices are in an edge of the cycle, and all of the cycle edges are distinct. Berge cycles are not determined uniquely. .sp .5 In the following items (b) to (i), when $r~=~3$ or $r$ is implied by the context, we write $C sub n$ and $P sub n$ for the $r$-uniform loose cycles and paths, $C sub n sup {r,^1}$ and $P sub n sup {r,^1}$, respectively. In other cases special comments are added. .LP \fBTwo colors\fP .IP (a) Tetrahedron is formed by four triples on the set of four points. The Ramsey number of tetrahedron is $R(4,^4^;^3)~=~13$ [MR1]. .IP (b) For loose cycles and paths, $R(C sub 3 ,^C sub 3 ^;^3)~=~7$, $R(C sub 4 ,^C sub 4 ^;^3)~=~9$, and for the $r$-uniform case we have in general $R(P sub 3 ,^P sub 3 ^;^r)~=$ $R(P sub 3 ,^C sub 3 ^;^r)~=$ $R(C sub 3 ,^C sub 3 ^;^r)~+^1~=~3r~-~1$ and $R(P sub 4 ,^P sub 4 ^;^r)~=$ $R(P sub 4 ,^C sub 4 ^;^r)~=$ $R(C sub 4 ,^C sub 4 ^;^r)~+^1~=$ $4r~-~2$, for $r~>=~3$. These results and discussion of several related cases were presented in [GyRa]. .IP (c) $R(P sub m ,^P sub n ^;^3) ~=~ R(C sub m ,^C sub n ^;^3)~+~1~=~ R(P sub m ,^C sub n ^;^3)~=~ 2m^+~ {down 15 \(lf} (n^+^1)/^2 {down 15 \(rf},~$ for all $m^>=~n$, and $R(C sub m ,^P sub n ^;^3)~=~2m^+~ {down 15 \(lf} (n^-^1)/^2 {down 15 \(rf},~$ for $m^>~n~$ [MaORS1, OmSh1]. .IP (d) For loose cycles, $R(C sub 2n ,^C sub 2n ;^3)~>~5n^-^2$ and $R(C sub 2n+1 ,^C sub 2n+1 ;^3)~>~5n^+^1$, and asymptotically these lower bounds are tight [Ha\(L/P1+]. Generalizations to $r$-uniform hypergraphs and graphs other than cycles appeared in [GySS1]. .IP (e) For loose cycles, $R(C sub n ,^C sub n ^;^r)~=~(r^-^1)n^+~{down 15 \(lf} (n^-^1)/^2 {down 15 \(rf}^$ for $n^>=~2,~r^>=~8~$ [OmSh2], and it also holds for $r^=^4$ [Omsh3]. Further extensions to off-diagonal cases as in (c) are obtained in [OmSh4]. .IP (f) For tight cycles, $R(C sub 3n ,^C sub 3n ;^3)~approx~4n$ and $R(C sub {3n+^i},^C sub {3n+^i};^3)~approx~6n$ for $i^=^1$ or 2, and for tight paths $R(P sub n ,^P sub n ;^3)~approx~4n/^3~$ [Ha\(L/P2+]. Some related results are discussed in [PoRRS]. .IP (g) Exact values for Ramsey numbers involving $s$-paths for even $r$ and $s^=~r/^2~$, in particular for $P sub n sup {r,^s}$ versus $P sub 3 sup {r,^s}$ and $P sub 4 sup {r,^s}$, when this value is $(n^+^1)s^+^1^$ [Peng]. .IP (h) For 3-uniform Berge cycles and two colors, $R(C sub n ,^C sub n ^;^3)~=~n~$ for $n~>=~5~$ [GyLSS]. .IP (i) Lower and upper asymptotic bounds for $R(C sub 3 sup 3,1 ,^K sub m ;^3)$ and $R(C sub 3 sup r,1 ,^K sub m ;^r)^$ [KosMV2]. .IP (j) Lower and upper asymptotic bounds for $R(C sub s ,^K sub m ;^3)$ for tight cycles $C sub s^$ [MuR]. .br An improvement of the upper bound from the latter [Mub1]. .IP (k) Gy\o'a\(aa'rf\o'a\(aa's, S\o'a\(aa'rk\o'o\(:a'zy and Szemer\o'e\(aa'di proved that, for sufficiently large $n$, every 2-coloring of the edges of the complete 4-uniform hypergraph $K sub n$ contains a monochromatic 3-tight Berge cycle $C sub n~$ [GySS2]. .IP (l) Upper bounds on asymptotics of $R(C sub n sup r,1 ,^K sub m ;^r)^$ for even and odd $n$ [ColGJ]. Improvements of the results from the latter, in particular for the case of $n^=^5$ and $r^=^3$, and for general $n^$ [M\o'e\(aa'r]. .IP (m) Study of the growth rate of $R(P sub m ,^K sub n ;^r)$ for tight paths $P sub m$ with $m^>=^r^+^3$, and links between the growth of $R(P sub r+1 ,^K sub n ;^r)$ and $R(n,^n;^r)^$ [MuSuk1]. The correct tower growth rate for ordered tight paths versus cliques [Mub2]. .IP (n) Study of $R(G,^nH;^r)$ and $R(mG,^nH;^r)$ for loose/tight path, cycles and stars, including several exact results for large $m$ or $n~$ [OmRa3]. .LP \fBMore colors\fP .IP (o) For loose cycles, $R sub 3 (C sub 3 ^;^3)~=~(R(C sub 3 ,^C sub 3 ,^C sub 3 ^;^3)~=~8$, and in general for $k~>=~4$ colors Gy\o'a\(aa'rf\o'a\(aa's and Raeisi established the bounds $k^+^5~<=~R sub k (C sub 3 ^;^3)~<=~3k~$ [GyRa]. .IP (p) For loose paths, $R sub 3 (P sub 3 ^;^3)~=~9$ and $10~<=~R sub 4 (P sub 3 ^;^3)~<=~12~$ [Jack]. This was improved to $R sub k (P sub 3 ^;^3)~=~k^+^6^$ for all $^2~<=~k^<=~9^$ [JacPR, PoRu], and extended to $k~=~10$ in [Pol]. .IP (q) For tight paths $P sub m sub i$, study of the growth rate of $R(P sub m sub 1 ,.. .,^P sub m sub k ,^K sub m ;^r)^$ [MuSuk1]. .IP (r) For 3-uniform Berge cycles, $R sub 3 (C sub n ^;^3)~=~(1^+^o(1))5n/4~$ [GyS\o'a\(aa'1]. .IP (s) Special cases for $r$-uniform hypergraphs were studied in [GyLSS]. .NH 2 General results for 3-uniform hypergraphs .sp .5 .IP (a) $2 sup down 5 { cn sup down 10 2 } ^<~ R(n,^n;^3) ^<~ 2 sup down 5 { 2 sup down 10 n}~$ is credited to Erd\o'o\(hu's, Hajnal and Rado (see [ChGra2] p. 30). .IP (b) For some $a,^b$ the numbers $R(m,^a,^b;^3)$ are at least exponential in $m~$ [AbbS]. .IP (c) Improved lower and upper asymptotics for $R(s,^n;^3)$ for fixed $s$ and large $n$, proof of related Erd\o'o\(hu's and Hajnal conjecture on the growth of $R(4,^n;^3)$, and the lower bound $2 sup down 5 { n sup down 10 {c roman ln ^n} } ^<~ R(n,^n,^n;^3)~$ [ConFS2]. .IP (d) $R (G,^G;^3)~<=~cn(H)$ for some constant $c$ depending only on the maximum degree of a 3-uniform hypergraph $H~$ [CooFKO1, NaORS]. Similar results were proved for $r$-uniform hypergraphs in [K\o'u\(:a'CFO, Ishi, CooFKO2, ConFS1], see also item 7.4.g. .IP (e) Asymptotic lower bounds for $R(K sub a,b,c ,^K sub a,b,c ;^3)$, where $K sub a,b,c$ is formed by all $abc$ triples on sets of orders $a,~b,~c~$ [MiPal]. .IP (f) If $G$ is a 3-uniform $H$-free hypergraph, then $G$ contains a complete or empty tripartite subgraph with parts of order $( log^n(H)) sup {c+^1/^2}$, where $c^>~0$ depends only on $H$. Furthermore, for $k^>=~4$ no analogue of it can hold for $k$-uniform hypergraphs [ConFS5]. .IP (g) Asymptotic or exact values of $R sub k (H;^3)$ when $H$ is a bow {$abc,^ade$}, kite {$abc,^abd$}, tight path $P sub 3 sup 3,2 ~=~roman "{" abc,^bcd,^cde$}, or windmill {$abc,^bde,^cef,~bce$}, and, among others, a special case $R sub 6 (kite;^3) ~=~8^$ [AxGLM]. .IP (h) $R sub k (K sub 3^)~<=~ R sub 4k (K sub 4 ^-^t;^3) ~<=~ R sub 4k (K sub 3^)~+^1~$ [AxGLM]. .IP (i) Variety of general lower bound constructions for 3-uniform complete or complete missing one hyperedge hypergraphs from liftings of graphs, for two and more colors. For example, $R(K sub 5 ,^K sub 43 ^-^t,^K sub 43 ^-^t,^K sub 43 ^-^t;^3)~>~1257480^$ [BudHLS]. .IP (j) Upper bounds on $R sub k (H;^3)$ for complete multipartite 3-uniform hypergraphs $H,$ a 4-color case, and some other general and special cases [ConFS1, ConFS2, ConFS3]. $R sub k (H;^3)$ ranges from $sqrt {6k} (1^+^o(1))$ to double exponential in $k^$ [AxGLM]. .NH 2 General results .sp .5 .IP (a) If $R(^n,^n;^r)^>~m$ then $R(2n^+^r^-~4,^2n^+^r^-~4^;^r^+^1)^>~2 sup m$, for $n^>^r^>=~3~$ (see [GRS] p. 106). This is the so-called stepping-up lemma, usually credited to Erd\o'o\(hu's and Hajnal. An improvement of the stepping-up lemma implying better lower bounds for a few types of hypergraph Ramsey numbers were obtained by Conlon, Fox and Sudakov [ConFS6]. .IP (b) Lower bounds on $R sub k (^n;^r)$ are discussed in [AbbW, DuLR]. .IP (c) General lower bounds for large number of colors were given in an early paper by Hirschfeld [Hir], and some of them were later improved in [AbbL]. .IP (d) Lower and upper asymptotics of $R(s,^n;^k)$ for fixed $s~$ [ConFS2, MuSuk2]. .IP (e) Exact and asymptotic results generalizing 7.2.d/e to $r$-uniform case for cycles, and 2- and 3-color cases for all $r$-uniform diamond matchings [GySS1]. .IP (f) Study of $R(G,^nH;^r)$ and $R(mG,^nH;^r)$ for loose/tight path and cycles (possibly with some additions), stars, $r$-partite hypergraphs, including several exact results for large $m$ or $n~$ [OmRa3]. .IP (g) $R(H,^H;^r)~<=~cn(H) sup down 20 {1+ ^epsilon}~$, for some constant $c~=~c( DELTA ,^r,^epsilon ^)$ depending only on the maximum degree of $H$, $r$ and $epsilon ^>^0~$ [KoR\o'o\(:a'3]. The proofs of the linear bound $cn(H)$ were obtained independently in [K\o'u\(:a'CFO] and [Ishi], the latter including the multicolor case, and then without regularity lemma in [ConFS1]. More discussion of lower and upper bounds for various cases can be found in [ConFS1, ConFS2, ConFS3, CooFKO2]. .IP (h) Let $T sub r$ be an $r$-uniform hypergraph with $r$ edges containing a fixed $(r^-^1)$-vertex set $S$ and the $(r^+^1)$-st edge intersecting all former edges in one vertex outside $S$. Then $R(T sub r ,^K sub t ;^r)~=~O(t sup r /^ roman log ^t)~$ [KosMV1]. .IP (i) Study of tree-star and tree-complete cases of Ramsey numbers for $r$-uniform hypergraphs. Several bounds and equalities for special cases [BudHR]. .IP (j) Let $H sup {down 5 ^r} (s,^t)$ be the complete $r$-partite $r$-uniform hypergraph with $r^-^2$ parts of size 1, one part of size $s$, and one part of size $t$ (for example, for $r^=^2$ it is the same as $K sub {s,^t}^$). For the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that .sp .3 .EQ tk sup {down 5 2} ^-~k^+^1 ~<=~ R sub k (H sup {down 5 ^r} (2,^t+1)^;^r) ~<=~ tk sup {down 5 2} ^+^k^+^r, .EN where the lower bound holds when both $t$ and $k$ are prime powers. For the general case of $H sup {down 5 ^r} (s,^t)$, more bounds are presented in [LaMu]. .IP (k) $R sub k (H;^r)$ is polynomial in $k$ when a fixed $r$-uniform $H$ is $r$-partite, otherwise it is at least exponential in $k^$ [AxGLM]. .IP (l) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wilson [FraWi] (item 2.3.6) to more colors and to hypergraphs [Grol3]. .IP (m) Lower and upper asymptotics, and other theoretical results on hypergraph numbers, are gathered in [GrR\o'o\(:a', GRS, ConFS1, ConFS2, ConFS3, ConFS7, Song8, MuSuk1, MuSuk2]. .NH Cumulative Data and Surveys .NH 2 Cumulative data for two colors .IP (a) $R(G,^G)$ for all graphs $G$ without isolates on at most 4 vertices [ChH1]. .IP (b) $R(G,^H)$ for all graphs $G$ and $H$ without isolates on at most 4 vertices [ChH2]. .IP (c) $R(G,^H)$ for all graphs $G$ on at most 4 vertices and $H$ on 5 vertices, except five entries [Clan], now all solved, see section 5.11. All critical colorings for the isolate-free graphs $G$ and $H$ studied in [Clan] were found in [He4]. .IP (d) $R(G,^G)$ for all graphs $G$ without isolates and with at most 6 edges [Bu4]. .IP (e) $R(G,^G)$ for all graphs $G$ without isolates and with at most 7 edges [He1]. .IP (f) $R(G,^G)$ for all graphs $G$ on 5 vertices and with 7 or 8 edges [HaMe2]. .IP (g) $R(G,^H)$ for all graphs $G$ and $H$ on 5 vertices without isolates, except 7 entries [He2]. Only 2 cases are still open, see 5.11 and the paragraph at the end of this section. .IP (h) Tables of $R(G,^H)$ for most connected graphs on up to 5 vertices and $R(G,^G)$ for all isolate-free graphs with up to 7 edges [ReWi]. .IP (i) $R(G,^H)$ for all disconnected isolate-free graphs $H$ on at most 6 vertices versus all $G$ on at most 5 vertices, except 3 cases [LoM5]. Missing cases were completed in [KroMe]. .IP (j) $R(G,^H)$ for some $G$ on 5 vertices versus all connected graphs on 6 vertices [LoM6]. .IP (k) $R(G,^H)$ for $G^=^K sub 1,3 ^+^e$ and $G^=^K sub 4 ^-^e$ versus all connected graphs $H$ on 6 vertices, except $R(K sub 4 ^-^e,^K sub 6 ^)$ [HoMe]. The result $R(K sub 4 ^-^e,^K sub 6 ^)^=^21$ was claimed by McNamara [McN, unpublished], now confirmed in [ShWR]. .IP (l) $R(G,^H)$ for some graphs $G$ with 4 vertices versus all graphs $H$ with 7 vertices [Boza4]. .IP (m) $R(G,^T)$ for all connected graphs $G$ with $n(G)^<=^5$, and almost all trees $T^$ [FRS4]. .IP (n) $R(T sub m ,^T sub n )$ for $6~<=^m,^n^<=~8$, for $k$-vertex trees $T sub k^$ [RanMCG]. .IP (o) $R(K sub 3 ,^G)$ for all connected graphs $G$ on 6 vertices [FRS1]. .IP (p) $R(K sub 3 ,^G)$ for all connected graphs $G$ on 7 vertices [Jin]. .br Some errors in the latter were found [SchSch1]. .IP (q) Formulas for $R(nK sub 3 ,^mG)$ for all $G$ of order 4 without isolates [Zeng]. .IP (r) $R(K sub 3 ,^G)$ for all connected graphs $G$ on at most 8 vertices [Brin]. The numbers for $K sub 3$ versus sets of graphs with fixed number of edges, on at most 8 vertices, were presented in [KlaM1]. .IP (s) $R(K sub 3 ,^G)$ for all connected graphs $G$ on 9 vertices [BrBH1, BrBH2]. .IP (t) $R(K sub 3 ,^G)$ for all graphs $G$ on 10 vertices, except 10 cases [BrGS]. .br Three of the open cases, including $G^=^K sub 10 ^-^e$, were solved [GoR2]. .IP (u) $R(C sub 4 ,^G)$ for all graphs $G$ on at most 6 vertices [JR3]. .br This work was followed by two errata listed in the references. .IP (v) $R(C sub 5 ,^G)$ for all graphs $G$ on at most 6 vertices [JR4]. .IP (w) $R(C sub 6 ,^G)$ for all graphs $G$ on at most 5 vertices [JR2]. .IP (x) $R(K sub 2,n ,^K sub 2,m )$ for all $2~<=~n,~m^<=~10$ except 8 cases, for which lower and upper bounds are given [LoM3]. Further data for other complete bipartite graphs are gathered in section 3.3 and [LoMe4]. .IP (y) All best lower bounds up to 102 from cyclic graphs. Formulas for best cyclic lower bounds for paths and cycles, and values for small complete graphs and for graphs with up to five vertices [HaKr1]. .LP Chv\o'a\(aa'tal and Harary [ChH1, ChH2] formulated several simple but very useful observations on how to discover values of some numbers. All five missing entries in the tables of Clancy [Clan] have been solved (section 5.11). Out of 7 open cases in [He2] 5 have been solved, including $R(4,^5)~=~$$R(G sub 19 ,^G sub 23 ^)~=~25$ and other cases listed in section 5.11. The 2 cases still open are for $K sub 5$ versus $K sub 5$ (section 2.1) and $K sub 5$ versus $K sub 5 ^-^e$ (section 3.1). Many extremal and other Ramsey graphs for various parameters are available at [BrCGM, McK1, Ex18, Fid2, Fuj1], see section 8.3 below. .NH 2 Cumulative data for three colors .IP (a) $R sub 3 (G)$ for all graphs $G$ with at most 4 edges and no isolates [YR3]. .IP (b) $R sub 3 (G)$ for all graphs $G$ with 5 edges and no isolates, except $K sub 4 ^-^e^$ [YR1]. .br The case of $R sub 3 (K sub 4 ^-^e)$ remains open (see section 6.5). .IP (c) $R sub 3 (G)$ for all graphs $G$ with 6 edges and no isolates, except 10 cases [YY]. .IP (d) $R(F,^G,^H)$ for many triples of isolate-free graphs with at most 4 vertices [ArKM]. .br Some of the missing cases completed in [KlaM2]. .IP (e) Extension of [ArKM] to most triples of graphs with at most 4 vertices [BoDD]. .IP (f) $R(P sub 3 ,^P sub k ,^C sub m )$ for all $3~<=~k^<=~8$ and $3~<=~m^<=~9^$ [DzFi2]. .NH 2 Electronic Resources .IP (a) W. Gasarch [Gas] maintains a website gathering over 60 pointers to literature on applications of Ramsey theory in computer science, \s-2\fHhttp://www.cs.umd.edu/~gasarch/TOPICS/ ramsey/ramsey.html\fP\s0. .IP (b) Many of the Ramsey graph constructions found by G. Exoo [Ex1-Ex20] are posted at \s-2\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. .IP (c) G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. M\o'e\(aa'lot, .I House of Graphs: A database of interesting graphs .R [BrCGM], \s-2\fHhttp://hog.grinvin.org\fP\s0. .IP (d) B.D. McKay, presents some graphs related to classical Ramsey numbers [McK1], \s-2\fHhttp:// cs.anu.edu.au/people/bdm/data/ramsey.html\fP\s0. .IP (e) R. Fidytek, presents some Ramsey graphs of type $(K sub n ,^K sub m ^-^e)$ [Fid2], see also 3.1.f, \s-2\fHhttp://fidytek.inf.ug.edu.pl/ramsey\fP\s0. .IP (f) H. Fujita, some Ramsey graphs [Fuj1], \s-2\fHhttp://opal.inf.kyushu-u.ac.jp/~fujita/ramsey.html\fP\s0. .IP (g) M. Rubey, an electronic GUI resource for values of some small Ramsey numbers, \s-1\fHhttp://www.findstat.org/StatisticsDatabase/St000479\fP\s0. .IP (h) Ramsey@Home [RaHo] is a distributed computing project at the University of Wisconsin-Oshkosh designed to find new lower bounds for various Ramsey numbers. Join and help! \s-2\fHhttp://www.ramseyathome.com/ramsey\fP\s0. .sp .5 .NH 2 Surveys .IP (1974) .65i A general survey of results in Ramsey graph theory by S.A. Burr [Bu1] .IP (1978) A general survey of results in Ramsey graph theory by T.D. Parsons [Par6] .IP (1980) Survey of results and new problems on multiplicities and Ramsey multiplicities by S.A. Burr and V. Rosta [BuRo3] .IP (1981) Summary of progress by Frank Harary [Har2] .IP (1983) A survey of bounds and values by F.R.K. Chung and C.M. Grinstead [ChGri] .IP (1983) Special volume of the \fIJournal of Graph Theory\fP [JGT] .IP (1984) A review of Ramsey graph theory for newcomers by F.S. Roberts [Rob1] .IP (1987) What can we hope to accomplish in generalized Ramsey Theory? [Bu7] .IP (1987) Survey of asymptotic problems by R.L. Graham and V. R\o'o\(:a'dl [GrR\o'o\(:a'] .IP (1990) .I Ramsey Theory .R by R.L. Graham, B.L. Rothschild and J.H. Spencer [GRS] .IP (1991) Survey by R.J. Faudree, C.C. Rousseau and R.H. Schelp of graph goodness results, i.e. conditions for the formula $R(G,^H)~=~$$( ^chi (G) ^-^1^)^(^n(H)^-^1^)^+^s(G)^$ [FRS5] .IP (1996) A chapter in \fIHandbook of Combinatorics\fP by J. Ne\o's\(be'et\o'r\(be'il [Ne\o's\(be'] .IP (1996) Survey of zero-sum Ramsey theory by Y. Caro [Caro] .IP (1997) Among 114 open problems and conjectures of Paul Erd\o'o\(hu's, presented and commented by F.R.K. Chung, 31 are concerned directly with Ramsey numbers [Chu4]. 216 references are given. An extended version of this work was prepared jointly with R.L. Graham [ChGra2] in 1998. .IP (2001) An extensive chapter on Ramsey theory in a widely used student textbook and researcher's guide of graph theory by D. West [West] .IP (2002) .I Ramsey Theory and Paul Erd\o'o\(hu's .R by R.L. Graham and J. Ne\o's\(be'et\o'r\(be'il [GrNe] .IP (2003) Special issue of \fICombinatorics, Probability and Computing\fP [CoPC] .IP (2004) Dynamic survey of Ramsey theory applications by V. Rosta [Ros2]. A website maintained by W. Gasarch [Gas] gathers over 60 pointers to literature on applications of Ramsey theory in computer science. .IP (2009) History, results and people of Ramsey theory. The mathematical coloring book, mathematics of coloring and the colorful life of its creators by A. Soifer [Soi1]. .IP (2011) .I Ramsey Theory. Yesterday, Today and Tomorrow, .R a special volume in the series \fIProgress in Mathematics\fP [Soi2]. A survey of Ramsey numbers involving cycles by the author is included in this volume [Ra4]. .IP (2013) .I Problems in Graph Theory from Memphis, .R "a summary of problems and results coming out of the 20 year collaboration between Paul Erd\o'o\(hu's and the authors", by R.J. Faudree, C.C. Rousseau and R.H. Schelp [FRS6]. .IP (2015) .I Recent Developments in Graph Ramsey Theory .R by D. Conlon, J. Fox and B. Sudakov [ConFS7]. .IP (2015) .I Rudiments of Ramsey Theory, .R a new edition of the classics by R.L. Graham and S. Butler [GrBu]. .IP (2016) .I On Some Open Questions for Ramsey and Folkman Numbers .R [XuR4]. .sp .PP The surveys by S.A. Burr [Bu1] and T.D. Parsons [Par6] contain extensive chapters on general exact results in graph Ramsey theory. F. Harary presented the state of the theory in 1981 in [Har2], where he also gathered many references including seven to other early surveys of this area. More than two decades ago, Chung and Grinstead in their survey paper [ChGri] gave less data than in this work, but included a broad discussion of different methods used in Ramsey computations in the classical case. S. A. Burr, one of the most experienced researchers in Ramsey graph theory, formulated in [Bu7] seven conjectures on Ramsey numbers for sufficiently large and sparse graphs, and reviewed the evidence for them found in the literature. Three of them have been refuted in [Bra3]. .PP For newer extensive presentations see [GRS, GrR\o'o\(:a', FRS5, Ne\o's\(be', Chu4, ChGra2, ConFS7], though these focus on asymptotic theory not on the numbers themselves. A very welcome addition is the 2004 compilation of applications of Ramsey theory by V. Rosta [Ros2]. This survey could not be complete without recommending special volumes of the \fIJournal of Graph Theory\fP [JGT, 1983] and \fICombinatorics, Probability and Computing\fP [CoPC, 2003], which, besides a number of research papers, include historical notes and present to us Frank P. Ramsey (1903-1930) as a person. Finally, read a colorful book by A. Soifer [Soi1, 2009] on history and results in Ramsey theory, followed by a collection of essays and technical papers based on presentations from the 2009 Ramsey theory workshop at DIMACS [Soi2, 2011]. .PP The historical perspective and, in particular, the timeline of progress on prior best bounds, can be obtained by checking all the previous versions of this survey since 1994 at \s-2\fHhttp://www.cs.rit.edu/~spr/ElJC/eline.html\fP\s0. .NH Concluding Remarks .PP This compilation does not include information on numerous variations of Ramsey numbers, nor related topics, like size Ramsey numbers, ordered Ramsey numbers, zero-sum Ramsey numbers, irredundant Ramsey numbers, induced Ramsey numbers, planar Ramsey numbers, bipartite Ramsey numbers, on-line Ramsey numbers, mixed Ramsey numbers, local Ramsey numbers, rainbow Ramsey numbers, connected Ramsey numbers, chromatic Ramsey numbers, star-critical Ramsey numbers, avoiding sets of graphs in some colors, coloring graphs other than complete, or the so called Ramsey multiplicities. Interested readers can find such information in some of the surveys listed in section 8 here. .PP Readers may be interested in knowing that the US patent 6965854 B2 issued on November 15, 2005 claims a method of using Ramsey numbers in "Methods, Systems and Computer Program Products for Screening Simulated Traffic for Randomness." Check the original document at \s-2\fHhttp://www.uspto.gov/patft\fP\s0 if you wish to find out whether your usage of Ramsey numbers is covered by this patent. .SH Acknowledgements .PP In addition to the many individuals who helped to improve consecutive versions of this survey, the author would like to specially thank his Ramsey collaborator Xiaodong Xu. He has seen more revisions of this survey than one would wish. The author would also like to extend his thanks to Brendan McKay, Geoffrey Exoo and Heiko Harborth for their help in gathering data throughout the years. Those who contributed to the development and improvement of new revisions over the years are greatly appreciated. .PP The author apologizes for any omissions or other errors in reporting results belonging to the scope of this work. Suggestions for any kind of corrections or additions will be greatly appreciated and considered for inclusion in the next revision of this survey. .ds CH .ds CF - \\n% - .ds RH "\s10T\s-2HE\s0 E\s-2LECTRONIC\s0 J\s-2OURNAL OF\s0 C\s-2OMBINATORICS\s0 (2017), DS1\s-2.15 .EQ delim $$ gsize 12 .EN .nr LL 6.5i .nr LT 6.5i .nr PS 12 .nr VS 14 .bp 61 .SH References .sp .5 .PP Out of 764 references gathered below, most appeared in about 100 different periodicals, among which most articles were published in: .I Discrete Mathematics .R 80, .I Journal of Combinatorial Theory .R (old, Series A and B) 56, .I Journal of Graph Theory .R 53, .I Electronic Journal of Combinatorics .R 38, .I Journal of Combinatorial Mathematics and Combinatorial Computing .R 30, .I Ars Combinatoria .R 29, .I European Journal of Combinatorics .R 21, .I Graphs and Combinatorics .R 21, .I Utilitas Mathematica .R 18, .I Combinatorica .R 17, .I Australasian Journal of Combinatorics .R 16, .I Discrete Applied Mathematics .R 16, .I Congressus Numerantium .R 12, and .I Combinatorics, Probability and Computing .R 11. There are 37 pointers to arXiv preprints. The results of 159 references depend on computer algorithms. .PP The references are ordered alphabetically by the last name of the first author, and where multiple papers have the same first author they are ordered by the last name of the second author, etc. We preferred that all work by the same author be in consecutive positions. Unfortunately, this causes that some of the abbreviations are not in alphabetical order. For example, [BaRT] is earlier on the list than [BaLS]. We also wish to explain a possible confusion with respect to the order of parts and spelling of Chinese names. We put them without any abbreviations, often with the last name written first as is customary in original. Sometimes this is different from the citations in other sources. One can obtain all variations of writing any specific name by consulting the authors database of \fIMathematical Reviews\fP at \s-2\fHhttp://www.ams.org/mathscinet/search\fP\s0, or \fIzbMATH\fP (formerly \fIZentralblatt f\o'u\(:a'r Mathematik\fP) at \s-2\fHhttp://www.zbmath.org/authors\fP\s0. .PP Papers containing results obtained with the help of computer algorithms have been marked with stars. We identify two such categories of papers: those marked with * involving some use of computers where the results are easily verifiable with some computations, and those marked with ** where cpu intensive algorithms have to be implemented to replicate or verify the results. The first category contains mostly constructions done by algorithms, while the second mostly nonexistence results or claims of complete enumerations of special classes of graphs. .nr PS 10 .nr VS 12 $gsize 10$ .DS B A, Ba, Br page 61 Ca, Cl, D, E page 67 F, Ga, Gu, H page 73 I, J, K, La, Li, Lo page 80 M, N, O, P, Q, R page 87 Sa, Sh, Si, Su page 93 T, U, V, W, X, Y, Z page 99 - page 104 .DE .sp .5 .nr PS 12 .DS C \fBA\fP .DE .nr PS 10 .IP [Abb1] 0.65i H.L. Abbott, Some Problems in Combinatorial Analysis, .I Ph.D. thesis, .R Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, 1965. .IP [Abb2] H.L. Abbott, A Theorem Concerning Higher Ramsey Numbers, in .I Infinite and Finite Sets, .R (A. Hajnal, R. Rado and V.T. S\o'o\(aa's eds.) Vol. 1, 25-28, Colloq. Math. Soc. J\o'a\(aa'nos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975. .IP [AbbH] H.L. Abbott and D. Hanson, A Problem of Schur and Its Generalizations, .I Acta Arithmetica, .R \fB20\fP (1972) 175-187. .IP [AbbL] H.L. Abbott and Andy Liu, Remarks on a Paper of Hirschfeld Concerning Ramsey Numbers, .I Discrete Mathematics, .R \fB39\fP (1982) 327-328. .IP [AbbS] H.L. Abbott and M.J. Smuga-Otto, Lower Bounds for Hypergraph Ramsey Numbers, .I Discrete Applied Mathematics, .R \fB61\fP (1995) 177-180. .IP [AbbW] H.L. Abbott and E.R. Williams, Lower Bounds for Some Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series A, \fB16\fP (1974) 12-17. .IP [-] Adiwijaya, see [SuAM, SuAAM]. .IP [AjKS] M. Ajtai, J. Koml\o'o\(aa's and E. Szemer\o'e\(aa'di, A Note on Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series A, \fB29\fP (1980) 354-360. .IP [AjKSS] M. Ajtai, J. Koml\o'o\(aa's, M. Simonovits and E. Szemer\o'e\(aa'di, Erd\o'o\(hu's-S\o'o\(aa's Conjecture, .I in preparation .R (2013). .IP [AliBB] K. Ali, A.Q. Baig and E.T. Baskoro, On the Ramsey Number for a Linear Forest versus a Coctail Party Graph, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB71\fP (2009) 173-177. .IP [AliBas] K. Ali and E.T. Baskoro, On the Ramsey Numbers for a Combination of Paths and Jahangirs, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB65\fP (2008) 113-119. .IP [AliBT1] K. Ali, E.T. Baskoro and I. Tomescu, On the Ramsey Numbers for Paths and Generalized Jahangir Graphs $~J sub {s,^m}$, .I Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), .R \fB51(99)\fP (2008) 177-182. .IP [AliBT2] K. Ali, E.T. Baskoro and I. Tomescu, On the Ramsey Number for Paths and Beaded Wheels, .I Journal of Prime Research in Mathematics, .R \fB5\fP (2009) 133-138. .IP [AliSur] K. Ali and Surahmat, A Cycle or Jahangir Ramsey Unsaturated Graphs, .I Journal of Prime Research in Mathematics, .R \fB2\fP (2006) 187-193. .IP [AliTJ] K. Ali, I. Tomescu and I. Javaid, On Path-Sunflower Ramsey Numbers, .I Mathematical Reports, .R Bucharest, \fB17\fP (2015) 385-390. .IP [AllBS] P. Allen, G. Brightwell and J. Skokan, Ramsey-Goodness - and Otherwise, .I Combinatorica, .R \fB33\fP (2013) 125-160. .IP [AlmB] J. Alm and P. Bahls, Extendability Conditions for Ramsey Numbers and p-Goodness of Graphs, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1412.3071\fP\s0 (2014). .IP [AlmHS] J.F. Alm, N. Hommowun and A. Schneider, Mixed, Multi-color, and Bipartite Ramsey Numbers Involving Trees of Small Diameter, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1403.0273\fP\s0 (2014). .IP [Alon1] N. Alon, Subdivided Graphs Have Linear Ramsey Numbers, .I Journal of Graph Theory, .R \fB18\fP (1994) 343-347. .IP [Alon2] N. Alon, Explicit Ramsey Graphs and Orthonormal Labelings, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R12, \fB1\fP (1994), 8 pages. .IP [AlBK] N. Alon, S. Ben-Shimon and M. Krivelevich, A Note on Regular Ramsey Graphs, .I Journal of Graph Theory, .R \fB64\fP (2010) 244-249. .IP [AlKS] N. Alon, M. Krivelevich and B. Sudakov, Tur\o'a\(aa'n Numbers of Bipartite Graphs and Related Ramsey-Type Questions, .I Combinatorics, Probability and Computing, .R \fB12\fP (2003) 477-494. .IP [AlPu] N. Alon and P. Pudl\o'a\(aa'k, Constructive Lower Bounds for Off-Diagonal Ramsey Numbers, .I Israel Journal of Mathematics, .R \fB122\fP (2001) 243-251. .IP [AlR\o'o\(:a'] N. Alon and V. R\o'o\(:a'dl, Sharp Bounds for Some Multicolor Ramsey Numbers, .I Combinatorica, .R \fB25\fP (2005) 125-141. .IP [AlR\o'o\(aa'S] N. Alon, L. R\o'o\(aa'nyai and T. Szab\o'o\(aa', Norm-Graphs: Variations and Applications, .I Journal of Combinatorial Theory, .R Series B, \fB76\fP (1999) 280-290. .IP [Alw] R. Alweiss, Ramsey Numbers of Odd Cycles Versus Larger Even Wheels, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1609.03672\fP\s0 (2016). .IP [-] B.M.N. Alzaleq, see [BatJA, JaAl1, JaAl2]. .IP [AnM]** V. Angeltveit and B.D. McKay, $R(5,^5)~<=~48$, .I in preparation .R (2017). .IP [ArKM] J. Arste, K. Klamroth and I. Mengersen, Three Color Ramsey Numbers for Small Graphs, .I Utilitas Mathematica, .R \fB49\fP (1996) 85-96. .IP [-] H. Assiyatun, see [HaABS, HaBA1, HaBA2, BaHA, SuAAM, SuAUB, SuBAU1, SuBAU2, SuBAU3]. .IP [AxFM] M. Axenovich, Z. F\o'u\(:a'redi and D. Mubayi, On Generalized Ramsey Theory: the Bipartite Case, .I Journal of Combinatorial Theory, .R Series B, \fB79\fP (2000) 66-86. .IP [AxGLM] M. Axenovich, A. Gy\o'a\(aa'rf\o'a\(aa's, Hong Liu and D. Mubayi, Multicolor Ramsey Numbers for Triple Systems, .I Discrete Mathematics, .R \fB322\fP (2014) 69-77. .nr PS 12 .DS C \fBBa - Bo\fP .DE .nr PS 10 .IP [BaRT]* A. Babak, S.P. Radziszowski and Kung-Kuen Tse, Computation of the Ramsey Number $R(B sub 3 ,^K sub 5 )$, .I Bulletin of the Institute of Combinatorics and its Applications, .R \fB41\fP (2004) 71-76. .IP [Back1] J. Backelin, Contributions to a Ramsey Calculus, .I manuscript .R 2000-2012. .IP [Back2] J. Backelin, .I personal communication .R (2013). .IP [Back3]* J. Backelin, Edge number report 1: state of the art estimates for $n^<=^43$, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1410.1843\fP\s0 (2014). .IP [Back4] J. Backelin, .I personal communication .R (2017). .IP [BahS] P. Bahls and T.S. Spencer, On the Ramsey Numbers of Trees with Small Diameter, .I Graphs and Combinatorics, .R \fB29\fP (2013) 39-44. .IP [-] P. Bahls, see also [AlmB]. .IP [Bai] Bai Lufeng, Multi-color Ramsey Numbers for Trees versus Complete Graphs (in Chinese), .I Mathematics in Practice and Theory, \fB43\fP (2013) 252-254. .IP [BaiLi] Bai Lufeng and Li Yusheng, Algebraic Constructions and Applications in Ramsey Theory, .I Advances in Mathematics, .R \fB35\fP (2006) 167-170. .IP [BaLX] Bai Lufeng, Li Yusheng and Xu Zhiqiang, Algebraic Constructions and Applications in Ramsey Theory, .I Journal of Mathematical Study (China), .R \fB37\fP (2004) 245-249. .IP [-] Bai Lufeng, see also [SonBL]. .IP [-] A.Q. Baig, see [AliBB]. .IP [BaLS] P.N. Balister, J. Lehel and R.H. Schelp, Ramsey Unsaturated and Saturated Graphs, .I Journal of Graph Theory, .R \fB51\fP (2006) 22-32. .IP [BaSS] P.N. Balister, R.H. Schelp and M. Simonovits, A Note on Ramsey Size-Linear Graphs, .I Journal of Graph Theory, .R \fB39\fP (2002) 1-5. .IP [BalPS] I. Balla, A.Pokrovskiy and B. Sudakov, Ramsey Goodness of Bounded Degree Trees, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1611.02688\fP\s0 (2016). .IP [-] A.M.M. Baniabedalruhman, see [JaBa]. .IP [-] Qiquan Bao, see [ShaXB, ShaXBP]. .IP [BarRSW] B. Barak, A. Rao, R. Shaltiel and A. Widgerson, 2-Source Dispersers for $n sup o(1)$ Entropy, and Ramsey Graphs Beating the Frankl-Wilson Construction, .I Annals of Mathematics .R (2), \fB176\fP (2012) 1483-1544. .IP [Bas] E.T. Baskoro, The Ramsey Number of Paths and Small Wheels, .I Majalah Ilmiah Himpunan Matematika Indonesia, .R MIHMI, \fB8\fP (2002) 13-16. .IP [BaHA] E.T. Baskoro, Hasmawati and H. Assiyatun, The Ramsey Numbers for Disjoint Unions of Trees, .I Discrete Mathematics, .R \fB306\fP (2006) 3297-3301. .IP [BaSu] E.T. Baskoro and Surahmat, The Ramsey Number of Paths with respect to Wheels, .I Discrete Mathematics, .R \fB294\fP (2005) 275-277. .IP [BaSNM] E.T. Baskoro, Surahmat, S.M. Nababan and M. Miller, On Ramsey Graph Numbers for Trees versus Wheels of Five or Six Vertices, .I Graphs and Combinatorics, .R \fB18\fP (2002) 717-721. .IP [-] E.T. Baskoro, see also [AliBB, AliBas, AliBT1, AliBT2, HaABS, HaBA1, HaBA2, NoBa, SuAUB, SuBa1, SuBa2, SuBAU1, SuBAU2, SuBAU3, SuBB1, SuBB2, SuBB3, SuBB4, SuBT1, SuBT2, SuBTB, SuBUB]. .IP [BatJA] M.S.A. Bataineh, M.M.M. Jaradat and L.M.N. Al-Zaleq, The Cycle-Complete Graph Ramsey Number $r(C sub 9 ,^K sub 8 )$, .I International Scholarly Research Network - Algebra, .R Article ID 926191, (2011), 10 pages. .IP [BenSk] F.S. Benevides and J. Skokan, The 3-Colored Ramsey Number of Even Cycles, .I Journal of Combinatorial Theory, .R Series B, \fB99\fP (2009) 690-708. .IP [-] S. Ben-Shimon, see [AlBK]. .IP [Bev] D. Bevan, .I personal communication .R (2002). .IP [BePi] A. Beveridge and O. Pikhurko, On the Connectivity of Extremal Ramsey Graphs, .I Australasian Journal of Combinatorics, .R \fB41\fP (2008) 57-61. .IP [BiaS] A. Bialostocki and J. Sch\o'o\(:a'nheim, On Some Tur\o'a\(aa'n and Ramsey Numbers for $C sub 4$, in .I Graph Theory and Combinatorics .R (ed. B. Bollob\o'a\(aa's), Academic Press, London, (1984) 29-33. .IP [Biel1] H. Bielak, Ramsey and 2-local Ramsey Numbers for Disjoint Unions of Cycles, .I Discrete Mathematics, .R \fB307\fP (2007) 319-330. .IP [Biel2] H. Bielak, Ramsey Numbers for a Disjoint Union of Some Graphs, .I Applied Mathematics Letters, .R \fB22\fP (2009) 475-477. .IP [Biel3] H. Bielak, Multicolor Ramsey Numbers for Some Paths and Cycles, .I Discussiones Mathematicae Graph Theory, .R \fB29\fP (2009) 209-218. .IP [Biel4] H. Bielak, Ramsey Numbers for a Disjoint Union of Good Graphs, .I Discrete Mathematics, .R \fB310\fP (2010) 1501-1505. .IP [BieDa] H. Bielak and K. Dabrowska, The Ramsey Numbers for Some Subgraphs of Generalized Wheels versus Cycles and Paths, .I Annales Universitatis Mariae Curie-Sk\(l/odowska Lublin-Polonia, .R Sectio A, \fBLXIX\fP (2015) 1-7. .IP [-] H. Bielak, see also [LiBie, LiZBBH]. .IP [Bier] J. Bierbrauer, Ramsey Numbers for the Path with Three Edges, .I European Journal of Combinatorics, .R \fB7\fP (1986) 205-206. .IP [BierB] J. Bierbrauer and A. Brandis, On Generalized Ramsey Numbers for Trees, .I Combinatorica, .R \fB5\fP (1985) 95-107. .IP [BiFJ] C. Bir\o'o\(aa', Z. F\o'u\(:a'redi and S. Jahanbekam, Large Chromatic Number and Ramsey Graphs, .I Graphs and Combinatorics, .R \fB29\fP (2013) 1183-1191. .IP [BlLR]* K. Black, D. Leven and S.P. Radziszowski, New Bounds on Some Ramsey Numbers, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB78\fP (2011) 213-222. .IP [BlLi] T. Bloom and A. Liebenau, Ramsey Equivalence of $K sub n$ and $K sub n ^+~K sub n-1$, .I preprint, .R arXiv, \s-1\fHhttp://arxiv. org/abs/1508.03866\fP\s0 (2015). .IP [Boh] T. Bohman, The Triangle-Free Process, .I Advances in Mathematics, .R \fB221\fP (2009) 1653-1677. .IP [BohK1] T. Bohman and P. Keevash, The Early Evolution of the $H$-Free Process, .I Inventiones Mathematicae, .R \fB181\fP (2010) 291-336. .IP [BohK2] T. Bohman and P. Keevash, Dynamic Concentration of the Triangle-Free Process, .I Seventh European Conference on Combinatorics, Graph Theory and Applications, .R 489-495, CRM Series, 16, Pisa, 2013. .IP [BolJY+] B. Bollob\o'a\(aa's, C.J. Jayawardene, Yang Jian Sheng, Huang Yi Ru, C.C. Rousseau, and Zhang Ke Min, On a Conjecture Involving Cycle-Complete Graph Ramsey Numbers, .I Australasian Journal of Combinatorics, .R \fB22\fP (2000) 63-71. .IP [BoH] R. Bolze and H. Harborth, The Ramsey Number $r(K sub 4 ^-^x,^K sub 5 )$, in .I The Theory and Applications of Graphs, .R (Kalamazoo, MI, 1980), John Wiley & Sons, New York, (1981) 109-116. .IP [BoEr] J.A. Bondy and P. Erd\o'o\(hu's, Ramsey Numbers for Cycles in Graphs, .I Journal of Combinatorial Theory, .R Series B, \fB14\fP (1973) 46-54. .IP [Boza1] L. Boza, Nuevas Cotas Superiores de Algunos N\o'u\(aa'meros de Ramsey del Tipo $r(K sub m ,^K sub n^-^e)$, in proceedings of the .I VII Jornada de Matem\o'a\(aa'tica Discreta y Algoritmica, .R JMDA 2010, Castro Urdiales, Spain, July 2010. .IP [Boza2] L. Boza, The Ramsey Number $r(K sub 5 ^-^P sub 3 ,^K sub 5 )$, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp:// www.combinatorics.org\fP\s0, #P90, \fB18\fP(1) (2011), 10 pages. .IP [Boza3]* L. Boza, Upper Bounds for Some Ramsey Numbers of $K sub n ^-^e$ versus $K sub m$, .I manuscript .R (2012). .IP [Boza4]* L. Boza, N\o'u\(aa'meros de Ramsey de Algunos Grafos de 4 V\o'e\(aa'rtices y Todods los Grafos de 7 V\o'e\(aa'rtices, in proceedings of the .I VIII Jornada de Matem\o'a\(aa'tica Discreta y Algoritmica, .R JMDA 2012, Almeria, Spain, July 2012. .IP [Boza5]* L. Boza, .I personal communication .R (2013). .IP [Boza6]* L. Boza, Sobre el N\o'u\(aa'mero de Ramsey $R(K sub 4 ,^K sub 6 ^-^e )$, .I VIII Encuentro Andaluz de Matem\o'a\(aa'tica Discreta, .R Sevilla, Spain, October 2013. .IP [Boza7]* L. Boza, Sobre los N\o'u\(aa'mero de Ramsey $R(K sub 5 ^-^e,^K sub 5 )$ y $R(K sub 6 ^-^e,^K sub 4 )$, .I IX Jornada de Matem\o'a\(aa'tica Discreta y Algoritmica, .R JMDA 2014, Tarragona, Spain, July 2014. .IP [BoCGR] L. Boza, M. Cera, P. Garcia-V\o'a\(aa'zquez and M.P. Revuelta, On the Ramsey Numbers for Stars versus Complete Graphs, .I European Journal of Combinatorics, .R \fB31\fP (2010) 1680-1688. .IP [BoDD]* L. Boza, J. Dybizba\o'n\(aa'ski and T. Dzido, Three Color Ramsey Numbers for Graphs With at Most 4 Vertices, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P47, \fB19\fP(4) (2012), 16 pages. .IP [BoPo]* L. Boza and J.R. Portillo, Sobre el N\o'u\(aa'mero de Ramsey $R(K sub 4 ^-^e ,^K sub 7 )$, in proceedings of the .I VIII Jornada de Matem\o'a\(aa'tica Discreta y Algoritmica, .R JMDA 2012, Almeria, Spain, July 2012. .nr PS 12 .DS C \fBBr - Bu\fP .DE .nr PS 10 .IP [-] A. Brandis, see [BierB]. .IP [Bra1] S. Brandt, Subtrees and Subforests in Graphs, .I Journal of Combinatorial Theory, .R Series B, \fB61\fP (1994) 63-70. .IP [Bra2] S. Brandt, Sufficient Conditions for Graphs to Contain All Subgraphs of a Given Type, .I Ph.D. thesis, .R Freie Universit\o'a\(:a't Berlin, 1994. .IP [Bra3] S. Brandt, Expanding Graphs and Ramsey Numbers, .I preprint No. A 96-24, .R ftp://ftp.math.fu-berlin.de/pub/math/publ/pre/1996 (1996). .R .IP [BrBH1]** $^$S. Brandt, G. Brinkmann and T. Harmuth, All Ramsey Numbers $r(K sub 3 ,^G)$ for Connected Graphs of Order 9, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R7, \fB5\fP (1998), 20 pages. .IP [BrBH2]** $^$S. Brandt, G. Brinkmann and T. Harmuth, The Generation of Maximal Triangle-Free Graphs, .I Graphs and Combinatorics, .R \fB16\fP (2000) 149-157. .IP [Bren1] M. Brennan, Ramsey Numbers of Trees and Unicyclic Graphs versus Fans, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1511.07306\fP\s0 (2015). .IP [Bren2] M. Brennan, Ramsey Numbers of Trees versus Odd Cycles, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P3.2, \fB23\fP(3) (2016), 12 pages. .IP [-] G. Brightwell. see [AllBS]. .IP [Brin]** G. Brinkmann, All Ramsey Numbers $r(K sub 3 ,^G)$ for Connected Graphs of Order 7 and 8, .I Combinatorics, Probability and Computing, .R \fB7\fP (1998) 129-140. .IP [BrCGM]* G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. M\o'e\(aa'lot, House of Graphs: A database of interesting graphs, .I Discrete Applied Mathematics, .R \fB161\fP (2013) 311-314. .IP [BrGS]** G. Brinkmann, J. Goedgebeur and J.C. Schlage-Puchta, Ramsey Numbers $R(K sub 3 ,^G)$ for Graphs of Order 10, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P36, \fB19\fP(4) (2012), 23 pages. .IP [-] G. Brinkmann, see also [BrBH1, BrBH2]. .IP [-] H.J. Broersma, see [LiZBBH, LiZB, SaBr1, SaBr2, SaBr3, SaBr4, SuBB1, SuBB2, SuBB3, SuBB4, SuBTB, SuBUB, ZhaBC1, ZhaBC2, ZhaBC3, ZhaBC4, ZhaBC5]. .IP [BroNN] S. Brooks, T. Nguyen and E. Nystrom, The Ramsey Number and Saturation of the Tristar, .I manuscript .R (2016). .IP [BudHLS] M. Budden, J. Hiller, J. Lambert and C. Sanford, The Lifting of Graphs to 3-Uniform Hypergraphs and Some Applications to Hypergraph Ramsey Theory, .I Involve, .R \fB10\fP(1) (2017) 65-76. .IP [BudHR] M. Budden, J. Hiller and A. Rapp, Generalized Ramsey Theorems for $r$-Uniform Hypergraphs, .I Australasian Journal of Combinatorics, .R \fB63\fP(1) (2015) 142-152. .IP [BurR]* J.P. Burling and S.W. Reyner, Some Lower Bounds of the Ramsey Numbers $n(k,^k)$, .I Journal of Combinatorial Theory, .R Series B, \fB13\fP (1972) 168-169. .IP [Bu1] S.A. Burr, Generalized Ramsey Theory for Graphs - a Survey, in .I Graphs and Combinatorics .R (R. Bari and F. Harary eds.), Springer LNM \fB406\fP, Berlin, (1974) 52-75. .IP [Bu2] S.A. Burr, Ramsey Numbers Involving Graphs with Long Suspended Paths, .I Journal of the London Mathematical Society .R (2), \fB24\fP (1981) 405-413. .IP [Bu3] S.A. Burr, Multicolor Ramsey Numbers Involving Graphs with Long Suspended Path, .I Discrete Mathematics, .R \fB40\fP (1982) 11-20. .IP [Bu4] S.A. Burr, Diagonal Ramsey Numbers for Small Graphs, .I Journal of Graph Theory, .R \fB7\fP (1983) 57-69. .IP [Bu5] S.A. Burr, Ramsey Numbers Involving Powers of Sparse Graphs, .I Ars Combinatoria, .R \fB15\fP (1983) 163-168. .IP [Bu6] S.A. Burr, Determining Generalized Ramsey Numbers is NP-Hard, .I Ars Combinatoria, .R \fB17\fP (1984) 21-25. .IP [Bu7] S.A. Burr, What Can We Hope to Accomplish in Generalized Ramsey Theory?, .I Discrete Mathematics, .R \fB67\fP (1987) 215-225. .IP [Bu8] S.A. Burr, On the Ramsey Numbers $r(G,^nH)$ and $r(nG,^nH)$ When $n$ Is Large, .I Discrete Mathematics, .R \fB65\fP (1987) 215-229. .IP [Bu9] S.A. Burr, On Ramsey Numbers for Large Disjoint Unions of Graphs, .I Discrete Mathematics, .R \fB70\fP (1988) 277-293. .IP [Bu10] S.A. Burr, On the Computational Complexity of Ramsey-type Problems, Mathematics of Ramsey Theory, .I Algorithms and Combinatorics, .R \fB5\fP, Springer, Berlin, 1990, 46-52. .IP [BuE1] S.A. Burr and P. Erd\o'o\(hu's, On the Magnitude of Generalized Ramsey Numbers for Graphs, in .I Infinite and Finite Sets, .R (A. Hajnal, R. Rado and V.T. S\o'o\(aa's eds., Keszthely 1973) Vol. 1, 215-240, Colloq. Math. Soc. J\o'a\(aa'nos Bolyai, Vol. 10, North-Holland, Amsterdam, 1975. .IP [BuE2] S.A. Burr and P. Erd\o'o\(hu's, Extremal Ramsey Theory for Graphs, .I Utilitas Mathematica, .R \fB9\fP (1976) 247-258. .IP [BuE3] S.A. Burr and P. Erd\o'o\(hu's, Generalizations of a Ramsey-Theoretic Result of Chv\o'a\(aa'tal, .I Journal of Graph Theory, .R \fB7\fP (1983) 39-51. .IP [BEFRS1] S.A. Burr, P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, An Extremal Problem in Generalized Ramsey Theory, .I Ars Combinatoria, .R \fB10\fP (1980) 193-203. .IP [BEFRS2] S.A. Burr, P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Ramsey Numbers for the Pair Sparse Graph-Path or Cycle, .I Transactions of the American Mathematical Society, .R \fB269\fP (1982) 501-512. .IP [BEFRS3] S.A. Burr, P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, The Ramsey Number for the Pair Complete Bipartite Graph-Graph of Limited Degree, in .I Graph Theory with Applications to Algorithms and Computer Science, .R (Y. Alavi et al. eds.), John Wiley & Sons, New York, (1985) 163-174. .IP [BEFRS4] S.A. Burr, P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Some Complete Bipartite Graph-Tree Ramsey Numbers, .I Annals of Discrete Mathematics, .R \fB41\fP (1989) 79-89. .IP [BEFRSGJ] $~$ S.A. Burr, P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau, R.H. Schelp, R.J. Gould and M.S. Jacobson, Goodness of Trees for Generalized Books, .I Graphs and Combinatorics, .R \fB3\fP (1987) 1-6. .IP [BEFS] S.A. Burr, P. Erd\o'o\(hu's, R.J. Faudree and R.H. Schelp, On the Difference between Consecutive Ramsey Numbers, .I Utilitas Mathematica, .R \fB35\fP (1989) 115-118. .IP [BES] S.A. Burr, P. Erd\o'o\(hu's and J.H. Spencer, Ramsey Theorems for Multiple Copies of Graphs, .I Transactions of the American Mathematical Society, .R \fB209\fP (1975) 87-99. .IP [BuF] S.A. Burr and R.J. Faudree, On Graphs $G$ for Which All Large Trees Are $G$-good, .I Graphs and Combinatorics, .R \fB9\fP (1993) 305-313. .IP [BFRS] S.A. Burr, R.J. Faudree, C.C. Rousseau and R.H. Schelp, On Ramsey Numbers Involving Starlike Multipartite Graphs, .I Journal of Graph Theory, .R \fB7\fP (1983) 395-409. .IP [BuG] S.A. Burr and J.W. Grossman, Ramsey Numbers of Graphs with Long Tails, .I Discrete Mathematics, .R \fB41\fP (1982) 223-227. .IP [BuRo1] S.A. Burr and J.A. Roberts, On Ramsey Numbers for Stars, .I Utilitas Mathematica, .R \fB4\fP (1973) 217-220. .IP [BuRo2] S.A. Burr and J.A. Roberts, On Ramsey Numbers for Linear Forests, .I Discrete Mathematics, .R \fB8\fP (1974) 245-250. .IP [BuRo3] S.A. Burr and V. Rosta, On the Ramsey Multiplicities of Graphs - Problems and Recent Results, .I Journal of Graph Theory, .R \fB4\fP (1980) 347-361. .IP [Bush] L.E. Bush, The William Lowell Putnam Mathematical Competition (question #2 in Part I asks for the proof of $R(3,3)~<=~6^$), .I American Mathematical Monthly, .R \fB60\fP (1953) 539-542. .IP [-] S. Butler, see [GrBu]. .nr PS 12 .DS C \fBCa - Ch\fP .DE .nr PS 10 .IP [-] J.W. Cain, see [LinCa]. .IP [CaET]* N.J. Calkin, P. Erd\o'o\(hu's and C.A. Tovey, New Ramsey Bounds from Cyclic Graphs of Prime Order, .I SIAM Journal of Discrete Mathematics, .R \fB10\fP (1997) 381-387. .IP [CalSR]* J.A. Calvert and M.J. Schuster and S.P. Radziszowski, Computing the Ramsey Number $R(K sub 5 ^-^P sub 3 ,^K sub 5 )$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB82\fP (2012) 131-140. .IP [Car] D. Cariolaro, On the Ramsey Number $R(3,^6)$, .I Australasian Journal of Combinatorics, .R \fB37\fP (2007) 301-304. .IP [Caro] Y. Caro, Zero-Sum Problems - A Survey, .I Discrete Mathematics, .R \fB152\fP (1996) 93-113. .IP [CaLRZ] Y. Caro, Li Yusheng, C.C. Rousseau and Zhang Yuming, Asymptotic Bounds for Some Bipartite Graph - Complete Graph Ramsey Numbers, .I Discrete Mathematics, .R \fB220\fP (2000) 51-56. .IP [CaYZ] Y. Caro, R. Yuster and C. Zarb, Ramsey Numbers for Degree Monotone Paths, .I Discrete Mathematics, .R \fB340\fP (2017) 124-131. .IP [-] M. Cera, see [BoCGR]. .IP [ChaMR] J. Chappelon, L.P. Montejano and J.L. Ramirez Alfonsin, On Ramsey Numbers of Complete Graphs with Dropped Stars, .I Discrete Applied Mathematics, .R \fB210\fP (2016) 200-206. .IP [ChGP] G. Chartrand, R.J. Gould and A.D. Polimeni, On Ramsey Numbers of Forests versus Nearly Complete Graphs, .I Journal of Graph Theory, .R \fB4\fP (1980) 233-239. .IP [ChRSPS] G. Chartrand, C.C. Rousseau, M.J. Stewart, A.D. Polimeni and J. Sheehan, On Star-Book Ramsey Numbers, in .I Proceedings of the Fourth International Conference on the Theory and Applications of Graphs, .R (Kalamazoo, MI 1980), John Wiley & Sons, (1981) 203-214. .IP [ChaS] G. Chartrand and S. Schuster, On the Existence of Specified Cycles in Complementary Graphs, .I Bulletin of the American Mathematical Society, .R \fB77\fP (1971) 995-998. .IP [Chen] Chen Guantao, A Result on $C sub 4$-Star Ramsey Numbers, .I Discrete Mathematics, .R \fB163\fP (1997) 243-246. .IP [ChenS] Chen Guantao and R.H. Schelp, Graphs with Linearly Bounded Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series B, \fB57\fP (1993) 138-149. .IP [-] Chen Hong, see also [LiaWXCS, XWCS]. .IP [-] Weiji Chen, see [LinCh]. .IP [ChenJ] Chen Jie, The Lower Bound of Some Ramsey Numbers (in Chinese), .I Journal of Liaoning Normal University, Natural Science, .R \fB25\fP (2002) 244-246. .IP [ChenCMN] $^$ Yaojun Chen, T.C. Edwin Cheng, Zhengke Miao and C.T. Ng, The Ramsey Numbers for Cycles versus Wheels of Odd Order, .I Applied Mathematics Letters, .R \fB22\fP (2009) 1875-1876. .IP [ChenCNZ] $^$ Yaojun Chen, T.C. Edwin Cheng, C.T. Ng and Yunqing Zhang, A Theorem on Cycle-Wheel Ramsey Number, .I Discrete Mathematics, .R \fB312\fP (2012) 1059-1061. .IP [ChenCX] Yaojun Chen, T.C. Edwin Cheng and Ran Xu, The Ramsey Number for a Cycle of Length Six versus a Clique of Order Eight, .I Discrete Applied Mathematics, .R \fB157\fP (2009) 8-12. .IP [ChenCZ1] $~$ Yaojun Chen, T.C. Edwin Cheng and Yunqing Zhang, The Ramsey Numbers $R(C sub m ,^K sub 7 )$ and $R(C sub 7 ,^K sub 8 )$, .I European Journal of Combinatorics, .R \fB29\fP (2008) 1337-1352. .IP [ChenZZ1] $~$ Chen Yaojun, Zhang Yunqing and Zhang Ke Min, The Ramsey Numbers of Paths versus Wheels, .I Discrete Mathematics, .R \fB290\fP (2005) 85-87. .IP [ChenZZ2] $~$ Chen Yaojun, Zhang Yunqing and Zhang Ke Min, The Ramsey Numbers of Stars versus Wheels, .I European Journal of Combinatorics, .R \fB25\fP (2004) 1067-1075. .IP [ChenZZ3] $~$ Chen Yaojun, Zhang Yunqing and Zhang Ke Min, The Ramsey Numbers $R(T sub n ,^W sub 6 ^)$ for $DELTA (T sub n )~>=~n^-^3$, .I Applied Mathematics Letters, .R \fB17\fP (2004) 281-285. .IP [ChenZZ4] $~$ Chen Yaojun, Zhang Yunqing and Zhang Ke Min, The Ramsey Numbers of Trees versus $W sub 6$ or $W sub 7$, .I European Journal of Combinatorics, .R \fB27\fP (2006) 558-564. .IP [ChenZZ5] $~$ Chen Yaojun, Zhang Yunqing and Zhang Ke Min, The Ramsey Numbers $R(T sub n ,^W sub 6^)$ for Small $n$, .I Utilitas Mathematica, .R \fB67\fP (2005) 269-284. .IP [ChenZZ6] $~$ Chen Yaojun, Zhang Yunqing and Zhang Ke Min, The Ramsey Numbers $R(T sub n ,^W sub 6^)$ for $T sub n$ without Certain Deletable Sets, .I Journal of Systems Science and Complexity, .R \fB18\fP (2005) 95-101. .IP [-] Chen Yaojun, see also [CheCZN, ZhaCh, ZhaBC1, ZhaBC2, ZhaBC3, ZhaBC4, ZhaBC5, ZhaCC1, ZhaCC2, ZhaCC3, ZhaCC4, ZhaCZ1, ZhaCZ2, ZhaZC]. .IP [-] Chen Zhi, see [XuXC]. .IP [Cheng] Cheng Ying, On Graphs Which Do Not Contain Certain Trees, .I Ars Combinatoria, .R \fB19\fP (1985) 119-151. .IP [CheCZN] $~$ T.C. Edwin Cheng, Yaojun Chen, Yunqing Zhang and C.T. Ng, The Ramsey Numbers for a Cycle of Length Six or Seven versus a Clique of Order Seven, .I Discrete Mathematics, .R \fB307\fP (2007) 1047-1053. .IP [-] T.C. Edwin Cheng, see also [ChenCMN, ChenCNZ, ChenCX, ChenCZ1, ZhaCC1, ZhaCC2, ZhaCC3, ZhaCC4]. .IP [Chu1] F.R.K. Chung, On the Ramsey Numbers $N(3,3,...,3^;^2)$, .I Discrete Mathematics, .R \fB5\fP (1973) 317-321. .IP [Chu2] F.R.K. Chung, On Triangular and Cyclic Ramsey Numbers with $k$ Colors, in .I Graphs and Combinatorics .R (R. Bari and F. Harary eds.), Springer LNM \fB406\fP, Berlin, (1974) 236-241. .IP [Chu3] F.R.K. Chung, A Note on Constructive Methods for Ramsey Numbers, .I Journal of Graph Theory, .R \fB5\fP (1981) 109-113. .IP [Chu4] F.R.K. Chung, Open problems of Paul Erd\o'o\(hu's in Graph Theory, .I Journal of Graph Theory, .R \fB25\fP (1997) 3-36. .IP [ChCD] F.R.K. Chung, R. Cleve and P. Dagum, A Note on Constructive Lower Bounds for the Ramsey Numbers $R(3,^t)$, .I Journal of Combinatorial Theory, .R Series B, \fB57\fP (1993) 150-155. .IP [ChGra1] F.R.K. Chung and R.L. Graham, On Multicolor Ramsey Numbers for Complete Bipartite Graphs, .I Journal of Combinatorial Theory, .R Series B, \fB18\fP (1975) 164-169. .IP [ChGra2] F.R.K. Chung and R.L. Graham, .I Erd\o'o\(hu's on Graphs, His Legacy of Unsolved Problems, .R A K Peters, Wellesley, Massachusetts (1998). .IP [ChGri] F.R.K. Chung and C.M. Grinstead, A Survey of Bounds for Classical Ramsey Numbers, .I Journal of Graph Theory, .R \fB7\fP (1983) 25-37. .IP [Chv] V. Chv\o'a\(aa'tal, Tree-Complete Graph Ramsey Numbers, .I Journal of Graph Theory, .R \fB1\fP (1977) 93. .IP [ChH1] V. Chv\o'a\(aa'tal and F. Harary, Generalized Ramsey Theory for Graphs, II. Small Diagonal Numbers, .I Proceedings of the American Mathematical Society, .R \fB32\fP (1972) 389-394. .IP [ChH2] V. Chv\o'a\(aa'tal and F. Harary, Generalized Ramsey Theory for Graphs, III. Small Off-Diagonal Numbers, .I Pacific Journal of Mathematics, .R \fB41\fP (1972) 335-345. .IP [ChH3] V. Chv\o'a\(aa'tal and F. Harary, Generalized Ramsey Theory for Graphs, I. Diagonal Numbers, .I Periodica Mathematica Hungarica, .R \fB3\fP (1973) 115-124. .IP [ChRST] V. Chv\o'a\(aa'tal, V. R\o'o\(:a'dl, E. Szemer\o'e\(aa'di and W.T. Trotter Jr., The Ramsey Number of a Graph with Bounded Maximum Degree, .I Journal of Combinatorial Theory, .R Series B, \fB34\fP (1983) 239-243. .IP [ChvS] V. Chv\o'a\(aa'tal and A. Schwenk, On the Ramsey Number of the Five-Spoked Wheel, in .I Graphs and Combinatorics .R (R. Bari and F. Harary eds.), Springer LNM \fB406\fP, Berlin, (1974) 247-261. .nr PS 12 .DS C \fBCl - Cs\fP .DE .nr PS 10 .IP [Clan] M. Clancy, Some Small Ramsey Numbers, .I Journal of Graph Theory, .R \fB1\fP (1977) 89-91. .IP [Clap] C. Clapham, The Ramsey Number $r(C sub 4 ,^C sub 4 ,^C sub 4 )$, .I Periodica Mathematica Hungarica, .R \fB18\fP (1987) 317-318. .IP [ClEHMS] $^$C. Clapham, G. Exoo, H. Harborth, I. Mengersen and J. Sheehan, The Ramsey Number of $K sub 5 ^-^e$, .I Journal of Graph Theory, .R \fB13\fP (1989) 7-15. .IP [Clark] L. Clark, On Cycle-Star Graph Ramsey Numbers, .I Congressus Numerantium, .R \fB50\fP (1985) 187-192. .IP [-] L. Clark, see also [RanMCG]. .IP [CleDa] R. Cleve and P. Dagum, A Constructive $OMEGA (t sup 1.26 )$ Lower Bound for the Ramsey Number $R(3,t)$, .I International Computer Science Institute, .R TR-89-009, Berkeley, CA, 1989. .IP [-] R. Cleve, see also [ChCD]. .IP [Coc] E.J. Cockayne, Some Tree-Star Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series B, \fB17\fP (1974) 183-187. .IP [CocL1] E.J. Cockayne and P.J. Lorimer, The Ramsey Number for Stripes, .I Journal of the Australian Mathematical Society, .R Series A, \fB19\fP (1975) 252-256. .IP [CocL2] E.J. Cockayne and P.J. Lorimer, On Ramsey Graph Numbers for Stars and Stripes, .I Canadian Mathematical Bulletin, .R \fB18\fP (1975) 31-34. .IP [CoPR] B. Codenotti, P. Pudl\o'a\(aa'k and G. Resta, Some Structural Properties of Low-Rank Matrices Related to Computational Complexity, .I Theoretical Computer Science, .R \fB235\fP (2000) 89-107. .IP [CodFIM]* $^$ M. Codish, M. Frank, A. Itzhakov and A. Miller, Computing the Ramsey Number $R(4,3,3)$ Using Abstraction and Symmetry Breaking, .I Constraints, .R \fB21\fP (2016) 375-393. .IP [Coh] G. Cohen, Two-Source Dispersers for Polylogarithmic Entropy and Improved Ramsey Graphs, in .I Proceedings of the 48-th Annual ACM Symposium on Theory of Computing, .R STOC'16, Cambridge MA, 278-284. Extended version on arXiv, \s-1\fHhttp://arxiv.org/abs/1506.04428\fP\s0 (2015). .IP [ColGJ] C. Collier-Cartaino, N. Graber and Tao Jiang, Linear Tur\o'a\(aa'n Numbers of $r$-Uniform Linear Cycles and Related Ramsey Numbers, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1404.5015\fP\s0 (2014). .IP [CoPC] Special issue on Ramsey theory of .I Combinatorics, Probability and Computing, .R \fB12\fP (2003), Numbers 5 and 6. .IP [Con1] D. Conlon, A New Upper Bound for Diagonal Ramsey Numbers, .I Annals of Mathematics, .R \fB170\fP (2009) 941-960. .IP [Con2] D. Conlon, Hypergraph Packing and Sparse Bipartite Ramsey Numbers, .I Combinatorics, Probability and Computing, .R \fB18\fP (2009) 913-923. .IP [Con3] D. Conlon, The Ramsey Number of Dense Graphs, .I Bulletin of the London Mathematical Society, .R \fB45\fP (2013) 483-496. .IP [ConFLS] D. Conlon, J. Fox, C. Lee and B. Sudakov, Ramsey Numbers of Cubes versus Cliques, .I Combinatorica, .R \fB36\fP (2016) 37-70. .IP [ConFS1] D. Conlon, J. Fox and B. Sudakov, Ramsey Numbers of Sparse Hypergraphs, .I Random Structures and Algorithms, .R \fB35\fP (2009) 1-14. .IP [ConFS2] D. Conlon, J. Fox and B. Sudakov, Hypergraph Ramsey Numbers, .I Journal of the American Mathematical Society, .R \fB23\fP (2010) 247-266. .IP [ConFS3] D. Conlon, J. Fox and B. Sudakov, Large Almost Monochromatic Subsets in Hypergraphs, .I Israel Journal of Mathematics, .R \fB181\fP (2011) 423-432. .IP [ConFS4] D. Conlon, J. Fox and B. Sudakov, On Two Problems in Graph Ramsey Theory, .I Combinatorica, .R \fB32\fP (2012) 513-535. .IP [ConFS5] D. Conlon, J. Fox and B. Sudakov, Erd\o'o\(hu's-Hajnal-type Theorems in Hypergraphs, .I Journal of Combinatorial Theory, .R Series B, \fB102\fP (2012) 1142-1154. .IP [ConFS6] D. Conlon, J. Fox and B. Sudakov, An Improved Bound for the Stepping-Up Lemma, .I Discrete Applied Mathematics, .R \fB161\fP (2013) 1191-1196. .IP [ConFS7] D. Conlon, J. Fox and B. Sudakov, Recent Developments in Graph Ramsey Theory, .I Surveys in Combinatorics, .R London Mathematical Society Lecture Note Series, (2015) 49-118. .IP [ConFS8] D. Conlon, J. Fox and B. Sudakov, Short Proofs of Some Extremal Results II, .I Journal of Combinatorial Theory, .R Series B, \fB121\fP (2016) 173-196. .IP [CooFKO1] $~$O. Cooley, N. Fountoulakis, D. K\o'u\(:a'hn and D. Osthus, 3-Uniform Hypergraphs of Bounded Degree Have Linear Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series B, \fB98\fP (2008) 484-505. .IP [CooFKO2] $~$O. Cooley, N. Fountoulakis, D. K\o'u\(:a'hn and D. Osthus, Embeddings and Ramsey Numbers of Sparse $k$-uniform Hypergraphs, .I Combinatorica, .R \fB29\fP (2009) 263-297. .IP [-] O. Cooley, see also [K\o'u\(:a'CFO]. .IP [-] K. Coolsaet, see [BrCGM]. .IP [CsKo] R. Cs\o'a\(aa'k\o'a\(aa'ny and J. Koml\o'o\(aa's, The Smallest Ramsey Numbers, .I Discrete Mathematics, .R \fB199\fP (1999) 193-199. .nr PS 12 .DS C \fBD\fP .DE .nr PS 10 .IP [-] K. Dabrowska, see [BieDa]. .IP [-] P. Dagum, see [ChCD, CleDa]. .IP [DavJR] E. Davies, M. Jenssen and B. Roberts, Multicolour Ramsey Numbers of Paths and Even Cycles, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1606.00762\fP\s0 (2016). .IP [DayJ] A.N. Day and J.R. Johnson, Multicolour Ramsey Numbers of Odd Cycles, .I Journal of Combinatorial Theory, .R Series B, in press (2017), preprint on arXiv, \s-1\fHhttp://arxiv.org/abs/1602.07607\fP\s0 (2017). .IP [Den1] T. Denley, The Independence Number of Graphs with Large Odd Girth, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R9, \fB1\fP (1994), 12 pages. .IP [Den2] T. Denley, The Ramsey Numbers for Disjoint Unions of Cycles, .I Discrete Mathematics, .R \fB149\fP (1996) 31-44. .IP [Dong] Dong Lin, A Note on a Lower Bound for $r(K sub {m,n})$, .I Journal of Tongji University (Natural Science), .R \fB38\fP (2010) 776,778. .IP [DoLi] Lin Dong and Yusheng Li, A Construction for Ramsey Numbers for $K sub {m,n}$, .I European Journal of Combinatorics, .R \fB31\fP (2010) 1667-1670. .IP [DoLL1] Lin Dong, Yusheng Li and Qizhong Lin, Ramsey Numbers Involving Graphs with Large Degrees, .I Applied Mathematics Letters, .R \fB22\fP (2009) 1577-1580. .IP [DoLL2] Dong Lin, Li Yusheng and Lin Qizhong, Ramsey Numbers of Cycles vs. Large Complete Graph, .I Advances in Mathematics (China), .R \fB39\fP (2010) 700-702. .IP [-] Dong Lin, see also [HeLD, LinLD]. .IP [DuHu] Duan Chanlun and Huang Wenke, Lower Bound of Ramsey Number $r(3,^10)$ (in Chinese), .I Acta Scientiarum Naturalium Universitatis Nei Mongol, .R \fB31\fP (2000) 468-470. .IP [DuLR] D. Duffus, H. Lefmann and V. R\o'o\(:a'dl, Shift Graphs and Lower Bounds on Ramsey Numbers $r sub k ^(l^;^r)$, .I Discrete Mathematics, .R \fB137\fP (1995) 177-187. .IP [Dyb1]* J. Dybizba\o'n\(aa'ski, On Some Ramsey Numbers of $C sub 4$ versus $K sub 2,n$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB87\fP (2013) 137-145. .IP [Dyb2]* J. Dybizba\o'n\(aa'ski, University of Gda\o'n\(aa'sk, .I personal communication .R (2016). .IP [DyDz1]* J. Dybizba\o'n\(aa'ski and T. Dzido, On Some Ramsey Numbers for Quadrilaterals, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp:// www.combinatorics.org\fP\s0, #P154, \fB18\fP(1) (2011), 12 pages. .IP [DyDz2] J. Dybizba\o'n\(aa'ski and T. Dzido, On Some Ramsey Numbers for Quadrilaterals versus Wheels, .I Graphs and Combinatorics, .R \fB30\fP (2014) 573-579. .IP [DyDR] J. Dybizba\o'n\(aa'ski, T. Dzido and S.P. Radziszowski, On Some Three-Color Ramsey Numbers for Paths, .I Discrete Applied Mathematics, .R \fB204\fP (2016) 133-141. .IP [-] J. Dybizba\o'n\(aa'ski, see also [BoDD]. .IP [Dzi1]* T. Dzido, Ramsey Numbers for Various Graph Classes (in Polish), .I Ph.D. thesis, .R University of Gda\o'n\(aa'sk, Poland, November 2005. .IP [Dzi2]* T. Dzido, Multicolor Ramsey Numbers for Paths and Cycles, .I Discussiones Mathematicae Graph Theory, .R \fB25\fP (2005) 57-65. .IP [DzFi1]* T. Dzido and R. Fidytek, The Number of Critical Colorings for Some Ramsey Numbers, .I International Journal of Pure and Applied Mathematics, .R ISSN 1311-8080, \fB38\fP (2007) 433-444. .IP [DzFi2]* T. Dzido and R. Fidytek, On Some Three Color Ramsey Numbers for Paths and Cycles, .I Discrete Mathematics, .R \fB309\fP (2009) 4955-4958. .IP [DzKP] T. Dzido, M. Kubale and K. Piwakowski, On Some Ramsey and Tur\o'a\(aa'n-type Numbers for Paths and Cycles, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R55, \fB13\fP (2006), 9 pages. .IP [DzNS] T. Dzido, A. Nowik and P. Szuca, New Lower Bound for Multicolor Ramsey Numbers for Even Cycles, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #N13, \fB12\fP (2005), 5 pages. .IP [-] T. Dzido, see also [BoDD, DyDz1, DyDz2, DyDR]. .nr PS 12 .DS C \fBE\fP .DE .nr PS 10 .IP [Ea1] Easy to obtain by simple combinatorics from other results, in particular by using graphs establishing lower bounds with smaller parameters. .IP [Ea2] Unique 2-(6,3,2) design gives lower bound 7, upper bound is easy. .IP [Ea3] Every edge $(3,3,3;2)$-coloring of $K sub 15$ has 35 edges in each color [Hein], and since the number of triangles in $K sub 16$ is not divisible by 3, hence no required triangle-coloring of $K sub 16$ exists. .IP [Eaton] N. Eaton, Ramsey Numbers for Sparse Graphs, .I Discrete Mathematics, .R \fB185\fP (1998) 63-75. .IP [Erd1] P. Erd\o'o\(hu's, Some Remarks on the Theory of Graphs, .I Bulletin of the American Mathematical Society, .R \fB53\fP (1947) 292-294. .IP [Erd2] P. Erd\o'o\(hu's, Some New Problems and Results in Graph Theory and Other Branches of Combinatorial Mathematics, .I Combinatorics and Graph Theory .R (Calcutta 1980), Berlin-NY Springer, LNM \fB885\fP (1981) 9-17. .IP [Erd3] P. Erd\o'o\(hu's, On the Combinatorial Problems Which I Would Most Like to See Solved, .I Combinatorica, .R \fB1\fP (1981) 25-42. .IP [Erd4] P. Erd\o'o\(hu's, On Some Problems in Graph Theory, Combinatorial Analysis and Combinatorial Number Theory, .I Graph Theory and Combinatorics, .R (Cambridge 1983), 1-17, Academic Press, London-New York, 1984. .IP [EFRS1] P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Generalized Ramsey Theory for Multiple Colors, .I Journal of Combinatorial Theory, .R Series B, \fB20\fP (1976) 250-264. .IP [EFRS2] P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, On Cycle-Complete Graph Ramsey Numbers, .I Journal of Graph Theory, .R \fB2\fP (1978) 53-64. .IP [EFRS3] P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Ramsey Numbers for Brooms, .I Congressus Numerantium, .R \fB35\fP (1982) 283-293. .IP [EFRS4] P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Multipartite Graph-Sparse Graph Ramsey Numbers, .I Combinatorica, .R \fB5\fP (1985) 311-318. .IP [EFRS5] P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, A Ramsey Problem of Harary on Graphs with Prescribed Size, .I Discrete Mathematics, .R \fB67\fP (1987) 227-233. .IP [EFRS6] P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Extremal Theory and Bipartite Graph-Tree Ramsey Numbers, .I Discrete Mathematics, .R \fB72\fP (1988) 103-112. .IP [EFRS7] P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, The Book-Tree Ramsey Numbers, .I Scientia, .R Series A: Mathematical Sciences, Valpara\o'\(dl\(aa'so, Chile, \fB1\fP (1988) 111-117. .IP [EFRS8] P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Multipartite Graph-Tree Graph Ramsey Numbers, in .I Graph Theory and Its Applications: East and West, Proceedings of the First China-USA International Graph Theory Conference, .R Annals of the New York Academy of Sciences, \fB576\fP (1989) 146-154. .IP [EFRS9] P. Erd\o'o\(hu's, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Ramsey Size Linear Graphs, .I Combinatorics, Probability and Computing, .R \fB2\fP (1993) 389-399. .IP [ErdG] P. Erd\o'o\(hu's and R.L. Graham, On Partition Theorems for Finite Sets, in .I Infinite and Finite Sets, .R (A. Hajnal, R. Rado and V.T. S\o'o\(aa's eds.) Vol. 1, 515--527, Colloq. Math. Soc. J\o'a\(aa'nos Bolyai, Vol. 10, North Holland, 1975. .IP [ErdH] P. Erd\o'o\(hu's and A. Hajnal, On Ramsey Like Theorems, Problems and Results, .I Combinatorics, .R Conference on Combinatorial Mathematics, Math. Institute, Oxford, (1972) 123-140. .IP [-] P. Erd\o'o\(hu's, see also [BoEr, BuE1, BuE2, BuE3, BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRSGJ, BEFS, BES, CaET]. .IP [Ex1]* G. Exoo, Ramsey Numbers of Hypergraphs, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB2\fP (1987) 5-11. .IP [Ex2]* G. Exoo, Constructing Ramsey Graphs with a Computer, .I Congressus Numerantium, .R \fB59\fP (1987) 31-36. .IP [Ex3]* G. Exoo, Applying Optimization Algorithm to Ramsey Problems, in .I Graph Theory, Combinatorics, Algorithms, and Applications .R (Y. Alavi ed.), SIAM Philadelphia, (1989) 175-179. .IP [Ex4]* G. Exoo, A Lower Bound for $R(5,^5)$, .I Journal of Graph Theory, .R \fB13\fP (1989) 97-98. .IP [Ex5]* G. Exoo, On Two Classical Ramsey Numbers of the Form $R(3,^n)$, .I SIAM Journal of Discrete Mathematics, .R \fB2\fP (1989) 488-490. .IP [Ex6]* G. Exoo, A Lower Bound for $r(K sub 5 ^-^e,^K sub 5 )$, .I Utilitas Mathematica, .R \fB38\fP (1990) 187-188. .IP [Ex7]* G. Exoo, Three Color Ramsey Number of $K sub 4 ^-^ e,$ .I Discrete Mathematics, .R \fB89\fP (1991) 301-305. .IP [Ex8]* G. Exoo, Indiana State University, .I personal communication .R (1992). .IP [Ex9]* G. Exoo, Announcement: On the Ramsey Numbers $R(4,^6)$, $R(5,^6)$ and $R(3,12)$, .I Ars Combinatoria, .R \fB35\fP (1993) 85. The construction of a graph proving $R(4,^6) ^>=^ 35$ is presented in detail at \s-1\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0 (2001). .IP [Ex10]* G. Exoo, A Lower Bound for Schur Numbers and Multicolor Ramsey Numbers of $K sub 3$, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R8, \fB1\fP (1994), 3 pages. .IP [Ex11]* G. Exoo, Indiana State University, .I personal communication .R (1997). .IP [Ex12]* G. Exoo, Some New Ramsey Colorings, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R29, \fB5\fP (1998), 5 pages. The constructions are available electronically from \s-1\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. The lower bounds presented in this paper have been improved. .IP [Ex13]* G. Exoo, Indiana State University, .I personal communication .R (1998). Constructions available at \s-1\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. .IP [Ex14]* G. Exoo, Indiana State University, .I New Lower Bounds for Table III, .R (2000). Constructions available at \s-1\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. .IP [Ex15]* G. Exoo, Indiana State University, .I personal communication .R (2002-2004). Constructions available at \s-1\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. .IP [Ex16]* G. Exoo, Indiana State University, .I personal communication .R (2005-2006). Constructions available at \s-1\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. .IP [Ex17]* G. Exoo, Indiana State University, .I personal communication .R (2010-2011). Constructions available at \s-1\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. .IP [Ex18]* G. Exoo, Indiana State University, .I personal communication .R (2012-2013). Constructions available at \s-1\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. .IP [Ex19]* G. Exoo, On the Ramsey Number $R(4,^6)$, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www. combinatorics.org\fP\s0, #P66, \fB19\fP(1) (2012), 5 pages. .IP [Ex20]* G. Exoo, On Some Small Classical Ramsey Numbers, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp:// www.combinatorics.org\fP\s0, #P68, \fB20\fP(1) (2013), 6 pages. .IP [Ex21]* G. Exoo, Ramsey Colorings from $p$-Groups, .I in preparation, .R (2013). .IP [Ex22]* G. Exoo, Indiana State University, .I personal communication .R (2015). Constructions available at \s-1\fHhttp://ginger.indstate.edu/ge/RAMSEY\fP\s0. .IP [EHM1] G. Exoo, H. Harborth and I. Mengersen, The Ramsey Number of $K sub 4$ versus $K sub 5 ^-^e$, .I Ars Combinatoria, .R \fB25A\fP (1988) 277-286. .IP [EHM2] G. Exoo, H. Harborth and I. Mengersen, On Ramsey Number of $K sub 2,n$, in .I Graph Theory, Combinatorics, Algorithms, and Applications .R (Y. Alavi, F.R.K. Chung, R.L. Graham and D.F. Hsu eds.), SIAM Philadelphia, (1989) 207-211. .IP [ExRe]* G. Exoo and D.F. Reynolds, Ramsey Numbers Based on $C sub 5$-Decompositions, .I Discrete Mathematics, .R \fB71\fP (1988) 119-127. .IP [ExT]* G. Exoo and M. Tatarevic, New Lower Bounds for 28 Classical Ramsey Numbers, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp:// www.combinatorics.org\fP\s0, #P3.11, \fB22\fP(3) (2015), 12 pages. Graphs available at the journal site and at \s-1\fHhttp://cs.indstate.edu/ge/RAMSEY/ExTa\fP\s0. .IP [-] G. Exoo, see also [ClEHMS, XXER]. .nr PS 12 .DS C \fBF\fP .DE .nr PS 10 .IP [FLPS] R.J. Faudree, S.L. Lawrence, T.D. Parsons and R.H. Schelp, Path-Cycle Ramsey Numbers, .I Discrete Mathematics, .R \fB10\fP (1974) 269-277. .IP [FM]** R.J. Faudree and B.D. McKay, A Conjecture of Erd\o'o\(hu's and the Ramsey Number $r(W sub 6 ^)$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB13\fP (1993) 23-31. .IP [FRS1] R.J. Faudree, C.C. Rousseau and R.H. Schelp, All Triangle-Graph Ramsey Numbers for Connected Graphs of Order Six, .I Journal of Graph Theory, .R \fB4\fP (1980) 293-300. .IP [FRS2] R.J. Faudree, C.C. Rousseau and R.H. Schelp, Studies Related to the Ramsey Number $r(K sub 5 ^-^e)$, in .I Graph Theory and Its Applications to Algorithms and Computer Science, .R (Y. Alavi et al. eds.), John Wiley and Sons, New York, (1985) 251-271. .IP [FRS3] R.J. Faudree, C.C. Rousseau and R.H. Schelp, Generalizations of the Tree-Complete Graph Ramsey Number, in .I Graphs and Applications, .R (F. Harary and J.S. Maybee eds.), John Wiley and Sons, New York, (1985) 117-126. .IP [FRS4] R.J. Faudree, C.C. Rousseau and R.H. Schelp, Small Order Graph-Tree Ramsey Numbers, .I Discrete Mathematics, .R \fB72\fP (1988) 119-127. .IP [FRS5] R.J. Faudree, C.C. Rousseau and R.H. Schelp, A Good Idea in Ramsey Theory, in .I Graph Theory, Combinatorics, Algorithms, and Applications .R (San Francisco, CA 1989), SIAM Philadelphia, PA (1991) 180-189. .IP [FRS6] R.J. Faudree, C.C. Rousseau and R.H. Schelp, Problems in Graph Theory from Memphis, in .I The Mathematics of Paul Erd\o'o\(hu's II, .R R.L. Graham et al. (eds.), Springer, New York, (2013) 95-118. .IP [FRS7] R.J. Faudree, C.C. Rousseau and J. Sheehan, More from the Good Book, in .I Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing, .R Utilitas Mathematica Publ., .I Congressus Numerantium, .R \fBXXI\fP (1978) 289-299. .IP [FRS8] R.J. Faudree, C.C. Rousseau and J. Sheehan, Strongly Regular Graphs and Finite Ramsey Theory, .I Linear Algebra and its Applications, .R \fB46\fP (1982) 221-241. .IP [FRS9] R.J. Faudree, C.C. Rousseau and J. Sheehan, Cycle-Book Ramsey Numbers, .I Ars Combinatoria, .R \fB31\fP (1991) 239-248. .IP [FS1] R.J. Faudree and R.H. Schelp, All Ramsey Numbers for Cycles in Graphs, .I Discrete Mathematics, .R \fB8\fP (1974) 313-329. .IP [FS2] R.J. Faudree and R.H. Schelp, Path Ramsey Numbers in Multicolorings, .I Journal of Combinatorial Theory, .R Series B, \fB19\fP (1975) 150-160. .IP [FS3] R.J. Faudree and R.H. Schelp, Ramsey Numbers for All Linear Forests, .I Discrete Mathematics, .R \fB16\fP (1976) 149-155. .IP [FS4] R.J. Faudree and R.H. Schelp, Some Problems in Ramsey Theory, in .I Theory and Applications of Graphs, .R (conference proceedings, Kalamazoo, MI 1976), Lecture Notes in Mathematics \fB642\fP, Springer, Berlin, (1978) 500-515. .IP [FSR] R.J. Faudree, R.H. Schelp and C.C. Rousseau, Generalizations of a Ramsey Result of Chv\o'a\(aa'tal, in .I Proceedings of the Fourth International Conference on the Theory and Applications of Graphs, .R (Kalamazoo, MI 1980), John Wiley & Sons, (1981) 351-361. .IP [FSS1] R.J. Faudree, R.H. Schelp and M. Simonovits, On Some Ramsey Type Problems Connected with Paths, Cycles and Trees, .I Ars Combinatoria, .R \fB29A\fP (1990) 97-106. .IP [FSS2] R.J. Faudree, A. Schelten and I. Schiermeyer, The Ramsey Number $r(C sub 7 ,^C sub 7 ,^C sub 7 )$, .I Discussiones Mathematicae Graph Theory, .R \fB23\fP (2003) 141-158. .IP [FaSi] R.J. Faudree and M. Simonovits, Ramsey Problems and Their Connection to Tur\o'a\(aa'n-Type Extremal Problems, .I Journal of Graph Theory, .R \fB16\fP (1992) 25-50. .IP [-] R.J. Faudree, see also [BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRSGJ, BEFS, BuF, BFRS, EFRS1, EFRS2, EFRS3, EFRS4, EFRS5, EFRS6, EFRS7, EFRS8, EFRS9]. .IP [FeKR]** S. Fettes, R.L. Kramer and S.P. Radziszowski, An Upper Bound of 62 on the Classical Ramsey Number $R(3,3,3,3)$, .I Ars Combinatoria, .R \fB72\fP (2004) 41-63. .IP [Ferg] D.G. Ferguson, Topics in Graph Colouring and Graph Structures, .I Ph.D. thesis, .R Department of Mathematics, London School of Economics and Political Science, London, 2013. The problems on Ramsey theory are presented also in three arXiv preprints "The Ramsey Number of Mixed-Parity Cycles I, II and III", \s-1\fHhttp://arxiv.org/abs/1508.07154, 1508.07171 and 1508.07176\fP\s0 (2015). .IP [Fid1]* R. Fidytek, Two- and Three-Color Ramsey Numbers for Paths and Cycles, .I manuscript .R (2010). .IP [Fid2]* R. Fidytek, Ramsey Graphs $R(K sub n ,^K sub m ^-^e)$, \s-1\fHhttp://fidytek.inf.ug.edu.pl/ramsey\fP\s0 (2010). .IP [-] R. Fidytek, see also [DzFi1, DzFi2]. .IP [Fi\(L/u1] A. Figaj and T. \(L/uczak, The Ramsey Number for a Triple of Long Even Cycles, .I Journal of Combinatorial Theory, .R Series B, \fB97\fP (2007) 584-596. .IP [Fi\(L/u2] A. Figaj and T. \(L/uczak, The Ramsey Numbers for a Triple of Long Cycles, .I preprint, .R arXiv, \s-1\fHhttp://front.math.ucdavis.edu/0709.0048\fP\s0 (2007). .IP [FizGM] G. Fiz Pontiveros, S. Griffiths and R. Morris, The Triangle-Free Process and $R(3,^k)$, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1302.6279\fP\s0 (2013). .IP [FizGMSS] $^$ G. Fiz Pontiveros, S. Griffiths, R. Morris, D. Saxton and J. Skokan, The Ramsey Number of the Clique and the Hypercube, .I Journal of the London Mathematical Society, .R \fB89\fP (2014) 680-702. .IP [-] G. Fiz Pontiveros, see also [GrMFSS]. .IP [Fol] J. Folkman, Notes on the Ramsey Number $N(3,3,3,3)$, .I Journal of Combinatorial Theory, .R Series A, \fB16\fP (1974) 371-379. .IP [-] N. Fountoulakis, see [CooFKO1, CooFKO2, K\o'u\(:a'CFO]. .IP [FoxSu1] J. Fox and B. Sudakov, Density Theorems for Bipartite Graphs and Related Ramsey-type Results, .I Combinatorica, .R \fB29\fP (2009) 153-196. .IP [FoxSu2] J. Fox and B. Sudakov, Two Remarks on the Burr-Erd\o'o\(hu's Conjecture, .I European Journal of Combinatorics, .R \fB30\fP (2009) 1630-1645. .IP [-] J. Fox, see also [ConFLS, ConFS1, ConFS2, ConFS3, ConFS4, ConFS5, ConFS6, ConFS7, ConFS8]. .IP [-] M. Frank, see [CodFIM]. .IP [FraWi] P. Frankl and R.M. Wilson, Intersection Theorems with Geometric Consequences, .I Combinatorica, .R \fB1\fP (1981) 357-368. .IP [Fra1] K. Fraughnaugh Jones, Independence in Graphs with Maximum Degree Four, .I Journal of Combinatorial Theory, .R Series B, \fB37\fP (1984) 254-269. .IP [Fra2] K. Fraughnaugh Jones, Size and Independence in Triangle-Free Graphs with Maximum Degree Three, .I Journal of Graph Theory, .R \fB14\fP (1990) 525-535. .IP [FrLo] K. Fraughnaugh and S.C. Locke, Finding Independent Sets in Triangle-Free Graphs, .I SIAM Journal of Discrete Mathematics, .R \fB9\fP (1996) 674-681. .IP [Fre] H. Fredricksen, Schur Numbers and the Ramsey Numbers $N(3,3,...,3^;^2)$, .I Journal of Combinatorial Theory, .R Series A, \fB27\fP (1979) 376-377. .IP [FreSw]* H. Fredricksen and M.M. Sweet, Symmetric Sum-Free Partitions and Lower Bounds for Schur Numbers, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R32, \fB7\fP (2000), 9 pages. .IP [Fuj1]* H. Fujita, Ramsey Numbers and Ramsey Graphs, website, \s-1\fHhttp://opal.inf.kyushu-u.ac.jp/~fujita/ ramsey.html\fP\s0. .IP [Fuj2] S. Fujita, Generalized Ramsey Numbers for Graphs with Three Disjoint Cycles versus a Complete Graph, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P14, \fB19\fP(2) (2012), 11 pages. .IP [-] Z. F\o'u\(:a'redi, see [AxFM, BiFJ]. .nr PS 12 .DS C \fBGa - Gr\fP .DE .nr PS 10 .IP [-] 0.65i F. Gaitan, see [RanMCG]. .IP [-] P. Garcia-V\o'a\(aa'zquez, see [BoCGR]. .IP [Gas] W. Gasarch, Applications of Ramsey Theory to Computer Science, collection of pointers to papers, \s-1\fHhttp://www.cs.umd.edu/~gasarch/TOPICS/ramsey/ramsey.html\fP\s0 (2009, 2011, 2017). .IP [GauST] S. Gautam, A.K. Srivastava and A. Tripathi, On Multicolour Noncomplete Ramsey Graphs of Star Graphs, .I Discrete Applied Mathematics, .R \fB156\fP (2008) 2423-2428. .IP [Gerb]* R. Gerbicz, New Lower Bounds for Two Color and Multicolor Ramsey Numbers, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1004.4374\fP\s0 (2010), pointed to in revision #14. Since 2015, better bounds in all cases were obtained by others. .IP [GeGy] 0.65i L. Gerencs\o'e\(aa'r and A. Gy\o'a\(aa'rf\o'a\(aa's, On Ramsey-Type Problems, .I Annales Universitatis Scientiarum Budapestinensis, E\o'o\(:a'tv\o'o\(:a's Sect. Math., .R \fB10\fP (1967) 167-170. .IP [Gi1] G. Giraud, Une g\o'e\(aa'n\o'e\(aa'ralisation des nombres et de l'in\o'e\(aa'galit\o'e\(aa' de Schur, .I C.R. Acad. Sc. Paris, .R S\o'e\(aa'ries A-B, \fB266\fP (1968) A437-A440. .IP [Gi2] G. Giraud, Minoration de certains nombres de Ramsey binaires par les nombres de Schur g\o'e\(aa'n\o'e\(aa'ralis\o'e\(aa's, .I C.R. Acad. Sc. Paris, .R S\o'e\(aa'ries A-B, \fB266\fP (1968) A481-A483. .IP [Gi3] G. Giraud, Nouvelles majorations des nombres de Ramsey binaires-bicolores, .I C.R. Acad. Sc. Paris, .R S\o'e\(aa'ries A-B, \fB268\fP (1969) A5-A7. .IP [Gi4] G. Giraud, Majoration du nombre de Ramsey ternaire-bicolore en (4,4), .I C.R. Acad. Sc. Paris, .R S\o'e\(aa'ries A-B, \fB269\fP (1969) A620-A622. .IP [Gi5] G. Giraud, Une minoration du nombre de quadrangles unicolores et son application \o'a\(ga' la majoration des nombres de Ramsey binaires-bicolores, .I C.R. Acad. Sc. Paris, .R S\o'e\(aa'ries A-B, \fB276\fP (1973) A1173-A1175. .IP [Gi6] G. Giraud, Sur le probl\o'e\(ga'me de Goodman pour les quadrangles et la majoration des nombres de Ramsey, .I Journal of Combinatorial Theory, .R Series B, \fB27\fP (1979) 237-253. .IP [-] A.M. Gleason, see [GG]. .IP [GoK] W. Goddard and D.J. Kleitman, An Upper Bound for the Ramsey Numbers $r(K sub 3 ,^G)$, .I Discrete Mathematics, .R \fB125\fP (1994) 177-182. .IP [GoR1]** J. Goedgebeur and S.P. Radziszowski, New Computational Upper Bounds for Ramsey Numbers $R(3,^k)$, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P30, \fB20\fP(1) (2013), 28 pages. .IP [GoR2]** J. Goedgebeur and S.P. Radziszowski, The Ramsey Number $R(3,^K sub 10 ^-^e)$ and Computational Bounds for $R(3,^G)$, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P19, \fB20\fP(4) (2013), 25 pages. .IP [-] J. Goedgebeur, see also [BrCGM, BrGS]. .IP [GoMC] A. Gon\o'c\(ce'alves and E.L. Monte Carmelo, Some Geometric Structures and Bounds for Ramsey Numbers, .I Discrete Mathematics, .R \fB280\fP (2004) 29-38. .IP [GoJa1] R.J. Gould and M.S. Jacobson, Bounds for the Ramsey Number of a Disconnected Graph versus Any Graph, .I Journal of Graph Theory, .R \fB6\fP (1982) 413-417. .IP [GoJa2] R.J. Gould and M.S. Jacobson, On the Ramsey Number of Trees versus Graphs with Large Clique Number, .I Journal of Graph Theory, .R \fB7\fP (1983) 71-78. .IP [-] R.J. Gould, see also [BEFRSGJ, ChGP]. .IP [-] N. Graber, see [ColGJ]. .IP [GrBu] R.L. Graham and S. Butler, Rudiments of Ramsey Theory, second edition, .I CBMS Regional Conference Series in Mathematics, .R 123, American Mathematical Society 2015. .IP [GrNe] R.L. Graham and J. Ne\o's\(be'et\o'r\(be'il, Ramsey Theory and Paul Erd\o'o\(hu's (Recent Results from a Historical Perspective), .I Bolyai Society Mathematical Studies, .R \fB11\fP, Budapest (2002) 339-365. .IP [GrR\o'o\(:a'] R.L. Graham and V. R\o'o\(:a'dl, Numbers in Ramsey Theory, in .I Surveys in Combinatorics, .R (ed. C. Whitehead), Cambridge University Press, 1987, 111-153. .IP [GRR1] R.L. Graham, V. R\o'o\(:a'dl and A. Ruci\o'n\(aa'ski, On Graphs with Linear Ramsey Numbers, .I Journal of Graph Theory, .R \fB35\fP (2000) 176-192. .IP [GRR2] R.L. Graham, V. R\o'o\(:a'dl and A. Ruci\o'n\(aa'ski, On Bipartite Graphs with Linear Ramsey Numbers, Paul Erd\o'o\(hu's and his mathematics, .I Combinatorica, .R \fB21\fP (2001) 199-209. .IP [GRS] R.L. Graham, B.L. Rothschild and J.H. Spencer, .I Ramsey Theory, .R John Wiley & Sons, second edition 1990. .IP [-] R.L. Graham, see also [ChGra1, ChGra2, ErdG]. .IP [GrY] J.E. Graver and J. Yackel, Some Graph Theoretic Results Associated with Ramsey's Theorem, .I Journal of Combinatorial Theory, .R \fB4\fP (1968) 125-175. .IP [GG] R.E. Greenwood and A.M. Gleason, Combinatorial Relations and Chromatic Graphs, .I Canadian Journal of Mathematics, .R \fB7\fP (1955) 1-7. .IP [GrH] U. Grenda and H. Harborth, The Ramsey Number $r(K sub 3 ,^K sub 7 ^-^e)$, .I Journal of Combinatorics, Information & System Sciences, .R \fB7\fP (1982) 166-169. .IP [GrMFSS] S. Griffiths, R. Morris, G. Fiz Pontiveros, D. Saxton and J. Skokan, On the Ramsey Number of the Triangle and the Cube, .I Combinatorica, .R \fB36\fP (2016) 71-89. .IP [-] S. Griffiths, see also [FizGM, FizGMSS]. .IP [Gri] J.R. Griggs, An Upper Bound on the Ramsey Numbers $R(3,k)$, .I Journal of Combinatorial Theory, .R Series A, \fB35\fP (1983) 145-153. .IP [GR]** C. Grinstead and S. Roberts, On the Ramsey Numbers $R(3,8)$ and $R(3,9)$, .I Journal of Combinatorial Theory, .R Series B, \fB33\fP (1982) 27-51. .IP [-] C. Grinstead, see also [ChGri]. .IP [Grol1] V. Grolmusz, Superpolynomial Size Set-Systems with Restricted Intersections mod 6 and Explicit Ramsey Graphs, .I Combinatorica, .R \fB20\fP (2000) 73-88. .IP [Grol2] V. Grolmusz, Low Rank Co-Diagonal Matrices and Ramsey Graphs, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R15, \fB7\fP (2000), 7 pages. .IP [Grol3] V. Grolmusz, Set-Systems with Restricted Multiple Intersections, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R8, \fB9\fP (2002), 10 pages. .IP [Gros1] J.W. Grossman, Some Ramsey Numbers of Unicyclic Graphs, .I Ars Combinatoria, .R \fB8\fP (1979) 59-63. .IP [Gros2] J.W. Grossman, The Ramsey Numbers of the Union of Two Stars, .I Utilitas Mathematica, .R \fB16\fP (1979) 271-279. .IP [GrHK] J.W. Grossman, F. Harary and M. Klawe, Generalized Ramsey Theory for Graphs, X: Double Stars, .I Discrete Mathematics, .R \fB28\fP (1979) 247-254. .IP [-] J.W. Grossman, see also [BuG]. .nr PS 12 .DS C \fBGu - Gy\fP .DE .nr PS 10 .IP [GuLi] Gu Hua and Li Yusheng, On Ramsey Number of $K sub 2,t+1 $ vs $K sub 1,n$, .I Journal of Nanjing University Mathematical Biquarterly, .R \fB19\fP (2002) 150-153. .IP [GuSL] Gu Hua, Song Hongxue and Liu Xiangyang, Ramsey Numbers $r(K sub up 10 {1,4} ,^G^)$ for All Three-Partite Graphs $G$ of Order Six, .I Journal of Southeast University, .R (English Edition), \fB20\fP (2004) 378-380. .IP [-] Gu Hua, see also [SonGQ]. .IP [GuoV] Guo Yubao and L. Volkmann, Tree-Ramsey Numbers, .I Australasian Journal of Combinatorics, .R \fB11\fP (1995) 169-175. .IP [-] L. Gupta, see [GuGS]. .IP [GuGS] S.K. Gupta, L. Gupta and A. Sudan, On Ramsey Numbers for Fan-Fan Graphs, .I Journal of Combinatorics, Information & System Sciences, .R \fB22\fP (1997) 85-93. .IP [GyLSS] A. Gy\o'a\(aa'rf\o'a\(aa's, J. Lehel, G.N. S\o'a\(aa'rk\o'o\(:a'zy and R.H. Schelp, Monochromatic Hamiltonian Berge-Cycles in Colored Complete Uniform Hypergraphs, .I Journal of Combinatorial Theory, .R Series B, \fB98\fP (2008) 342-358. .IP [GyRa] A. Gy\o'a\(aa'rf\o'a\(aa's and G. Raeisi, The Ramsey Number of Loose Triangles and Quadrangles in Hypergraphs, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P30, \fB19\fP(2) (2012), 9 pages. .IP [GyRSS] A. Gy\o'a\(aa'rf\o'a\(aa's, M. Ruszink\o'o\(aa', G.N. S\o'a\(aa'rk\o'o\(:a'zy and E. Szemer\o'e\(aa'di, Three-color Ramsey Numbers for Paths, .I Combinatorica, .R \fB27\fP (2007) 35-69. \fICorrigendum\fP in \fB28\fP (2008) 499-502. .IP [GyS\o'a\(aa'1] A. Gy\o'a\(aa'rf\o'a\(aa's and G.N. S\o'a\(aa'rk\o'o\(:a'zy, The 3-Colour Ramsey Number of a 3-Uniform Berge Cycle, .I Combinatorics, Probability and Computing, .R \fB20\fP (2011) 53-71. .IP [GyS\o'a\(aa'2] A. Gy\o'a\(aa'rf\o'a\(aa's and G.N. S\o'a\(aa'rk\o'o\(:a'zy, Star versus Two Stripes Ramsey Numbers and a Conjecture of Schelp, .I Combinatorics, Probability and Computing, .R \fB21\fP (2012) 179-186. .IP [GyS\o'a\(aa'3] A. Gy\o'a\(aa'rf\o'a\(aa's and G.N. S\o'a\(aa'rk\o'o\(:a'zy, Ramsey Number of a Connected Triangle Matching, .I Journal of Graph Theory, .R \fB83\fP (2016) 109-119. .IP [GySS1] A. Gy\o'a\(aa'rf\o'a\(aa's, G.N. S\o'a\(aa'rk\o'o\(:a'zy and E. Szemer\o'e\(aa'di, The Ramsey Number of Diamond-Matchings and Loose Cycles in Hypergraphs, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R126, \fB15\fP (2008), 14 pages. .IP [GySS2] A. Gy\o'a\(aa'rf\o'a\(aa's, G.N. S\o'a\(aa'rk\o'o\(:a'zy and E. Szemer\o'e\(aa'di, Monochromatic Hamiltonian 3-Tight Berge Cycles in 2-Colored 4-Uniform Hypergraphs, .I Journal of Graph Theory, .R \fB63\fP (2010) 288-299. .IP [GySeT] A. Gy\o'a\(aa'rf\o'a\(aa's, A. Seb\o'o\(hu' and N. Trotignon, The Chromatic Gap and Its Extremes, .I Journal of Combinatorial Theory, .R Series B, \fB102\fP (2012) 1155-1178. .IP [GyTu] A. Gy\o'a\(aa'rf\o'a\(aa's and Z. Tuza, An Upper Bound on the Ramsey Number of Trees, .I Discrete Mathematics, .R \fB66\fP (1987) 309-310. .IP [-] A. Gy\o'a\(aa'rf\o'a\(aa's, see also [AxGLM, GeGy]. .nr PS 12 .DS C \fBH\fP .DE .nr PS 10 .IP [H\o'a\(:a'g] R. H\o'a\(:a'ggkvist, On the Path-Complete Bipartite Ramsey Number, .I Discrete Mathematics, .R \fB75\fP (1989) 243-245. .IP [HagMa] Sh. Haghi and H.R. Maimani, A Note on the Ramsey Number of Even Wheels versus Stars, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1510.08488\fP\s0 (2015). .IP [-] A. Hajnal, see [ErdH]. .IP [Han]* D. Hanson, Sum-Free Sets and Ramsey Numbers, .I Discrete Mathematics, .R \fB14\fP (1976) 57-61. .IP [-] D. Hanson, see also [AbbH]. .IP [Hans] M. Hansson, On Generalized Ramsey Numbers for Two Sets of Cycles, .I Sj\o'a\(:a'lvst\o'a\(:a'ndiga Arbeten i Matematik, .R Matematiska Institutionen, Stockholms Universitet, \fB28\fP (2012). The results are presented also in an arXiv preprint \s-1\fHhttp://arxiv.org/abs/1605.04301\fP\s0 (2016). .IP [Har1] F. Harary, Recent Results on Generalized Ramsey Theory for Graphs, in .I Graph Theory and Applications, .R (Y. Alavi et al. eds.) Springer, Berlin (1972) 125-138. .IP [Har2] F. Harary, Generalized Ramsey Theory I to XIII: Achievement and Avoidance Numbers, in .I Proceedings of the Fourth International Conference on the Theory and Applications of Graphs, .R (Kalamazoo, MI 1980), John Wiley & Sons, (1981) 373-390. .IP [-] F. Harary, see also [ChH1, ChH2, ChH3, GrHK]. .IP [HaKr1]** H. Harborth and S. Krause, Ramsey Numbers for Circulant Colorings, .I Congressus Numerantium, .R \fB161\fP (2003) 139-150. .IP [HaKr2]** H. Harborth and S. Krause, Distance Ramsey Numbers, .I Utilitas Mathematica, .R \fB70\fP (2006) 197-200. .IP [HaMe1] H. Harborth and I. Mengersen, An Upper Bound for the Ramsey Number $r(K sub 5 ^-^e)$, .I Journal of Graph Theory, .R \fB9\fP (1985) 483-485. .IP [HaMe2] H. Harborth and I. Mengersen, All Ramsey Numbers for Five Vertices and Seven or Eight Edges, .I Discrete Mathematics, .R \fB73\fP (1988/89) 91-98. .IP [HaMe3] H. Harborth and I. Mengersen, The Ramsey Number of $K sub 3,3$, in .I Combinatorics, Graph Theory, and Applications, .R Vol. \fB2\fP (Y. Alavi, G. Chartrand, O.R. Oellermann and J. Schwenk eds.), John Wiley & Sons, (1991) 639-644. .IP [-] H. Harborth, see also [BoH, ClEHMS, EHM1, EHM2, GrH]. .IP [HaMe4] M. Harborth and I. Mengersen, Some Ramsey Numbers for Complete Bipartite Graphs, .I Australasian Journal of Combinatorics, .R \fB13\fP (1996) 119-128. .IP [-] T. Harmuth, see [BrBH1, BrBH2]. .IP [Has] Hasmawati, The Ramsey Numbers for Disjoint Union of Stars, .I Journal of the Indonesian Mathematical Society, .R \fB16\fP (2010) 133-138. .IP [HaABS] Hasmawati, H. Assiyatun, E.T. Baskoro and A.N.M. Salman, Ramsey Numbers on a Union of Identical Stars versus a Small Cycle, in Computational Geometry and Graph Theory, Kyoto CGGT 2007, .I LNCS .R 4535, Springer, Berlin (2008) 85-89. .IP [HaBA1] Hasmawati, E.T. Baskoro and H. Assiyatun, Star-Wheel Ramsey Numbers, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB55\fP (2005) 123-128. .IP [HaBA2] Hasmawati, E.T. Baskoro and H. Assiyatun, The Ramsey Numbers for Disjoint Unions of Graphs, .I Discrete Mathematics, .R \fB308\fP (2008) 2046-2049. .IP [-] Hasmawati, see also [BaHA]. .IP [Ha\(L/P1+] P.E. Haxell, T. \(L/uczak, Y. Peng, V. R\o'o\(:a'dl, A. Ruci\o'n\(aa'ski, M. Simonovits and J. Skokan, The Ramsey Number for Hypergraph Cycles I, .I Journal of Combinatorial Theory, .R Series A, \fB113\fP (2006) 67-83. .IP [Ha\(L/P2+] P.E. Haxell, T. \(L/uczak, Y. Peng, V. R\o'o\(:a'dl, A. Ruci\o'n\(aa'ski and J. Skokan, The Ramsey Number for 3-Uniform Tight Hypergraph Cycles, .I Combinatorics, Probability and Computing, .R \fB18\fP (2009) 165-203. .IP [Ha\(L/T] P.E. Haxell, T. \(L/uczak and P.W. Tingley, Ramsey Numbers for Trees of Small Maximum Degree, .I Combinatorica, .R \fB22\fP (2002) 287-320. .IP [HeLD]* Changxiang He, Yusheng Li and Lin Dong, Three-Color Ramsey Numbers of $K sub n$ Dropping an Edge, .I Graphs and Combinatorics, .R \fB28\fP (2012) 663-669. .IP [Hein] K. Heinrich, Proper Colourings of $K sub 15$, .I Journal of the Australian Mathematical Society, .R Series A, \fB24\fP (1977) 465-495. .IP [He1] G.R.T. Hendry, Diagonal Ramsey Numbers for Graphs with Seven Edges, .I Utilitas Mathematica, .R \fB32\fP (1987) 11-34. .IP [He2] G.R.T. Hendry, Ramsey Numbers for Graphs with Five Vertices, .I Journal of Graph Theory, .R \fB13\fP (1989) 245-248. .IP [He3] G.R.T. Hendry, The Ramsey Numbers $r(K sub 2 ^+^K bar sub 3 ,^K sub 4 )$ and $r(K sub 1 ^+^C sub 4 ,^K sub 4 )$, .I Utilitas Mathematica, .R \fB35\fP (1989) 40-54, addendum in \fB36\fP (1989) 25-32. .IP [He4] G.R.T. Hendry, Critical Colorings for Clancy's Ramsey Numbers, .I Utilitas Mathematica, .R \fB41\fP (1992) 181-203. .IP [He5] G.R.T. Hendry, Small Ramsey Numbers II. Critical Colorings for $r(C sub 5 ^+^e,^K sub 5 )$, .I Quaestiones Mathematica, .R \fB17\fP (1994) 249-258. .IP [-] G.R.T. Hendry, see also [YH]. .IP [HiIr]* R. Hill and R.W. Irving, On Group Partitions Associated with Lower Bounds for Symmetric Ramsey Numbers, .I European Journal of Combinatorics, .R \fB3\fP (1982) 35-50. .IP [-] J. Hiller, see [BudHLS, BudHR]. .IP [Hir] J. Hirschfeld, A Lower Bound for Ramsey's Theorem, .I Discrete Mathematics, .R \fB32\fP (1980) 89-91. .IP [Ho] Pak Tung Ho, On Ramsey Unsaturated and Saturated Graphs, .I Australasian Journal of Combinatorics, .R \fB46\fP (2010) 13-18. .IP [HoMe] M. Hoeth and I. Mengersen, Ramsey Numbers for Graphs of Order Four versus Connected Graphs of Order Six, .I Utilitas Mathematica, .R \fB57\fP (2000) 3-19. .IP [-] P. Holub, see [LiZBBH]. .IP [-] N. Hommowun, see [AlmHS]. .IP [Hook] J. Hook, Critical Graphs for $R(P sub n ,^P sub m )$ and the Star-Critical Ramsey Number for Paths, .I Discussiones Mathematicae Graph Theory, .R \fB35\fP (2015) 689-701. .IP [HoIs] J. Hook and G. Isaak, Star-Critical Ramsey Numbers, .I Discrete Applied Mathematics, .R \fB159\fP (2011) 328-334. .IP [HuSo] Huang Da Ming and Song En Min, Properties and Lower Bounds of the Third Order Ramsey Numbers (in Chinese), .I Mathematica Applicata, .R \fB9\fP (1996) 105-107. .IP [Hua1] Huang Guotai, Some Generalized Ramsey Numbers (in Chinese), .I Mathematica Applicata, .R \fB1\fP (1988) 97-101. .IP [Hua2] Huang Guotai, An Unsolved Problem of Gould and Jacobson (in Chinese), .I Mathematica Applicata, .R \fB9\fP (1996) 234-236. .IP [-] Huang Jian, see [HTHZ1, HTHZ2, HWSYZH]. .IP [-] Huang Wenke, see [DuHu]. .IP [HTHZ1] (also abbreviated as HT+) Yiru Huang, Fuping Tan, Jian Huang and Kemin Zhang, New Upper Bounds for Ramsey Number $R(K sub m ^-^e,^K sub n ^-^e)$, .I manuscript .R (2016). .IP [HTHZ2] Huang Yiru, Tan Fuping, Huang Jian and Zhang Chaohui, On the Upper Bounds Formulas of Multicolored Ramsey Number (in Chinese), .I Journal of Jishou University, .R Natural Science Edition, \fB38\fP (2017) 1-6. .IP [HWSYZH] $^$ (also abbreviated as HW+) Huang Yi Ru, Wang Yuandi, Sheng Wancheng, Yang Jiansheng, Zhang Ke Min and Huang Jian, New Upper Bound Formulas with Parameters for Ramsey Numbers, .I Discrete Mathematics, .R \fB307\fP (2007) 760-763. .IP [HZ1] Huang Yi Ru and Zhang Ke Min, A New Upper Bound Formula on Ramsey Numbers, .I Journal of Shanghai University, Natural Science, .R \fB7\fP (1993) 1-3. .IP [HZ2] Huang Yi Ru and Zhang Ke Min, An New Upper Bound Formula for Two Color Classical Ramsey Numbers, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB28\fP (1998) 347-350. .IP [HZ3] Huang Yi Ru and Zhang Ke Min, New Upper Bounds for Ramsey Numbers, .I European Journal of Combinatorics, .R \fB19\fP (1998) 391-394. .IP [-] Huang Yi Ru, see also [BolJY+, YHZ1, YHZ2]. .nr PS 12 .DS C \fBI\fP .DE .nr PS 10 .IP [Ir] R.W. Irving, Generalised Ramsey Numbers for Small Graphs, .I Discrete Mathematics, .R \fB9\fP (1974) 251-264. .IP [-] R.W. Irving, see also [HiIr]. .IP [-] G. Isaak, see [HoIs]. .IP [Isb1] J.R. Isbell, $N(4,4^;^3)^>=^13$, .I Journal of Combinatorial Theory, .R \fB6\fP (1969) 210. .IP [Isb2] J.R. Isbell, $N(5,4^;^3)^>=^24$, .I Journal of Combinatorial Theory, .R Series A, \fB34\fP (1983) 379-380. .IP [Ishi] Y. Ishigami, Linear Ramsey Numbers for Bounded-Degree Hypergraphs, .I Electronic Notes in Discrete Mathematics, .R \fB29\fP (2007) 47-51. .IP [-] A. Itzhakov, see [CodFIM]. .nr PS 12 .DS C \fBJ\fP .DE .nr PS 10 .IP [Jack] E. Jackowska, The 3-Color Ramsey Number for a 3-Uniform Loose Path of Length 3, .I Australasian Journal of Combinatorics, .R \fB63\fP (2015) 314-320. .IP [JacPR] E. Jackowska, J. Polcyn and A. Ruci\o'n\(aa'ski, Multicolor Ramsey Numbers and Restricted Tur\o'a\(aa'n Numbers for the Loose 3-Uniform Path of Length Three, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/ 1507.04336\fP\s0 (2015). .IP [Jaco] M.S. Jacobson, On the Ramsey Number for Stars and a Complete Graph, .I Ars Combinatoria, .R \fB17\fP (1984) 167-172. .IP [-] M.S. Jacobson, see also [BEFRSGJ, GoJa1, GoJa2]. .IP [-] S. Jahanbekam, see [BiFJ]. .IP [JaAl1] M.M.M. Jaradat and B.M.N. Alzaleq, The Cycle-Complete Graph Ramsey Number $r(C sub 8 ,^K sub 8 )$, .I SUT Journal of Mathematics, .R \fB43\fP (2007) 85-98. .IP [JaAl2] M.M.M. Jaradat and B.M.N. Alzaleq, Cycle-Complete Graph Ramsey Numbers $r(C sub 4 ,^K sub 9 )$, $r(C sub 5 ,^K sub 8 ) ~<=~33$, .I International Journal of Mathematical Combinatorics, .R \fB1\fP (2009) 42-45. .IP [JaBa] M.M.M. Jaradat and A.M.M. Baniabedalruhman, The Cycle-Complete Graph Ramsey Number $r(C sub 8 ,^K sub 7 )$, .I International Journal of Pure and Applied Mathematics, .R \fB41\fP (2007) 667-677. .IP [-] M.M.M. Jaradat, see also [BatJA]. .IP [-] I. Javaid, see [AliTJ]. .IP [JR1] C.J. Jayawardene and C.C. Rousseau, An Upper Bound for the Ramsey Number of a Quadrilateral versus a Complete Graph on Seven Vertices, .I Congressus Numerantium, .R \fB130\fP (1998) 175-188. .IP [JR2] C.J. Jayawardene and C.C. Rousseau, Ramsey Numbers $r(C sub 6 ,^G)$ for All Graphs $G$ of Order Less than Six, .I Congressus Numerantium, .R \fB136\fP (1999) 147-159. .IP [JR3] C.J. Jayawardene and C.C. Rousseau, The Ramsey Numbers for a Quadrilateral vs. All Graphs on Six Vertices, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB35\fP (2000) 71-87. Erratum in \fB51\fP (2004) 221. Erratum by L. Boza in \fB89\fP (2014) 155-156. .IP [JR4] C.J. Jayawardene and C.C. Rousseau, Ramsey Numbers $r(C sub 5 ,^G)$ for All Graphs $G$ of Order Six, .I Ars Combinatoria, .R \fB57\fP (2000) 163-173. .IP [JR5] C.J. Jayawardene and C.C. Rousseau, The Ramsey Number for a Cycle of Length Five vs. a Complete Graph of Order Six, .I Journal of Graph Theory, .R \fB35\fP (2000) 99-108. .IP [-] C.J. Jayawardene, see also [BolJY+, RoJa1, RoJa2]. .IP [JenSk] M. Jenssen and J. Skokan, Exact Ramsey Numbers of Odd Cycles via Nonlinear Optimisation, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1608.05705\fP\s0 (2016). .IP [-] M. Jenssen, see also [DavJR]. .IP [-] Jiang Baoqi, see [SunYJLS]. .IP [JiSa] Tao Jiang and M. Salerno, Ramsey Numbers of Some Bipartite Graphs versus Complete Graphs, .I Graphs and Combinatorics, .R \fB27\fP (2011) 121-128. .IP [-] Tao Jiang, see also [ColGJ]. .IP [Jin]** Jin Xia, Ramsey Numbers Involving a Triangle: Theory & Applications, .I Technical Report RIT-TR-93-019, .R MS thesis, Department of Computer Science, Rochester Institute of Technology, 1993. .IP [-] Jin Xia, see also [RaJi]. .IP [-] J.R. Johnson, see [DayJ]. .IP [JoPe] K. Johst and Y. Person, On the Multicolor Ramsey Number of a Graph with $m$ Edges, .I Discrete Mathematics, .R \fB339\fP (2016) 2857-2860. .IP [JGT] .I Journal of Graph Theory, .R special volume on Ramsey theory, \fB7\fP, Number 1, (1983). .nr PS 12 .DS C \fBK\fP .DE .nr PS 10 .IP [Ka1] 0.65i J.G. Kalbfleisch, Construction of Special Edge-Chromatic Graphs, .I Canadian Mathematical Bulletin, .R \fB8\fP (1965) 575-584. .IP [Ka2]* J.G. Kalbfleisch, Chromatic Graphs and Ramsey's Theorem, .I Ph.D. thesis, .R University of Waterloo, January 1966. .IP [Ka3] J.G. Kalbfleisch, On Robillard's Bounds for Ramsey Numbers, .I Canadian Mathematical Bulletin, .R \fB14\fP (1971) 437-440. .IP [KaSt] J.G. Kalbfleisch and R.G. Stanton, On the Maximal Triangle-Free Edge-Chromatic Graphs in Three Colors, .I Journal of Combinatorial Theory, .R \fB5\fP (1968) 9-20. .IP [K\o'a\(aa'Ros] G. K\o'a\(aa'rolyi and V. Rosta, Generalized and Geometric Ramsey Numbers for Cycles, .I Theoretical Computer Science, .R \fB263\fP (2001) 87-98. .IP [-] P. Keevash, see [BohK1, BohK2]. .IP [KerRo] M. Kerber and C. Rowan, CommonLisp program for computing upper bounds on classical Ramsey numbers, \s-1\fHhttp://www.cs.bham.ac.uk/~mmk/demos/ramsey-upper-limit.lisp\fP\s0 (2009). .IP [K\o'e\(aa'ry] G. K\o'e\(aa'ry, On a Theorem of Ramsey (in Hungarian), .I Matematikai Lapok, .R \fB15\fP (1964) 204-224. .IP [Kim] J.H. Kim, The Ramsey Number $R(3,^t)$ Has Order of Magnitude $t sup 2 /^log^t$, .I Random Structures and Algorithms, .R \fB7\fP (1995) 173-207. .IP [KlaM1] K. Klamroth and I. Mengersen, Ramsey Numbers of $K sub 3$ versus $(p,^q)$-Graphs, .I Ars Combinatoria, .R \fB43\fP (1996) 107-120. .IP [KlaM2] K. Klamroth and I. Mengersen, The Ramsey Number of $r(K sub 1,3 ,^C sub 4 ,^K sub 4 ^)$, .I Utilitas Mathematica, .R \fB52\fP (1997) 65-81. .IP [-] K. Klamroth, see also [ArKM]. .IP [-] M. Klawe, see [GrHK]. .IP [-] D.J. Kleitman, see [GoK]. .IP [KoSS1] Y. Kohayakawa, M. Simonovits and J. Skokan, The 3-colored Ramsey Number of Odd Cycles, .I Electronic Notes in Discrete Mathematics, .R \fB19\fP (2005) 397-402. .IP [KoSS2] Y. Kohayakawa, M. Simonovits and J. Skokan, The 3-colored Ramsey Number of Odd Cycles, to appear in .I Journal of Combinatorial Theory, .R Series B (2013). .IP [K\o'o\(:a'h] W. K\o'o\(:a'hler, On a Conjecture by Grossman, .I Ars Combinatoria, .R \fB23\fP (1987) 103-106. .IP [-] J. Koml\o'o\(aa's, see [CsKo, AjKS, AjKSS]. .IP [Kol1]* M. Kolodyazhny, Novye Nizhnie Granitsy Chisel Ramseya $R(3,^12)$ i $R(3,^13)$ (in Russian), .I Matematicheskoye i Informacionnoe Modelirovanie, .R Tyumen, \fB14\fP (2015) 126-130. .IP [Kol2]* M. Kolodyazhny, graphs available at \s-1\fHhttp://aluarium.net/forum/wiki-article-17.html\fP\s0, .I personal communication .R (2016). .IP [Kor] A. Korolova, Ramsey Numbers of Stars versus Wheels of Similar Sizes, .I Discrete Mathematics, .R \fB292\fP (2005) 107-117. .IP [KosMV1] $^$A. Kostochka, D. Mubayi and J. Verstra\o'e\(:a'te, On Independent Sets in Hypergraphs, .I Random Structures and Algorithms, .R \fB44\fP (2014) 224-239. .IP [KosMV2] $^$A. Kostochka, D. Mubayi and J. Verstra\o'e\(:a'te, Hypergraph Ramsey Numbers: Triangles versus Cliques, .I Journal of Combinatorial Theory, .R Series A, \fB120\fP (2013) 1491-1507. .IP [KosPR] A. Kostochka, P. Pudl\o'a\(aa'k and V. R\o'o\(:a'dl, Some Constructive Bounds on Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series B, \fB100\fP (2010) 439-445. .IP [KoR\o'o\(:a'1] A.V. Kostochka and V. R\o'o\(:a'dl, On Graphs with Small Ramsey Numbers, .I Journal of Graph Theory, .R \fB37\fP (2001) 198-204. .IP [KoR\o'o\(:a'2] A.V. Kostochka and V. R\o'o\(:a'dl, On Graphs with Small Ramsey Numbers, II, .I Combinatorica, .R \fB24\fP (2004) 389-401. .IP [KoR\o'o\(:a'3] A.V. Kostochka and V. R\o'o\(:a'dl, On Ramsey Numbers of Uniform Hypergraphs with Given Maximum Degree, .I Journal of Combinatorial Theory, .R Series A, \fB113\fP (2006) 1555-1564. .IP [KoSu] A.V. Kostochka and B. Sudakov, On Ramsey Numbers of Sparse Graphs, .I Combinatorics, Probability and Computing, .R \fB12\fP (2003) 627-641. .IP [-] R.L. Kramer, see [FeKR]. .IP [KrRod] I. Krasikov and Y. Roditty, On Some Ramsey Numbers of Unicyclic Graphs, .I Bulletin of the Institute of Combinatorics and its Applications, .R \fB33\fP (2001) 29-34. .IP [-] S. Krause, see [HaKr1, HaKr2]. .IP [KrLR]* D.L. Kreher, Wei Li and S. Radziszowski, Lower Bounds for Multicolor Ramsey Numbers from Group Orbits, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB4\fP (1988) 87-95. .IP [-] D.L. Kreher, see also [RaK1, RaK2, RaK3, RaK4]. .IP [Kriv] M. Krivelevich, Bounding Ramsey Numbers through Large Deviation Inequalities, .I Random Structures and Algorithms, .R \fB7\fP (1995) 145-155. .IP [-] M. Krivelevich, see also [AlBK, AlKS]. .IP [KroMe] M. Krone and I. Mengersen, The Ramsey Numbers $r(K sub 5 ^-^2K sub 2 ,^2K sub 3 )$, $r(K sub 5 ^-^e ,^2K sub 3 )$ and $r(K sub 5 ,^2K sub 3 )$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB81\fP (2012) 257-260. .IP [-] M. Kubale, see [DzKP]. .IP [K\o'u\(:a'CFO] D. K\o'u\(:a'hn, O. Cooley, N. Fountoulakis and D. Osthus, Ramsey Numbers of Sparse Hypergraphs, .I Electronic Notes in Discrete Mathematics, .R \fB29\fP (2007) 29-33. .IP [-] D. K\o'u\(:a'hn, see also [CooFKO1, CooFKO2]. .IP [Kuz]* E. Kuznetsov, Computational Lower Limits on Small Ramsey Numbers, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1505.07186\fP\s0 (2016). .nr PS 12 .DS C \fBLa - Le\fP .DE .nr PS 10 .IP [LaLR]** A. Lange, I. Livinsky and S.P. Radziszowski, $~$Computation of $~$the Ramsey $~$Numbers $~R(C sub 4 ,^K sub 9 )$ and $R(C sub 4 ,^K sub 10 )$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB97\fP (2016) 139-154. .IP [-] P.C.B. Lam, see [ShiuLL]. .IP [-] J. Lambert, see [BudHLS]. .IP [La1] S.L. Lawrence, Cycle-Star Ramsey Numbers, .I Notices of the American Mathematical Society, .R \fB20\fP (1973) Abstract A-420. .IP [La2] S.L. Lawrence, Bipartite Ramsey Theory, .I Notices of the American Mathematical Society, .R \fB20\fP (1973) Abstract A-562. .IP [-] S.L. Lawrence, see also [FLPS]. .IP [LayMa] C. Laywine and J.P. Mayberry, A Simple Construction Giving the Two Non-isomorphic Triangle-Free 3-Colored $K sub 16$'s, .I Journal of Combinatorial Theory, .R Series B, \fB45\fP (1988) 120-124. .IP [LaMu] F. Lazebnik and D. Mubayi, New Lower Bounds for Ramsey Numbers of Graphs and Hypergraphs, .I Advances in Applied Mathematics, .R \fB28\fP (2002) 544-559. .IP [LaWo1] F. Lazebnik and A. Woldar, New Lower Bounds on the Multicolor Ramsey Numbers $r sub k (C sub 4 ^)$, .I Journal of Combinatorial Theory, .R Series B, \fB79\fP (2000) 172-176. .R .IP [LaWo2] F. Lazebnik and A. Woldar, General Properties of Some Families of Graphs Defined by Systems of Equations, .I Journal of Graph Theory, .R \fB38\fP (2001) 65-86. .IP [Lee] Choongbum Lee, Ramsey Numbers of Degenerate Graphs, to appear in .I Annals of Mathematics, .R preprint on arXiv, \s-1\fHhttp://arxiv.org/abs/1505.04773\fP\s0 (2016). .IP [-] Choongbum Lee, see also [ConFLS]. .IP [Lef] H. Lefmann, Ramsey Numbers for Monotone Paths and Cycles, .I Ars Combinatoria, .R \fB35\fP (1993) 271-279. .IP [-] H. Lefmann, see also [DuLR]. .IP [-] J. Lehel, see [BaLS, GyLSS]. .IP [LeMu] J. Lenz and D. Mubayi, Multicolor Ramsey Numbers for Complete Bipartite versus Complete Graphs, .I Journal of Graph Theory, .R \fB77\fP (2014) 19-38. .IP [Les]* A. Lesser, Theoretical and Computational Aspects of Ramsey Theory, .I Examensarbeten i Matematik, .R Matematiska Institutionen, Stockholms Universitet, \fB3\fP (2001). .IP [-] D. Leven, see [BlLR]. .nr PS 12 .DS C \fBLi\fP .DE .nr PS 10 .IP [-] Li Bingxi, see [SunYWLX, SunYXL]. .IP [LiBie] Binlong Li and H. Bielak, On the Ramsey-Goodness of Paths, .I Graphs and Combinatorics, .R \fB32\fP (2016) 2541-2549. .IP [LiNing1] Binlong Li and Bo Ning, On Path-Quasar Ramsey Numbers, .I Annales Universitatis Mariae Curie-Sk\(l/odowska Lublin-Polonia, .R Sectio A, \fBLXVIII\fP (2014) 11-17. .IP [LiNing2] Binlong Li and Bo Ning, The Ramsey Numbers of Paths versus Wheels: a Complete Solution, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P4.41, \fB21\fP(4) (2014), 30 pages. .IP [LiSch] Binlong Li and I. Schiermeyer, On Star-Wheel Ramsey Numbers, .I Graphs and Combinatorics, .R \fB32\fP (2016) 733-739. .IP [LiZBBH] Binlong Li, Yanbo Zhang, H. Bielak, H. Broersma and P. Holub, Closing the Gap on Path-Kipas Ramsey Numbers, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P3.21, \fB22\fP(3) (2015), 7 pages. .IP [LiZB] Binlong Li, Yanbo Zhang and H. Broersma, An Exact Formula for All Star-Kipas Ramsey Numbers, .I Graphs and Combinatorics, .R \fB33\fP (2017) 141-148. .IP [LiWa1] Li Da Yong and Wang Zhi Jian, The Ramsey Number $r(mC sub 4 ,^nC sub 4 ^)$ (in Chinese), .I Journal of Shanghai Tiedao University, .R \fB20\fP (1999) 66-70, 83. .IP [LiWa2] Li Da Yong and Wang Zhi Jian, The Ramsey Numbers $r(mC sub 4 ,^nC sub 5 ^)$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB45\fP (2003) 245-252. .IP [-] Dongxin Li, see [ZhuZL]. .IP [-] Li Guiqing, see [SLLL, SLZL]. .IP [LiLi]* Li Mingbo and Li Yusheng, Ramsey Numbers and Triangle-Free Cayley Graphs (in Chinese), .I Journal of Tongji University (Natural Science), .R Shanghai, \fB43\fP(11) (2015) 1750-1752. .IP [-] Li Jinwen, see [ZLLS]. .IP [LiSLW]* Li Qiao, Su Wenlong, Luo Haipeng and Wu Kang, Lower Bounds for Some Two-Color Ramsey Numbers, .I manuscript .R (2011). By 2016, the results there have been improved by others. .IP [-] Li Qiao, see also [SuLL, SLLL]. .IP [-] Wei Li, see [KrLR]. .IP [Li1] Li Yusheng, Some Ramsey Numbers of Graphs with Bridge, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB25\fP (1997) 225-229. .IP [Li2] Li Yusheng, The Shannon Capacity of a Communication Channel, Graph Ramsey Number and a Conjecture of Erd\o'o\(hu's, .I Chinese Science Bulletin, .R \fB46\fP (2001) 2025-2028. .IP [Li3] Yusheng Li, Ramsey Numbers of a Cycle, .I Taiwanese Journal of Mathematics, .R \fB12\fP (2008) 1007-1013. .IP [Li4] Yusheng Li, The Multi-Color Ramsey Number of an Odd Cycle, .I Journal of Graph Theory, .R \fB62\fP (2009) 324-328. .IP [LiLih] Yusheng Li and Ko-Wei Lih, Multi-Color Ramsey Numbers of Even Cycles, .I European Journal of Combinatorics, .R \fB30\fP (2009) 114-118. .IP [LiR1] Li Yusheng and C.C. Rousseau, On Book-Complete Graph Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series B, \fB68\fP (1996) 36-44. .IP [LiR2] Li Yusheng and C.C. Rousseau, Fan-Complete Graph Ramsey Numbers, .I Journal of Graph Theory, .R \fB23\fP (1996) 413-420. .IP [LiR3] Li Yusheng and C.C. Rousseau, On the Ramsey Number $r(H^+^K bar sub n ,^K sub n )$, .I Discrete Mathematics, .R \fB170\fP (1997) 265-267. .IP [LiR4] Li Yusheng and C.C. Rousseau, A Ramsey Goodness Result for Graphs with Many Pendant Edges, .I Ars Combinatoria, .R \fB49\fP (1998) 315-318. .IP [LiRS] Li Yusheng, C.C. Rousseau and L. Solt\o'e\(aa's, Ramsey Linear Families and Generalized Subdivided Graphs, .I Discrete Mathematics, .R \fB170\fP (1997) 269-275. .IP [LiRZ1] Li Yusheng, C.C. Rousseau and Zang Wenan, Asymptotic Upper Bounds for Ramsey Functions, .I Graphs and Combinatorics, .R \fB17\fP (2001) 123-128. .IP [LiRZ2] Li Yusheng, C.C. Rousseau and Zang Wenan, An Upper Bound on Ramsey Numbers, .I Applied Mathematics Letters, .R \fB17\fP (2004) 663-665. .IP [LiShen] Yusheng Li and Jian Shen, Bounds for Ramsey Numbers of Complete Graphs Dropping an Edge, .I European Journal of Combinatorics, .R \fB29\fP (2008) 88-94. .IP [LiTZ] Li Yusheng, Tang Xueqing and Zang Wenan, Ramsey Functions Involving $K sub m,n ^$ with $n$ Large, .I Discrete Mathematics, .R \fB300\fP (2005) 120-128. .IP [LiZa1] Li Yusheng and Zang Wenan, Ramsey Numbers Involving Large Dense Graphs and Bipartite Tur\o'a\(aa'n Numbers, .I Journal of Combinatorial Theory, .R Series B, \fB87\fP (2003) 280-288. .IP [LiZa2] Li Yusheng and Zang Wenan, The Independence Number of Graphs with a Forbidden Cycle and Ramsey Numbers, .I Journal of Combinatorial Optimization, .R \fB7\fP (2003) 353-359. .IP [-] Li Yusheng, see also [BaiLi, BaLX, CaLRZ, Doli, DoLL1, DoLL2, GuLi, HeLD, LiLi, LinLi1, LinLi2, LinLD, LinLS, LiuLi, PeiLi, ShiuLL, SonLi, SunLi, WaLi, YuLi]. .IP [-] Li Zhenchong, see [LuSL, LuLL]. .IP [-] Meilian Liang, see [LuLL]. .IP [LiaWXS]* $~^$Wenzhong Liang, Kang Wu, Xiaodong Xu and Wenlong Su, New Lower Bounds for Seven Classical Ramsey Numbers, .I in preparation, .R (2011). .IP [LiaWXCS]* 0.69i $~$ Liang Wenzhong, Wu Kang, Xu Chengzhang, Chen Hong and Su Wenlong, Using the Two Stage Automorphism of Paley to Calculate the Lower Bound of Ramsey, .I Journal of Inner Mongolia Normal University, .R \fB41\fP (2012) 591-596. .IP [-] A. Liebenau, see [BlLi]. .IP [-] Ko-Wei Lih, see [LiLih]. .IP [LinCh] Qizhong Lin and Weiji Chen, A Note on the Upper Bound for Multi-Color Ramsey Number of Odd Cycles, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1506.04348\fP\s0 (2015). .IP [LinLi1] Qizhong Lin and Yusheng Li, On Ramsey Numbers of Fans, .I Discrete Applied Mathematics, .R \fB157\fP (2009) 191-194. .IP [LinLi2] Qizhong Lin and Yusheng Li, Ramsey Numbers of $K sub 3$ and $K sub n,n$, .I Applied Mathematics Letters, .R \fB25\fP (2012) 380-384. .IP [LinLD] Qizhong Lin, Yusheng Li and Lin Dong, Ramsey Goodness and Generalized Stars, .I European Journal of Combinatorics, .R \fB31\fP (2010) 1228-1234. .IP [LinLS]* Qizhong Lin, Yusheng Li and Jian Shen, Lower Bounds for $r sub 2 ^(K sub 1^+^G)$ and $r sub 3 (K sub 1^+^G)$ from Paley Graph and Generalization, .I European Journal of Combinatorics, .R \fB40\fP (2014) 65-72. .IP [-] Qizhong Lin, see also [DoLL1, DoLL2]. .IP [-] Lin Xiaohui, see [SunYJLS, SunYLZ1, SunYLZ2]. .IP [LinCa]* M. Lindsay and J.W. Cain, Improved Lower Bounds on the Classical Ramsey Numbers $R(4,^22)$ and $R(4,^25)$, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1510.06102\fP\s0 (2015). .IP [Lind] B. Lindstr\o'o\(:a'm, Undecided Ramsey-Numbers for Paths, .I Discrete Mathematics, .R \fB43\fP (1983) 111-112. .IP [Ling] A.C.H. Ling, Some Applications of Combinatorial Designs to Extremal Graph Theory, .I Ars Combinatoria, .R \fB67\fP (2003) 221-229. .IP [-] Andy Liu, see [AbbL]. .IP [-] Hong Liu, see [AxGLM]. .IP [-] Liu Linzhong, see [ZLLS]. .IP [LiuLi] Meng Liu and Yusheng Li, Ramsey Numbers of a Fixed Odd-Cycle and Generalized Books and Fans, .I Discrete Mathematics, .R \fB339\fP (2016) 2481-2489. .IP [-] Liu Shu Yan, see [SonBL]. .IP [-] Liu Xiangyang, see [GuSL]. .IP [-] Liu Yanwu, see [SonYL]. .IP [-] I. Livinsky, see [LaLR]. .nr PS 12 .DS C \fBLo - Lu\fP .DE .nr PS 10 .IP [Loc] S.C. Locke, Bipartite Density and the Independence Ratio, .I Journal of Graph Theory, .R \fB10\fP (1986) 47-53. .IP [-] S.C. Locke, see also [FrLo]. .IP [Lor] P.J. Lorimer, The Ramsey Numbers for Stripes and One Complete Graph, .I Journal of Graph Theory, .R \fB8\fP (1984) 177-184. .IP [LorMu] P.J. Lorimer and P.R. Mullins, Ramsey Numbers for Quadrangles and Triangles, .I Journal of Combinatorial Theory, .R Series B, \fB23\fP (1977) 262-265. .IP [LorSe] P.J. Lorimer and R.J. Segedin, Ramsey Numbers for Multiple Copies of Complete Graphs, .I Journal of Graph Theory, .R \fB2\fP (1978) 89-91. .IP [LorSo] P.J. Lorimer and W. Solomon, The Ramsey Numbers for Stripes and Complete Graphs 1, .I Discrete Mathematics, .R \fB104\fP (1992) 91-97. Corrigendum in .I Discrete Mathematics, .R \fB131\fP (1994) 395. .IP [-] P.J. Lorimer, see also [CocL1, CocL2]. .IP [Lortz] R. Lortz, A Note on the Ramsey Number of $K sub 2,2$ versus $K sub 3,n$, .I Discrete Mathematics, .R \fB306\fP (2006) 2976-2982. .IP [LoM1] R. Lortz and I. Mengersen, On the Ramsey Numbers $r(K sub {2,n^-^1},^K sub {2,n})$ and $r(K sub {2,n},^K sub {2,n})$, .I Utilitas Mathematica, .R \fB61\fP (2002) 87-95. .IP [LoM2] R. Lortz and I. Mengersen, Bounds on Ramsey Numbers of Certain Complete Bipartite Graphs, .I Results in Mathematics, .R \fB41\fP (2002) 140-149. .IP [LoM3]* R. Lortz and I. Mengersen, Off-Diagonal and Asymptotic Results on the Ramsey Number $r(K sub {2,m},^K sub {2,n})$, .I Journal of Graph Theory, .R \fB43\fP (2003) 252-268. .IP [LoM4]* R. Lortz and I. Mengersen, Further Ramsey Numbers for Small Complete Bipartite Graphs, .I Ars Combinatoria, .R \fB79\fP (2006) 195-203. .IP [LoM5] R. Lortz and I. Mengersen, Ramsey Numbers for Small Graphs versus Small Disconnected Graphs, .I Australasian Journal of Combinatorics, .R \fB51\fP (2011) 89-108. .IP [LoM6] R. Lortz and I. Mengersen, On the Ramsey Numbers of Certain Graphs of Order Five versus All Connected Graphs of Order Six, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB90\fP (2014) 197-222. .IP [\(L/uc] T. \(L/uczak, $R(C sub n ,^C sub n ,^C sub n )~<=~(4^+^o(1))^n$, .I Journal of Combinatorial Theory, .R Series B, \fB75\fP (1999) 174-187. .IP [\(L/ucSS] T. \(L/uczak, M. Simonovits and J. Skokan, On the Multi-Colored Ramsey Numbers of Cycles, .I Journal of Graph Theory, .R \fB69\fP (2012) 169-175. .IP [-] T. \(L/uczak, see also [Fi\(L/u1, Fi\(L/u2, Ha\(L/P1+, Ha\(L/P2+, Ha\(L/T]. .IP [LuSL]* Luo Haipeng, Su Wenlong and Li Zhenchong, The Properties of Self-Complementary Graphs and New Lower Bounds for Diagonal Ramsey Numbers, .I Australasian Journal of Combinatorics, .R \fB25\fP (2002) 103-116. .IP [LuSS1]* Luo Haipeng, Su Wenlong and Shen Yun-Qiu, New Lower Bounds of Ten Classical Ramsey Numbers, .I Australasian Journal of Combinatorics, .R \fB24\fP (2001) 81-90. .IP [LuSS2]* Luo Haipeng, Su Wenlong and Shen Yun-Qiu, New Lower Bounds for Two Multicolor Classical Ramsey Numbers, .I Radovi Matemati\o'c\(be'ki, .R \fB13\fP (2004) 15-21, pointed to in past revisions. Since 2015, better bounds were obtained by others. .IP [-] Luo Haipeng, see also [LiSLW, SuL, SuLL, SLLL, SLZL, WSLX1, WSLX2]. .IP [LuLL]* Liang Luo, Meilian Liang and Zhenchong Li, Computation of Ramsey Numbers $R(C sub m ,^W sub n )$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB81\fP (2012) 145-149. .nr PS 12 .DS C \fBM\fP .DE .nr PS 10 .IP [Mac]* J. Mackey, Combinatorial Remedies, .I Ph.D. thesis, .R Department of Mathematics, University of Hawaii, 1994. .IP [-] W. Macready, see [RanMCG]. .IP [MaOm] L. Maherani and G.R. Omidi, Around a Conjecture of Erd\o'o\(hu's on Graph Ramsey Numbers, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1211.6287\fP\s0 (2012). .IP [MaORS1] $^$ L. Maherani, G.R. Omidi, G. Raeisi and M. Shahsiah, The Ramsey Number of Loose Paths in 3-Uniform Hypergraphs, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P12, \fB20\fP(1) (2013), 8 pages. .IP [MaORS2] $^$ L. Maherani, G.R. Omidi, G. Raeisi and M. Shahsiah, On Three-Color Ramsey Number of Paths, .I Graphs and Combinatorics, .R \fB31\fP (2015) 2299-2308. .IP [-] H.R. Maimani, see [HagMa]. .IP [Mat]* R. Mathon, Lower Bounds for Ramsey Numbers and Association Schemes, .I Journal of Combinatorial Theory, .R Series B, \fB42\fP (1987) 122-127. .IP [-] J.P. Mayberry, see [LayMa]. .IP [McS] C. McDiarmid and A. Steger, Tidier Examples for Lower Bounds on Diagonal Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series A, \fB74\fP (1996) 147-152. .IP [McK1]** B.D. McKay, Australian National University, .I personal communication .R (2003+). Graphs available at \s-1\fHhttp://cs.anu.edu.au/people/bdm/data/ramsey.html\fP\s0. .IP [McK2]** B.D. McKay, A Class of Ramsey-Extremal Hypergraphs, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/ 1608.07762\fP\s0 (2016). .IP [McK3]** B.D. McKay, Australian National University, .I personal communication .R (2016). .IP [MPR]** B.D. McKay, K. Piwakowski and S.P. Radziszowski, Ramsey Numbers for Triangles versus Almost-Complete Graphs, .I Ars Combinatoria, .R \fB73\fP (2004) 205-214. .IP [MR1]** B.D. McKay and S.P. Radziszowski, The First Classical Ramsey Number for Hypergraphs is Computed, .I Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, .R SODA'91, San Francisco, (1991) 304-308. .IP [MR2]* B.D. McKay and S.P. Radziszowski, A New Upper Bound for the Ramsey Number $R(5,^5)$, .I Australasian Journal of Combinatorics, .R \fB5\fP (1992) 13-20. .IP [MR3]** B.D. McKay and S.P. Radziszowski, Linear Programming in Some Ramsey Problems, .I Journal of Combinatorial Theory, .R Series B, \fB61\fP (1994) 125-132. .IP [MR4]** B.D. McKay and S.P. Radziszowski, $R(4,^5)~=~25$, .I Journal of Graph Theory, .R \fB19\fP (1995) 309-322. .IP [MR5]** B.D. McKay and S.P. Radziszowski, Subgraph Counting Identities and Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series B, \fB69\fP (1997) 193-209. .IP [McZ]** B.D. McKay and Zhang Ke Min, The Value of the Ramsey Number $R(3,8)$, .I Journal of Graph Theory, .R \fB16\fP (1992) 99-105. .IP [-] B.D. McKay, see also [AnM, FM]. .IP [McN]** J. McNamara, SUNY Brockport, .I personal communication .R (1995). .IP [McR]** J. McNamara and S.P. Radziszowski, The Ramsey Numbers $R(K sub 4 ^-^e,^K sub 6 ^-^e)$ and $R(K sub 4 ^-^e,^K sub 7 ^-^e)$, .I Congressus Numerantium, .R \fB81\fP (1991) 89-96. .IP [-] H. M\o'e\(aa'lot, see [BrCGM]. .IP [MeO] I. Mengersen and J. Oeckermann, Matching-Star Ramsey Sets, .I Discrete Applied Mathematics, .R \fB95\fP (1999) 417-424. .IP [-] I. Mengersen, see also [ArKM, ClEHMS, EHM1, EHM2, HoMe, HaMe1, HaMe2, HaMe3, HaMe4, KlaM1, KlaM2, KroMe, LoM1, LoM2, LoM3, LoM4, LoM5, LoM6]. .IP [M\o'e\(aa'r] A. M\o'e\(aa'roueh, The Ramsey Number of Loose Cycles versus Cliques, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/ abs/1504.03668\fP\s0 (2015). .IP [-] Zhengke Miao, see [ChenCMN]. .IP [-] A. Miller, see [CodFIM]. .IP [-] M. Miller, see [BaSNM]. .IP [MiPal] T.K. Mishra and S.P. Pal, Lower Bounds for Ramsey Numbers for Complete Bipartite and 3-Uniform Tripartite Subgraphs, WALCOM 2013, .I LNCS .R 7748, Springer, Berlin (2013) 257-264. .IP [MiSa] H. Mizuno and I. Sato, Ramsey Numbers for Unions of Some Cycles, .I Discrete Mathematics, .R \fB69\fP (1988) 283-294. .IP [MoCa] E.L. Monte Carmelo, Configurations in Projective Planes and Quadrilateral-Star Ramsey Numbers, .I Discrete Mathematics, .R \fB308\fP (2008) 3986-3991. .IP [-] E.L. Monte Carmelo, see also [GoMC]. .IP [-] L.P. Montejano, see [ChaMR]. .IP [-] R. Morris, see [FizGM, FizGMSS, GrMFSS]. .IP [MoSST] G.O. Mota, G.N. S\o'a\(aa'rk\o'o\(:a'zy, M. Schacht and A. Taraz, Ramsey Numbers for Bipartite Graphs with Small Bandwidth, .I European Journal of Combinatorics, .R \fB48\fP (2015) 165-176. .IP [Mub1] D. Mubayi, Improved Bounds for the Ramsey Number of Tight Cycles versus Cliques, .I Combinatorics, Probability and Computing, .R \fB25\fP (2016) 791-796. .IP [Mub2] D. Mubayi, Variants of the Erd\o'o\(hu's-Szekeres and Erd\o'o\(hu's-Hajnal Ramsey Problems, .I European Journal of Combinatorics, .R \fB62\fP (2017) 197-205. .IP [MuR] D. Mubayi and V. R\o'o\(:a'dl, Hypergraph Ramsey Numbers: Tight Cycles versus Cliques, .I Bulletin of the London Mathematical Society, .R \fB48\fP (2016) 127-134. .IP [MuSuk1] D. Mubayi and A. Suk, Off-Diagonal Hypergraph Ramsey Numbers, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/ abs/1505.05767\fP\s0 (2015). .IP [MuSuk2] D. Mubayi and A. Suk, Constructions in Ramsey Theory, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/ 1511.07082\fP\s0 (2015). .IP [-] D. Mubayi, see also [AxFM, AxGLM, KosMV1, KosMV2, LaMu, LeMu]. .IP [-] P.R. Mullins, see [LorMu]. .IP [-] S. Musdalifah, see [SuAM, SuAAM]. .nr PS 12 .DS C \fBN\fP .DE .nr PS 10 .IP [-] 0.65i S.M. Nababan, see [BaSNM]. .IP [NaORS] B. Nagle, S. Olsen, V. R\o'o\(:a'dl and M. Schacht, On the Ramsey Number of Sparse 3-Graphs, .I Graphs and Combinatorics, .R \fB24\fP (2008) 205-228. .IP [Nar]* D. Narv\o'a\(aa'ez, Some Multicolor Ramsey Numbers Involving Cycles, .I MS thesis, .R Department of Computer Science, Rochester Institute of Technology, 2015. .IP [Ne\o's\(be'] J. Ne\o's\(be'et\o'r\(be'il, Ramsey Theory, chapter 25 in .I Handbook of Combinatorics, .R ed. R.L. Graham, M. Gr\o'o\(:a'tschel and L. Lov\o'a\(aa'sz, The MIT-Press, Vol. II, 1996, 1331-1403. .IP [NeOs] J. Ne\o's\(be'et\o'r\(be'il and P. Ossona de Mendez, Fraternal Augmentations, Arrangeability and Linear Ramsey Numbers, .I European Journal of Combinatorics, .R \fB30\fP (2009) 1696-1703. .IP [-] J. Ne\o's\(be'et\o'r\(be'il, see also [GrNe]. .IP [-] C.T. Ng, see [ChenCMN, ChenCNZ, CheCZN]. .IP [-] T. Nguyen, see [BroNN]. .IP [Nik] V. Nikiforov, The Cycle-Complete Graph Ramsey Numbers, .I Combinatorics, Probability and Computing, .R \fB14\fP (2005) 349-370. .IP [NiRo1] V. Nikiforov and C.C. Rousseau, Large Generalized Books Are $p$-Good, .I Journal of Combinatorial Theory, .R Series B, \fB92\fP (2004) 85-97. .IP [NiRo2] V. Nikiforov and C.C. Rousseau, Book Ramsey Numbers I, .I Random Structures and Algorithms, .R \fB27\fP (2005) 379-400. .IP [NiRo3] V. Nikiforov and C.C. Rousseau, A Note on Ramsey Numbers for Books, .I Journal of Graph Theory, .R \fB49\fP (2005) 168-176. .IP [NiRo4] V. Nikiforov and C.C. Rousseau, Ramsey Goodness and Beyond, .I Combinatorica, .R \fB29\fP (2009) 227-262. .IP [NiRS] V. Nikiforov, C.C. Rousseau and R.H. Schelp, Book Ramsey Numbers and Quasi-Randomness, .I Combinatorics, Probability and Computing, .R \fB14\fP (2005) 851-860. .IP [-] Bo Ning, see [LiNing1, LiNing2]. .IP [NoSZ] S. Norin, Yue Ru Sun and Yi Zhao, Asymptotics of Ramsey Numbers of Double Stars, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1605.03612\fP\s0 (2016). .IP [NoBa]* E. Noviani and E.T. Baskoro, On the Ramsey Number of 4-Cycle versus Wheel, .I Indonesian Journal of Combinatorics, .R \fB1\fP (2016) 9-21. .IP [-] A. Nowik, see [DzNS]. .IP [-] E. Nystrom, see [BroNN]. .nr PS 12 .DS C \fBO\fP .DE .nr PS 10 .IP [-] J. Oeckermann, see [MeO]. .IP [-] S. Olsen, see [NaORS]. .IP [OmRa1] G.R. Omidi and G. Raeisi, On Multicolor Ramsey Number of Paths versus Cycles, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P24, \fB18\fP(1) (2011), 16 pages. .IP [OmRa2] G.R. Omidi and G. Raeisi, A Note on the Ramsey Number of Stars - Complete Graphs, European Journal of Combinatorics, .R \fB32\fP (2011) 598-599. .IP [OmRa3] G.R. Omidi and G. Raeisi, Ramsey Numbers for Multiple Copies of Hypergraphs, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1303.0474\fP\s0 (2013). .IP [OmRR] G.R. Omidi, G. Raeisi and Z. Rahimi, Star versus Stripes Ramsey Numbers, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1701.04191\fP\s0 (2017). .IP [OmSh1] G.R. Omidi and M. Shahsiah, Ramsey Numbers of 3-Uniform Loose Paths and Loose Cycles, .I Journal of Combinatorial Theory, .R Series A, \fB121\fP (2014) 64-73. .IP [OmSh2] G.R. Omidi and M. Shahsiah, Diagonal Ramsey Numbers of Loose Cycles in Uniform Hypergraphs, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1503.00937\fP\s0 (2015). .IP [OmSh3] G.R. Omidi and M. Shahsiah, Ramsey Numbers of 4-Uniform Loose Cycles, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1603.01697\fP\s0 (2016). .IP [OmSh4] G.R. Omidi and M. Shahsiah, Ramsey Numbers of Uniform Loose Paths and Cycles, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1602.05386\fP\s0 (2016). .IP [-] G.R. Omidi, see also [MaORS1, MaORS2]. .IP [-] P. Ossona de Mendez, see [NeOs]. .IP [-] D. Osthus, see [CooFKO1, CooFKO2, K\o'u\(:a'CFO]. .nr PS 12 .DS C \fBP\fP .DE .nr PS 10 .IP [-] S.P. Pal, see [MiPal]. .IP [-] Linqiang Pan, see [ShaXBP, ShaXSP]. .IP [Par1] T.D. Parsons, The Ramsey Numbers $r(P sub m ,^K sub n )$, .I Discrete Mathematics, .R \fB6\fP (1973) 159-162. .IP [Par2] T.D. Parsons, Path-Star Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series B, \fB17\fP (1974) 51-58. .IP [Par3] T.D. Parsons, Ramsey Graphs and Block Designs, I, .I Transactions of the American Mathematical Society, .R \fB209\fP (1975) 33-44. .IP [Par4] T.D. Parsons, Ramsey Graphs and Block Designs, .I Journal of Combinatorial Theory, .R Series A, \fB20\fP (1976) 12-19. .IP [Par5] T.D. Parsons, Graphs from Projective Planes, .I Aequationes Mathematica, .R \fB14\fP (1976) 167-189. .IP [Par6] T.D. Parsons, Ramsey Graph Theory, in .I Selected Topics in Graph Theory, .R (L.W. Beineke and R.J. Wilson eds.), Academic Press, (1978) 361-384. .IP [-] T.D. Parsons, see also [FLPS]. .IP [PeiLi] Chaoping Pei and Yusheng Li, Ramsey Numbers Involving a Long Path, .I Discrete Mathematics, .R \fB339\fP (2016) 564-570. .IP [Peng] Xing Peng, The Ramsey Number of Generalized Loose Paths in Hypergraphs, .I Discrete Mathematics, .R \fB339\fP (2016) 539-546. .IP [-] Yuejian Peng, see [Ha\(L/P1+, Ha\(L/P2+]. .IP [-] Y. Person, see [JoPe]. .IP [-] O. Pikhurko, see [BePi]. .IP [Piw1]* K. Piwakowski, Applying Tabu Search to Determine New Ramsey Graphs, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R6, \fB3\fP(1) (1996), 4 pages. The lower bounds presented in this paper have been improved. .IP [Piw2]** K. Piwakowski, A New Upper Bound for $R sub 3 (K sub 4 ^-^e)$, .I Congressus Numerantium, .R \fB128\fP (1997) 135-141. .IP [PR1]** K. Piwakowski and S.P. Radziszowski, $30^<=^R(3,3,4)^<=^31$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB27\fP (1998) 135-141. .IP [PR2]** K. Piwakowski and S.P. Radziszowski, Towards the Exact Value of the Ramsey Number $R(3,3,4)$, .I Congressus Numerantium, .R \fB148\fP (2001) 161-167. .IP [-] K. Piwakowski, see also [MPR, DzKP]. .IP [Pokr] A. Pokrovskiy, Calculating Ramsey Numbers by Partitioning Coloured Graphs, to appear in .I Journal of Graph Theory, .R preprint on arXiv, \s-1\fHhttp://arxiv.org/abs/1309.3952\fP\s0 (2013). .IP [PoSu] A. Pokrovskiy and B. Sudakov, Ramsey Goodness of Paths, .I Journal of Combinatorial Theory, .R Series B, \fB122\fP (2017) 384-390. .IP [-] A. Pokrovskiy, see also [BalPS]. .IP [Pol] J. Polcyn, One More Tur\o'a\(aa'n Number and Ramsey Number for the Loose 3-Uniform Path of Length Three, to appear in .I Discussiones Mathematicae Graph Theory, .R preprint on arXiv, \s-1\fHhttp://arxiv.org/abs/ 1511.09073\fP\s0 (2015). .IP [PoRRS] J. Polcyn, V. R\o'o\(:a'dl, A. Ruci\o'n\(aa'ski and E. Szemer\o'e\(aa'di, Short Paths in Quasi-Random Triple Systems with Sparse Underlying Graphs, .I Journal of Combinatorial Theory, .R Series B, \fB96\fP (2006) 584-607. .IP [PoRu] J. Polcyn and A. Ruci\o'n\(aa'ski, Refined Tur\o'a\(aa'n Numbers and Ramsey Numbers for the Loose 3-Uniform Path of Length Three, .I Discrete Mathematics, .R \fB340\fP (2017) 107-118. .IP [-] J. Polcyn, see also [JacPR]. .IP [-] A.D. Polimeni, see [ChGP, ChRSPS]. .IP [-] J.R. Portillo, see [BoPo]. .IP [-] L.M. Pretorius, see [SwPr]. .IP [-] P. Pudl\o'a\(aa'k, see [AlPu, CoPR, KosPR]. .nr PS 12 .DS C \fBQ\fP .DE .nr PS 10 .IP [-] Qian Xinjin, see [SonGQ]. .nr PS 12 .DS C \fBR\fP .DE .nr PS 10 .IP [Ra1]** 0.65i S.P. Radziszowski, The Ramsey Numbers $R(K sub 3 ,^K sub 8 ^-^e)$ and $R(K sub 3 ,^K sub 9 ^-^e)$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB8\fP (1990) 137-145. .IP [Ra2] S.P. Radziszowski, Small Ramsey Numbers, .I Technical Report RIT-TR-93-009, .R Department of Computer Science, Rochester Institute of Technology, 1993. .IP [Ra3]** S.P. Radziszowski, On the Ramsey Number $R(K sub 5 ^-^e,^K sub 5 ^-^e)$, .I Ars Combinatoria, .R \fB36\fP (1993) 225-232. .IP [Ra4] S.P. Radziszowski, Ramsey Numbers Involving Cycles, in .I Ramsey Theory: Yesterday, Today and Tomorrow .R (ed. A. Soifer), Progress in Mathematics 285, Springer-Birkhauser 2011, 41-62. .IP [RaJi] S.P. Radziszowski and Jin Xia, Paths, Cycles and Wheels in Graphs without Antitriangles, .I Australasian Journal of Combinatorics, .R \fB9\fP (1994) 221-232. .IP [RaK1]* S.P. Radziszowski and D.L. Kreher, Search Algorithm for Ramsey Graphs by Union of Group Orbits, .I Journal of Graph Theory, .R \fB12\fP (1988) 59-72. .IP [RaK2]** S.P. Radziszowski and D.L. Kreher, On $R(3,^k)$ Ramsey Graphs: Theoretical and Computational Results, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB4\fP (1988) 37-52. .IP [RaK3]** S.P. Radziszowski and D.L. Kreher, Upper Bounds for Some Ramsey Numbers $R(3,^k)$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB4\fP (1988) 207-212. .IP [RaK4] S.P. Radziszowski and D.L. Kreher, Minimum Triangle-Free Graphs, .I Ars Combinatoria, .R \fB31\fP (1991) 65-92. .IP [RaT]* S.P. Radziszowski and Kung-Kuen Tse, A Computational Approach for the Ramsey Numbers $R(C sub 4 ,^K sub n )$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB42\fP (2002) 195-207. .IP [RaST]* S.P. Radziszowski, J. Stinehour and Kung-Kuen Tse, Computation of the Ramsey Number $R(W sub 5 ,^K sub 5 ^)$, .I Bulletin of the Institute of Combinatorics and its Applications, .R \fB47\fP (2006) 53-57. .IP [-] S.P. Radziszowski, see also [BaRT, BlLR, CalSR, DyDR, FeKR, GoR1, GoR2, KrLR, LaLR, MPR, MR1, MR2, MR3, MR4, MR5, McR, PR1, PR2, ShWR, WuSR, WuSZR, XuR1, XuR2, XuR3, XuR4, XSR1, XSR2, XXER, XuXR, ZhuXR]. .IP [RaeZ] G. Raeisi and A. Zaghian, Ramsey Number of Wheels versus Cycles and Trees, .I Canadian Mathematical Bulletin, .R \fB59\fP (2016) 190-196. .IP [-] G. Raeisi, see also [GyRa, MaORS1, MaORS2, OmRa1, OmRa2, OmRa3, OmRR]. .IP [-] Z. Rahimi, see [OmRR]. .IP [RanMCG]* $~$ M. Ranjbar, W. Macready, L. Clark and F. Gaitan, Generalized Ramsey Numbers through Adiabatic Quantum Optimization, .I Quantum Information Processing, .R \fB15\fP (2016) 3519-3542. .IP [-] J.L. Ramirez Alfonsin, see [ChaMR]. .IP [Ram] F.P. Ramsey, On a Problem of Formal Logic, .I Proceedings of the London Mathematical Society, .R \fB30\fP (1930) 264-286. .IP [RaHo]** Ramsey@Home, A distributed computing project searching for lower bounds for Ramsey numbers, \s-1\fHhttp://www.ramseyathome.com/ramsey\fP\s0 (2009). .IP [-] A. Rao, see [BarRSW]. .IP [Rao]* S. Rao, Applying a Genetic Algorithm to Improve the Lower Bounds of Multi-Color Ramsey Numbers, .I MS thesis, .R Department of Computer Science, Rochester Institute of Technology, 1997. .IP [-] A. Rapp, see [BudHR]. .IP [ReWi] R.C. Read and R.J. Wilson, .I An Atlas of Graphs, .R Clarendon Press, Oxford, 1998. .IP [-] G. Resta, see [CoPR]. .IP [-] M.P. Revuelta, see [BoCGR]. .IP [-] S.W. Reyner, see [BurR]. .IP [-] D.F. Reynolds, see [ExRe]. .IP [Rob] B. Roberts, Ramsey Numbers of Connected Clique Matchings, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/ 1605.07492\fP\s0 (2016). .IP [-] B. Roberts, see also [DavJR]. .IP [Rob1] F.S. Roberts, .I Applied Combinatorics, .R Prentice-Hall, Englewood Cliffs, 1984. .IP [-] J.A. Roberts, see [BuRo1, BuRo2]. .IP [-] S. Roberts, see [GR]. .IP [Rob2]* A. Robertson, New Lower Bounds for Some Multicolored Ramsey Numbers, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R12, \fB6\fP (1999), 6 pages. .IP [Rob3]* A. Robertson, Difference Ramsey Numbers and Issai Numbers, .I Advances in Applied Mathematics, .R \fB25\fP (2000) 153-162. .IP [Rob4] A. Robertson, New Lower Bounds Formulas for Multicolored Ramsey Numbers, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R13, \fB9\fP (2002), 6 pages. .IP [-] Y. Roditty, see [KrRod]. .IP [R\o'o\(:a'Th] V. R\o'o\(:a'dl and R. Thomas, Arrangeability and Clique Subdivisions, in .I The Mathematics of Paul Erd\o'o\(hu's II, .R 236-239, Algorithms and Combinatorics \fB14\fP, Springer, Berlin, 1997. .IP [-] V. R\o'o\(:a'dl, see also [AlR\o'o\(:a', ChRST, DuLR, GrR\o'o\(:a', GRR1, GRR2, Ha\(L/P1+, Ha\(L/P2+, KosPR, KoR\o'o\(:a'1, KoR\o'o\(:a'2, KoR\o'o\(:a'3, MuR, NaORS, PoRRS]. .IP [-] L. R\o'o\(aa'nyai, see [AlR\o'o\(aa'S]. .IP [Ros1] V. Rosta, On a Ramsey Type Problem of J.A. Bondy and P. Erd\o'o\(hu's, I & II, .I Journal of Combinatorial Theory, .R Series B, \fB15\fP (1973) 94-120. .IP [Ros2] V. Rosta, Ramsey Theory Applications, Dynamic Survey in .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #DS13, (2004), 43 pages. .IP [-] V. Rosta, see also [BuRo3, K\o'a\(aa'Ros]. .IP [-] B.L. Rothschild, see [GRS]. .IP [Rou] C.C. Rousseau, .I personal communication .R (2006). .IP [RoJa1] C.C. Rousseau and C.J. Jayawardene, The Ramsey Number for a Quadrilateral vs. a Complete Graph on Six Vertices, .I Congressus Numerantium, .R \fB123\fP (1997) 97-108. .IP [RoJa2] C.C. Rousseau and C.J. Jayawardene, Harary's Problem for $K sub 2,k$, .I manuscript .R (1999). .IP [RoS1] C.C. Rousseau and J. Sheehan, On Ramsey Numbers for Books, .I Journal of Graph Theory, .R \fB2\fP (1978) 77-87. .IP [RoS2] C.C. Rousseau and J. Sheehan, A Class of Ramsey Problems Involving Trees, .I Journal of the London Mathematical Society (2), .R \fB18\fP (1978) 392-396. .IP [-] C.C. Rousseau, see also [BolJY+, BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRSG, BFRSJ, CaLRZ, ChRSPS, EFRS1, EFRS2, EFRS3, EFRS4, EFRS5, EFRS6, EFRS7, EFRS8, EFRS9, FRS1, FRS2, FRS3, FRS4, FRS5, FRS6, FRS7, FRS8, FRS9, FSR, JR1, JR2, JR3, JR4, JR5, LiR1, LiR2, LiR3, LiR4, LiRS, LiRZ1, LiRZ2, NiRo1, NiRo2, NiRo3, NiRo4, NiRS]. .IP [-] C. Rowan, see [KerRo]. .IP [-] P. Rowlinson, see [YR1, YR2, YR3]. .IP [Rub] M. Rubey, Technische Universit\o'a\(:a't Wien, an electronic resource for values of small Ramsey numbers, \s-1\fHhttp://www.findstat.org/StatisticsDatabase/St000479\fP\s0, 2016. .IP [-] A. Ruci\o'n\(aa'ski, see [JacPR, GRR1, GRR2, Ha\(L/P1+, Ha\(L/P2+, PoRRS, PoRu]. .IP [-] M. Ruszink\o'o\(aa', see [GyRSS]. .nr PS 12 .DS C \fBSa - Se\fP .DE .nr PS 10 .IP [-] M. Salerno, see [JiSa]. .IP [SaBr1] 0.65i A.N.M. Salman and H.J. Broersma, The Ramsey Numbers of Paths versus Kipases, .I Electronic Notes in Discrete Mathematics, .R \fB17\fP (2004) 251-255. .IP [SaBr2] A.N.M. Salman and H.J. Broersma, Paths-Fan Ramsey Numbers, .I Discrete Applied Mathematics, .R \fB154\fP (2006) 1429-1436. .IP [SaBr3] A.N.M. Salman and H.J. Broersma, The Ramsey Numbers for Paths versus Wheels, .I Discrete Mathematics, .R \fB307\fP (2007) 975-982. .IP [SaBr4] A.N.M. Salman and H.J. Broersma, Path-Kipas Ramsey Numbers, .I Discrete Applied Mathematics, .R \fB155\fP (2007) 1878-1884. .IP [-] A.N.M. Salman, see also [HaABS]. .IP [S\o'a\(aa'n] A. S\o'a\(aa'nchez-Flores, An Improved Bound for Ramsey Number $N(3,3,3,3;2)$, .I Discrete Mathematics, .R \fB140\fP (1995) 281-286. .IP [-] C. Sanford, see [BudHLS]. .IP [Sanh] N. Sanhueza-Matamala, Stability and Ramsey Numbers for Cycles and Wheels, .I Discrete Mathematics, .R \fB339\fP (2016) 1557-1565. .IP [S\o'a\(aa'r1] G.N. S\o'a\(aa'rk\o'o\(:a'zy, Monochromatic Cycle Partitions of Edge-Colored Graphs, .I Journal of Graph Theory, .R \fB66\fP (2011) 57-64. .IP [S\o'a\(aa'r2] G.N. S\o'a\(aa'rk\o'o\(:a'zy, On the Multi-Colored Ramsey Numbers of Paths and Even Cycles, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P3.53, \fB23\fP(3) (2016), 9 pages. .IP [-] G.N. S\o'a\(aa'rk\o'o\(:a'zy, see also [GyLSS, GyRSS, GyS\o'a\(aa'1, GyS\o'a\(aa'2, GyS\o'a\(aa'3, GySS1, GySS2, MoSST]. .IP [-] I. Sato, see [MiSa]. .IP [-] D. Saxton, see [FizGMSS, GrMFSS]. .IP [-] M. Schacht, see [MoSST, NaORS]. .IP [Scha] M. Schaefer, Graph Ramsey Theory and the Polynomial Hierarchy, .I Journal of Computer and System Sciences, .R \fB62\fP (2001) 290-322. .IP [-] R.H. Schelp, see [BaLS, BaSS, BEFRS1, BEFRS2, BEFRS3, BEFRS4, BEFRSGJ, BEFS, BFRS, ChenS, EFRS1, EFRS2, EFRS3, EFRS4, EFRS5, EFRS6, EFRS7, EFRS8, EFRS9, FLPS, FRS1, FRS2, FRS3, FRS4, FRS5, FRS6, FS1, FS2, FS3, FS4, FSR, FSS1, GyLSS, NiRS]. .IP [SchSch1]* $~$ A. Schelten and I. Schiermeyer, Ramsey Numbers $r(K sub 3 ,^G)$ for Connected Graphs $G$ of Order Seven, .I Discrete Applied Mathematics, .R \fB79\fP (1997) 189-200. .IP [SchSch2] A. Schelten and I. Schiermeyer, Ramsey Numbers $r(K sub 3 ,^G)$ for $G$ \(=~ $K sub 7 ^-^2P sub 2$ and $G$ \(=~ $K sub 7 ^-^3P sub 2$, .I Discrete Mathematics, .R \fB191\fP (1998) 191-196. .IP [-] A. Schelten, see also [FSS2]. .IP [Schi1] I. Schiermeyer, All Cycle-Complete Graph Ramsey Numbers $r(C sub m ,^K sub 6 ^)$, .I Journal of Graph Theory, .R \fB44\fP (2003) 251-260. .IP [Schi2] I. Schiermeyer, The Cycle-Complete Graph Ramsey Number $r(C sub 5 ,^K sub 7 ^)$, .I Discussiones Mathematicae Graph Theory, .R \fB25\fP (2005) 129-139. .IP [-] I. Schiermeyer, see also [FSS2, LiSch, SchSch1, SchSch2]. .IP [-] J.C. Schlage-Puchta, see [BrGS]. .IP [-] A. Schneider, see [AlmHS]. .IP [-] J. Sch\o'o\(:a'nheim, see [BiaS]. .IP [Schu] C.-U. Schulte, Ramsey-Zahlen f\o'u\(:a'r B\o'a\(:a'ume und Kreise, .I Ph.D. thesis, .R Heinrich-Heine-Universit\o'a\(:a't D\o'u\(:a'sseldorf, (1992). .IP [-] M.J. Schuster, see [CalSR]. .IP [-] S. Schuster, see [ChaS]. .IP [-] A. Schwenk, see [ChvS]. .IP [Scob] M.W. Scobee, On the Ramsey Number $R( m sub 1 P sub 3 ,^m sub 2 P sub 3 ,^m sub 3 P sub 3 )$ and Related Results, ..., .I MA thesis, .R University of Louisville (1993). .IP [-] A. Seb\o'o\(hu', see [GySeT]. .IP [-] R.J. Segedin, see [LorSe]. .nr PS 12 .DS C \fBSh\fP .DE .nr PS 10 .IP [-] M. Shahsiah, see [MaORS1, MaORS2, OmSh1, OmSh2, OmSh3, OmSh4]. .IP [-] R. Shaltiel, see [BarRSW]. .IP [Shao]* Zehui Shao, .I personal communication .R (2008). .IP [ShaoWX]* $^$ Shao Zehui, Wang Zicheng and Xiao Jianhua, Lower Bounds for Ramsey Numbers Based on Simulated Annealing Algorithm (in Chinese), .I Computer Engineering and Applications, .R \fB45\fP (2009) 70-71. .IP [ShaXBP]* $~$Zehui Shao, Jin Xu, Qiquan Bao and Linqiang Pan, Computation of Some Generalized Ramsey Numbers, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB75\fP (2010) 217-228. .IP [ShaXB]* Zehui Shao, Xiaodong Xu and Qiquan Bao, On the Ramsey Numbers $R(C sub m ,^B sub n )$, .I Ars Combinatoria, .R \fB94\fP (2010) 265-271. .IP [ShaXSP]* $~$Zehui Shao, Xiaodong Xu, Xiaolong Shi and Linqiang Pan, Some Three-Color Ramsey Numbers $R(P sub 4 ,^P sub 5 ,^C sub k )$ and $R(P sub 4 ,^P sub 6 ,^C sub k )$, .I European Journal of Combinatorics, .R \fB30\fP (2009) 396-403. .IP [-] Zehui Shao, see also [XSR1, XSR2]. .IP [Shas] A. Shastri, Lower Bounds for Bi-Colored Quaternary Ramsey Numbers, .I Discrete Mathematics, .R \fB84\fP (1990) 213-216. .IP [She1] J.B. Shearer, A Note on the Independence Number of Triangle-Free Graphs, .I Discrete Mathematics, .R \fB46\fP (1983) 83-87. .IP [She2]* J.B. Shearer, Lower Bounds for Small Diagonal Ramsey Numbers, .I Journal of Combinatorial Theory, .R Series A, \fB42\fP (1986) 302-304. .IP [She3] J.B. Shearer, A Note on the Independence Number of Triangle-Free Graphs II, .I Journal of Combinatorial Theory, .R Series B, \fB53\fP (1991) 300-307. .IP [She4]* J.B. Shearer, Independence Numbers of Paley Graphs (data for primes 1 mod 4 up to 7000), \s-1\fHhttp://www.research.ibm.com/people/s/shearer/indpal.html\fP\s0 (1996). .IP [-] J. Sheehan, see [ChRSPS, ClEHMS, FRS7, FRS8, FRS9, RoS1, RoS2]. .IP [-] Jian Shen, see [LiShen, LinLS]. .IP [-] Shen Yun-Qiu, see [LuSS1, LuSS2]. .IP [-] Sheng Wancheng, see [HWSYZH]. .IP [ShWR]* D. Shetler, M. Wurtz and S.P. Radziszowski, On Some Multicolor Ramsey Numbers Involving $K sub 3 ^+^e$ and $K sub 4 ^-^e$, .I SIAM Journal on Discrete Mathematics, .R \fB26\fP (2012) 1256-1264. .IP [-] Shi Lei, see [SunYJLS]. .IP [Shi1] Lingsheng Shi, Cube Ramsey Numbers Are Polynomial, .I Random Structures and Algorithms, .R \fB19\fP (2001) 99--101. .IP [Shi2] Lingsheng Shi, Upper Bounds for Ramsey Numbers, .I Discrete Mathematics, .R \fB270\fP (2003) 251-265. .IP [Shi3] Lingsheng Shi, Linear Ramsey Numbers of Sparse Graphs, .I Journal of Graph Theory, .R \fB50\fP (2005) 175-185. .IP [Shi4] Lingsheng Shi, The Tail Is Cut for Ramsey Numbers of Cubes, .I Discrete Mathematics, .R \fB307\fP (2007) 290-292. .IP [Shi5] Lingsheng Shi, Ramsey Numbers of Long Cycles versus Books or Wheels, .I European Journal of Combinatorics, .R \fB31\fP (2010) 828-838. .IP [ShZ1] Shi Ling Sheng and Zhang Ke Min, An Upper Bound Formula for Ramsey Numbers, .I manuscript .R (2001). .IP [ShZ2] Shi Ling Sheng and Zhang Ke Min, A Sequence of Formulas for Ramsey Numbers, .I manuscript .R (2001). .IP [-] Xiaolong Shi, see [ShaXSP]. .IP [ShiuLL] Shiu Wai Chee, Peter Che Bor Lam and Li Yusheng, On Some Three-Color Ramsey Numbers, .I Graphs and Combinatorics, .R \fB19\fP (2003) 249-258. .nr PS 12 .DS C \fBSi - St\fP .DE .nr PS 10 .IP [Sid1] A.F. Sidorenko, On Tur\o'a\(aa'n Numbers $T(n,^5,4)$ and Number of Monochromatic 4-cliques in 2-colored 3-graphs (in Russian), .I Voprosy Kibernetiki, .R \fB64\fP (1980) 117-124. .IP [Sid2] A.F. Sidorenko, An Upper Bound on the Ramsey Number $R(K sub 3 ,^G)$ Depending Only on the Size of the Graph $G$, .I Journal of Graph Theory, .R \fB15\fP (1991) 15-17. .IP [Sid3] A.F. Sidorenko, The Ramsey Number of an $N$-Edge Graph versus Triangle Is at Most $2N^+^1$, .I Journal of Combinatorial Theory, .R Series B, \fB58\fP (1993) 185-196. .IP [-] M. Simonovits, see [AjKSS, BaSS, FSS1, FaSi, Ha\(L/P1+, KoSS1, KoSS2, \(L/ucSS]. .IP [-] J. Skokan, see [AllBS, BenSk, FizGMSS, GrMFSS, Ha\(L/P1+, Ha\(L/P2+, JenSk, KoSS1, KoSS2, \(L/ucSS]. .IP [-] M.J. Smuga-Otto, see [AbbS]. .IP [Sob] A. Sobczyk, Euclidian Simplices and the Ramsey Number $R(4,4^;^3)$, .I Technical Report #10, Clemson University .R (1967). .IP [Soi1] A. Soifer, .I The Mathematical Coloring Book, Mathematics of coloring and the colorful life of its creators, .R Springer 2009. .IP [Soi2] A. Soifer, .I Ramsey Theory: Yesterday, Today and Tomorrow, .R Progress in Mathematics 285, Springer-Birkhauser 2011. .IP [-] W. Solomon, see [LorSo]. .IP [-] L. Solt\o'e\(aa's, see [LiRS]. .IP [Song1] Song En Min, Study of Some Ramsey Numbers (in Chinese), a note (announcement of results without proofs), .I Mathematica Applicata, .R \fB4\fP(2) (1991) 6. .IP [Song2] Song En Min, New Lower Bound Formulas for the Ramsey Numbers $N(k,k,...,k;2)$ (in Chinese), .I Mathematica Applicata, .R \fB6\fP (1993) suppl., 113-116. .IP [Song3] Song En Min, An Investigation of Properties of Ramsey Numbers (in Chinese), .I Mathematica Applicata, .R \fB7\fP (1994) 216-221. .IP [Song4] Song En Min, Properties and New Lower Bounds of the Ramsey Numbers $R(p,^q;4)$ (in Chinese), .I Journal of Huazhong University of Science and Technology, .R \fB23\fP (1995) suppl. II, 1-4. .IP [SonYL] Song En Min, Ye Weiguo and Liu Yanwu, New Lower Bounds for Ramsey Number $R(p,^q;4)$, .I Discrete Mathematics, .R \fB145\fP (1995) 343-346. .IP [-] Song En Min, see also [HuSo, ZLLS]. .IP [Song5] Song Hongxue, Asymptotic Upper Bounds for Wheel-Complete Graph Ramsey Numbers, .I Journal of Southeast University .R (English Edition), ISSN 1003-7985, \fB20\fP (2004) 126-129. .IP [Song6] Song Hongxue, A Ramsey Goodness Result for Graphs with Large Pendent Trees, .I Journal of Mathematical Study (China), .R \fB42\fP (2009) 36-39. .IP [Song7] Song Hong-xue, Asymptotic Upper Bounds for $K sub 2 ^+~ T sub m$ : Complete Graph Ramsey Numbers, .I Journal of Mathematics (China), .R \fB30\fP (2010) 797-802. .IP [Song8] Song Hongxue, Asymptotic Lower Bounds of Ramsey Numbers for $r$-Uniform Hypergraphs, .I Advances in Mathematics, Shuxue Jinzhan, .R \fB40\fP (2011) 179-186. .IP [Song9] Hongxue Song, Asymptotic Upper Bounds for $K sub 1,m,k$ : Complete Graph Ramsey Numbers, .I Ars Combinatoria, .R \fB111\fP (2013) 137-144. .IP [SonBL] Song Hong Xue, Bai Lu Feng and Liu Shu Yan, Asymptotic Upper Bounds for the Wheel-Complete Graph Ramsey Numbers (in Chinese), .I Acta Mathematica Scientia, Series A, .R ISSN 1003-3998, \fB26\fP (2006) 741-746. .IP [SonGQ] Song Hongxue, Gu Hua and Qian Xinjin, On the Ramsey Number of $K sub 3$ versus $K sub 2 ^+^ T sub n$ (in Chinese), .I Journal of Liaoning Normal University, Natural Science Edition, .R ISSN 1000-1735, \fB27\fP (2004) 142-145. .IP [SonLi] Song Hongxue and Li Yusheng, Asymptotic Lower Bounds of Ramsey Numbers for 4-Uniform Hypergraphs (in Chinese), .I Journal of Nanjing University Mathematical Biquarterly, .R \fB26\fP (2009) 216-224. .IP [-] Song Hongxue, see also [GuSL]. .IP [Spe1] J.H. Spencer, Ramsey's Theorem - A New Lower Bound, .I Journal of Combinatorial Theory, .R Series A, \fB18\fP (1975) 108-115. .IP [Spe2] J.H. Spencer, Asymptotic Lower Bounds for Ramsey Functions, .I Discrete Mathematics, .R \fB20\fP (1977) 69-76. .IP [Spe3] J.H. Spencer, Eighty Years of Ramsey $R(3,^k)$ ... and Counting! in .I Ramsey Theory: Yesterday, Today and Tomorrow .R (ed. A. Soifer), Progress in Mathematics 285, Springer-Birkhauser 2011, 27-39. .IP [-] J.H. Spencer, see also [BES, GRS]. .IP [-] T.S. Spencer, see [BahS]. .IP [Spe4]* T. Spencer, University of Nebraska at Omaha, .I personal communication .R (1993), and, Upper Bounds for Ramsey Numbers via Linear Programming, .I manuscript .R (1994). .IP [-] A.K. Srivastava, see [GauST]. .IP [Stahl] S. Stahl, On the Ramsey Number $R(F,^K sub m )$ where $F$ is a Forest, .I Canadian Journal of Mathematics, .R \fB27\fP (1975) 585-589. .IP [-] R.G. Stanton, see [KaSt]. .IP [Stat] W. Staton, Some Ramsey-type Numbers and the Independence Ratio, .I Transactions of the American Mathematical Society, .R \fB256\fP (1979) 353-370. .IP [-] A. Steger, see [McS]. .IP [-] J. Stinehour, see [RaST]. .IP [Stev] S. Stevens, Ramsey Numbers for Stars versus Complete Multipartite Graphs, .I Congressus Numerantium, .R \fB73\fP (1990) 63-71. .IP [-] M.J. Stewart, see [ChRSPS]. .IP [Stone] J.C. Stone, Utilizing a Cancellation Algorithm to Improve the Bounds of $R(5,^5)$, (1996), \s-1\fHhttp://oas.okstate.edu/ojas/jstone.htm\fP\s0. This paper claims incorrectly that $R(5,5)^=^50$. .bp .nr PS 12 .DS C \fBSu - Sz\fP .DE .nr PS 10 .IP [SuL]* Su Wenlong and Luo Haipeng, Prime Order Cyclic Graphs and New Lower Bounds for Three Classical Ramsey Numbers $R(4,^n)$ (in Chinese), .I Journal of Mathematical Study, .R \fB31\fP, 4 (1998) 442-446. .IP [SuLL]* Su Wenlong, Luo Haipeng and Li Qiao, New Lower Bounds of Classical Ramsey Numbers $R(4,12)$, $R(5,11)$ and $R(5,12)$, .I Chinese Science Bulletin, .R \fB43\fP, 6 (1998) 528. .IP [SLLL]* Su Wenlong, Luo Haipeng, Li Guiqing and Li Qiao, Lower Bounds of Ramsey Numbers Based on Cubic Residues, .I Discrete Mathematics, .R \fB250\fP (2002) 197-209. .IP [SLZL]* Su Wenlong, Luo Haipeng, Zhang Zhengyou and Li Guiqing, New Lower Bounds of Fifteen Classical Ramsey Numbers, .I Australasian Journal of Combinatorics, .R \fB19\fP (1999) 91-99. .IP [-] Su Wenlong, see also [LiaWXCS, LiaWXS, LuSL, LiSLW, LuSS1, LuSS2, WSLX1, WSLX2, XWCS]. .IP [Sud1] B. Sudakov, A Note on Odd Cycle-Complete Graph Ramsey Numbers, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #N1, \fB9\fP (2002), 4 pages. .IP [Sud2] B. Sudakov, Large $K sub r$-Free Subgraphs in $K sub s$-Free Graphs and Some Other Ramsey-Type Problems, .I Random Structures and Algorithms, .R \fB26\fP (2005) 253-265. .IP [Sud3] B. Sudakov, Ramsey Numbers and the Size of Graphs, .I SIAM Journal on Discrete Mathematics, .R \fB21\fP (2007) 980-986. .IP [Sud4] B. Sudakov, A Conjecture of Erd\o'o\(hu's on Graph Ramsey Numbers, .I Advances in Mathematics, .R \fB227\fP (2011) 601-609 .IP [-] B. Sudakov, see also [AlKS, BalPS, ConFLS, ConFS1, ConFS2, ConFS3, ConFS4, ConFS5, ConFS6, ConFS7, ConFS8, FoxSu1, FoxSu2, KoSu, PoSu]. .IP [-] A. Sudan, see [GuGS]. .IP [Sudar1] I.W. Sudarsana, The Goodness of Long Path with Respect to Multiple Copies of Small Wheel, .I Far East Journal of Mathematical Sciences, .R \fB59\fP (2011) 47-55. .IP [Sudar2] I.W. Sudarsana, The Goodness of Long Path with Respect to Multiple Copies of Complete Graphs, .I Journal of the Indonesian Mathematical Society, .R \fB20\fP (2014) 31-35. .IP [Sudar3] I.W. Sudarsana, The Goodness of Path or Cycle with Respect to Multiple Copies of Complete Graphs of Order Three, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB126\fP (2016) 359-367. .IP [SuAM] I.W. Sudarsana, Adiwijaya and S. Musdalifah, The Ramsey Number for a Linear Forest versus Two Identical Copies of Complete Graphs, COCOON 2010, .I LNCS .R 6196, Springer, Berlin (2010) 209-215. .IP [SuAAM] I.W. Sudarsana, H. Assiyatun, Adiwijaya and S. Musdalifah, The Ramsey Number for a Linear Forest versus Two Identical Copies of Complete Graph, .I Discrete Mathematics, Algorithms and Applications, .R \fB2\fP (2010) 437-444. .IP [SuAUB] I.W. Sudarsana, H. Assiyatun, S. Uttunggadewa and E.T. Baskoro, On the Ramsey Numbers $R(S sub 2,m ,^K sub 2,q )$ and $R(sK sub 2 ,^K sub s ^+^C sub n )$, .I Ars Combinatoria, .R \fB119\fP (2015) 235-246. .IP [SuBAU1] $^$I.W. Sudarsana, E.T. Baskoro, H. Assiyatun and S. Uttunggadewa, The Ramsey Number of a Certain Forest with Respect to a Small Wheel, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB71\fP (2009) 257-264. .IP [SuBAU2] $^$I.W. Sudarsana, E.T. Baskoro, H. Assiyatun and S. Uttunggadewa, The Ramsey Numbers of Linear Forest versus $3K sub 3 ^ up 20 union ^2K sub 4$, .I Journal of the Indonesian Mathematical Society, .R \fB15\fP (2009) 61-67. .IP [SuBAU3] $^$I.W. Sudarsana, E.T. Baskoro, H. Assiyatun and S. Uttunggadewa, The Ramsey Numbers for the Union Graph with $H$-Good Components, .I Far East Journal of Mathematical Sciences, .R \fB39\fP (2010) 29-40. .IP [-] A. Suk, see [MuSuk1, MuSuk2]. .IP [-] Yue Ru Sun, see [NoSZ]. .IP [Sun]* Sun Yongqi, Research on Ramsey Numbers of Some Graphs (in Chinese), .I Ph.D. thesis, .R Dalian University of Technology, China, July 2006. .IP [SunY]* Sun Yongqi and Yang Yuansheng, Study of the Three Color Ramsey Number $R sub 3 (C sub 8 )$ (in Chinese), .I Journal of Beijing Jiaotong University, .R \fB35\fP (2011) 14-17. .IP [SunYJLS] $~$ Sun Yongqi, Yang Yuansheng, Jiang Baoqi, Lin Xiaohui and Shi Lei, On Multicolor Ramsey Numbers for Even Cycles in Graphs, .I Ars Combinatoria, .R \fB84\fP (2007) 333-343. .IP [SunYLZ1]* $~$Sun Yongqi, Yang Yuansheng, Lin Xiaohui and Zheng Wenping, The Value of the Ramsey Number $R sub 4 (C sub 4 ^)$, .I Utilitas Mathematica, .R \fB73\fP (2007) 33-44. .IP [SunYLZ2]* $~$Sun Yongqi, Yang Yuansheng, Lin Xiaohui and Zheng Wenping, On the Three Color Ramsey Numbers $R(C sub m ,^C sub 4 ,^C sub 4 ^)$, .I Ars Combinatoria, .R \fB84\fP (2007) 3-11. .IP [SunYW]* $~$ Sun Yongqi, Yang Yuansheng and Wang Zhihai, The Value of the Ramsey Number $R sub 5 (C sub 6 ^)$, .I Utilitas Mathematica, .R \fB76\fP (2008) 25-31. .IP [SunYWLX]* 0.8i $~$Sun Yongqi, Yang Yuansheng, Wang Wei, Li Bingxi and Xu Feng, Study of Three Color Ramsey .IP "" 0.65i numbers $R(C sub {up 10 m sub up 25 1^},^C sub {up 10 m sub up 25 2^},^C sub {up 10 m sub up 25 3^})$ (in Chinese), .I Journal of Dalian University of Technology, .R ISSN 1000-8608, \fB46\fP (2006) 428-433. .IP [SunYXL] 0.65i $~$Sun Yongqi, Yang Yuansheng, Xu Feng and Li Bingxi, New Lower Bounds on the Multicolor Ramsey Numbers $R sub {^r} (C sub {2m})$, .I Graphs and Combinatorics, .R \fB22\fP (2006) 283-288. .IP [-] Sun Yongqi, see also [WuSR, WuSZR, ZhaSW]. .IP [SunLi] Sun Yuqin and Li Yusheng, On an Upper Bound of Ramsey Number $r sub k (K sub {m,^n})$ with Large $n$, .I Heilongjiang Daxue Ziran Kexue Xuebao, .R ISSN 1001-7011, \fB23\fP (2006) 668-670. .IP [SunZ1] Zhi-Hong Sun, Ramsey Numbers for Trees, .I Bulletin of the Australian Mathematical Society, .R \fB86\fP (2012) 164-176. .IP [SunZ2] Zhi-Hong Sun, Ramsey Numbers for Trees II, .I preprint, .R arXiv, \s-1\fHhttp://arxiv.org/abs/1410.7637\fP\s0 (2014). .IP [SunW] Zhi-Hong Sun and Lin-Lin Wang, Tur\o'a\(aa'n's Problem for Trees, .I Journal of Combinatorics and Number Theory, .R \fB3\fP (2011) 51-69. .IP [SunWW] Zhi-Hong Sun, Lin-Lin Wang and Yi-Li Wu, Tur\o'a\(aa'n's Problem and Ramsey Numbers for Trees, .I Colloquium Mathemeticum, .R \fB139\fP (2015) 273-298. .IP [Sur] Surahmat, Cycle-Wheel Ramsey Numbers. Some results, open problems and conjectures. .I Math Track, .R ISSN 1817-3462, 1818-5495, \fB2\fP (2006) 56-64. .IP [SuBa1] Surahmat and E.T. Baskoro, On the Ramsey Number of a Path or a Star versus $W sub 4$ or $W sub 5$, .I Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, .R Bandung, Indonesia, July 14-17 (2001) 174-179. .IP [SuBa2] Surahmat and E.T. Baskoro, The Ramsey Number of Linear Forest versus Wheel, paper presented at the .I 13-th Australasian Workshop on Combinatorial Algorithms, .R Fraser Island, Queensland, Australia, July 7-10, 2002. .IP [SuBB1] Surahmat, E.T. Baskoro and H.J. Broersma, The Ramsey Numbers of Large Star-like Trees versus Large Odd Wheels, .I Technical Report .R #1621, Faculty of Mathematical Sciences, University of Twente, The Netherlands, (2002). .IP [SuBB2] Surahmat, E.T. Baskoro and H.J. Broersma, The Ramsey Numbers of Large Cycles versus Small Wheels, .I Integers: Electronic Journal of Combinatorial Number Theory, .R \s-1\fHhttp://www.integers-ejcnt.org/vol4.html\fP\s0, #A10, \fB4\fP (2004), 9 pages. .IP [SuBB3] Surahmat, E.T. Baskoro and H.J. Broersma, The Ramsey Numbers of Fans versus $K sub 4$, .I Bulletin of the Institute of Combinatorics and its Applications, .R \fB43\fP (2005) 96-102. .IP [SuBB4] Surahmat, E.T. Baskoro and H.J. Broersma, The Ramsey Numbers of Large Star and Large Star-Like Trees versus Odd Wheels, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB65\fP (2008) 153-162. .IP [SuBT1] Surahmat, E.T. Baskoro and I. Tomescu, The Ramsey Numbers of Large Cycles versus Wheels, .I Discrete Mathematics, .R \fB306\fP (2006), 3334-3337. .IP [SuBT2] Surahmat, E.T. Baskoro and I. Tomescu, The Ramsey Numbers of Large Cycles versus Odd Wheels, .I Graphs and Combinatorics, .R \fB24\fP (2008), 53-58. .IP [SuBTB] Surahmat, E.T. Baskoro, I. Tomescu and H.J. Broersma, On Ramsey Numbers of Cycles with Respect to Generalized Even Wheels, .I manuscript .R (2006). .IP [SuBUB] Surahmat, E.T. Baskoro, S. Uttunggadewa and H.J. Broersma, An Upper Bound for the Ramsey Number of a Cycle of Length Four versus Wheels, in .I LNCS .R 3330, Springer, Berlin (2005) 181-184. .IP [SuTo] Surahmat and I. Tomescu, On Path-Jahangir Ramsey Numbers, .I Applied Mathematical Sciences, .R \fB8\fP(99) (2014) 4899-4904. .IP [-] Surahmat, see also [AliSur, BaSu, BaSNM]. .IP [SwPr] C.J. Swanepoel and L.M. Pretorius, Upper Bounds for a Ramsey Theorem for Trees, .I Graphs and Combinatorics, .R \fB10\fP (1994) 377-382. .IP [-] M.M. Sweet, see [FreSw]. .IP [-] T. Szab\o'o\(aa', see [AlR\o'o\(aa'S]. .IP [Szem] E. Szemer\o'e\(aa'di, Regular Partitions of Graphs, Probl\o'e\(ga'mes Combinatoires et Th\o'e\(aa'orie des Graphes .R (Orsay, 1976), Colloques Internationaux du Centre National de la Recherche Scientifique, CNRS Paris, \fB260\fP (1978) 399--401. .IP [-] E. Szemer\o'e\(aa'di, see also [AjKS, AjKSS, ChRST, GyRSS, GySS1, GySS2, PoRRS]. .IP [-] P. Szuca, see [DzNS]. .nr PS 12 .DS C \fBT\fP .DE .nr PS 10 .IP [-] Fuping Tan, see [HTHZ1, HTHZ2]. .IP [-] Tang Xueqing, see [LiTZ]. .IP [-] A. Taraz, see [MoSST]. .IP [-] M. Tatarevic, see [ExT]. .IP [-] R. Thomas, see [R\o'o\(:a'Th]. .IP [Tho] A. Thomason, An Upper Bound for Some Ramsey Numbers, .I Journal of Graph Theory, .R \fB12\fP (1988) 509-517. .IP [-] P.W. Tingley, see [Ha\(L/T]. .IP [-] I. Tomescu, see [AliBT1, AliBT2, AliTJ, SuBT1, SuBT2, SuBTB, SuTo]. .IP [-] C.A. Tovey, see [CaET]. .IP [-] A. Tripathi, see [GauST]. .IP [Tr] Trivial results. .IP [-] N. Trotignon, see [GySeT]. .IP [-] W.T. Trotter Jr., see [ChRST]. .IP [Tse1]* Kung-Kuen Tse, On the Ramsey Number of the Quadrilateral versus the Book and the Wheel, .I Australasian Journal of Combinatorics, .R \fB27\fP (2003) 163-167. .IP [Tse2]* Kung-Kuen Tse, A Note on the Ramsey Numbers $R(C sub 4 ,^B sub n ^)$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB58\fP (2006) 97-100. .IP [Tse3]* Kung-Kuen Tse, A Note on Some Ramsey Numbers $R(C sub p ,^C sub q ,^C sub r ^)$, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB62\fP (2007) 189-192. .IP [-] Kung-Kuen Tse, see also [BaRT, RaST, RaT]. .IP [-] Z. Tuza, see [GyTu]. .bp .nr PS 12 .DS C \fBU\fP .DE .nr PS 10 .IP [-] S. Uttunggadewa, see [SuAUB, SuBAU1, SuBAU2, SuBAU3, SuBUB]. .nr PS 12 .DS C \fBV\fP .DE .nr PS 10 .IP [-] J. Verstra\o'e\(:a'te, see [KosMV1, KosMV2]. .IP [-] L. Volkmann, see [GuoV]. .nr PS 12 .DS C \fBW\fP .DE .nr PS 10 .IP [Walk] K. Walker, Dichromatic Graphs and Ramsey Numbers, .I Journal of Combinatorial Theory, .R \fB5\fP (1968) 238-243. .IP [Wall] W.D. Wallis, On a Ramsey Number for Paths, .I Journal of Combinatorics, Information & System Sciences, .R \fB6\fP (1981) 295-296. .IP [Wan] Wan Honghui, Upper Bounds for Ramsey Numbers $R(3,^3,^ ... ,^3)$ and Schur Numbers, .I Journal of Graph Theory, .R \fB26\fP (1997) 119-122. .IP [-] Wang Gongben, see [WW, WWY1, WWY2]. .IP [-] Lin-Lin Wang, see [SunW, SunWW]. .IP [WW]* Wang Qingxian and Wang Gongben, New Lower Bounds of Ramsey Numbers $r(3,^q)$ (in Chinese), .I Acta Scientiarum Naturalium, Universitatis Pekinensis, .R \fB25\fP (1989) 117-121. The lower bounds presented in this paper have been improved. .IP [WWY1]* Wang Qingxian, Wang Gongben and Yan Shuda, A Search Algorithm And New Lower Bounds for Ramsey Numbers $r(3,^q)$, .I manuscript .R (1994). .IP [WWY2]* Wang Qingxian, Wang Gongben and Yan Shuda, The Ramsey Numbers $R(K sub 3 ,^K sub q ^-^e)$ (in Chinese), .I Beijing Daxue Xuebao Ziran Kexue Ban, .R \fB34\fP (1998) 15-20. .IP [-] Wang Wei, see [SunYWLX, SunYXL]. .IP [WaLi] Ye Wang and Yusheng Li, Lower Bounds for Ramsey Numbers of $K sub n$ with a Small Subgraph Removed, .I Discrete Applied Mathematics, .R \fB160\fP (2012) 2063-2068. .IP [-] Wang Yuandi, see [HWSYZH]. .IP [-] Wang Zhihai, see [SunYW]. .IP [-] Wang Zhi Jian, see [LiWa1, LiWa2]. .IP [-] Wang Zicheng, see [ShaoWX]. .IP [West] D. West, .I Introduction to Graph Theory, .R second edition, Prentice Hall, 2001. .IP [Wh] E.G. Whitehead, The Ramsey Number $N(3,3,3,3^;^2)$, .I Discrete Mathematics, .R \fB4\fP (1973) 389-396. .IP [-] A. Widgerson, see [BarRSW]. .IP [-] E.R. Williams, see [AbbW]. .IP [-] R.J. Wilson, see [ReWi]. .IP [-] R.M. Wilson, see [FraWi]. .IP [-] A. Woldar, see [LaWo1, LaWo2]. .IP [WSLX1]* $~$Kang Wu, Wenlong Su, Haipeng Luo and Xiaodong Xu, New Lower Bound for Seven Classical Ramsey Numbers $R(3,^q)$, .I Applied Mathematics Letters, .R \fB22\fP (2009) 365-368. .IP [WSLX2]* $~$Kang Wu, Wenlong Su, Haipeng Luo and Xiaodong Xu, A Generalization of Generalized Paley Graphs and New Lower Bounds for $R(3,^q)$, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #N25, \fB17\fP (2010), 10 pages. .IP [-] Wu Kang, see also [LiaWXCS, LiaWXS, LiSLW, XWCS]. .IP [WuSR] Wu Yali, Sun Yongqi and S.P. Radziszowski, Wheel and Star-critical Ramsey Numbers for Quadrilateral, .I Discrete Applied Mathematics, .R \fB186\fP (2015) 260-271. .IP [WuSZR] Wu Yali, Sun Yongqi, Zhang Rui and S.P. Radziszowski, Ramsey Numbers of $C sub 4$ versus Wheels and Stars, .I Graphs and Combinatorics, .R \fB31\fP (2015) 2437-2446. .IP [-] Wu Yali, see also [ZhaSW]. .IP [-] Yi-Li Wu, see [SunWW]. .IP [-] M. Wurtz, see [ShWR]. .nr PS 12 .DS C \fBX\fP .DE .nr PS 10 .IP [-] Xiao Jianhua, see [ShaoWX]. .IP [XieZ]* Xie Jiguo and Zhang Xiaoxian, A New Lower Bound for Ramsey Number $r(3,13)$ (in Chinese), .I Journal of Lanzhou Railway Institute, .R \fB12\fP (1993) 87-89. .IP [-] Xie Zheng, see [XuX1, XuX2, XuXC, XXER, XuXR]. .IP [XWCS]* Chengzhang Xu, Kang Wu, Hong Chen and Wenlong Su, New Lower Bounds for Some Ramsey Numbers Based on Cyclic Graphs, .I in preparation, .R (2011). .IP [-] Xu Chengzhang, see also [LiaWXCS]. .IP [-] Jin Xu, see [ShaXBP]. .IP [-] Xu Feng, see [SunYWLX, SunYXL]. .IP [-] Ran Xu, see [ChenCX]. .IP [Xu] Xu Xiaodong, .I personal communication .R (2004). .IP [XuR1] Xiaodong Xu and S.P. Radziszowski, An Improvement to Mathon's Cyclotomic Ramsey Colorings, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #N1, \fB16\fP(1) (2009), 5 pages. .IP [XuR2] Xiaodong Xu and S.P. Radziszowski, $28 ~<=~ R(C sub 4 ,^C sub 4 ,^C sub 3 ,^C sub 3 ^) ~<=~ 36$, .I Utilitas Mathematica, .R \fB79\fP (2009) 253-257. .IP [XuR3] Xiaodong Xu and S.P. Radziszowski, Bounds on Shannon Capacity and Ramsey Numbers from Product of Graphs, .I IEEE Transactions on Information Theory, .R \fB59\fP (2013) 4767-4770. .IP [XuR4] Xiaodong Xu and S.P. Radziszowski, On Some Open Questions for Ramsey and Folkman Numbers, in .I Graph Theory, Favorite Conjectures and Open Problems, .R Vol. 1, edited by R. Gera, S. Hedetniemi and C. Larson, Problem Books in Mathematics, Springer 2016, 43-62. .IP [XSR1]* Xiaodong Xu, Zehui Shao and S.P. Radziszowski, Bounds on Some Ramsey Numbers Involving Quadrilateral, .I Ars Combinatoria, .R \fB90\fP (2009) 337-344. .IP [XSR2]* Xiaodong Xu, Zehui Shao and S.P. Radziszowski, More Constructive Lower Bounds on Classical Ramsey Numbers, .I SIAM Journal on Discrete Mathematics, .R \fB25\fP (2011) 394-400. .IP [XuX1]* Xu Xiaodong and Xie Zheng, A Constructive Approach for the Lower Bounds on the Ramsey Numbers $r(k,^l)$, .I manuscript .R (2002). .IP [XuX2] Xu Xiaodong and Xie Zheng, A Constructive Approach for the Lower Bounds on Multicolor Ramsey Numbers, .I manuscript .R (2002). .IP [XuXC] Xu Xiaodong, Xie Zheng and Chen Zhi, Upper Bounds for Ramsey Numbers $R sub n (3)$ and Schur Numbers (in Chinese), .I Mathematics in Economics, .R \fB19\fP(1) (2002) 81-84. .IP [XXER]* Xu Xiaodong, Xie Zheng, G. Exoo and S.P. Radziszowski, Constructive Lower Bounds on Classical Multicolor Ramsey Numbers, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #R35, \fB11\fP(1) (2004), 24 pages. .IP [XuXR] Xu Xiaodong, Xie Zheng and S.P. Radziszowski, A Constructive Approach for the Lower Bounds on the Ramsey Numbers $R(s,^t)$, .I Journal of Graph Theory, .R \fB47\fP (2004) 231-239. .IP [-] Xu Xiaodong, see also [LiaWXS, ShaXB, ShaXSP, WSLX1, WSLX2, ZhuXR]. .IP [-] Xu Zhiqiang, see [BaLX]. .nr PS 12 .DS C \fBY\fP .DE .nr PS 10 .IP [-] J. Yackel, see [GrY]. .IP [-] Yan Shuda, see [WWY1, WWY2]. .IP [YHZ1] Yang Jian Sheng, Huang Yi Ru and Zhang Ke Min, The Value of the Ramsey Number $R(C sub n ,^K sub 4 ^)$ is $3(n^-^1)^+^1$ $~(n^>=^4)$, .I Australasian Journal of Combinatorics, .R \fB20\fP (1999) 205-206. .IP [YHZ2] Yang Jian Sheng, Huang Yi Ru and Zhang Ke Min, $R(C sub 6 ,^K sub 5^)~=~21$ and $R(C sub 7 ,^K sub 5^)~=~25$, .I European Journal of Combinatorics, .R \fB22\fP (2001) 561-567. .IP [-] Yang Jian Sheng, see also [BolJY+, HWSYZH]. .IP [YY]** Yang Yuansheng, On the Third Ramsey Numbers of Graphs with Six Edges, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB17\fP (1995) 199-208. .IP [YH]* Yang Yuansheng and G.R.T. Hendry, The Ramsey Number $r(K sub 1 ^+^ C sub 4 ,^K sub 5 ^-^e)$, .I Journal of Graph Theory, .R \fB19\fP (1995) 13-15. .IP [YR1]** Yang Yuansheng and P. Rowlinson, On the Third Ramsey Numbers of Graphs with Five Edges, .I Journal of Combinatorial Mathematics and Combinatorial Computing, .R \fB11\fP (1992) 213-222. .IP [YR2]* Yang Yuansheng and P. Rowlinson, On Graphs without 6-Cycles and Related Ramsey Numbers, .I Utilitas Mathematica, .R \fB44\fP (1993) 192-196. .IP [YR3]* Yang Yuansheng and P. Rowlinson, The Third Ramsey Numbers for Graphs with at Most Four Edges, .I Discrete Mathematics, .R \fB125\fP (1994) 399-406. .IP [-] Yang Yuansheng, see also [SunY, SunYJLS, SunYLZ1, SunYLZ2, SunYW, SunYWLX, SunYXL]. .IP [-] Ye Weiguo, see [SonYL]. .IP [YuLi] Pei Yu and Yusheng Li, All Ramsey Numbers for Brooms in Graphs, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P3.29, \fB23\fP(3) (2016), 8 pages. .IP [Yu1]* Yu Song Nian, A Computer Assisted Number Theoretical Construction of $(3,^k)$-Ramsey Graphs, .I Annales Universitatis Scientiarum Budapestinensis, Sect. Comput., .R \fB10\fP (1989) 35-44. .IP [Yu2]* Yu Song Nian, Maximal Triangle-Free Circulant Graphs and the Function $K(c)$ (in Chinese), .I Journal of Shanghai University, Natural Science, .R \fB2\fP (1996) 678-682. .IP [-] R. Yuster, see [CaYZ]. .nr PS 12 .DS C \fBZ\fP .DE .nr PS 10 .IP [-] A. Zaghian, see [RaeZ]. .IP [-] Zang Wenan, see [LiRZ1, LiRZ2, LiTZ, LiZa1, LiZa2]. .IP [-] C. Zarb, see [CaYZ]. .IP [Zeng] Zeng Wei Bin, Ramsey Numbers for Triangles and Graphs of Order Four with No Isolated Vertex, .I Journal of Mathematical Research & Exposition, .R \fB6\fP (1986) 27-32. .IP [-] Zhang Chaohui, see [HTHZ2]. .IP [ZhZ1] Zhang Ke Min and Zhang Shu Sheng, Some Tree-Stars Ramsey Numbers, .I Proceedings of the Second Asian Mathematical Conference .R 1995, 287-291, World Sci. Publishing, River Edge, NJ, 1998. .IP [ZhZ2] Zhang Ke Min and Zhang Shu Sheng, The Ramsey Numbers for Stars and Stripes, .I Acta Mathematica Scientia, .R \fB25A\fP (2005) 1067-1072. .IP [-] Zhang Ke Min, see also [BolJY+, ChenZZ1, ChenZZ2, ChenZZ3, ChenZZ4, ChenZZ5, ChenZZ6, HTHZ1, HWSYZH, HZ1, HZ2, HZ3, McZ, ShZ1, ShZ2, YHZ1, YHZ2, ZhaCZ1, ZhaCZ2, ZZ3]. .IP [ZhaCC1] Lianmin Zhang, Yaojun Chen and T.C. Edwin Cheng, The Ramsey Numbers for Cycles versus Wheels of Even Order, .I European Journal of Combinatorics, .R \fB31\fP (2010) 254-259. .IP [-] Lianmin Zhang, see also [ZhuZL]. .IP [ZhaSW]* Zhang Rui, Sun Yongqi and Wu Yali, On the Four Color Ramsey Numbers for Hexagons, .I Ars Combinatoria, .R \fB111\fP (2013) 515-522. .IP [-] Zhang Rui, see also [WuSZR]. .IP [-] Zhang Shu Sheng, see [ZhZ1, ZhZ2]. .IP [-] Zhang Xiaoxian, see [XieZ]. .IP [ZhaCC2] Xuemei Zhang, Yaojun Chen and T.C. Edwin Cheng, Some Values of Ramsey Numbers for $C sub 4$ versus Stars, .I Finite Fields and Their Applications, .R \fB45\fP (2017) 73-85. .IP [ZhaCC3] Xuemei Zhang, Yaojun Chen and T.C. Edwin Cheng, Polarity Graphs and Ramsey Numbers for $C sub 4$ versus Stars, .I Discrete Mathematics, .R \fB340\fP (2017) 655-660. .IP [ZhaCh] Yanbo Zhang and Yaojun Chen, The Ramsey Numbers of Fans versus a Complete Graph of Order Five, .I Electronic Journal of Graph Theory and Applications, .R \fB2\fP (2014) 66-69. .IP [ZhaBC1] Yanbo Zhang, Hajo Broersma and Yaojun Chen, A Remark on Star-$C sub 4$ and Wheel-$C sub 4$ Ramsey Numbers, .I Electronic Journal of Graph Theory and Applications, .R \fB2\fP (2014) 110-114. .IP [ZhaBC2] Yanbo Zhang, Hajo Broersma and Yaojun Chen, Three Results on Cycle-Wheel Ramsey Numbers, .I Graphs and Combinatorics, .R \fB31\fP (2015) 2467-2479. .IP [ZhaBC3] Yanbo Zhang, Hajo Broersma and Yaojun Chen, Ramsey Numbers of Trees versus Fans, .I Discrete Mathematics, .R \fB338\fP (2015) 994-999. .IP [ZhaBC4] Yanbo Zhang, Hajo Broersma and Yaojun Chen, On Fan-Wheel and Tree-Wheel Ramsey Numbers, .I Discrete Mathematics, .R \fB339\fP (2016) 2284-2287. .IP [ZhaBC5] Yanbo Zhang, Hajo Broersma and Yaojun Chen, Narrowing Down the Gap on Cycle-Star Ramsey Numbers, .I Journal of Combinatorics, .R \fB7\fP (2016) 481-493. .IP [ZhaZC] Yanbo Zhang, Yunqing Zhang and Yaojun Chen, The Ramsey Numbers of Wheels versus Odd Cycles, .I Discrete Mathematics, .R \fB323\fP (2014) 76-80. .IP [ZhaZZ] Zhang Yanbo, Zhu Shiping and Zhang Yunqing, Ramsey Numbers for 7-Cycle versus Wheels with Small Order (in Chinese), .I Journal of Nanjing University, Mathematical Biquarterly, .R \fB30\fP (2013) 48-55. .IP [-] Yanbo Zhang, see also [LiZBBH, LiZB]. .IP [-] Zhang Yuming, see [CaLRZ]. .IP [Zhang1] Zhang Yunqing, On Ramsey Numbers of Short Paths versus Large Wheels, .I Ars Combinatoria, .R \fB89\fP (2008) 11-20. .IP [Zhang2] Zhang Yunqing, The Ramsey Numbers for Stars of Odd Small Order versus a Wheel of Order Nine, .I Nanjing Daxue Xuebao Shuxue Bannian Kan, .R ISSN 0469-5097, \fB25\fP (2008) 35-40. .IP [ZhaCC4] Yunqing Zhang, T.C. Edwin Cheng and Yaojun Chen, The Ramsey Numbers for Stars of Odd Order versus a Wheel of Order Nine, .I Discrete Mathematics, Algorithms and Applications, .R \fB1\fP (2009) 413-436. .IP [ZhaCZ1] Yunqing Zhang, Yaojun Chen and Kemin Zhang, The Ramsey Numbers for Stars of Even Order versus a Wheel of Order Nine, .I European Journal of Combinatorics, .R \fB29\fP (2008) 1744-1754. .IP [ZhaCZ2] Yunqing Zhang, Yaojun Chen and Kemin Zhang, The Ramsey Numbers for Trees of High Degree versus a Wheel of Order Nine, .I manuscript .R (2009). .IP [ZZ3] Yunqing Zhang and Ke Min Zhang, The Ramsey Number $R(C sub 8 ,^K sub 8 ^)$, .I Discrete Mathematics, .R \fB309\fP (2009) 1084-1090. .IP [-] Zhang Yunqing, see also [ChenCNZ, ChenCZ1, ChenZZ1, ChenZZ2, ChenZZ3, ChenZZ4, ChenZZ5, ChenZZ6, CheCZN, ZhaZC, ZhaZZ]. .IP [-] Zhang Zhengyou, see [SLZL]. .IP [ZLLS] Zhang Zhongfu, Liu Linzhong, Li Jinwen and Song En Min, Some Properties of Ramsey Numbers, .I Applied Mathematics Letters, .R \fB16\fP (2003) 1187-1193. .IP [Zhao] Yi Zhao, Proof of the $(n/^2^-^n/^2^-^n/^2)$ Conjecture for Large $n$, .I Electronic Journal of Combinatorics, .R \s-1\fHhttp://www.combinatorics.org\fP\s0, #P27, \fB18\fP(1) (2011), 61 pages. .IP [-] Yi Zhao, see also [NoSZ]. .IP [-] Zheng Wenping, see [SunYLZ1, SunYLZ2]. .IP [Zhou1] Zhou Huai Lu, Some Ramsey Numbers for Graphs with Cycles (in Chinese), .I Mathematica Applicata, .R \fB6\fP (1993) 218. .IP [Zhou2] Zhou Huai Lu, The Ramsey Number of an Odd Cycle with Respect to a Wheel (in Chinese), .I Journal of Mathematics, Shuxue Zazhi .R (Wuhan), \fB15\fP (1995) 119-120. .IP [Zhou3] Zhou Huai Lu, On Book-Wheel Ramsey Number, .I Discrete Mathematics, .R \fB224\fP (2000) 239-249. .IP [ZhuZL] Dongmei Zhu, Lianmin Zhang and Dongxin Li, The Ramsey Numbers of Large Trees versus Wheels, .I Bulletin of the Iranian Mathematical Society, .R \fB42\fP(4) (2016) 879-880. .IP [ZhuXR] Rujie Zhu and Xiaodong Xu and S.P. Radziszowski, A Small Step Forwards on the Erd\o'o\(hu's-S\o'o\(aa's Problem Concerning the Ramsey Numbers $R(3,^k)$, .I Discrete Applied Mathematics, .R \fB214\fP (2016) 216-221. .IP [-] Zhu Shiping, see [ZhaZZ]. .nr PS 10 .nr VS 12 .LP