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Abstra
t

The 
rossing number is a popular tool in graph drawing and visualization, but

there is not really just one 
rossing number; there is a large family of 
rossing number

notions of whi
h the 
rossing number is the best known. We survey the ri
h variety

of 
rossing number variants that have been introdu
ed in the literature for purposes

that range from studying the theoreti
al underpinnings of the 
rossing number to


rossing minimization for visualization problems.

1 So, Whi
h Crossing Number is it?

The 
rossing number, cr(G), of a graph G is the smallest number of 
rossings required

in any drawing of G. Or is it? A

ording to a popular introdu
tory textbook on 
ombi-

natori
s [461, page 40℄ the 
rossing number of a graph is �the minimum number of pairs

of 
rossing edges in a depi
tion of G�. So, whi
h one is it? Is there even a di�eren
e?

To start with the se
ond question, the easy answer is: yes, obviously there is a di�er-

en
e, the di�eren
e between 
ounting all 
rossings and 
ounting pairs of edges that 
ross.

But maybe these di�erent ways of 
ounting don't make a di�eren
e and always 
ome out

the same? That is a harder question to answer. Pa
h and Tóth in their paper �Whi
h

Crossing Number is it Anyway?� [370℄ 
oined the term pair 
rossing number, pcr, for the

rossing number in the se
ond de�nition. One of the big open problems in the theory of


rossing numbers is whether pcr(G) = cr(G) for all graphs G. If we don't know whether

they are the same, why do we see both notions 
alled 
rossing number in the literature?

One potential sour
e for the 
onfusion between pcr and cr may be the famous 
rossing

number inequality whi
h states that for any graph G on n verti
es and m edges we have

cr(G) > c · m3/n2
for m > 4n and some 
onstant c. The original proofs of this result
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are due independently to Ajtai, Chvátal, Newborn, Szemeredi [16℄ and Leighton [318℄.

Leighton de�nes cr as pcr; sin
e pcr(G) 6 cr(G), he is making a stronger 
laim; his proof is

analyzed in the se
tion on 
rossing lemma variants below. The importan
e and in�uen
e of

Leighton's paper may explain why some later papers using the 
rossing number inequality

work with the pair 
rossing number [21, 452℄. The danger, of 
ourse, is that the two notions

get 
onfused; for example, Leighton [319, Theorem 1℄ proves that cr(G)+n > Ω(bw(G)2),
where bw(G) is the bise
tion width of G (and G has bounded degree); his 
onstru
tion is

�ne for the standard 
rossing number, but does not work for pcr, the de�nition of 
rossing

number he 
hose.

1

Another in�uential 
rossing number result is Garey and Johnson's proof that the


rossing number problem is NP-
omplete [204℄; Garey and Johnson �rst mentioned the

problem as an open problem in their book on NP-
ompleteness, where they write: �Open

problems for other generalizations of planarity in
lude `Does G have 
rossing number K
or less, i.e. 
an G be embedded in the plane with K or fewer pairs of edges 
rossing

one another?' � [203, OPEN3℄. Clearly, they are de�ning what we now 
all the pair


rossing number; in their later NP-
ompleteness paper they write that K is the least

integer so that �G 
an be embedded in the plane so that there are no more than K pair-

wise interse
tions of 
urves representing edges (not 
ounting the required interse
tions

at 
ommon endpoints)� [204℄. This is already somewhat ambiguous: does �pair-wise�

mean that they only 
ount the pairs, or that 
rossings 
ount for ea
h pair they belong

to (whi
h is relevant if more than two edges 
ross in a 
rossing). When they show that

the 
rossing number problem lies in NP, it be
omes 
lear that they mean the standard


rossing number and not the pair 
rossing number (for whi
h membership in NP is not

trivial [411℄).

This last example suggests another possible explanation for 
onfusion among 
rossing

numbers: when trying to make pre
ise what it means to 
ount 
rossings, it is natural

to speak of pairwise 
rossings (to avoid problems with three edges 
rossing in the same

point), and from there it is a short step to �pairs of edges 
rossing�.

However, the main reason for 
onfusion is most likely one identi�ed by Székely [444℄

in his dis
ussion of drawing 
onventions. In a drawing D of G minimizing cr(G) we have
cr(D) = pcr(D) sin
e every pair of edges 
rosses at most on
e. This does not imply that

pcr(G) = cr(G) but it may have mistakenly suggested it; the subtle 
onfusion is between a

cr-minimal drawing, in whi
h every pair of edges 
rosses at most on
e, and a pcr-minimal

drawing, for whi
h we do not know whether this is true.

2

This 
onfusion may have been

exa
erbated by the fa
t that cr(G) as de�ned above from the beginning 
oexisted with

what we now 
all the re
tilinear 
rossing number, cr(G), in whi
h drawings of G are

restri
ted to straight-line drawings.

3

In a straight-line drawing D of G we again have

1

Kolman and Matousek [301℄ show that Leighton's result 
an be extended to pcr, but with slightly

weaker bounds.

2

Székely [444℄ writes: �How is it possible that de
ades in resear
h of 
rossing numbers passed by and no

major 
onfusion resulted from these foundational problems? The answer is the following: the 
onje
tured

optimal drawings are usually normal and ni
e and the lower bounds (...) usually also apply for all kinds

of 
rossing numbers.

3

The �rst paper to de�ne 
rossing number for arbitrary graphs also de�ned re
tilinear 
rossing num-
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cr(D) = pcr(D) sin
e every pair of edges 
an 
ross at most on
e, so it is natural to de�ne

the 
rossing number for straight-line drawings as the number of pairs of edges that 
ross

in a straight-line drawing (e.g. [476℄); later authors may have dropped the straight-line

requirement without 
hanging the way 
rossings are 
ounted.

4

Remark 1. As far as we know there are 
urrently only three 
rossing number variants for

whi
h it is known that 
ounting pairs of 
rossings as opposed to all 
rossings de
reases

the value of the 
rossing number: the 
onstrained 
rossing number [354℄, the lo
al 
ross-

ing number (see that entry), and the geodesi
 
rossing number (on a pseudosurfa
e, see

Footnote 62). �

Adja
ent Crossings

There is some independent 
orroboration to Székely's thesis that cr-minimal drawings

are at the root of the 
onfusion between di�erent 
rossing number notions; cr-minimal

drawings also have the property that adja
ent edges do not 
ross, and sure enough there

are several instan
es in whi
h resear
hers have ignored (sometimes at their peril) 
rossings

between adja
ent edges. Tutte, in a slightly di�erent 
ontext, famously remarked that

�adja
ent 
rossings are trivial and easily got rid of� [463℄.

To show that adja
ent edges do not 
ross in a cr-minimal drawing, one typi
ally refers

to two pi
tures, like the left and middle pi
tures of Figure 1.

Figure 1: (left) adja
ent 
rossing, (middle) removing adja
ent 
rossing, (right) adja
ent


rossing that's hard to remove by lo
al redrawing.

While this works �ne for the standard 
rossing number (though even there one needs

an additional argument that shows how to remove self-
rossings that 
an be introdu
ed

when swapping ar
s), this need not be the 
ase for other 
rossing number notions. For

example, 
onsider the pair 
rossing number in the s
enario depi
ted in the right pi
ture of

Figure 1; swapping the ar
s, or even just rerouting one of the ar
s along the adja
ent edge

will lead to an in
rease in the pair 
rossing number, so the simple lo
al redrawing moves

ber [232℄.

4

Re
ent examples de�ning 
rossing number as pcr in
lude textbooks in 
ombinatori
s [461, 452, 472℄,

and books in algorithms and 
omplexity [41, 266, 36, 37℄.
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ommon for cr do not seem to work. It is open whether a pcr-minimal drawing may have


rossings between adja
ent edges (this question is equivalent to whether pcr < pcr+, see
the entry on pair 
rossing number in Se
tion 3).

Even for the standard 
rossing number this is not the end of the story for adja
ent


rossings. Here is a quote from a re
ent paper on Albertson's 
onje
ture: if G has 
hro-

mati
 number at least r, then cr(G) > cr(Kr).

�A 
rossing of two edges e and f is trivial if e and f are adja
ent or equal,

and it is non-trivial otherwise. A drawing is good if it has no trivial 
rossings.

The following is a well-known easy lemma.

Lemma 1.1. A drawing of a graph 
an be modi�ed to eliminate all of

its trivial 
rossings, with the number of non-trivial 
rossings remaining the

same.� [363℄

The independent 
rossing number, cr−(G), only 
ounts 
rossings o

urring between

independent edges. If Lemma 1.1 were true, it would imply that cr− = cr, a question

that's open to the best of our knowledge.

5

Fortunately, the use of Lemma 1.1 
ould be

eliminated in this 
ase [362℄, but wouldn't it be ni
e if we 
ould establish cr− = cr and not

have to worry about adja
ent 
rossings anymore? The left and middle pi
ture of Figure 1

explain why Lemma 1.1 looks so 
onvin
ing: 
rossings between adja
ent edges 
an easily

be removed by lo
al redrawing, but the right pi
ture shows that this 
an 
reate 
rossings

between non-adja
ent pairs of edges. A proof of a result like Lemma 1.1 will require a

more global approa
h.

Question 2. Here are two simple-looking problems that illustrate our la
k of understand-

ing of adja
ent 
rossings. (i) Can subdividing an edge 
hange cr− of a graph? (ii) Suppose
a graph 
an be drawn on a surfa
e so that all 
rossings in the drawing are between ad-

ja
ent edges. Can the graph be embedded in that surfa
e? An answer to the se
ond

question is known for the plane and the proje
tive plane by virtue of the Hanani-Tutte

theorems for those surfa
es [377℄, but not for any other surfa
e.

6

The �rst question is

open.

While not nearly as 
ommon as the pcr versus cr problem, cr is o

asionally de�ned as

the smallest number of independent 
rossings; this may again be due to the fa
t that for

straight-line drawings, adja
ent edges do not 
ross. For example, Moon [347℄ in one of the

earliest papers on 
rossing numbers de�nes what amounts to the independent (geodesi
)

5

Start with a cr−-minimal drawing. By the lemma, all trivial 
rossings 
an be eliminated, only leaving

�non-trivial� 
rossings, that is, 
rossings that 
ount towards cr, so cr of the resulting drawing is at most

cr−. In the other dire
tion, cr− 6 cr follows from the de�nition.

6

The Hanani-Tutte theorem for a surfa
e Σ is true if every graph whi
h 
an be drawn on Σ so that no

two independent edges 
ross an odd number of times is embeddable in Σ. The Hanani-Tutte theorem is

known to be true for the plane (sphere) [120, 463℄ and the proje
tive plane [377℄. It is not known to be

true for any other surfa
e, and it has been announ
ed that it fails for surfa
es of genus 4 and higher [197℄.

In terms of 
rossing numbers, the Hanani-Tutte 
ondition 
an be expressed as saying that iocrΣ(G) = 0
implies that crΣ(G) = 0 for all graphs G.
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spheri
al 
rossing number whi
h equals the geodesi
 spheri
al 
rossing number, sin
e

geodesi
s representing adja
ent edges do not 
ross on the sphere. Nahas [355℄ de�nes

the 
rossing number of Km,n as cr−(Km,n). Papers on 
rossing minimization via linear

programming also often ignore variables that en
ode 
rossings between adja
ent edges.

This is �ne, of 
ourse, as the resulting program enfor
e that adja
ent edges do not 
ross;

otherwise, they would 
ompute cr−.

Remark 3. As far as we know there are only two 
rossing number notions for whi
h

the independent variant is known to di�er from the regular variant, namely the odd

and the algebrai
 
rossing number: there are graphs G for whi
h iocr(G) < ocr(G) and
iacr(G) < acr(G) [198℄. The same paper also shows that prohibiting 
rossings between

adja
ent edges in monotone drawings 
an lead to an in
rease in the monotone odd 
rossing

number. The same is true for the lo
al 
rossing number, see Footnotes 72 and 74, and

the simultaneous 
rossing number, see Footnote 100. For dire
ted graphs, the bimodal


rossing number may require 
rossings between adja
ent edges in an optimal drawing. �

Crossing Lemma Variants

The 
rossing lemma, or 
rossing number inequality, established independently by Ajtai,

Chvátal, Newborn, Szemeredi [16℄ and Leighton [318℄, is one of the most 
elebrated (and

famous) results on 
rossing numbers.

7

In its original form, it shows that cr(G) > c·m3/n2
,

where n = |V |, and m = |E|. How does it fare for other 
rossing number variants, and

pair and odd 
rossing number in parti
ular? Crossing lemmas for other variants are listed

in the 
ompendium below.

The usual probabilisti
 proof of the 
rossing lemma for a 
rossing number γ pro
eeds

in three steps: �rst, we observe that if γ(G) = 0, then G is planar, so Euler's formula

applies, and m 6 3n − 6, where n = |V (G)|, m = |E(G)|. In a se
ond step, we argue

that we 
an remove at most γ(G) edges from G to redu
e γ to 0, so m− γ(G) 6 3n− 6,
and, hen
e, γ(G) > m − 3n. In a third step, we 
onsider a random subgraph G′

of

G, keeping ea
h vertex with probability p. The expe
ted number of verti
es and edges

in G′ = (V ′, E ′) are E(|V ′|) = pn and E(|E ′|) = p2m. Fix a γ-minimal drawing D of

G. Assuming ea
h 
rossing in D whi
h 
ontributes to γ is 
aused by two independent

edges, a 
rossing is asso
iated with four endpoints. For the 
rossing to survive in D′
, the

indu
ed drawing of G′
, all four endpoints have to be kept, so E(γ(G′)) 6 p4γ(G). Now

G′
ful�lls γ(G′) > |E ′| − 3|V ′| (by the se
ond step), so, taking expe
ted values, we get

p4γ(G) > p2m − pn, or γ(G) > mp−2 − np−3
(assuming p > 0). Choosing p = 4n/m

implies that γ(G) > 1/64m3/n2
, as long as m > 4n (whi
h we need so p 6 1).

For γ = cr, this proof works just �ne, and it's been 
laimed in the literature (e.g.

[366℄) that this proof also works for pair and odd 
rossing numbers. But there are two

subtle problems. Consider the 
ase γ = pcr, the 
ase 
laimed by Leighton [318℄: in the

se
ond step, the pcr-minimal drawing D may 
ontain 
rossings between dependent edges,

and those 
ontribute to pcr. Sin
e we do not know how to remove dependent 
rossings

7

For a very readable introdu
tion, see Teren
e Tao's blog enty [451℄, whi
h also dis
usses appli
ations

to in
iden
e geometry and sum-produ
t estimates.
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in general without in
reasing pcr(D), we have to take dependent 
rossings into a

ount;

sin
e those survive with probability p3, we would get a substantially worse bound than

Ω(m3/n2) on pcr(G). Alon [21℄, and Tao and Vu in their book on additive 
ombina-

tori
s [452℄ 
ir
umvent this problem by working with pcr−, the independent pair 
rossing
number, in whi
h only the number of 
rossings of independent pairs of edges are 
ounted.

However, for that 
rossing number the se
ond step is no longer obvious: if we have a

drawing D with k independent pairs of edges 
rossing, then removing k edges yields a

drawing in whi
h all remaining 
rossings are dependent. Is that graph planar? The an-

swer is yes, but it requires the Hanani-Tutte theorem (see Footnote 6) to prove so (at

least we are not aware of a dire
t proof).

Remark 4. Sin
e the Hanani-Tutte theorem is not known to be true for the torus, this

means that we do not 
urrently have a proof of the 
rossing lemma for pcr or pcr− on the

torus. A positive answer to Question 2 (ii) would be su�
ient to settle the problem. For

the standard 
rossing number, extensions of the 
rossing lemma to arbitrary surfa
es are

known [430℄. �

Pa
h and Tóth [370℄ work with γ = ocr, the odd 
rossing number, whi
h only 
ounts

pairs of edges 
rossing an odd number of times. They use Hanani-Tutte in the �rst and

se
ond steps, but in the third step again assume that a 
rossing is asso
iated with four

endpoints, whi
h may not be the 
ase for ocr. However, their proof is essentially 
orre
t

if read for γ = iocr, the independent odd 
rossing number, whi
h 
ounts the number

of independent pairs of edges 
rossing an odd number of times. For iocr, the Hanani-

Tutte theorem guarantees that we 
an remove iocr(G) edges from G to make G planar,

ensuring the 
orre
tness of the �rst and se
ond steps. And sin
e iocr by de�nition only


ounts independent pairs, the argument in the third step also works. We 
on
lude that

iocr(G) > 1/64m3/n2
, as long as m > 4n. Sin
e ocr, pcr, and pcr− (as well as acr and

iacr) are all bounded below by iocr, this immediately proves the 
rossing lemma for all

these variants. The 
onstant c = 1/64 in these 
ases is weaker than what is 
urrently

known for cr, but seems hard to improve [366, Remark 4.2℄, though it was re
ently shown

c = 1/34.2 will work for pcr+ [11℄.

Con
lusion

We are forewarned that there is some subtlety to de�ning the 
rossing number, but rather

than seeing this as an issue, this gives us an opportunity. János Pa
h on
e said, in

e�e
t, �we don't need more 
rossing numbers, we need fewer 
rossing numbers�. As a

look at the 
ompendium will show it may be too late for that. Some 
rossing number

variants may have arisen by mistake, but most were de�ned with a spe
i�
 purpose in

mind. This purpose may be theoreti
al, aimed at developing a theory of 
rossing number

(as Tutte [463℄ did with his 
rossing 
hains and iacr) or it may be pra
ti
al, aimed at

improving the layout of graphs (as in the Metro-line 
rossing minimization problem).

The re
ent growth of graph drawing resear
h and 
rossing minimization problems for

very spe
i�
 visualization tasks is important eviden
e for that. Some variants, su
h as
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the lo
al 
rossing number or the maximum re
tilinear 
rossing number, are so fundamental

that they have been redis
overed over and over again under various names.

This survey of 
rossing number variants follows two main goals: to 
olle
t as many

di�erent types of 
rossing number variants from the literature as possible (unifying pre-

sentations and names), and to attempt a systemati
 des
ription of what makes a 
rossing

number. The results of this se
ond step are presented �rst, in Se
tion 2. The results of

the �rst step are 
olle
ted in the Compendium in Se
tion 3. Originally, the paper was to


ontain a se
tion on the history of the 
rossing number, however, Beineke and Wilson's

�Early History of the Bri
k Fa
tory problem� [60℄ and Székely's �Turán's bri
k fa
tory

problem: the status of the 
onje
tures of Zarankiewi
z and Hill� make this part mostly

super�uous.

Remark 5 (Forerunners of Crossing Minimization in So
iology). David Eppstein [171℄

dis
overed the earliest known referen
es to (general) 
rossing minimization.

8

They 
ome

from so
iology, more spe
i�
ally the area of so
iometry whi
h is 
on
erned with measuring

(and depi
ting) so
ial relationships: in dis
ussing so
iograms (essentially graphs), Bron-

fenbrenner [87℄ in 1945 writes that �The arrangement of subje
ts on the diagram, while

haphazard in part, is determined largely by trial and error with the aim of minimizing

the number of interse
ting lines�. So
iograms were introdu
ed in J.L. Moreno's �Who

Shall Survive� [348℄ in 1934, however, the �rst edition of that book, while 
ontaining

many interesting graph visualizations, does not seem to dis
uss 
rossing minimization. In

the later, 1953, edition [349℄,

9

there is an interesting paragraph whi
h reads: �A readable

so
iogram is a good so
iogram. To be readable, the number of lines 
rossing must be min-

imized.� This mantra o

urs repeatedly in the literature on so
iograms, and at least on
e

in an earlier paper by Borgatta [82℄ who writes: �A readable diagram is a good diagram.

To be readable, the number of lines 
rossing must be minimized. This may be taken as

a primary prin
iple in the 
onstru
tion of inter-a
tion diagrams; the fewer the number of

lines 
rossing, the better the diagram. The problem, then, is to �nd the pro
edure whi
h

best minimizes the number of lines that 
ross in a diagram.� Borgatta then outlines a

multi-stage heuristi
 for 
rossing minimization (start with a small number of high-degree

verti
es, drawn far apart, add verti
es by de
reasing degree, redraw diagram to improve

drawings of subgroups), and illustrates his method by working out an example on 26
verti
es and 43 edges, shown in Figure 2; his �nal drawing uses two 
rossings (whi
h is

optimal, sin
e his graph 
ontains two disjoint 
opies of K5).

The earliest referen
e (found so far) on 
rossing minimization seems to be a 1940

paper by Northway [360℄ in whi
h she suggests the use of radial layouts; verti
es (s
hool


hildren) are pla
ed at various distan
es from a 
enter based on some quantity (their

s
ores); dire
ted edges between them are drawn as straight-line arrows. She writes that

�it has been 
onvenient to use 
ounters [...℄. These are moved in the 
ir
les to whi
h

their s
ore belongs and arranged to get the best "�t" among the individuals, i.e., to

8

There are earlier referen
es to 
rossing minimization when it 
omes to spe
i�
 families of graphs [123,

298, 440℄, but none that are as general as these.

9

This edition is available online at http://www.asgpp.org/do
s/WSS/wss%20index/wss%20index.

html
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(a) (b)

Figure 2: Maybe the �rst published instan
e of a 
rossing minimization, redu
ing 16

rossings in (a) to the optimal 2 
rossings in (b). Taken (with permission) from a 1951

arti
le in the journal �Group Psy
hotherapy� by Edgar F. Borgatta [82℄.

have as few long lines and 
rossing lines as possible.� She also suggests that grouping

verti
es by some 
hara
teristi
 (in her example, sex), simpli�es this task. These quotes

are quite remarkable, and one wonders whether there is more early material on 
rossing

minimization that is unknown in the mathemati
al literature. �

One aspe
t that remains to be studied, is the history of knot 
rossing numbers and

their in�uen
e (or not) on graph 
rossing numbers. When it 
omes to methods of 
ounting


rossings, it seems that knot 
rossing numbers led the way; e.g. Tutte's theory of 
ross-

ing numbers is based on 
ounting 
rossings algebrai
ally, as one would for the algebrai



rossing number in knot theory, and as Gauÿ would have done hundreds of years ago [207,

page 271�279℄.

Remark 6 (Axioms). What makes a 
rossing number a 
rossing number? We have 
hosen

a des
riptive/extensional approa
h for this survey, however, the material 
olle
ted here

may at some point make a basis for a pres
riptive/intensional approa
h. As far as we know

there has never been an attempt to axiomatize the notion of 
rossing number, either as

the standard 
rossing number or as the family of 
rossing number variants. Although not
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plentiful, there are some 
andidate axioms based on 
ommon 
rossing number properties.

Embeddability Crossing numbers are generally 
onsidered to be �measures of non-

planarity� or non-embeddability. It seems natural then to require that if γΣ(G) = 0
for some 
rossing number γ in surfa
e Σ, then G is embeddable in Σ. Let us 
all

this the embeddability axiom. For the standard 
rossing number this is true by de�-

nition (on any surfa
e). For the independent odd 
rossing number it amounts to the

Hanani-Tutte theorem (whi
h is only known for the plane and the proje
tive plane,

see Footnote 6). For the 
on�uent 
rossing number and the string 
rossing num-

ber, the embeddability axiom fails (
omplete graphs have 
on�uent embeddings and

there are non-planar string graphs). A stronger, quantitative version of this axiom

would require that the removal of at most γ(G) edges from G makes G planar. The

intuition behind this strengthened version is that ea
h 
rossing is 
aused by two

edges, so a 
rossing 
an be eliminated by removing one of the parti
ipating edges.

This axiom holds for the standard 
rossing number by de�nition (on any surfa
e),

and for the pair 
rossing number. It also holds for the independent odd 
rossing

number in the plane and the proje
tive plane, by the Hanani-Tutte theorem (Foot-

note 6), but, by [197℄ it fails on surfa
es of genus 4 and higher. It also fails for the

degenerate 
rossing number, in whi
h more than two edges 
an 
ross in a 
rossing,

and for any of the 
rossing numbers based on maximization.

Embedding By the same �measure of non-planarity� argument, a graph G that 
an be

embedded in a surfa
e Σ should have 
rossing number γΣ(G) = 0. Let us 
all this
the embedding axiom. This axiom is trivially true for most 
rossing number variants,

although there are some notable ex
eptions in
luding 
rossing numbers de�ned via

maximization (maximum 
rossing number, maximum re
tilinear 
rossing number)

and 
rossing numbers that require 
ertain drawing 
onventions (e.g. bimodal, bipar-

tite, 
onvex, and or
hard 
rossing numbers). For the re
tilinear 
rossing number,

the axiom amounts to Fary's (or Wagner's or Steinitz's) theorem. It appears to be

an open problem whether the axiom holds for the geodesi
 
rossing number on other

surfa
es.

10

Subgraph Monotoni
ity The subgraph monotoni
ity axiom requires that if G is a sub-

graph of H , then γ(G) 6 γ(H). This is true (and trivial) for nearly all 
rossing

number variants. We are aware of only two provable ex
eptions, the triple 
rossing

number, for whi
h triple-cr(K5,3) = ∞ while triple-cr(K6,3) = 2 [450℄, and the 
on-

�uent 
rossing number (all 
omplete graphs have 
on�uent 
rossing number 0). For
the maximum 
rossing number, monotoni
ity is a well-known open problem even

if G is required to be an indu
ed subgraph of H [396℄. A stronger requirement

is topologi
al minor monotoni
ity: if G is a subdivision of a subgraph of H , then

γ(G) 6 γ(H). This is still true for a large number of 
rossing numbers, but is not

known to hold for any of the independent 
rossing number variants, like cr−, and
typi
ally fails for alternative representations (like the 
on�uent 
rossing number).

10

An announ
ement of a solution in [455, page 312℄ may have been in error [456℄.
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In 
ontrast, most 
rossing numbers do not satisfy minor-monotoni
ity whi
h has led

to the de�nition of the minor (or minor-monotone) and the genus 
rossing numbers.

Surfa
e Monotoni
ity The surfa
e monotoni
ity axiom requires that if surfa
e Σ has

smaller genus than surfa
e Γ, then γΣ > γΓ. We are not aware of any 
rossing

number that does not ful�ll this axiom. One 
ould imagine sharper quantitative

versions of this axiom, for example if Σ has smaller genus than Γ, then γΣ(G) >
γΓ(G) unless γΣ(G) = 0.

One 
an imagine further axioms, for example based on what may be 
alled the spe
trum

of the 
rossing number of a graph G: {γ(D) : D is a drawing of G}. This notion has

o

asionally been studied, e.g. [199, 385℄ for the maximum 
rossing number, or [248℄ for

the edge 
rossing number. Harborth [245℄ showed that the spe
trum of K14 under cr is not
a subset of the spe
trum of K14 under the 2-page 
rossing number bkcr2, and 
onje
tured

that K14 is the smallest 
omplete graph for whi
h the spe
tra of cr and bkcr2 di�er.
11

It is probably unreasonable to expe
t an axiomatization of the (standard) 
rossing

number; however, it may be reasonable to attempt to axiomatize su�
iently many stan-

dard properties of the 
rossing number that would show why many of them allow a 
rossing

lemma. Or why many of them 
an be bounded within ea
h other. �

2 A Systemati
 Approa
h

In this se
tion we want to take a systemati
 approa
h to 
rossing number variants. The

dis
ussion is based on the 
rossing number notions 
olle
ted from the literature and pre-

sented in Se
tion 3, and the reader is asked to look for de�nitions there if they are not

given in this se
tion. Before reviewing 
rossing numbers, we begin with a dis
ussion of


rossings themselves.

What is a 
rossing? Typi
ally, a 
rossing is de�ned to be a 
ommon interior point of

two edges; hen
e, a shared endpoint (of two adja
ent edges) is not 
onsidered a 
rossing.

This distinguishes a 
rossing from an interse
tion of two edges.

12

The de�nition as given also distinguishes a 
rossing from the point in the plane at

whi
h the 
rossing o

urs (and this is good). The de�nition does, however, in
lude points

in whi
h two 
urves tou
h; this is of no 
onsequen
e for the standard 
rossing number sin
e

in 
rossing-minimal drawings no tou
hing points o

ur, but for other variants, e.g. the

odd 
rossing number, 
ounting tou
hing points as 
rossings would trivialize the notion.

For Kleitman [295℄ a 
rossing requires that the two edges involve a
tually 
ross. This

requirement leads to other issues if not handled 
arefully: take a drawing of K5 with a

single 
rossing and repla
e the 
rossing with a short line segment (so the two edges involved

in the 
rossing run parallel for a short stret
h). A

ording to Kleitman's de�nition this

11

Harborth mentions an unpublished paper that seems to establish signi�
ant parts of this 
onje
ture.

12

One subtlety already: it ex
ludes from the notion of 
rossing any interse
tion o

urring when an

edge passes through a vertex, as opposed to ending there. Su
h interse
tions are typi
ally prohibited, but

what happens if we allow them?
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drawing is free of 
rossings (even though it has an in�nite number of interse
tion points).

This suggests the importan
e of restri
ting drawings to drawings with a �nite number of

interse
tion points (whi
h is what we will do) whi
h 
auses a slight in
onvenien
e when

dealing with 
on�uent drawings: in 
on�uent drawings of graphs edges seem to overlap

heavily. We resolve this by looking at 
on�uent drawings not as drawings of the edges

and verti
es of the graph, but as a drawing of bran
hes and swit
hes that represent the

underlying graph.

We return to a more formal de�nition of 
rossing in Se
tion 2.2.1 after dis
ussing basi


drawing 
onventions.

Figure 3: Drawing of K8 from de la Vera Cruz' Re
ognitio Summularum with ribbons


rossing through ea
h other. The image is taken from the online (publi
 domain) version

of the book available through Primeros Libros at http://www.primeroslibros.org/

browse.html. Page 36 
ontains the drawing of K8, page 57 
ontains a drawing of K4,4−e.

Remark 7 (Drawing Crossings). How do we draw a 
rossing? The most 
ommon way is

to simply let the 
urves representing the edges 
ross, preferably at a large angle (RAC

drawings require right angles); alternatively one 
an draw 
rossings as bridges or by using

edge 
asing; see �Edges and swit
hes, tunnels and bridges� by Eppstein, van Kreveld,

Mumford and Spe
kmann [174℄. There may be more options in alternative styles; for

example, if verti
es are represented by disks and edges as ribbons with boundary, then


rossings 
an be visualized by ribbons passing above or below ea
h other, see for example

the 16th 
entury drawing of K12 in [311, Figure 6℄ whi
h has both vertex and edge labels

(illustrating a modal square of opposition). Alonso de la Vera Cruz uses an interesting

twist to visualize K8 (in his 1554 Re
ognitio Summularum, again for a square of oppo-

sition). He not only has ribbons passing above and below ea
h other, but also through

ea
h other, see Figure 3; for ba
kground on the book, see [95℄. �

the electronic journal of combinatorics 16 (2009), #R00 11

http://www.primeroslibros.org/browse.html
http://www.primeroslibros.org/browse.html


Most of the resear
h on 
rossing numbers seems to have been done in English, but

there are terms for 
rossings and 
rossing numbers in other languages. In German there is

Kreuzung, S
hnitt and Doppelpunkt for 
rossing and Kreuzungszahl for 
rossing number.

13

In Fren
h, we have points d'interse
tion [466℄ and 
roisement for 
rossings

14

and nombres

de 
roisement for 
rossing number. In Italian there is in
ro
io for 
rossing and numero

d'in
ro
io for 
rossing number.

2.1 A General Notion of Crossing Number

There are (at least) three main dimensions whi
h in�uen
e the spe
i�
 notion of 
rossing

number one ends up with: the drawing style, the method of 
ounting, and the mode of

representation. Within ea
h dimension multiple de
isions 
an be made, both global and

lo
al. Global de
isions in the drawing style in
lude: underlying surfa
e, straight-line

edges, monotone edges, lo
al de
isions in
lude: no three edges sharing the same interior

point, no edge passing through a vertex; for method of 
ounting, again we have global

de
isions su
h as: do we 
ount 
rossings between adja
ent edges or edges that 
ross evenly

and lo
al de
isions: ea
h 
rossing 
ounts 1 or ±1 (depending on orientation), et
.; mode of

representation is typi
ally global; in the standard mode a 
urve 
arries exa
tly one edge,

but there are alternative models like 
on�uent graph drawing and simultaneous graph

drawing in whi
h a 
urve 
an 
arry more than one edge.

Many of these de
isions have rarely been made expli
itly; they were either assumed

impli
itly or not 
onsidered at all. Even as one surveys the surprisingly large 
olle
tion

of di�erent 
rossing number variants that exist, one often �nds that they di�er from the

standard 
rossing number in at most one of the three dimensions (although there are some

ex
eptions su
h as the lo
al toroidal 
rossing number, the book edge 
rossing number, or

the monotone independent odd 
rossing number).

Within this framework we 
an attempt a general de�nition of a 
rossing number ψ:
given a graph G 
onsider a parti
ular drawing D representing G (via some mode of

representation). Assign to ea
h 
rossing in D a value (typi
ally 1, but 
ould be −1, e.g.
for algebrai
 
rossing number; values in Q, C or some group may be interesting). Now


al
ulate the 
rossing number ψ(e, f) for ea
h pair of edges.

15

This is typi
ally done as the

sum (or absolute sum) of the values of the 
rossings shared by e and f .16 Finally, ψ(D)
is 
al
ulated by 
ombining all the values of ψ(e, f), typi
ally by summing them up (over

all unordered pairs). Then ψ(G) is the minimum (sometimes maximum) over all ψ(D)
where D is an admissible drawing (depending on the drawing style) that represents G.
This generi
 de�nition of 
rossing number des
ribes nearly all 
rossing number variants

13

Steinitz [441℄ uses the term Doppelpunkt; it stems from the algebrai
 tradition and is now used for


rossings in knots. S
hnittzahl typi
ally means interse
tion number from algebrai
 geometry rather than


rossing number.

14

Le
ler
 and Monjardet [317℄ use points non signi�ants (as opposed to the points representing verti
es).

15

One 
an also de�ne the 
rossing number by 
ounting 
rossings along ea
h edge (and dividing the

total by 2) but pairwise 
ounting is the standard. This would seem to ex
lude some variants, like the

lo
al 
rossing number or the triple 
rossing number, but see the dis
ussion in Example 8.

16

One 
ould 
onsider multipli
ation or maximization instead of addition.
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reviewed in this paper. In any 
ase, we are trying to be des
riptive, not pres
riptive.

Example 8. Let us 
he
k some of the 
rossing number variants to test the bounds of our

general 
rossing number notion. For de�nitions, see the 
ompendium.

Natural �ts. The degenerate 
rossing number �ts the general de�nition above: a 
ross-

ing shared by k edges is weighted as 1/
(
k
2

)
. Independent 
rossing numbers 
an be


aptured by assigning values of 0 to 
rossings between adja
ent edges. The Rule

+ variants introdu
ed by Pa
h and Tóth [369℄ are 
aptured in the drawing style:

adja
ent edges are not allowed to 
ross (alternatively, we 
ould assign a value of ∞
to ea
h adja
ent 
rossing). The triple 
rossing number (in whi
h all 
rossings have

to be triple 
rossings) 
an be 
aptured by pairwise 
ounts (ea
h triple 
rossings gives

three double 
rossings; sin
e only triple 
rossings are allowed we 
an divide by 3 to

get the triple 
rossing number). The pair 
rossing number maximizes (rather than

adds) the number of 
rossings along ea
h pair of edges.

A

eptable �ts. The lo
al 
rossing number would be a more natural �t for 
ounting


rossings edge-wise (as opposed to pairwise), but it 
an be made to �t the general

de�nition. It is expressible as maxe∈E
∑

f∈E cr(e, f).

For
ed �ts. The minor 
rossing number 
an be made to �t the general des
ription of


rossing number above, albeit with some for
e: say a drawing D represents G if D
is a drawing of a graph 
ontaining G as a minor. One 
ould question whether this

is a natural interpretation, but we de
ided to in
lude this notion. The degenerate

and bundled 
rossing numbers 
an also be made to �t the de�nition by de�ning an

intermediate notion of drawing.

Not a �t. The skewness of a graph, the smallest number of edges that need to be removed

from a graph to make it planar, does not �t the general de�nition of 
rossing number

given above. One 
an debate whether skewness is a 
rossing number variant, but

we de
ided to ex
lude it. It is easy to abbreviate the standard de�nition of 
rossing

number to the point where it in
orre
tly de�nes a notion similar to skewness, e.g. �Is

the 
rossing number of G 6 K? i.e. 
an G be embedded in the plane in su
h a way

that no more than K edges 
ross?� [254℄, see the edge 
rossing number. Another

notion that is not 
overed by the general des
ription is the nodal 
rossing number

whi
h is similar to the lo
al 
rossing number, but looks at the total number of


rossings with any edge in
ident to a vertex, and then maximizes over all verti
es.

One 
ould think of it as a lo
al 
rossing number for hypergraphs. Even though it

does not �t our general model, we de
ided to in
lude it be
ause of its ties to the

lo
al 
rossing number.

Let us next review some of the options available for 
reating a 
rossing number within

the three dimensions we identi�ed; we start with a dis
ussion of drawing styles, followed

by methods of 
ounting, and modes of representation.

the electronic journal of combinatorics 16 (2009), #R00 13



2.2 Drawing Styles

In this se
tion we dis
uss di�erent drawing styles; we make a rather rough distin
tion

between basi
 drawing properties that are often taken to be part of the very de�nition

of a drawing, sometimes 
alled a good drawing and what may more properly be 
alled a

style of drawing (Se
tion 2.2.2). We treat drawing surfa
es separately in Se
tion 2.2.3.

2.2.1 The Basi
s

A drawing stripped of any mysti
 ballast is just a mapping of a graph (verti
es and edges)

to a surfa
e. With this generous de�nition of drawing, the whole graph 
ould map to a

single point, losing all stru
ture. There has not been mu
h dis
ussion of what assumptions

to make on a drawing, Eggleton's thesis [164℄ is one of the rare pla
es in whi
h some of

these issues are brought up. We �rst dis
uss issues related to drawing verti
es and

edges.

An edge is represented by a 
urve. But what type of 
urves do we allow? Do we

want a 
urve to be 
onne
ted? In the work on odd and algebrai
 
rossing num-

bers edges are often split into multiple 
omponents temporarily. Be
ker, Ei
k and

Wilks [59℄ suggested �line shortening� for geometri
 drawings: only the ends of edges

are drawn (without further restri
tions this removes all 
rossings, see [88℄ for a re-


ent paper). If we require the 
urve to be 
onne
ted (but not path-
onne
ted), we


an get some anomalies, for example Krato
hvíl [307℄ notes that every graph is a

string graph if strings are allowed to be arbitrary 
onne
ted 
urves (string graphs

are interse
tion graphs of simple 
urves in the plane). So we should require edges to

be simple plane 
urves, whi
h are homeomorphi
 images of the unit interval. This

is the typi
al 
hoi
e when de�ning a drawing. However, it does pre
lude edges from


rossing themselves whi
h may be desirable in some 
ontexts. We dis
uss the issue

of self-interse
tions below. For pra
ti
al reasons, it may make sense to �fatten up�

edges, we dis
uss this possibility below together with vertex representations.

Verti
es are endpoints of the edge. Often edges are de�ned as open ar
s at whi
h

point one has to spe
ify that the points representing the verti
es of the edge o

ur

at (opposite) ends of the ar
. One 
ould easily imagine a drawing of K5 with the 5
endpoints as isolated points and 10 parallel ar
s representing the edges (maybe with

the ends of the ar
s labeled by the names of the verti
es). One 
ould also 
onsider

this a spe
ial 
ase of allowing a vertex to be represented by multiple points (see

below).

Verti
es are represented by points. Suppose we represent verti
es by disks and only

require edges to atta
h at the boundary of the disk. This idea was (ab)used by

Dudeney in his original solution to the Gas, Water, Ele
tri
ity problem [148, Prob-

lem 251℄ whi
h essentially asks for a 
rossing-free drawing of K3,3: Dudeney has the

�nal path�whi
h would 
ause a 
rossing�pass through one of the houses (verti
es)

whi
h he drew as re
tangles. Suppose we do allow edges to pass through verti
es.
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If we allow su
h 
rossings for free (as Dudeney suggests) we trivialize the notion of


rossing number: every graph 
an be represented so that a vertex is a disk, edges

end on the boundary of the disk representing their endpoint, edges are allowed to

pass through the disk, and no two edges 
ross. However, we 
ould 
onsider allowing

edges to pass through verti
es for a 
ost. As far as we know no su
h notion has

been investigated, although there are 
rossing numbers whi
h 
ount 
rossings other

than edge 
rossings (e.g. the spine 
rossing number).

One reason to relax the requirement that verti
es be points may be that the ver-

ti
es represent obje
ts with internal stru
ture that has to be 
aptured. Eades and

Lai [160, 312℄ 
alled these pra
ti
al graphs, and suggested a two-step approa
h: �rst

use a general layout algorithm for the abstra
t graph, and then, in a se
ond step,

lay out the graph with verti
es having various shapes; the goal of the se
ond step is

to avoid or remove overlap between verti
es and verti
es with edges. Waddle [470℄

dis
usses port diagrams (in whi
h verti
es are re
tangles, and edges atta
h at a port)

to visualize data stru
tures; his goal is to �nd drawings that avoid 
rossings within

verti
es, also see [294, 418℄. Dun
an, Efrat, Kobourov and Wenk [155℄ investigated

planar drawings with �fat edges�, where verti
es are disks and edges have thi
k-

ness.

17

Van Kreveld [310℄ suggested the notion of bold drawings in whi
h verti
es

are disks and edges are re
tangles. In 
omputational biology, su
h drawings have

been suggested for visualizing 
hromosomes [189℄. Medieval s
holars used a similar

style (verti
es as disks, edges as ribbons) to visualize squares of opposition (in logi
)

as we saw in Figure 3. Other 
hoi
es for representing verti
es in
lude 
urves�the

string 
rossing number is based on that idea�and graphs: If we minimize the 
ross-

ing number by allowing verti
es to be repla
ed by arbitrary 
onne
ted graphs, we

obtain the minor 
rossing number.

Ea
h vertex is represented by a single point. One 
an easily imagine a vertex be-

ing represented by multiple points. For example, how would the standard 
rossing

number be a�e
ted if every vertex 
ould be represented by two points (whi
h to-

gether are in
ident to all the edges in
ident to the original vertex), we 
ould 
all

this the dupli
ate 
rossing number.

18

This seems nearly the same (is it?) as asking

for the 
rossing number of the graph on an n-spindle, the pseudosurfa
e resulting

from a sphere by pin
hing (identifying) n pairs of distin
t points. If n = |V (G)|,
then the dupli
ate 
rossing number of G is at most the 
rossing number of G on the

n-spindle, sin
e we 
an simply pin
h every vertex with its dupli
ate. The dupli
ate


rossing number also resembles the biplanar 
rossing number: here too every vertex

is represented by two points, but the dupli
ate points live on a di�erent sphere, so

there 
annot be an edge between the original and the dupli
ate verti
es. There is re-

sear
h on whether graphs 
an be planarized by multiplying verti
es, following ideas

17

The dis
ussion of edges with width and points with extension is mu
h older in �pra
ti
al geometry�;

Hjlemslev [256, 257℄ attempted an axiomatization, whi
h earned him the s
orn of Wittgenstein [481,

Gesi
htsraum, p.59℄.

18

Bertin [68, Figure 19, p.270℄ suggests using diagrams in whi
h every vertex is dupli
ated.
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of Fellows and Negami from the 1980s on planar emulators and 
overs, see [112℄

for a re
ent overview. Finally, one 
an turn a 
y
li
 layout into a linear layout

by repeating one of the layers (for example, turning a 
y
li
 level 
rossing number

problem into a k-layer 
rossing number problem).

19

Di�erent verti
es are mapped to di�erent lo
ations. This is generally assumed for

graph drawings though there are some ex
eptions. For example, when speaking of

realizing a linkage one does not 
are about vertex overlap, and the de�nition of a

Eu
lidean graph similarly allows multiple verti
es at the same lo
ation. For 
ross-

ing numbers, this has not been a major issue; the only 
rossing number that allows

vertex overlap is the diagonal 
rossing number introdu
ed by Negami (though one


ould argue that the simultaneous 
rossing number also is an instan
e). For visual-

ization purposes one 
ould imagine a model in whi
h di�erent verti
es are allowed at

the same lo
ation as long as edges adja
ent to a parti
ular vertex are 
onse
utive in

the rotation. Bu
hheim, Jünger, Menze, Per
an [92℄ suggest the notion of bimodal


rossing number whi
h has some similarity.

Edges are not allowed to pass through verti
es. Again this restri
tion is naturally

violated by linkages and Eu
lidean graphs. For example, a triangle with side-lengths

1, 1 and 2 
an only be realized if we allow the edge of length 2 to pass through the

vertex it is not in
ident on. Edges may also pass through verti
es while redrawing

the graph, e.g. see [382, Theorem 4.6℄. We are not aware of any 
rossing number

variant that allows edges to pass through verti
es (although it would probably lead

to a non-trivial notion if we do not allow edges to make sharp turns while passing

through a vertex), unless one interprets the minor 
rossing number or Metro-line


rossing number in this way.

20

Passing through a vertex may be more palatable

if verti
es are represented not by points but by disks (or disk-homeomorphs), as

dis
ussed earlier.

We next turn to issues regarding interse
tions between edges.

Edges are not allowed to tou
h. Without be
oming too te
hni
al, let us agree that a

tou
hing point is a 
ommon point of two edges so that at least lo
ally (
lose to the

point), the two edges 
an be separated by a line. Allowing tou
hing points leads

to undesirable e�e
ts. For example, we already mentioned that allowing tou
hing

points would trivialize odd 
rossing number: take any drawing of a graph, if two

edges 
ross oddly, then add a tou
hing point between them 
lose to one of the


rossings, so all pairs of edges 
ross evenly (sin
e a tou
hing point would 
ount as a


rossing), showing that every graph has odd 
rossing number 0 if tou
hing points are
allowed. Another variant that would be a�e
ted is the maximum 
rossing number;

if we allow tou
hing points, C4 
an be drawn with 2 �
rossings�, but it is known

19

This is beautifully illustrated by an example from Bertin [68, Figure 4, p.109℄.

20

We should mention a re
ent paper[13℄, that repeatedly uses the term m + cr to denote the total

number of 
rossings in a geometri
 drawing in
luding m 
rossings of edges through verti
es.
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that C4 is not thra
kleable, so its maximum 
rossing number (under the standard

de�nition) is 1.

The real reason tou
hing points are undesirable, however, is that they lead to am-

biguous drawings. While a drawing is de�ned as a mapping, we only see the result

of the mapping, whi
h is a subset of the plane (or some surfa
e). Even if we assume

that we know where the verti
es are lo
ated we may not be able to distinguish a


rossing point from a tou
hing point just by looking at the drawing: imagine four


urves entering a point, two from the left and two from the right, all with one


ommon tangent. Then the drawing does not tell us whether we are looking at a


rossing or tou
hing point. The problem remains even if the 
urves don't meet at

a 
ommon tangent: when we see an interse
tion looking like an x we automati
ally

assume that it's a 
rossing, however, if tou
hing points are allowed that need not be

the 
ase sin
e we generally do not assume that the 
urves used to represent edges

are smooth (polygonal ar
s are 
ommon in representing edges, so a restri
tion to

smooth 
urves would ex
lude a popular way of drawing edges).

No self-interse
tions. Do we allow edges to interse
t themselves (either 
rossing or

tou
hing)? This issue is rarely dis
ussed (if one thinks of an edge as adja
ent

to itself then a prohibition on adja
ent 
rossings will automati
ally ex
lude self-

interse
tions). The presen
e or absen
e of self-interse
tion is the di�eren
e between

Pa
h and Tóth's degenerate 
rossing number, dcr(G), and Mohar's genus 
rossing

number [343℄, gcr(G). Mohar 
onje
tures that dcr(G) = gcr(G), but this seems far

from obvious. Similarly, it is not 
lear whether allowing self-interse
tions redu
es

acr+, one of the algebrai
 
rossing numbers. Sin
e edges are equipped with dire
tions

for algebrai
 
rossing numbers, the standard tri
k for removing self-interse
tions

does not work, see [198℄.

The number of interse
tions in the drawing is �nite. We do not allow two edges

to overlap in more than a �nite number of points. If some drawing style (like 
on-

�uent drawings) seems to require this, we introdu
e an intermediate representation

(train tra
ks 
onsisting of bran
hes and swit
hes in 
on�uent drawings), and de�ne

the 
rossing numbers for that representation instead of for the underlying graph.

So even at this basi
 level there is reasonable room for disagreement on what makes

a drawing. Di�erent 
rossing numbers have di�erent demands, and a single de�nition

will not do all of them justi
e, but let us try. We will generally understand a drawing

to ful�ll the following requirements: ea
h vertex will be represented by a unique point.

An edge e in a drawing is a homeomorphi
 mapping from [0, 1] to the topologi
al spa
e

of the drawing so that e(0) and e(1) are the endpoints of the edge, and e(0, 1) does not

ontain any verti
es. An interse
tion of two edges e and f is a point (s, t) ∈ [0, 1]2 so that
e(s) = f(t); two edges are not allowed to tou
h. If (s, t) ∈ (0, 1)2 we 
all the interse
tion
a 
rossing. By de�nition, any interse
tion that is not a 
rossing must be a 
ommon

endpoint. We require that the total number of interse
tions in a graph is �nite.
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This notion of drawing will work for most 
rossing numbers we will see below. There

are two 
onditions we will o

asionally relax: we will allow edges to tou
h for some

variants, and an edge will sometimes just be a 
ontinuous mapping from [0, 1] to allow

self-interse
tions. A self-interse
tion of an edge e is 0 6 s < t 6 1 so that e(s) = e(t), it is
a self-
rossing if 0 < s < t < 1. The only self-interse
tion whi
h is not a self-
rossing is an

endpoint of a loop (in multigraphs). At the next level we 
onsider additional assumptions

that are sometimes made on drawings. Drawings with these additional properties are

typi
ally 
alled normal or good. It is often the 
ase that 
rossing number optimal drawings,

that is, drawings whi
h minimize the value of a 
rossing number for a given graph have

all of these properties, so sometimes they are assumed automati
ally. This assumption is

fair for the standard 
rossing number,

21

but it does fail for some other variants (e.g. in

a 
onstrained 
rossing number optimal drawing two edges may have to 
ross more than

on
e [354℄). So we will not generally require these additional properties. They have been

dis
ussed in detail by Székely [444℄, but also by Winterba
h [479℄.

Every two edges 
ross at most on
e. Drawings in whi
h every two edges 
ross at

most on
e are often 
alled simple, but this term has at least three identi�able mean-

ings. The original de�nition may go ba
k to Ringel [398℄ who used simple to mean

that every two edges interse
t at most on
e (so adja
ent edges 
annot 
ross). This is

more restri
tive than only requiring that every two edges 
ross at most on
e. If we

want to make this distin
tion, we will use interse
tion-simple (for Ringel's notion)

versus 
rossing-simple or just simple (sin
e this usage is more 
ommon these days).

The third meaning of simple is to only allow ea
h edge to 
ross at most one other

edge. We will avoid using simple with this third meaning (unfortunately, the simple


rossing number is named for this stri
ter notion of simpli
ity). We follow tradi-

tion in denoting 
rossing number variants that assume their drawings are simple by

pla
ing a ∗ in the super-index; requiring drawings to be simple does not a�e
t most


rossing numbers, e.g. cr∗ = cr = pcr∗ = ocr∗ = acr∗ and ecr = ecr∗.22 There are

some ex
eptions, however. A drawing realizing the 
onstrained 
rossing number,

the degenerate 
rossing number or the lo
al 
rossing number of a graph may require

edges 
rossing multiple times.

Adja
ent edges do not 
ross ea
h other. This rule was 
alled Rule + by Pa
h and

Tóth [369℄; the similar-looking Rule − is not a drawing rule but a�e
ts the 
ounting

of 
rossings: 
rossings of adja
ent edges are allowed, but they do not 
ount. For

the standard 
rossing number, cr = cr+, but no similar results are known for other


rossing numbers. The only separations we are aware of are for the monotone odd


rossing number, mon-ocr, here mon-ocr(G) < mon-ocr+(G) for some graph G [198℄,

and the lo
al 
rossing number, where lcr(G) < lcr∗(G) is possible. The odd 
rossing

number is sensitive to the e�e
ts of Rule −: iocr(G) < ocr(G) for some graph

G [198℄.

21

As was realized early on, e.g. in [398, 281℄.

22cr∗ should not be 
onfused with the simple 
rossing number whi
h is based on a stronger requirement:

ea
h edge is allowed to 
ross at most one other edge.
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Finally, there is one more requirement whi
h is often made:

At most two edges 
ross in any point. Depending on how we 
ount, this require-

ment is not stri
tly speaking ne
essary: a 
rossing is a 
ommon interior point of two

edges. If k edges 
ross in the same point, then there are

(
k
2

)

rossings by de�nition

of 
rossing. To make this point 
lear, the literature often refers to pairwise 
rossing

in the de�nition of 
rossing number.

23

A 
rossing shared by k (distin
t) edges 
an

be repla
ed by k (double-) 
rossings by perturbing the edges.

24

This assumes that

we do not allow tou
hing points, that is, every two edges a
tually 
ross at the 
ross-

ing point (otherwise perturbations may introdu
e more than k 
rossings whi
h may,

or may not, be redu
ible based on other drawing 
onventions). Crossing numbers

whi
h allow multiple 
rossings in
lude degenerate and genus 
rossing number.

2.2.2 Style of Drawing

On
e we get beyond the basi
s of what 
onstitutes a drawing there are various 
hoi
es to be

made that in�uen
e the appearan
e of the drawing, verti
es and edges, as a whole; we are


alling this the style of the drawing, an admittedly vague term. There seems to have been

very little systemati
 work on this with the ex
eption of Bertin's �Semiology of Graphi
s�

(originally published in 1967). Bertin's book 
ontains a valuable se
tion on networks [68,

Part II℄ whi
h 
ould form the basis of a modern treatment from the perspe
tive of graph

drawing. Bertin identi�es, among others, linear drawings (book drawings in two pages),


ir
ular (that is, 
onvex) drawings, hierar
hi
al drawings, and perspe
tive drawings. For

example, about 
onvex drawings he writes �By arranging the elements [. . . ℄ on a a 
ir
le,

any relationship 
an be trans
ribed by a straight line. This is the 
onstru
tion whi
h

produ
es the least 
onfusing images, whatever the number of interse
tions stemming from

the raw data.� [68, p. 271℄. This seems like good 
ommon sense, and so
iologists had used

this te
hnique for years [348, 87, 349℄, but there has been little experimental work on this.

Pur
hase [388, 389℄ has started investigating metri
s based on 
ommon aestheti
 
riteria

(in
luding 
rossing minimization, bend minimization, and angle resolution), and there

has also been re
ent work on angle resolution in parti
ular [275, 272℄, and how di�erent

drawing aestheti
s 
ombine [273, 271℄.

If we look at what drawings resear
hers have used in pra
ti
e, two dominant styles

emerge, both fo
ussed on edges. Edges are either drawn as 
urves (or polygonal ar
s for


omputational purposes) or as straight-line segments (or geodesi
s in metri
 surfa
es).

25

Not surprisingly, the traditional 
rossing number, cr, and the re
tilinear 
rossing number,

23

While this 
lari�ed the method of 
ounting, assuming the reader understood that that was the

intention, it may have been a small step in the 
onfusion of the 
rossing number with the pair 
rossing

number.

24

Tait [448℄ in 1877 des
ribes this as follows: �By in�nitesimal 
hanges of position of the bran
hes

interse
ting in it, a triple point is de
omposable into 3 double points, a quadruple point into 6, and

generally an x-ple point into x(x−1)
1·2 double points�. Tait is taking about 
losed plane 
urves.

25

Eppstein [170℄ has given us a detailed summary and history of various 
urve drawing styles. Many

of those have not been explored in the 
ontext of 
rossing minimization.
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cr, have remained the main 
rossing number variants, and many other 
rossing numbers

are wedged between cr and cr sin
e they are obtained by restri
ting cr or relaxing cr.
Some variants have been based on restri
ting 
ommon parameters for these drawings;

e.g. the t-polygonal 
rossing number allows at most t− 1 bends in ea
h edge. One 
ould

imagine restri
ting the number of available slopes (t-polygonal, k-slope 
rossing number)

or the set of available slopes (e.g. orthogonal drawings, in whi
h all edge segments are axis-

parallel), but, as far as we know, this has only been studied for embeddings, not drawings;

the 
rossing minimization problem for port diagrams, whi
h often employ orthogonal

drawings, has been studied [470, 294, 418℄, but no 
rossing number notion has been

expli
itly de�ned. Finally, one 
an 
ontrol the angles at whi
h edges meet; the angular

resolution of a drawing is the smallest angle between any two edges at a 
ommon endpoint;

more re
ently, the 
rossing resolution of a drawing has been introdu
ed as the smallest

angle between any two edges at a 
rossing [142℄; in RAC (right-angle 
rossing) drawings

all 
rossings have to be at right-angles [145℄. Re
ent progress on the re
tilinear 
rossing

number has been based on relaxing the re
tilinear drawing requirement to pseudolinear

drawings, leading to the pseudolinear 
rossing number, c̃r. It seems to 
apture both the


ombinatorial and geometri
 nature of the re
tilinear 
rossing number well enough to

have led to the 
onje
ture that c̃r(Kn) = cr(Kn) [50℄, but so far this 
rossing number

has not been investigated for other graphs (with the ex
eption of [255℄). Further relaxing

pseudolinearity to x-monotoni
ity leads to a whole group of 
rossing numbers (monotone


rossing numbers).

A 
ouple of other drawing styles have been added to the graph drawing toolbox re-


ently; there are Lombardi drawings [153℄, partially drawn lines [59, 88℄, drawings with

fat edges [155℄, and bold drawings [310℄, though we are not aware of any 
rossing number

variants based on them. However, reviewing the 
ompendium of 
rossing number variants

suggests that style de
isions are typi
ally not made for purely aestheti
 reasons, but to

re�e
t some stru
tural 
hara
teristi
s of the graph. For example, the verti
es of the graph

may be ordered, in x or y-dire
tion (or both) and a drawing has to represent this ordering

(or both orderings), or the graph may be bipartite or k-partite, suggesting drawings in

whi
h verti
es in the same partition are grouped together. There is not always a need

to 
reate a new name or symbol for a 
rossing number that is 
reated in this way; for

example, if we weight the edges of the graph, it is quite natural to interpret cr(e, f) as
w(e) · w(f) and we 
an 
ontinue to write cr(G) for the weighted 
rossing number of G,
or cr(G,w) is we want to emphasize that G is equipped with a spe
ial stru
ture. The

following list 
olle
ts style 
hoi
es made based on stru
tural features of the graph.

Orderings of the verti
es. If the verti
es of the graph are equipped with a total or

partial order, it seems natural to arrange the verti
es along a line (or a 
ir
le), but

then additional restri
tions on drawing the edges are ne
essary to get new variants.

For the line, this is done by the �xed linear (total order) and the an
hored (partial

order) 
rossing numbers. If one interprets the ordering as ordering the x-
oordinates
of the verti
es and one requires edges to be drawn as straight-line segments (or x-
monotone 
urves), one gets variants of the monotone or leveled 
rossing numbers.

If one interprets the ordering as ordering the verti
es by distan
e from the origin,
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one gets the radial 
rossing number. If one interprets the ordering as an angular

ordering around the origin, one gets the 
y
li
 level 
rossing number.

One 
ould also imagine verti
es being ordered with respe
t to both x- and y-

oordinates (
orresponding to dire
tions NW, NE, SE, SW). Eades, Lai, Misue,

and Sugiyama [161, 337℄ 
alled this an orthogonal ordering and studied it as a way

to preserve the mental map of a graph in a redrawing. In 
rossing number terms,

this suggests the (so far) uninvestigated bi-monotone 
rossing number.

Partite Graphs. For bipartite or k-partite graphs it is natural to require that all verti
es
in a parti
ular partition are somehow grouped together; for example, they may lie

on a 
ommon straight line. For k = 2 this gives the bipartite 
rossing number. For

larger k there is the 
onvex k-partite 
rossing number whi
h requires the verti
es

to lie on the boundary of a disk so that verti
es in the same partition are 
onse
-

utive. Partitions 
an also be pla
ed on 
on
entri
 
ir
les (radial 
rossing number),

or parallel lines. If the partitions are ordered (and the verti
es are assigned to �xed

partitions), we are ba
k in the �Orderings of verti
es 
ase� with radial and leveled


rossing number. So far, there hasn't been an attempt at a free radial or a free

leveled 
rossing number.

Ordering of edges at verti
es. If we pres
ribe, at ea
h vertex, the 
y
li
 ordering of

the ends of edges at that vertex, the rotation, we are looking at 
rossing numbers

with rotation system. There may also be restri
tions on the rotation system based

on other stru
tural properties. For example, in a dire
ted graph we may want all

the in
oming and all the outgoing edges to be 
onse
utive, giving us the bimodal


rossing number. Another way in whi
h the rotation at a vertex 
an be 
onstrained

is by identifying its neighbors with leaves of a tree and restri
ting the ordering of

the leaves to an ordering 
orresponding to an embedding of the tree. This is related

to the idea of tanglegrams in 
omputational biology, and has been studied for the

bipartite 
rossing number, and the k-layer 
rossing number.

Dire
ted edges. A dire
ted a
y
li
 graph 
an be understood as a graph with a partial

ordering of the verti
es, leading to hierar
hi
al drawings (upward 
rossing number),

re
urrent hierar
hi
al drawings (the uninvestigated 
lo
kwise 
rossing number) or,

less restri
tive, bimodal drawings (bimodal 
rossing number).

Dis
onne
ted graph. There is not mu
h to say about dis
onne
ted graphs in the plane,


omponents are typi
ally moved apart and drawn separately. Interesting problems

start appearing when a dis
onne
ted graph is drawn on a higher-genus surfa
e.

Pairs of Graphs. Pairs (or tuples) of graphs are no di�erent from dis
onne
ted graphs,

unless there is some type of intera
tion between the graphs, for example, a shared

vertex set. At that point, there are drawing styles to model di�erent types of

intera
tion, e.g. simultaneous 
rossing number (shared verti
es and edges), red/blue


rossing number and joint 
rossing numbers (shared 
anvas).
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Edge-
oloring. If a graph has multiple edges, we 
an think of the graph as a union of

multiple graphs on the same vertex set and apply ideas from �Pairs of Graphs�. We


ould also assign di�erent weights to 
rossings depending on the 
olors of the edges

that 
ross (weighted 
rossing number); one parti
ular example would be to only


ount 
rossings between edges of the same 
olor (simultaneous 
rossing number) or

di�erent 
olor (red/blue 
rossing number). On the other hand, some visualizations,

su
h as metro-line drawings, are naturally done using edge 
olorings.

Edge-weights. Simple edge weights 
an be modeled using the weighted 
rossing number.

Labelings. There are various algorithms and heuristi
s for labeling graphs, see [289℄ for

a survey. Labels 
an be drawn within the obje
t to whi
h they apply, leading to

styles in whi
h edges and verti
es are thi
kened up as in [155, 310℄ or the medieval

drawings mentioned in Remark 7. We are not aware of any 
rossing number variants

taking the presen
e of labels into a

ount.

Vertex-
oloring. If the vertex 
oloring is proper, we are ba
k in the 
ase of partite

graphs. If it is not, di�erent 
olors may denote di�erent types of verti
es. E.g. the


olor of a vertex may en
ode whi
h boundary 
omponent (of a surfa
e with holes)

a vertex lies on.

Partially embedded graphs. One may want to minimize the number of 
rossings in

the drawing of a graph G whi
h has been partially embedded, this leads to the


onstrained 
rossing number. Interesting, but as far as we know, uninvestigated,

spe
ial 
ases o

ur if the lo
ations of some (or all) of the verti
es are �xed and the

number of bends along ea
h edge is restri
ted.

Clusters. There has been mu
h resear
h on 
lustered drawings in whi
h verti
es are

grouped into hierar
hi
ally nested regions. There are various types of 
rossings

(edge-edge, edge-region, region-region). Typi
ally, all of these 
rossings are pro-

hibited, and there is signi�
ant resear
h on c-planarity (
lustered planarity) whose


omplexity it still open. Re
ently a �rst step was taken into allowing some of these

types of 
rossings [26℄, but a formal notion of a 
lustered 
rossing number has not

yet been introdu
ed. In the visualization of large data sets, one 
an imagine verti
es

being lo
ated in given geometri
 
lusters, for example the tiles of a 2-dimensional

grid, and 
ounting the 
rossings between edges and tile boundaries [103℄.

Symmetry. If a graph is symmetri
, that is, has some non-trivial automorphism π, one

an ask whether there are drawings of the graph whi
h show π. For example, one


an ask for π to be indu
ed by an isometry of the plane, and minimize 
rossings

under that 
onstraint [91℄.

2.2.3 Drawing Surfa
e

It's natural to think of a 
rossing as happening in the plane, so it's hardly surprising

that 
rossing numbers are typi
ally de�ned for the plane or for lo
ally planar manifolds:
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surfa
es, in other words.

We need to de
ide on whi
h surfa
e we draw the graph; typi
ally, this is the plane or

the two-dimensional sphere S2
(whi
h 
an make a di�eren
e if metri
 
onditions are in

pla
e, as in the geodesi
 
rossing number). Crossing numbers on other surfa
es, orientable,

Sg, and non-orientable, Ng, were investigated in the earliest papers, in
luding the toroidal


rossing number [226℄ and 
rossing numbers on the Klein bottle [302℄. Often spe
ial

notations were introdu
ed for surfa
e drawings; we'll follow the 
onvention to write the

surfa
e in the index; so crN1
is the proje
tive plane 
rossing number and pcrS1

is the

toroidal pair 
rossing number (whi
h has not been investigated as far as we know).

The surfa
e may have holes, in whi
h 
ase some verti
es may be for
ed to lie in


ertain boundary 
omponents (for two holes: radial 
rossing number with two levels),

maybe with their order spe
i�ed (map 
rossing number, an
hored 
rossing number). We

may also allow dis
onne
ted surfa
es, for example multiple planes (as in the k-planar and
the geometri
 k-planar 
rossing numbers).

If we drop the restri
tion that a manifold be lo
ally planar, we 
an explore pin
hed

surfa
es (su
h as the spindle) or bran
hed surfa
es. Neither of these 
hoi
es is well-

investigated, with the ex
eption of books. Book 
rossing numbers are typi
ally de�ned

by disallowing edges to 
ross the spine, so 
rossings 
annot o

ur on the spine (where the

manifold is not lo
ally planar). On the other hand, one may de
ide to allow edges 
rossing

the spine and try to minimize the number of spine 
rossings (spine 
rossing number). For

pin
hed surfa
es it is not immediately 
lear what 
onstitutes a proper drawing (are verti
es

allowed to lie in pin
hes, how many edges 
an pass through a pin
hed point, may an edge

pass through a pin
hed point without 
rossing to the other part of the surfa
e, how do

we 
ount the 
rossings, what if we have triple pin
hes, et
.).

Finally, we 
an 
onsider drawing the graph in other manifolds, 3-dimensional spa
e, for

example. There is the grid 
rossing number, in whi
h graphs are drawn on d-dimensional

grids of limited size, and the spa
e 
rossing number, whi
h has the �avor of a stabbing

number.

26

2.3 Methods of Counting

In German a 
rossing of 
urves is 
alled a �Doppelpunkt� [441, 138℄, a double point. This

term stems from the algebrai
 tradition and survives in knot theory, but even in graph

drawing pairwise 
ounting of 
rossings is the preferred method, that is, k edges passing

through the same point 
ount for

(
k
2

)

rossings. One 
an imagine 
ounting a k-wise


rossing just on
e (degenerate 
rossing number, genus 
rossing number) or k times.

27

As

we saw in the short histori
al se
tion, the algebrai
 way of 
ounting 
rossings may pre
ede

this way of 
ounting 
rossings; edges are oriented, and for an ordered pair (e, f) of edges

26

There also is a notion of 
rossing number for geometri
 hypergraphs, in whi
h hyperedges are repre-

sented as simpli
es, see [30, 29℄.

27

The later variant seems not to have been studied; some subtleties immediately arise (as they do for

the degenerate 
rossing number): do we allow an edge to pass through the same point multiple times?

Do edges have to 
ross when passing through the point or may they tou
h? Do we 
ount every 
rossing,

or do we just 
ount the number of edges involved?
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we 
an assign a 
rossing a +1 or −1 depending on whether f 
rosses e from left to right

or from right to left. For weighted graphs, it is natural to assign weights to 
rossings,

typi
ally using the produ
t of the weights of the edges involved (as far as we know, real

weights or weights from other algebrai
 stru
tures have not been studied). Continuing

the philosophy of pairwise 
ounting, the weighted 
rossing number allows one to assign

weights to pairs of edges.

When 
omputing the number of 
rossings between two edges, ψ(e, f), most 
rossing

numbers ψ add up the 
ounts of the pairwise 
rossings of e and f . There are some

ex
eptions: the pair 
rossing number takes the maximum (so ea
h pair 
ontributes at

most on
e, namely if it 
rosses), the odd 
rossing number adds up 
rossings modulo 2,
and the algebrai
 
rossing number takes the absolute value of the sum.

To 
al
ulate the 
rossing number of a drawing, most 
rossing numbers simply add up

the pairwise 
rossings. As we saw earlier, the lo
al 
rossing number takes the maximum

per edge: maxe∈E
∑

f∈E cr(e, f). Independent 
rossing number variants do not in
lude

pairs of adja
ent edges in the 
ount (independent 
rossing number, independent odd


rossing number, et
.).

Finally, to determine the 
rossing number of a graph we typi
ally minimize the 
rossing

number over all drawings, although there is the family of maximum 
rossing numbers

(maximum 
rossing number, maximum re
tilinear 
rossing number, maximum or
hard


rossing number).

Some 
rossing numbers 
ount 
rossings other than edge 
rossings, e.g. the spine, or-


hard, edge and spa
e 
rossing numbers. One 
ould imagine a fan 
rossing number, based

on Kaufmann and Ue
kerdt's notion of fan-planarity [292℄: instead of 
ounting how many

edges a given edge 
rosses, we 
ount how many fans (stars) it 
rosses.

28

2.4 Modes of Representation

This leaves us with modes of representation of graphs; there is not mu
h to be said

here; the standard mode of representation where a 
urve between two points is taken to

represent the edge 
onne
ting the verti
es 
orresponding to the points is predominant. The

only alternative model we have seen in the 
ontext of 
rossing numbers is that of 
on�uent

drawings introdu
ed by Di
kerson, Eppstein, Goodri
h, and Meng [143℄. A graph is drawn

like a train tra
k (with bran
hes and swit
hes), verti
es 
orrespond to stations, and an

edge to a legal train route (trains 
annot make sharp turns at swit
hes).

29

If we allow

bridges, points at whi
h one tra
k 
rosses over another tra
k, then the 
on�uent 
rossing

number is the smallest number of bridges ne
essary to realize the train tra
k. Using the


on�uent drawing style (rather than its semanti
s) as an inspiration, we 
ould allow edges

in a drawing to run in parallel temporarily and then separate again (without 
hanging

order), just like in a 
on�uent drawing but without the 
onnotation for 
onne
tivity. Now

let us say we 
ount the 
rossing of two su
h bundles of edges as a single 
rossing (as

28

To make this pre
ise, one would probably 
ount the 
rossings of an edge as the size of the largest

mat
hing it 
rosses.

29

Roger Penrose uses a similar idea in his, or his father's, railway mazes [139℄.
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opposed to weighing it by the number of edges in the bundle), do we get an interesting

notion of 
rossing number? Should we require that every bundle 
ontains ea
h edge at

most on
e? These questions, suggested in an earlier version of this survey, led to the

introdu
ed of the bundled 
rossing number. In an a
tual drawing we may de
ide to keep

the edges in a bundle slightly separate, maybe by using 
olor for the intervening spa
es.

This idea has been studied in the 
ontext of the Metro-line 
rossing number under the

name �blo
k 
rossing� [193℄.

There is one other model of representation that has not been explored yet in the


ontext of 
rossing numbers: representing graphs as interse
tion graphs. String graphs

will serve as an example. We know that every planar graph is the interse
tion graph of

strings (
urves), indeed at this point we know that we 
an assume that ea
h pair of strings


rosses at most on
e [105℄, and that the strings are straight-line segments [104℄ (we do not

yet know whether they 
an be 
hosen in at most 4 dire
tions, this would imply the 4-
olor
theorem). So in the string representation every vertex be
omes a 
urve (or straight-line

segment) and an edge 
orresponds to a (single) 
rossing of the 
urves. One 
ould imagine

extending this model by distinguishing two types of 
rossings: 
rossings representing

edges and 
rossings that 
ount towards a string 
rossing number. In a drawing the later


rossings 
ould be represented by overpasses (as for knots). We are not aware that this

approa
h has been investigated. (The existing string 
rossing number realizes a slightly

di�erent idea.)

3 A Compendium of Crossing Numbers

For the 
ompendium (and indeed for the rest of the paper), I have always tried to go ba
k

to the sour
es; any result reported at se
ond hand is identi�ed as su
h. (This does not

mean that I guarantee the 
orre
tness of all results.) I also made heavy use of other tools

su
h as Vr´o's online bibliography of 
rossing numbers [469℄, MathS
iNet, and Google

S
holar.

I have tried to be exhaustive, but de
ided to ex
lude 
ertain areas altogether rather

than 
overing them badly; this in
ludes 
rossing numbers for obje
ts other than graphs,

most notably knots, braids, hypergraphs [141, 111℄, permutations [69℄, and tropi
al 
urves [102,

101℄.

30

For some 
rossing numbers we had to introdu
e new notation to avoid 
on�i
ts�of

whi
h there are many. As the table in Se
tion 3.1 shows, nearly every 
rossing number

variant with a parameter k has been 
alled νk or crk at some point; we tried to minimize

the proliferation of notation. E.g. instead of 
reating new symbols for the toroidal 
rossing

number or the Klein bottle 
rossing number, we simply modify the notation for the

standard 
rossing number to in
lude the surfa
e: crΣ denotes the 
rossing number on

surfa
e Σ. Similarly, if the underlying graph has stru
ture (rotation, ordering, layering)

we don't 
reate a new 
rossing number notation. For example the �xed linear 
rossing

30

There are also some stabbing number variants 
alled 
rossing numbers, but the spirit is di�erent; we

do not do
ument these variants here.
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number is simply the book 
rossing number, bkcrk restri
ted to drawings whi
h respe
t

the linear ordering of the verti
es, so we use bkcrk for both variants, writing bkcrk(G, π) to
distinguish the �xed linear 
rossing number from the book 
rossing number if ne
essary.

This approa
h leads to some overloading of notation, but hopefully no 
onfusion.

Many 
rossing numbers exist under multiple names re�e
ting various a
ts of redis
ov-

ery; in these 
ases I've generally de
ided to go with the older or more established name. In

every 
ase, I have tried to do
ument all variant names and symbolism I have en
ountered.

For ea
h 
rossing number there is an entry for �relationships�; this entry is restri
ted

to relationships between 
rossing number variants and only the most basi
 parameters:

n = |V | and m = |E| (so, in parti
ular, we list all 
rossing lemmas we are aware of in this

rubri
). We make no attempt to try 
apturing relationships with other graph parameters

su
h as the girth, bise
tion width, 
ut width, et
. or the emerging links between 
rossing

number and 
hromati
 number in the study of Albertson's 
onje
ture [19℄. A re
ent survey

on some of these results is by Shahrokhi, Sýkora, Székely, and Vr´o [429℄.

Finally, we in
lude exa
t (and some asymptoti
) 
rossing number results for major

graph families su
h as the 
omplete, Kn, and 
omplete bipartite graphs, Km,n, under the

rubri
 �values�; for lesser-known 
rossing number variants we tend to in
lude more detail;

we use the usual symbols for graph families, su
h as Pn for the path on n verti
es, Cn for


y
les of length n, Qn = �n
i=1K2 for the n-dimensional hyper
ube graph, where � is the

Cartesian produ
t of two graphs (sometimes written as ×), and Wn for the wheel graph

(on n + 1 verti
es).

Remark 9 (Parameters and Derived Notions). For a 
rossing number γk parameterized

by some parameter k, we 
an de�ne a new parameter µγ(G) as the smallest k for whi
h

γk(G) = 0 if su
h a k exists. For the (surfa
e) 
rossing numbers, this gives us (Euler, non-

orientable, orientable) genus, for the book (or k-page) 
rossing number, this gives us the

notion of pagenumber (or book thi
kness), for the k-planar 
rossing number, the thi
kness

of a graph, and for the geometri
 k-planar 
rossing number, its geometri
 thi
kness; for

the (surfa
e) independent odd 
rossing number we get a homologi
al notion of genus [413℄.

The grid 
rossing number has two parameters (dimension and volume) whi
h 
ould be

used to de�ne area/volume of a graph. We will mention some of these derived parameters

below, but without attempting to survey results 
on
erning them. �

3.1 Notation for Crossing Numbers

The following table lists the 
rossing numbers with the symbol we use in the 
urrent paper

(if any) and other notations found in the literature with referen
es; the alternative nota-

tions are listed 
hronologi
ally (at least with respe
t to the �rst o

urren
es we found).

The 
rossing numbers are listed alphabeti
ally by name. There are several 
rossing num-

ber variants for whi
h symbols have never been introdu
ed, in
luding annulus, bimodal,


on�uent, map, Metro-line, radial, red/blue and spine 
rossing numbers, these (and some

others) are not listed below.

Table 1: Crossing number variants with symbols used in the text and in the literature.
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Name (alternate names) Symbol Symbol (literature)

abstra
t topologi
al

graph

cr(G,R) crat [307℄

algebrai
 acr acr [381℄, a
r [458℄,

ALG-CR [459℄

algebrai
 + acr+ acr+ [198℄

an
hored bkcrk(G,A, π) acr [98℄
average no symbol acr [387℄
bipartite bcr ν2 [235℄, ν

∗
[331℄,

bcr [394, 425℄

book (k-page) bkcrk νk [423, 479℄

book edge (k-page edge) no symbol crek [54℄

bundled bc bc [17℄

onvex bundled bc◦ bc◦ [17℄

onvex (outerplanar,


ir
ular, 1-page)
bkcr1 ν1 [423℄, cr

∗
[426℄, χ [57℄,

µ+ [89℄


onvex maximum

re
tilinear

max- cr◦ obf◦ [468℄


onvex k-partite (
ir
ular
k-partite)

no symbol cprk [405℄

(minimum, minimal,

planar, graph, edge,

topologi
al)

cr c [232℄, c+0 [302℄, ν [224℄,

ν∗ [218℄, C [199℄, κ [141℄,


r [369℄, crR2
[201℄,

CR [444℄, νR2
[479℄

(joint) cr(G1, G2) cr(G1, G2) [357℄,
cr(G1, G2) [32℄,
Cr(G1, G2) [485℄


ylindri
al cr⊚ cr2◦ [156℄
degenerate dcr CR [373℄

diagonal cr∆ cr∆ [357℄

edge ecr no symbol

�xed 
onvex bundled bc◦(G, π) bc◦(G, π) [17℄
�xed linear bkcrk(G, π) νπ [329℄ (for k = 2), νL [127℄

(for k = 2), νL,k [128℄,

µ [488℄ (for k = 1)
genus gcr GCR [343℄

genus g (surfa
e) crSg
c+g [302℄, crg [282℄, cr

∗
g [304℄

genus g lo
al (lo
al g) lcrSg
λg [284℄
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Name (alternate names) Symbol Symbol (literature)

(d-dimensional volume

N) grid

cr#(G,N, d) cr [151℄

geometri
 k-planar crk g
rk [367℄

independent cr− 
r− [369℄

independent algebrai
 iacr s [463℄, ia
r [458℄,

IALG-CR [459℄, acr− [198℄

independent odd iocr odd-
r− [369℄,

CR-IODD [444℄, ν(i) [479℄,
iocr [380℄, cr -iodd [352℄

independent pair pcr− pair-
r− [369℄, pcr− [198℄

k-layer no symbol K [475℄

k-planar crk Crk [364℄, CRk [445℄,

ν
(B)
k [479℄, crk [428℄,


rk [367℄

Klein bottle crN2
cr2 [302℄, cr 2 [402℄,
crK [201℄

leveled mon-cr�(G) mon− cr(G, ℓ) [198℄
linear (2-page) bkcr2 µ [89℄

lo
al (
rossing

parameter)

lcr λ0 [284℄, lcn [126℄, crs [213℄,
c [439℄, ξ [214℄, ϕ [474℄

lo
al pair lpcr lpcr [11℄
lo
al toroidal lcrS1

ℓ1 [227℄, λ1 [284℄
major (major-monotone) Mcr Mcr [80℄
maximum (maximal) max-cr ν∗ [218℄, νM [396℄, crM [385℄,

CR [251℄, crM [31℄

maximum edge max- ecr no symbol

maximum lo
al max- lcr E [240℄

maximum or
hard no symbol MOCN [182℄

maximum re
tilinear

(maximal re
tilinear,

obfus
ation 
omplexity)

max- cr ν∗ [218℄, M [199℄, ν+ [231℄,

ν ′M [396℄, CR [23℄, obf [468℄

maximum re
tilinear

edge

max- ecr no symbol

minor (minor-monotone) mcr mcr [80℄
monotone mon-cr mon-
r [198℄, mon-
r [374℄

monotone independent

odd

mon-iocr mon-io
r [198℄,

mon-o
r− [48℄
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Name (alternate names) Symbol Symbol (literature)

monotone odd mon-ocr mon-o
r [198℄

monotone odd +
(monotone semisimple

odd)

mon-ocr+ mon-o
r+ [48℄

monotone odd ±
(monotone weakly

semisimple odd)

mon-o
r± mon-ocr± [48℄

monotone pair mon-pcr pair-crmon
[467℄

nodal ncr no symbol

nodal toroidal ncrS1
n1 [227℄

non-orientable genus g crNg
cg [302℄, c̃rg [283℄, crg [304℄

odd ocr odd-
r [370℄ , crodd [258℄,

CR-ODD [444℄, ν(o) [479℄,
ocr [380℄, cr -odd [352℄

odd + ocr+ odd-
r+ [369℄

or
hard orchard-cr OCN [182℄

oriented (joint)

−→cr cr+ [357℄

pair (pairwise) pcr pair-
r [370℄, crpair [258℄,
pcr [301℄, pair-cr [467℄,
CR-PAIR [444℄, ν(p) [479℄,
cr -pair [352℄

pair + pcr+ pair-
r+ [369℄, pcr+ [198℄

proje
tive plane crN1
cr1 [302℄, crP [201℄, crp [323℄

pseudolinear c̃r c̃r [50℄
re
tilinear (straight-line,

linear, geometri
)

cr c [232℄, cr [278℄, ν [224℄,

ν∗ [218℄, cr, R [199℄,

ν ′ [396℄, cr1 [71℄, κ [478℄,

lin-
r [437℄,

CR-LIN [444℄, rcr [379℄,
cr1 [89℄, cr -lin [352℄

re
tilinear edge ecr no symbol

re
tilinear k-planar crk crk [428℄, r
rk [367℄

re
tilinear lo
al lcr cr1 [314℄, lcr [7℄
re
tilinear spa
e space-cr lin-cr4 [94℄
simple cr× scr [111℄, crs [90℄
simple degenerate dcr∗ CR

∗
[373℄, cr∗ [10℄

simple lo
al lcr∗ no symbol

simultaneous scr scr [117℄, simcr [111℄
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Name (alternate names) Symbol Symbol (literature)

simultaneous geometri
 scr no symbol

simultaneously planar no symbol crsp [209℄

spa
e space-cr cr4 [94℄
spheri
al (spheri
al

geodesi
)

crS2 c̆r [471℄

stable no symbol crk [283℄, crγ(G)−k [288℄

string str-cr scr [79℄
t-
ir
le no symbol crt◦ [156℄
t-polygonal crt crt [70℄
tile tile-cr tcr [387℄
toroidal (torus) crS1

cr1 [226℄
triple triple-cr tcr [450℄
upward mon-cr�(G) no symbol

weighted no symbol crw [412℄, wcr [342℄
x-monotone mon-cr�(G) mon-cr [198℄

3.2 Crossing Numbers

1-page 
rossing number. See 
onvex 
rossing number, book 
rossing number.

2-page 
rossing number. See book 
rossing number.

abstra
t topologi
al graph 
rossing number. See 
rossing number of abstra
t topo-

logi
al graph.

Algebrai
 
rossing number

Definition: Order and orient all edges of G and assign a 
rossing between edges e < f
a +1 or −1 depending on whether f 
rosses e from right to left or from left to

right at that point. We let acr(e, f) be the sum of the values of all 
rossings of f
with e (whi
h 
an be negative). For a given drawing D (and a given orientation) of

G we let acr(D) =
∑

e<f∈E(G) | acr(e, f)|, where < is the ordering of E(G).31 The

algebrai
 
rossing number of G, acr(G), is the minimum algebrai
 
rossing number

of any drawing of G. The Rule + variant of acr is acr+(G), the smallest algebrai



rossing number of any drawing of G in whi
h adja
ent edges are forbidden to 
ross.

One 
an de�ne an intermediate variant in whi
h we require acr(e, f) = 0 for every

pair of adja
ent edges e and f ; denote this variant by acr±
Referen
e: Pelsmajer, S
haefer, �tefankovi£ [381℄, also Tutte [463℄, Winterba
h [479℄.

Comments: One 
ould argue that this 
rossing number is impli
it in Tutte [463℄; 
er-

tainly, the idea of 
ounting 
rossings algebrai
ally is; however, Tutte insists on not


ounting adja
ent 
rossings by setting acr(e, f) = 0 for adja
ent edges e and f ; he
writes: �We are taking the view that 
rossings of adja
ent edges are trivial, and eas-

ily got rid of.� If we read this as a 
laim that acr(G) = iacr(G), then we now know

that this 
laim is wrong. So Tutte did de�ne iacr, but acr seems to have �rst been

31

The value of acr(D) does not depend on the orientation, so acr(D) is well-de�ned.
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isolated as a separate notion in [381℄.

32

There it was asked whether acr(G) = cr(G),
a question answered by Tóth in the negative [459℄.

Complexity: NP-
omplete.

33

Relationships: iacr(G) 6 acr(G) 6 acr± 6 acr+(G) for all G (from de�nition). There

are graphs G for whi
h iacr(G) < acr(G) [198℄. Tóth showed that there are graphs

G with acr(G) 6 0.855 pcr(G) = cr(G) answering the question from [381℄.

Open Questions: What is the relationship between acr and pcr?

Also see: Odd 
rossing number, independent algebrai
 
rossing number, monotone 
ross-

ing number (for monotone variants).

An
hored 
rossing number. See �xed linear 
rossing number.

Annulus 
rossing number. See map 
rossing number.

Bimodal 
rossing number

Definition: The bimodal 
rossing number of a dire
ted graph G, is the smallest number

of 
rossings in any bimodal drawing of G. A drawing is bimodal if at every vertex

all in-
oming edges (and thus, all out-going edges) are 
onse
utive.

Referen
e: Bu
hheim, Jünger, Menze, Per
an [92℄.

Comments: Bu
hheim, Jünger, Menze, and Per
an [92℄ introdu
e bimodal drawings as a

relaxation of hierar
hi
al drawings with the goal of redu
ing the number of 
rossings.

Complexity: NP-
omplete [92℄. The embeddability problem is in P (easy redu
tion to

planarity).

Relationships: The upward 
rossing number is an upper bound on the bimodal 
rossing

number (and they di�er, be
ause the upward 
rossing number is in�nite for dire
ted


y
les).

Also see: Upward 
rossing number.

Bipartite 
rossing number

Definition: The bipartite 
rossing number, bcr(G), of a bipartite graph G is the smallest

number of 
rossings in a straight-line drawing of G between two parallel lines so that

the verti
es in the same partition lie on the same line.

Referen
e: Harary [230℄; Watkins [476℄; Harary, S
hwenk [235, 236℄. Also [123℄.

Comments: Harary develops this 
rossing number notion without naming it. Watkins


alled it the spe
ial 
rossing number; Harary and S
hwenk 
oined bipartite 
rossing

number and wrote ν2(G), May [331℄, in a paper on 
ir
uit layout, 
alls it the inner


rossing number ν∗. None of these names seem to have stu
k; the 
orresponding

32

Winterba
h [479℄ de�nes the Tutte 
rossing number; unlike Tutte, he does not set acr(e, f) = 0 for

adja
ent edges, but he does order edges by endpoints (to avoid 
ounting both acr(e, f) and acr(f, e). As
a result he 
ounts some adja
ent 
rossings, e.g. v1v2 with v2v3 but not others, e.g. v1v2 with v1v3.

33

NP-hardness is obtained as in Pa
h and Tóth's proof that ocr is NP-hard. The question lies in NP,

sin
e it 
an be phrased as an integer linear program (this is one way of looking at Tutte's 
hara
terization

of planarity [463℄).
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optimization problem is now known as the 2-sided (or 2-layer) 
rossing minimization

problem (e.g. [490℄). In the 1-sided 
rossing minimization problem the order of

verti
es on one of the two lines is �xed.

34

Hotz [270, Se
tion 3.6.3℄ dis
usses an

appli
ation to 
ir
uit layout in whi
h the permutations on either side are restri
ted

by the nature of the 
ir
uit. As an extremal question, the bipartite 
rossing number

is even older. In a textbook on algebra from 1889, Chrystal [123, p.34℄ asks to verify

the bipartite 
rossing number of Km,n (his value is o� by a fa
tor of 2). Also, see

Singmaster [434, 5.Q.1℄. The name bipartite 
rossing number has also been used

for cr(Km,n), Zarankiewi
z's problem. Arguably, 
rossing minimization of storyline

visualizations [306℄ 
ould be 
onsidered a variant of the bipartite 
rossing number

(in whi
h edges are relaxed to be monotone, but there are 
onditions on edges having

to tou
h or 
ross).

Complexity: NP-
omplete.

35

Can be approximated in polynomial time to within a fa
-

tor of O(log2 n) [425℄. The embedding problem is easy, Harary and S
hwenk [236℄

give a 
omplete 
hara
terization of graphs with bcr(G) = 0. The 1-sided 
rossing

minimization problem isNP-
omplete [162, 163℄, but �xed-parameter tra
table [152,

300℄.

Relationships: cr(G) 6 bcr(G) for all bipartite graphs G, and the inequality 
an be

stri
t (e.g. K2,2). If G is a 2-
onne
ted, bipartite graph, then bcr(G) > (m− 1)/3,
where m = |E(G)| [299℄.

Values: bcr(C2n) = n − 1 [236℄. bcr(Km,n) =
(
m
2

)(
n
2

)
[123, 476℄. bcr(M2,n) = n − 1,

bcr(M3,n) = 5n−6, bcr(Mm,n) = Θ(m2n) where Mm,n = Pm�Pn is the m×n mesh,

and bcr(Qn) = Θ(4n) [424℄.

Also see: Radial 
rossing number, 
ylindri
al 
rossing number, tile 
rossing number, bi-

partite 
on�uent 
rossing number (under 
on�uent 
rossing number), upward 
ross-

ing number. Generalizations in
lude 
onvex k-partite 
rossing number and leveled


rossing number (under monotone 
rossing numbers).

Bipartite 
on�uent 
rossing number. See 
on�uent 
rossing number.

Biplanar 
onvex 
rossing number. See 2-page 
rossing number (under book 
rossing

number), 
onvex 
rossing number.

Biplanar 
rossing number. See k-planar 
rossing number.

Book 
rossing number

34

The 
rossing minimization problem for tanglegrams [188, 484℄ has a similar �avor; in a tanglegram,

the ordering of the verti
es in ea
h partition is 
onstrained by a tree.

35

Shahrokhi and Vr´o [432℄ write �the NP-hardness of the problem was proved for multigraphs, but it

is widely assumed that it is also NP-hard for simple graphs�. The multigraph proof is due to Garey and

Johnson [204℄. The problem remainsNP-
omplete for simple graphs as well (thanks to Daniel �tefankovi£

for help with this proof): by a result of Even and Shiloah [177℄ the optimum linear arrangement problem

is NP-hard for bipartite graphs; take a bipartite graph G and make ea
h of its verti
es the 
enter of a

su�
iently large star; in a 
rossing-minimal bipartite drawing of the resulting graph, the leaves of the

star 
an be assumed to be 
onse
utive; this bipartite drawing en
odes a solution to the optimum linear

arrangement problem of the original graph G, just as in the original proof by Garey and Johnson.
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Definition: A book with k pages is a bran
hed surfa
e 
onsisting of k half-planes whose

boundary lines have been identi�ed (forming the spine). The book 
rossing number

for a book with k pages, or k-page 
rossing number, bkcrk(G), of a graph G, is
the smallest number of 
rossings in a drawing of G in a book with k pages so that

all verti
es lie on the spine of the book and every edge lies in a single page. The

smallest k for whi
h bkcrk(G) = 0 is the pagenumber of G.

Referen
e: Blaºek, Koman [73℄ (for bkcrk(Kn)); Ni
holson [359℄; Le
ler
 and Mon-

jardet [317℄ (for bkcr2). Shahrokhi, Sýkora, Székely, Vr´o [423℄ (for bkcrk).

Comments: The book 
rossing number for a single page is the same as the 
onvex 
ross-

ing number. There are two types of book drawings, 
ombinatorial, in whi
h edges

are not allowed to 
ross the spine, and topologi
al in whi
h edges are allowed to


ross the spine [479, 3.1.3.1℄. The book 
rossing number is restri
ted to 
ombina-

torial drawings, and there is good reason for that, sin
e a topologi
al book 
rossing

number would not add anything new: for a single page, the spine 
annot be 
rossed,

so we again get the 
onvex 
rossing number and for two pages, k = 2, we would get

the standard 
rossing number as was observed (and proved) by Ni
holson [359, Ap-

pendix℄.

36

Even before Ni
holson, Blaºek and Koman [73℄, in their paper showing

that cr(Kn) 6 Z(n), using 2-page drawings, asked for the value of bkcrk(Kn), and
gave an upper bound for k = 3. Finally, every graph 
an be embedded in 3 pages

if we allow a topologi
al embedding.

37

The spine 
rossing number is a variant that

does allow topologi
al drawings (but 
ounts 
rossings di�erently).

Combinatorial drawings in two pages have been 
alled 
ir
ular [479℄ or 
y
le [245℄

drawings, so the name 
ir
ular or 
y
le 
rossing number for the 
rossing number

bkcr2 would not be surprising. More typi
ally, though, bkcr2 is known as the 2-page

rossing number or sometimes the (free) linear 
rossing number, e.g. [329℄, or the

biplanar 
onvex 
rossing number [86, pg. 393℄.

There are two degrees of freedom in �nding a 
ombinatorial book-drawing: �nding

the best order of verti
es along the spine and determining whi
h page ea
h edge is

drawn in. We get interesting variants, if we restri
t either of these. If one �xes the

order of the verti
es along the spine, one obtains the �xed linear 
rossing number,

dis
ussed in a separate entry. If one assigns ea
h edge to a spe
i�
 page, one gets

what 
ould be 
alled the partitioned book 
rossing number; we treat it as a spe
ial


ase of the 
onvex simultaneous 
rossing number (see entry for simultaneous 
rossing

number).

If instead of 
ounting 
rossings, we 
ount edges involved in 
rossings, we get the

book edge 
rossing number introdu
ed by Bannister, Eppstein, and Simons [54℄, see

36

One has to keep in mind that Ni
holson proved this result very early in the history of the 
rossing

number; his primary goal is an aestheti
 layout (he restri
ts edge segments on ea
h page to be drawn like

semi
ir
les) whi
h minimizes the number of 
rossings via a heuristi
 that modi�es the permutation along

the spine.

37

This result is due to Atneosen [38℄. White [477, page 59℄ gives a very simple proof he attributes to

Babai in 1974 (essentially the same proof found later by Bernhart and Kainen [67℄).
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the entry on edge 
rossing number.

Complexity: The problem is interesting even for the spe
ial 
ase of embeddings, that

is, bkcrk(G) = 0. Graphs of pagenumber 1 are the outerplanar graphs whi
h 
an

be re
ognized in linear time. Graphs of pagenumber 2 are the planar subgraphs of

Hamiltonian graphs whi
h implies that testing bkcr2(G) = 0 isNP-
omplete [124℄.

38

Testing bkcrk(G) = 0 for �xed k > 4 is also NP-
omplete, sin
e it is for a given

ordering of the verti
es on the spine (one 
an easily 
onstru
t a gadget that for
es

a given ordering in a book-embedding); see the entry on the �xed linear 
rossing

number, whi
h is the variant of the book 
rossing number in whi
h the order of

the verti
es is given (for an alternative proof, see [156℄). As far as we know, the


omplexity of testing bkcr3(G) = 0 is open. The only general 
omplexity result

about the 
rossing number version we are aware of is the spe
ial 
ase of the 
onvex


rossing number, k = 1: testing bkcr1(G) 6 m is NP-
omplete [328℄, but �xed-

parameter tra
table in m [53℄. The 
omputation of bkcr2(G) is �xed-parameter

tra
table (with the sum of bkcr2 and the treewidth of G as the parameter) [53℄.

Relationships: bkcrk(G) 6 bkcrk−1(G) (by de�nition). bkcrk(G) 6 bkcr1(G)/k [423℄,

mon-cr(G) 6 bkcr2(G) (from de�nition) and so bkcr2k(G) > crk(G) (see k-planar

rossing number), also bkcr1(G) > cr(G) (obvious, sin
e bkcr1 is the 
onvex 
rossing

number). A 
rossing lemma is known: bkcrk(G) > m3/(37k2n2) − 27kn/37 for

n = |V |, m = |E| [431℄.
Values: For bkcr1, see the entry on 
onvex 
rossing number. bkcr2(Kn) = Z(n) [1, 3℄

(for earlier results, see [93, 135℄) and bkcr2(Km,n) 6 Z(m,n) [135℄, with Z(n) =
X(n)X(n − 2)/4 and Z(m,n) = X(m)X(n), where X(n) = ⌊n/2⌋⌊(n − 1)/2⌋.
Bu
hheim and Zheng [93℄ 
al
ulate bkcr2 for several small graphs. Asymptoti


results in
lude limn→∞ bkcr2(Km,n)/Z(m,n) = 1 for 7 6 m 6 8 [135℄. Faria, de

Figueiredo, Ri
hter and Vr´o [179℄ give upper bounds on bkcr2(Qn) (improving work

by Madej [324℄). Satsangi, Srivastava, Srivastava [408℄ show (
omputationally) that

bkcr2(K1,4,n) = n(n − 2) for 2 6 n 6 15. For values of bkcrk(Kn) for k > 3 and

small values of n as well as asymptoti
 bounds, see [133, 5℄. If 2 < n/k 6 3, then
bkcrk(Kn) = 1/2(n − 3)(n − 2k) [5℄. For values of bkcrk(Kk+1,n) for 3 6 k 6 6,
asymptoti
 results for bkcrk(Kk+1,n), and upper bounds on bkcrk(Km,n) see [136℄.

Open Questions: De Klerk, Pase
hnik, and Salazar [133℄ introdu
e a fun
tion Zk(n) for
whi
h they show that bkcrk(Kn) 6 Zk(n); they 
onje
ture that equality holds (as we
saw, the 
ase k = 2 is known to be true [1, 3℄). De Klerk and Pase
hnik [135℄ 
onje
-

ture bkcr2(Km,n) = Z(m,n). Yannakakis [486, 487℄ proved that every planar graph

has pagenumber at most 4, but his example of a planar graph that needs 4 pages

announ
ed in [486℄ is not in [487℄. A

ording to Kainen [287℄, the question whether

bkcr3(G) = 0 for all planar graphs G is still open. As a weaker 
onje
ture he suggests

lim supcr(G)=0 bkcr3(G)/ log |V (G)| = 0. DeKlerk, Pase
hnik, and Salazar [136℄ ask

whether γ(k) := limm,n→∞ cr2k(Km,n)/ bkcrk(Km,n) goes to 1 as k goes to in�nity?

38

The 
hara
terization of pagenumber 2 graphs is due to Bernhart and Kainen [67℄, but also see [96℄

on the pre-history of that observation.
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Faria, de Figueiredo, Ri
hter and Vr´o [179℄ ask whether bkcr2(Qn) 6 cr(Qn); this
is not true for all graphs: as they point out, a non-Hamiltonian planar triangulation

G satis�es bkcr2(G) > 0 = cr(G). Satsangi, Srivastava, Srivastava [408℄ 
onje
ture

that bkcr2(K1,4,n) = n(n − 2) for all n; they also make some 
onje
tures on the

pagenumber of 
ertain graph families, based on 
omputational eviden
e. Shahrokhi

asked whether bkcr2(G) = O(cr(G) +
∑

v∈V (G) deg(v)
2) [86, Problem 9.4.9℄. He,

S l gean, Mäkinen, and V°´o [253℄ show that bkcr2(Cm × Cn) 6 (m − 2)n for

n > m > 3, as is true for the standard 
rossing number, and supply 
omputational

eviden
e that equality may hold; this would be implied by the stronger 
onje
ture

by Harary, Kainen and S
hwenk [234℄ that cr(Cm ×Cn) = (m− 2)n for n > m > 3.

Also see: Convex 
rossing number, �xed linear 
rossing number, 
onvex simultaneous


rossing number (under simultaneous 
rossing number), spine 
rossing number, an-


hored 
rossing number, book edge 
rossing number (under edge 
rossing number).

Book edge 
rossing number. See edge 
rossing number.

Bundled 
rossing number

Definition: A bundled 
rossing in a drawing of a graph is a pseudodisk in whi
h every

edge in some edge-set E1 
rosses every edge in another edge-set E2, and so that

there are no other 
rossings inside the pseudodisk. The bundled 
rossing number,

bc(D) of a drawing of G is the smallest number of disjoint bundled 
rossings that


over all 
rossings of D. The bundled 
rossing number, bc(G), of G is the smallest

bundled 
rossing number of any interse
tion-simple drawing of G. Let bc′(G) denote
the variant of bc(G) in whi
h we allow self-
rossings and multiple 
rossings of edges.

If we require the drawing to be 
onvex, that is, all verti
es lie on the outer fa
e, we

get the 
onvex (
ir
ular, outerplanar) bundled 
rossing number, bc◦(G); we write

bc◦(G, π) for the �xed 
onvex bundled 
rossing number, for whi
h the order of verti
es
along the outer fa
e is determined by permutation π.

Referen
e: Fink, Hershberger, Suri, Verbeek [191℄; Alam, Fink, Pupyrev [17℄.

Comments: Bundling edges was introdu
ed in [267℄. An earlier version of this survey

suggested studying the 
rossing number of drawings with bundled 
rossings based

on the related notion of 
on�uent drawings and 
rossings in 
on�uent drawings. The

bundled 
rossing number of a drawing was introdu
ed by Fink, Hershberger, Suri,

and Verbeek [191℄. Alam, Fink, Pupyrev [17℄ de�ned the bundled 
rossing number

of a graph.

Complexity: Determining the bundled 
rossing number of a drawing isNP-
omplete [191℄.

The 
omplexity of 
omputing bc(G) is open, but expe
ted to be NP-
omplete.

For su�
iently dense graphs, bc(G) 
an be approximated in polynomial time [17℄.

bc◦(G, π) 
an be approximated to within a fa
tor of 16 in polynomial time, and the

problem is �xed-parameter tra
table [17℄.

Relationships: cr(G) 6 bc(G) (every 
rossing 
an be viewed as a bundled 
rossing).

bc(G) > bc′(G) = γ(G), where γ(G) is the (orientable) genus of G, and the inequal-

ity 
an be stri
t [17℄. bc(G) > (m− (3n− 6))/6, and bc◦(G) > (m− (2n− 3))/6.
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Open Questions: What are bc(Kn), bc(Km,n), and bc(Qn)?

Also see: Degenerate 
rossing number, 
on�uent 
rossing number, Metro-line 
rossing

number.

Cir
ular bundled 
rossing number. See bundled 
rossing number.

Cir
ular 
rossing number. See 
onvex 
rossing number.

Cir
ular k-partite 
rossing number. See 
onvex 
rossing number.

Clo
kwise 
rossing number. See 
y
li
 level 
rossing number.

Confluent 
rossing number

Definition: A 
on�uent drawing (sometimes known as a train tra
k) 
onsists of bran
hes

(simple 
urves with two 
onne
tion points) and swit
hes (homeomorphs of the sym-

bol ≺, so three 
onne
tion points), and nodes. Ea
h of the three 
onne
tion points

of a swit
h is in
ident to a node, or to the 
onne
tion point of exa
tly one bran
h

or one swit
h. Ea
h 
onne
tion point of a bran
h is in
ident to a 
onne
tion point

of a swit
h or a node. The drawing is smooth at 
onne
tion points and the only


rossings allowed are 
rossings between bran
hes. A 
on�uent drawing represents

a graph G = (V,E) as follows: V is the set of nodes of the drawing, and an edge

in E 
orresponds to a smooth 
urve 
onne
ting its endpoints (su
h a 
urve 
annot

make a sharp turn between the upward and the downward bran
h of the ≺) without
turning around. Note that a single bran
h or swit
h 
an 
arry many edges. The


on�uent 
rossing number of a graph G is the smallest number of 
rossings required

in a 
on�uent drawing of G.

Referen
e: Based on Eppstein, Goodri
h, Meng [172℄, also Newberry[358℄.

Comments: Con�uent drawings were introdu
ed by Di
kerson, Eppstein, Goodri
h, and

Meng [143℄ to redu
e the number of 
rossings (whi
h they do dramati
ally) while

emphasizing the 
onne
tivity stru
ture visually. A 
on�uent drawing looks like a

train tra
k and tra
k 
rossing number would be a good alternative name. Epp-

stein, Goodri
h, and Meng[172℄ de�ne this 
rossing number impli
itly as a 
rossing

minimization problem. They restri
t themselves to the spe
ial 
ase of two-layered

drawings where G is bipartite (ea
h partition being a layer) and distinguish between

various levels of depth. So, in e�e
t, they 
onsider a bipartite 
on�uent 
rossing

number. One 
ould 
onsider variants in whi
h swit
hes are also 
ounted as 
rossings

(see Metro-line 
rossing number). Newberry [358℄ earlier introdu
ed the te
hnique

of edge 
lustering for layered drawings of dire
ted graphs with the same goal of re-

du
ing the total number of 
rossings. Edges that share the same sour
es and targets


an be bundled (or 
on
entrated) into edge 
on
entration nodes (whi
h require new

levels).

Complexity: Open, even the spe
ial 
ase of testing whether a graph has a 
on�uent

embedding (no 
rossings) is not known to be NP-hard (although it is known to lie

in NP [276℄).

Values: Complete and 
omplete bipartite graphs have 
on�uent 
rossing number 0, see
the 
rossing-free 
on�uent drawing of K5 in the margin.
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Also see: Metro-line 
rossing number.

Constrained 
rossing number

Definition: A partially embedded graph is a graph G = (V,E) with a subgraph H ⊆ G
and an embedding H of H in the plane. The 
onstrained 
rossing number of G given

H is the smallest number of 
rossings in any drawing of G that 
ontains H.

Referen
e: Mutzel, Ziegler [354, 353℄.

Comments: Mutzel, Ziegler de�ned a more restri
ted variant: they required H to be a


onne
ted graph with vertex set V . In that 
ase, H 
an be des
ribed 
ompletely by

its rotation system. Re
ent results on partially embedded graphs suggest that the

more general point of view taken here is justi�ed.

Complexity: NP-
omplete (sin
e 
rossing number is a spe
ial 
ase); the restri
ted 
ase

de�ned by Mutzel and Ziegler is alsoNP-
omplete sin
e �xed linear 
rossing number

is a spe
ial 
ase. Testing whether there is an embedding of G 
ontaining H is in

linear time [27℄.

Open Questions: Is the 
onstrained 
rossing number �xed-parameter tra
table for pa-

rameter k = |E(G)| − |E(H)|?
Also see: Fixed linear 
rossing number, 
rossing number of graphs with rotation, map


rossing number, wire 
rossing number.

Convex 
rossing number

Definition: The 
onvex 
rossing number of a graph G, bkcr1(G), is the smallest number

of 
rossings in a drawing of G in whi
h all verti
es of G lie on the boundary of a


onvex set and edges have to lie within the 
onvex set (a 
onvex drawing of G).
If G is a k-partite graph we 
an require that all verti
es belonging to a parti
ular

partition o

ur 
onse
utively on the boundary. Call this variant the 
onvex k-partite

rossing number of G.

Referen
e: Mäkinen [325℄, Kainen [286℄, Riskin [405℄.

Comments: The 
onvex 
rossing number is the same as bkcr1, the 1-page book 
rossing
number; other names in
lude outerplanar 
rossing number [423℄ and 
ir
ular 
ross-

ing number [435℄. Extremal problems that, in e�e
t, ask for the 
al
ulation of the


onvex 
rossing number for 
ertain graphs are even older: an exer
ise in an algebra

textbook published in 1889 asks to verify the number of 
rossings in a 
onvex draw-

ing of Kn (Chrystal [123, p.34℄). See Singmaster [434, 5.Q.1℄ for related puzzles.

Mäkinen [325℄ mentions the possibility of minimizing edge 
rossings in 
onvex draw-

ings, but immediately dismisses it, preferring 
ir
ular dilation to optimize drawings.

Kainen [286℄ introdu
ed the lo
al outerplanar 
rossing number, whi
h he abbrevi-

ated as locr(G), and whi
h we would 
all the lo
al 
onvex 
rossing number), in whi
h

we try to minimize the largest number of 
rossings along any edge; drawings with

lo
al 
onvex 
rossing number at most 1 have been 
alled outer 1-planar [165, 39℄.39

39

Eggleton [165℄ introdu
ed a degenerate version of outer 1-planarity, see the dis
ussion under the entry
for lo
al 
rossing number.
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Riskin introdu
ed the 
onvex k-partite 
rossing number as the 
ir
ular k-partite

rossing number.

40

For k = 2 it equals the bipartite 
rossing number, for k = |V |
it reverts to the 
onvex 
rossing number. For a version maximizing the number

of 
rossings, see the 
onvex maximum re
tilinear 
rossing number (under maximum

re
tilinear 
rossing number). One 
ould also imagine allowing multiple nested layers

of points in 
onvex position; for the spe
ial 
ase of re
tilinear drawings of the 
om-

plete graph, this has been studied in [322℄; that approa
h 
ould also be viewed as

a re�nement of the re
tilinear 
rossing number. Allowing multiple, superimposed,

layers, we 
an de�ne the biplanar 
onvex 
rossing number as the smallest number of


rossings between edges of the same 
olor in any two-
oloring of the edges of G in

a 
onvex drawing of G. This is the same as the 2-page 
rossing number (see under

book 
rossing number).

Complexity: NP-
omplete [328℄. Testing whether the lo
al 
onvex 
rossing number is

at most 1 is in linear time [39℄.

Relationships: bkcr1(G) > cr(G) for all graphs G (from de�nition). There is a 
rossing

lemma, bkcr1(G) > m3/(27n2) [427℄. bkcr1(G) = O((cr(G)+
∑

v∈V (G) deg(v)
2) log n) [426℄.

Values: Obviously, bkcr1(Kn) =
(
n
4

)
[123, p.34℄. bkcr1(Km,n) = 12n(m − 1)(2mn −

3m− n), if m|n [403℄. For results on the 
onvex k-partite 
rossing number of Km,n

see [404℄, for results on Kn,n,...,n, see [196℄. Let Mm,n = Pm�Pn denote the m × n
mesh. bkcr1(M3,n) = 2n−3 if n even and 2n−4 otherwise, n > 3 [196℄, bkcr1(M4,n) =
4(n−2) for n > 2 [252℄. Asymptoti
ally, bkcr1(Mn,n) = Ω(n2 log n) [427℄. For Halin
graphs, see [196℄, for 
ir
ulant graphs see [252℄, and for the 
one graph Cn ∗ K2

see [287℄.

Also see: Bipartite 
rossing number, tile 
rossing number, disk 
rossing number (under

map 
rossing numbers), 
onvex simultaneous 
rossing number, biplanar 
rossing

number, book 
rossing number.

Convex k-partite 
rossing number. See 
onvex 
rossing number.

Convex maximum re
tilinear 
rossing number. See maximum re
tilinear 
rossing

number.

Convex simultaneous 
rossing number. See simultaneous 
rossing number.

Cross index. See lo
al 
rossing number.

Crossing edge number. See edge 
rossing number.

Crossing number

Definition: The 
rossing number of G, cr(G), is the smallest number of 
rossings in any

drawing ofG. We write crΣ(G) for the 
rossing number ofG on surfa
e Σ; crSg
is also

known as the genus g 
rossing number, crS1
is the toroidal 
rossing number, crN1

is

the proje
tive plane 
rossing number and crN2
is the Klein bottle 
rossing number. If

the graph is equipped with a rotation (embedding) s
heme ρ, we write crΣ(G, ρ) for

40

There really is no reason to restri
t this 
rossing number to k-partite graphs, it also makes sense if

we allow 
rossings within ea
h partition. Arguably, this is exa
tly the 
rossing number variant dis
ussed

by Bronfenbrenner [87℄ in a 1945 so
iology paper unearthed by David Eppstein [171℄.
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the 
rossing number of the graph with the pres
ribed rotation (embedding) s
heme

ρ.

Referen
e: Turán [462℄, Harary and Hill [232℄, also Harary [228, 229℄.

Comments: For a detailed a

ount of the early history of the 
rossing number, see

Beineke and Wilson's �The Early History of the Bri
k Fa
tory problem� [60℄, but

also see Remark 5. In�uen
ed by Turan's problem [462℄, resear
h during the ini-

tial phase (1950s) fo
ussed on the 
rossing number of the 
omplete bipartite graph

(Zarankiewi
z [489℄, Urbanik [466℄) and in the 1960s expanded to in
lude investiga-

tion of 
omplete graphs (e.g. Guy [219℄, who 
redits Anthony Hill and C.A. Rogers,

and writes that Erd®s 
laimed to have been thinking about the problem for 20 years;
also Saaty [406℄). As far as we 
an tell, the �rst paper de�ning the 
rossing number

for arbitrary graphs is due to Harary and Hill in 1963 [232℄. The toroidal 
rossing

number was introdu
ed in [226, 302℄, and the Klein bottle 
rossing number together

with general surfa
e 
rossing numbers in [302℄ (also [282℄).

Complexity: NP-
omplete [204℄, remainsNP-
omplete for almost planar graphs [98℄�

even if there are only a small number of high-degree verti
es [261℄, 
ubi
 graphs [259℄

and if the drawing of the graph is restri
ted by a given rotation (embedding) system

ρ [384℄. Approximating the 
rossing number to within a 
onstant fa
tor (even

for 
ubi
 graphs) is NP-
omplete [97℄, but it 
an be approximated to within a

polynomial bound for graphs of bounded degree [125, 107, 108℄. The embedding

problem crΣ(G) = 0 
an be solved in linear time for any (
ompa
t orientable or

non-orientable) surfa
e Σ [341℄. The surfa
e 
rossing number problem, crΣ(G),
remains NP-
omplete for all surfa
es Σ (via an easy redu
tion from the planar


ase). Testing cr(G) 6 k 
an be de
ided in time O(f(k)n), that is, the problem is

�xed-parameter tra
table [216, 293℄.

Relationships: cr(G) > 1024/31827m3/n2
for m > 4n [366℄.

41

For Σ ∈ {Sg, Ng} we

have crΣ(G) = Ω(m3/n2) if 0 6 g < n2/m and crΣ(G) = Ω(m2/g) if n2/m 6

g 6 m/64 [430℄. Asymptoti
ally, cr(G) = O(g(crSg
(G) + n)) for graphs of bounded

degree as long as g = o(n) [146℄. If crΣ(G) = 0, then cr(G) 6 cΣ∆n, where ∆
is the maximum degree of G [83℄, for an algorithmi
 view of this result, see [116℄.

The behavior of the sequen
e crS0
(G), crS1

(G), crS2
(G), . . . (and similarly for non-

orientable surfa
es) has been studied by �irá¬ and others, see [332℄ for a re
ent

survey and results.

Values: The planar 
rossing number of Kn is at most Z(n) = X(n)X(n − 2)/4,
where X(n) = ⌊n/2⌋⌊(n − 1)/2⌋ [219, 73℄. Guy's, or Harary and Hill's, 
onje
-

ture states that cr(Kn) = Z(n) [232, 60℄; the 
onje
ture is known to be true for

n 6 12 [376℄, and cr(K13) ∈ {219, 221, 223, 225} [335℄. (For a 
omputer-free proof

that cr(K9) = 36, see [334℄.) For a strengthened version of the 
onje
ture, see [48℄.

41

The fa
t that cr(G) = Ω(m3/n2) for m > 4n is known as the 
rossing lemma. The original versions

(with smaller 
onstants) are due to Ajtai,Chvátal, Newborn, Szemerédi [16℄ and Leighton [318℄. A re
ent

manus
ript by A
kerman [9℄ 
laims an improvement to cr(G) > 0.0345m3/n2
for m > 6.95n.
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It is known that cr(Kn) > 0.8594Z(n) for su�
iently large n [137℄.

42

The 
rossing

number of Km,n is 
onje
tured to be given by Zarankiewi
z's fun
tion Z(m,n) =
X(m)X(n), whi
h 
ounts the number of 
rossings in Zarankiewi
z's drawing of

Km,n. This is now known as Zarankiewi
z's 
onje
ture.

43

As in the 
ase for 
om-

plete graphs, the upper bound cr(Km,n) 6 Z(m,n) is easy, but the lower bound is

hard. The 
onje
ture is known to be true for n 6 6 [295℄ and n 6 8, m 6 10 [483℄.

cr(K7,n) > 2.203n2 − 4.5n > 0.979Z(7, n) [147℄, building on [134℄. cr(Km,n) >
0.8594Z(m,n) form > 9 and n su�
iently large [137℄. For every m there is an N(m)
so that if cr(Km,n) = Z(m,n) for all n 6 N(m), then cr(Km,n) = Z(m,n) for all
n [121℄. The 
onje
tures for 
omplete and 
omplete bipartite graphs are related: the

truth of Zarankiewi
z's 
onje
ture implies that limn→∞ cr(Kn)/Z(n) = 1 [281℄; in

fa
t, limn→∞ cr(Kn)/Z(n) > limn→∞ cr(Kn,n)/Z(n, n) [394℄, so asymptoti
 improve-

ments on cr(Kn,n) lead to 
orresponding improvements on cr(Kn).
44 cr(K1,3,n) =

Z(4, n) + ⌊n/2⌋ and cr(K2,3,n) = Z(5, n) + n [35℄, cr(K1,4,n) = n(n − 1) [264, 274℄,
cr(K3,3,n) > Z(6, n) + n + 1 [211℄,

45 cr(Kn,1,1,1) = X(n) [237℄, cr(Kn,1,1,1,1) =
⌊(n2 + 1)/2⌋ [479℄. Harborth [237℄ found a Z(n1, . . . , nk) for whi
h cr(Kn1,...,nk

) 6
Z(n1, . . . , Zk), and he 
onje
tures this upper bound to be tight.

46

It is known

that 0.666Z(n1, n2, n3) 6 cr(Kn1,n2,n3
) 6 Z(n1, n2, n3) [210℄.

47,48

For the proje
-

tive plane, crN1
(Kn) is known up to n 6 10 and there are asymptoti
 bounds:

(41/273)
(
n
4

)
6 crN1

(Kn) 6 (13/16)Z(n) for n > 15 [302℄.

49

It is known that

crN1
(K4,n) = ⌈n/3⌉(2n − 3(1 + ⌈n/3⌉)) [263℄. Also, crN1

(C3�Cn) = n − 1 for

n > 5 and crN1
(C3�C4) = 2 [401℄. For the torus, crS1

(Kn) is known for n 6 10
and crS1

(Km,n) for m,n 6 6 [227℄. Also, crS1
(K3,n) = ⌈(n − 3)2/12⌉ [226℄ and

crS1
(K4,n) = ⌊n/4⌋(2n − 4(1 + ⌊n/4⌋)) [265℄. There are asymptoti
 bounds for

crS1
(Km,n) [226℄. crS1

(C3
n) = 0 for n > 7, and crS1

(C4
n) = n for n > 9 [233℄, where Gk

42

Thanks to the referee for pointing this out; to obtain this result one needs to 
ombine the result on

cr(Kn,m) from [137℄ with the main theorem from [394℄ dis
ussed below.

43

Zarankiewi
z [489℄ 
laimed equality, but his proof (like Urbanik's [466℄), 
ontained a subtle error

whi
h was later found by Kainen and Ringel (as des
ribed by Guy [221℄).

44

Apparently Székely phrases this as �If Zarankiewi
z's 
onje
ture is asymptoti
ally X% true, then the

Harary-Hill 
onje
ture is also asymptoti
ally X% true�, thanks to one of the referees for supplying that

quote. Székely's survey [447℄ 
ontains more details on the 
urrent status of the Zarankiewi
z 
onje
ture.

45

The paper also derives an upper bound whi
h agrees with the general upper bound found by Har-

borth [237℄.

46

Harborth 
alls his fun
tion S. He mentions a paper by Blaºek and Kolman [74℄ whi
h 
ontains a

similar expression, without proof; a proof may be 
ontained in the hard-to-lo
ate [75℄.

47

The authors of [210℄ use a di�erent expression A(n1, n2, n3) whi
h equals Z(n1, n2, n3) in values.

Their drawings di�er from Harborth's [237℄ in that they are re
tilinear, leading them to 
onje
ture that

cr(Kn1,n2,n3
) = cr(Kn1,n2,n3

) = Z(n1, n2, n3).
48

There are many further results for (planar) 
rossing numbers of 
omplete k-partite graphs, hyper-


ubes, Cartesian (and Krone
ker) produ
ts of 
y
les, paths, and stars and other families of graphs;

unfortunately, there does not seem to be an English language survey 
olle
ting these results, but many

of them 
an be found in Vr´o's bibliography [469℄.

49

There do not seem to be any newer results on the proje
tive plane 
rossing number of 
omplete

graphs than this result from 1969.
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is the k-th power of G.50 For the Klein bottle, crN2
(Kn) is known for n 6 9 [302℄

and there are asymptoti
 bounds: (1/14)
(
n
4

)
6 crN2

(Kn) < (59/216)
(
(n−1)

4

)
for

n > 16 [304℄. crN2
(Km,n) is known for 3 6 m 6 6 and n 6 N(m) with N(3) = 12,

N(4) = 8, N(5) = N(6) = 6; for these ranges crN2
(Km,n) = crS1

(Km,n) [303℄.

crN2
(Cm�Cn) is known for m 6 6 [402℄ and for su�
iently large m and n [279℄.

51

Exa
t values of crΣ(K3,n) are known for all surfa
es Σ [392℄, and there are lower and

upper bounds on crΣ(Kn), crΣ(Kn,m), and crΣ(Qn) [422, 430℄. Gross [217℄ showed

that crSg
(Op) = p(p− 1)/2, where p ≡ 1 mod 4 is prime, g = (p− 1)(p− 4)/4, and

Op = K2p − pK2, the o
tahedral graph.

Open Questions: There is a well-known 
onje
ture by Harary, Kainen and S
hwenk [234℄

that cr(Cm�Cn) = n(m− 2) for n > m > 3; the 
onje
ture is known to be true for

3 6 m 6 7 [397, 62, 297, 390, 12℄, and for n > m(m + 1), m > 3 [212℄; for sur-

veys predating the more re
ent developments (6 6 m 6 7, and n > m(m + 1)),
see [395, 429℄. It is also known that for every m there is a cm > 0 so that

cr(Cm�Cn) = n(m−2)−cm for n > 3 [387℄. A weaker version of the 
onje
ture, sug-

gested by 
omputational eviden
e in [253℄, would be that bkcr2(Cm�Cn) = n(m−2).
DeVos, Mohar, and �ámal asked whether it is true that in any cr-minimal draw-

ing of the disjoint union of two graphs G1 and G2 on a surfa
e Σ, the drawings

of G1 and G2 are disjoint? Trivially true for plane, and also known for proje
tive

plane [140℄ and the Klein bottle [58℄, also see [100℄. Börö
zky, Pa
h, and Tóth [83℄

ask whether cr(G) = O(g∆n), where g is the genus of G, and ∆ its maximum degree

(this is known to be true of the torus [372℄). Shahrokhi, Székely, and Sýkora [430℄


onje
ture that crΣ(Kn) = O(n4/g), where Σ ∈ {Sg, Ng}. Ri
hter asked whether

cr(G) > cr(Kn) implies that cr(G+ v) > cr(Kn+1, where + denotes the join of two

graphs; the answer turns out to be no, but it is open how small the gap between

cr(G+ v) and cr(G) 
an be. For multigraphs, the gap is cr(G)1/2 [20℄.

Also see: Stable 
rossing number.

Crossing number of abstra
t topologi
al graph

Definition: A graph G with a symmetri
 relation R over E(G) is 
alled an abstra
t

topologi
al graph or AT-graph. A drawing D is a weak realization of (G,R) if every
pair of edges (e, f) that 
ross in D belongs to R. The 
rossing number of (G,R),
cr(G,R), is the smallest number of 
rossings in a weak realization of (G,R). If there
is no weak realization of (G,R) we let cr(G,R) = ∞.

Referen
e: Krato
hvíl [308℄.

Comments: Krato
hvíl introdu
ed the 
rossing number crat(G,R) of an abstra
t topo-

logi
al graph (G,R) in his study of string graphs. Interse
tion graph theory studies

graphs (G,R) whi
h have weak realizations for restri
ted R. Trivially, if R 
ontains

no edges, then G has a linear number of edges (sin
e it is planar). Linear bounds

50Gk
, the k-th power of G, is a graph on V (G) with edge uv if G 
ontains a path of length at most k

between u and v.
51

See Riskin's MathS
iNet review MR1974148 of that paper.
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on |E(G)| are also known if R ex
ludes a 
omplete bipartite [365℄ or tripartite [453℄

graph. This 
rossing number 
an be viewed as a spe
ial 
ase of the weighted 
rossing

number (weights being restri
ted to 1 and ∞).

Complexity: NP-
omplete [412℄.

Relationships: cr(G) 6 cr(G,R) (by de�nition). There are abstra
t topologi
al graphs

(G,R) for whi
h cr(G,R) > 2cn for some c > 0 [308, 309℄, where n = |V (G)|. If

cr(G,R) <∞, then cr(G,R) 6 m2n [412℄, where m = |E(G)| and n = |V (G)|.
Open Questions: Krato
hvíl [308℄ 
onje
tured that in any 
rossing minimal weak re-

alization of (G,R) any edge whi
h is involved in 
rossings is 
rossed by some edge

exa
tly on
e. Graphs G whi
h are weakly realizable with an R ex
luding the 
om-

plete graph Kk are known as k-quasi-planar. It is open whether |E(G)| is linear for
k-quasi-planar graphs in general, though it is known for k 6 4 [194℄.

Also see: Weighted 
rossing number.

Crossing parameter. See lo
al 
rossing number.

Cy
li
 level 
rossing number

Definition: A 
y
li
 k-level graphG = (V,E, ℓ) is a dire
ted graph (V,E) with a leveling
ℓ, a mapping from V to {1, . . . , k} whi
h assigns a level ℓ(u) to ea
h vertex u. Fix
k rays, all starting at the origin, and number them 1 through k in 
lo
kwise order.

A 
y
li
 drawing of a 
y
li
 k-level graph is a drawing in whi
h a vertex u is pla
ed

on ray ℓ(u), and a dire
ted edge (u, v) is drawn in the 
lo
kwise wedge between rays

ℓ(u) and ℓ(v) so that the edge 
rosses all rays starting at the origin (not just the

k rays we 
hose) at most on
e. The 
y
li
 level 
rossing number of a 
y
li
 k-level
graph is the smallest number of 
rossings in a 
y
li
 drawing of the graph.

Referen
e: Based on Ba
hmaier, Brandenburg, Brunner, Hübner [44℄.

Comments: The idea of realizing a leveled graph in a 
y
li
 drawing 
an be found in a pa-

per by Sugiyama, Tagawa and Toda [442℄, where 
y
li
 k-level graphs are introdu
ed
in an appendix under the name re
urrent hierar
hies. The 
rossing minimization

problem for 
y
li
 k-level graphs is studied by Ba
hmaier, Brandenburg, Brunner,

Hübner [44℄, without introdu
ing a name for the 
orresponding 
rossing number.

The authors also refer to a 2009 master's thesis by Hübner, whi
h is entitled �A

global approa
h on 
rossing minimization in hierar
hi
al and 
y
li
 layouts of lev-

eled graphs�. A 
y
li
 layout 
ould be visualized in a non-
y
li
 way by repeating

one of the layers at the beginning and end; this is what Bertin [68, Figure 4, p.109℄

does in his visualization of a tripartite perfe
t mat
hing in whi
h the order of ver-

ti
es is �xed in ea
h partition; he uses the number of 
rossings between two layers

as a measure of similarity: �The nearer the order between the 
olumns, the less

numerous are the interse
tions.�.

One 
ould also 
onsider a 
lo
kwise 
rossing number, in whi
h a dire
ted graph

G = (V,E) is given, and the problem is to �nd a leveling ℓ that minimizes the 
y
li


level 
rossing number of (V,E, ℓ). This 
lo
kwise 
rossing number is to the 
y
li
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level 
rossing number what the upward 
rossing number is to the leveled 
rossing

number.

Complexity: NP-
omplete, sin
e the bipartite 
rossing number is a spe
ial 
ase. The

embedding problem 
an be solved in quadrati
 time [43℄.

Cylindri
al 
rossing number

Definition: A 
ylindri
al drawing of a graph G is a drawing in whi
h all verti
es of G
lie on two 
on
entri
 
ir
les, and no edge 
rosses a 
ir
le. The 
ylindri
al 
rossing

number of G, cr⊚(G), is the smallest number of 
rossings in a 
ylindri
al drawing of

G.

Referen
e: Ábrego, Ai
hholzer, Fernández-Mer
hant, Ramos, and Salazar [3℄, based

on earlier suggestion by Ri
hter and Thomassen [394℄.

Comments: For bipartite graphs one 
an require that verti
es in the same partition lie

on the same 
ir
le, and that the inner fa
e of the smaller 
ir
le and the outer fa
e

of the larger 
ir
le do not 
ontain any edges; in that 
ase one would obtain a spe
ial


ase of the radial 
rossing number with two levels. This type of bipartite 
ylindri
al

drawing was introdu
ed in Ri
hter and Thomassen [394℄ as a stepping stone to


ylindri
al drawings of Kn, whi
h is a 
lass of drawings realizing the 
onje
tured

minimal 
rossing number Z(n) of Kn, where Z(n) = X(n)X(n− 2)/4, and X(n) =
⌊n/2⌋⌊(n− 1)/2⌋. If in addition to requiring the inner and outer fa
e to be empty,

we �x the 
y
li
 order of the verti
es on the 
on
entri
 
ir
les, we obtain the annulus


rossing number. The 
ylindri
al 
rossing number for general (non-bipartite) graphs

was introdu
ed in [3℄. One way to generalize the 
ylindri
al 
rossing number is to

allow t 
ir
les (arbitrarily lo
ated, but disjoint), on whi
h all verti
es have to lie;

this leads to the t-
ir
le 
rossing number introdu
ed in [156℄.

Complexity: Even testing whether cr⊚(G) = 0 is NP-
omplete [156℄.

Values: cr⊚(Kn) = Z(n) [3℄.

Also see: Radial 
rossing number, annulus 
rossing number (under map 
rossing num-

ber).

Degenerate 
rossing number

Definition: The degenerate 
rossing number of a drawing D of a graph G is the number

of points in whi
h edges 
ross ea
h other (that is, we 
ount ea
h point at whi
h


rossings o

ur only on
e, not

(
k
2

)
times for k edges passing through it); re
all that

edges are not allowed to tou
h, and may not 
ross themselves. The degenerate


rossing number of a graph G, dcr(G), is the smallest number of 
rossing points in a

drawing of G. If we minimize over simple drawings only (ea
h pair of edges 
rosses

at most on
e), we obtain the simple degenerate 
rossing number, dcr∗(G).

Referen
e: Pa
h, Tóth [373℄. Also see Harborth [238, 241℄.

Comments: Harborth [238, 241℄ studies multiple 
rossings in drawings of the 
omplete

graph, but does not 
onsider the problem of minimizing the number of multiple

the electronic journal of combinatorics 16 (2009), #R00 43




rossings.

52

Pa
h and Tóth [373℄ 
redit Günter Rote and M. Sharir with asking

�what happens if multiple 
rossings are 
ounted only on
e�. If we allow self-
rossings

we get the genus 
rossing number. Some papers use the term degenerate 
rossing

number for dcr∗ [10℄. The de�nition of dcr∗ is ambiguous. It is not 
lear whether

the de�nition by Pa
h and Tóth [373℄ is aiming for 
rossing-simple or interse
tion-

simple. There is a di�eren
e between the two, for example the graph shown in the

margin has 
rossing-simple degenerate 
rossing number 1, but it requires at least
two 
rossings, if adja
ent edges are not allowed to 
ross.

Complexity: The degenerate 
rossing number isNP-
omplete even for 
ubi
 graphs [414℄.

Relationships: gcr(G) 6 dcr(G) 6 dcr∗(G) 6 cr(G) by de�nition. There are examples

with dcr(G) < dcr∗(G) [373℄. dcr(G) 6 6 gcr(G), and gcr(G) = dcr(G) for dcr(G) 6
3 [414℄. There is an asymptoti
ally optimal 
rossing lemma for the simple version,

dcr∗(G) > c ·m3/n2
for m > 4n [10℄, while, on the other hand, dcr(G) < m, where

m = |E(G)|, n = |V (G)| [373℄.
Values: Pa
h and Tóth [373℄ 
laim that dcr(K5,5) 6 15, 
omparing it to cr(K5,5) = 16.

Also see: Genus 
rossing number, bundled 
rossing number, triple 
rossing number.

Degenerate lo
al 
rossing number. See lo
al 
rossing number.

Diagonal 
rossing number. See joint 
rossing numbers.

Dire
ted 
rossing number. See upward 
rossing number.

Disk 
rossing number. See map 
rossing number.

Edge 
rossing number

Definition: The edge 
rossing number of a drawing D of a graph G is the number of

edges involved in 
rossings in D. The edge 
rossing number of G, ecr(G), is the

smallest edge 
rossing number of any drawing of G. The re
tilinear edge 
rossing

number of G, ecr(G), is the smallest edge 
rossing number of any re
tilinear drawing

of G. We 
an also de�ne maximum variants (requiring drawings to be simple). The

book edge 
rossing number of G is the smallest edge 
rossing number of any k-page
book drawing of G.

Referen
e: Based on Ringel [398℄, Harborth and Mengersen [246, 247℄, Harborth and

Thürmann [249℄, Ishiguro [277℄, Gange, Stu
key, Marriott [200℄, Bannister, Epp-

stein, Simons [54℄.

Comments: Crossing edge number may be a better name to avoid 
onfusion with the

standard 
rossing number (whi
h is sometimes 
alled edge 
rossing number). How-

ever, the term 
rossing edge number has also been used for skewness [208℄ with

whi
h ecr 
ould be easily 
onfused. The skewness of G, sk(G), is the smallest

number of edges whose removal make a graph planar, while ecr(G) minimizes the

number of edges involved in 
rossings. By de�nition, sk(G) 6 ecr(G) and it is

52

Harborth's goal is the opposite: he tries to maximise the number of multiple 
rossings of the largest

number of edges; in parti
ular, he shows thatK2m 
an be drawn with twom-fold 
rossings. He 
onje
tures

that there 
annot be drawings with threem-fold 
rossings (and veri�es that form = 3 if 
rossings between
adja
ent edges are not allowed).
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easy to 
onstru
t graphs G for whi
h sk(G) = 1 and ecr(G) is arbitrarily large.

53

Ringel [398℄ showed that every drawing of a Kn has at most 2n − 2 
rossing-free

edges, in other words, he studied |E(G)| − ecr(G) for G = Kn.
54

Harborth and

Mengersen [246, 336, 242, 247℄ studied parameters hs and Hs, the minimum and

maximum number of edges with at most s 
rossings in an interse
tion-simple draw-

ing of 
omplete multipartite graphs. Extending their notation to arbitrary graphs,

one 
ould write ecr(G)+H0(G) = |E(G)|, and max- ecr(G)+h0(G) = |E(G)|. Har-
borth and Thürmann [249℄ introdu
e the parameters rs(n) and Rs(n) whi
h they

de�ne as the minimum and maximum number of edges with at most s 
rossings in a

straight-line drawing of Kn. If again we extend this notation to arbitrary graphs, we

have ecr(G) +R0(G) = |E(G)| and max- ecr(G) + r0(G) = |E(G)|. Gange, Stu
key,
Marriott [200℄, in passing, mention the possibility of minimizing the number of edges

involved in 
rossings. Ishiguro [277℄ de�nes a notion he 
alls minimum non-
rossing

edge number, nce(G), whi
h, in our terminology, is |E(G)|−max- ecr(G), or r0(G) in
the notation of Harborth and Thürmann [249℄. Bannister, Eppstein, and Simons [54℄

de�ne edge 
rossing numbers for 1-page and 2-page embeddings, denoting them as

cre1(G) and cre2(G). The edge 
rossing number, unlike the skewness of a graph,


an be made to �t our general notion of 
rossing number:

∑
e∈E maxf∈E pcr(e, f),

where pcr(e, f) = 1 if and only if e and f 
ross at least on
e. Eggleton [165℄ uses

�edge 
rossing number� to denote what we would 
all the simple degenerate lo
al


rossing number (see entry for lo
al 
rossing number).

Complexity: Open. Bannister, Eppstein, and Simons [54℄ show that the 1-page and

2-page variants are �xed-parameter tra
table for k-almost trees (with k being the

parameter).

Relationships: ecr(G) 6 ecr(G) (by de�nition). ecr(G) 6 cr(G), ecr(G) 6 cr(G) and
inequality 
an be stri
t (sin
e ecr(G) and ecr(G) are bounded by |E|).

Values: ecr(Kn) =
(
n
2

)
− (2n− 2) [398℄. ecr(Kn1,...,nk

) is known [336℄. ecr(Kn) =
(
n
2

)
−

(2n−2) [249℄. max- ecr(Kn) =
(
n
2

)
for n > 8, and values of max- ecr(Kn) are known

for n < 8 [246℄. max- ecr(Kn) =
(
n
2

)
− 5 for n > 8, and values for n < 8 are

known [249℄.

55

Faithful 
rossing number. See string 
rossing number.

Fixed 
onvex bundled 
rossing number. See bundled 
rossing number.

53

One 
ould imagine the following 
over variant of the edge 
rossing number: let the edge 
rossing


over number, ρ′(G) be the smallest number of edges for whi
h there is a drawing of G in whi
h every


rossing lies on one of the edges. Then, by de�nition, sk(G) 6 ρ′(G) 6 ecr(G). While this parti
ular

variant has not been de�ned, Albertson [18℄ did de�ne the 
rossing 
over number, ρ(G), whi
h is the

smallest number of verti
es so that in some drawing of G every 
rossing lies on an edge in
ident to one

of the verti
es. These parameters are 
over numbers rather than 
rossing numbers though, so we do not

pursue them here.

54

There is one subtlety here: Ringel, and later Harborth, require drawings to be (interse
tion)-simple,

but it is immediate that an ecr-minimal drawing is simple, so this does not lead to an in
onsisten
y in

this 
ase.

55

This result is also announ
ed in the later [277℄, without proof. The author also 
laims that nce(G) 6
min{χ(G), 5} unless G is K1,7 or K7.
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Fixed linear 
rossing number

Definition: The �xed linear 
rossing number, bkcrk(G, π) of an ordered graph (G, π) in
a book with k pages, is the smallest number of 
rossings in a drawing of G in a book

with k pages so that all verti
es lie on the spine of the book in the order pres
ribed

by π and ea
h edge lies on a single page. If π orders only a subset A ⊆ V (G) of
the verti
es (the an
hors) and the remaining verti
es are not required to lie on the

spine, we obtain the an
hored 
rossing number, bkcrk(G,A, π).

Referen
e: Masuda, Nakajima, Kashiwabara, Fujisawa [329℄ for bkcr2(G, π). Cabello,
Mohar [98℄ for bkcr1(G,A, π).

Comments: A 
lose variant of the book 
rossing number, it 
ould also be 
alled the �xed

book 
rossing number; bkcr1(G, π) has been 
alled the 
hordal 
rossing number [488℄.
Cabello and Mohar de�ned the spe
ial 
ase of an
hors lying on the boundary of a

disk and the drawing lying within the disk, whi
h is equivalent to bkcr1(G,A, π).

Complexity: Testing bkcrk(G, π) is obviously in polynomial time for k = 1 and NP-


omplete for k = 2 [329℄ (even if ea
h 
onne
ted 
omponent is a single edge). This

implies that the problem is NP-
omplete for k > 2.56 As in the 
ase of the book


rossing number, the embedding problem is of spe
ial interest here. The problem of

de
iding whether bkcrk(G, π) = 0 on input (G, π) and k was shown NP-
omplete by

Garey, Johnson, Miller, and Papadimitriou [202℄, but they left open the question of

what happens for �xed k. This was settled by Unger who showed that bkcr3(G, π) =
0 
an be tested in timeO(n logn) [465℄ while testing bkcrk(G, π) = 0 isNP-
omplete

for any �xed k > 4 [464℄.

57

Cimikowski [127℄ has studied various heuristi
s for


omputing bkcr2(G, π). For the an
hored version, Cabello and Mohar [98℄ showed

that bkcr1(G,A, π) is NP-
omplete even if G 
onsists of two vertex disjoint planar

graphs.

58

Relationships: mon-cr(G, π) 6 bkcr2(G, π) for ordered graphs (G, π) (from de�nition).

Also see: Book 
rossing number.

Fixed monotone 
rossing number. See monotone 
rossing numbers.

Fra
tional 
rossing number. See weighted 
rossing number.

Genus 
rossing number

56

To add a page, surround ea
h vertex by many nested edges. Then all these added edges have to lie

in a separate page. This simple 
onstru
tion fails, of 
ourse, if the ordering 
annot be spe
i�ed.

57

All the embedding results are expressed for 
olorings of 
ir
le graphs, but the redu
tion is easy: given

a graph G with an ordering π, add a Hamiltonian 
y
le to G extending that ordering, yielding G′
. Then

every non-
y
le edge is a 
hord of the graph, and the endpoints of two 
hords alternate along the 
y
le

if and only if the 
hords have to go into di�erent pages in a book embedding of G. Let G′′
be the 
ir
le

(
hord interse
tion) graph of G. Then k-
olorability of G′′
is equivalent to G being embeddable in k pages

with the given ordering. This is su�
ient to show that testing bkcrk(G, π) is NP-
omplete for k > 4:
Given a 
ir
le graph one 
an use Spinrad's algorithm to 
onstru
t a 
ir
le model G′

for it, from whi
h

one 
an get a graph G with an ordering of verti
es π, so that the 
ir
le graph is k-
olorable, if and only

if (G, π) has a k-page embedding respe
ting π, that is bkcrk(G, π) = 0.
58

This was the main intermediate step in their proof that 
omputing the 
rossing number of an almost

planar graph is NP-
omplete.
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Definition: The genus 
rossing number of a drawing D of a graph G is the number of

points in whi
h edges 
ross ea
h other (that is, we 
ount this point only on
e, not(
k
2

)
times for k edges passing through it); we do not allow edges to tou
h in the

shared point, but we do allow self-
rossings of an edge (so an edge 
an pass through

the same 
rossing point multiple times at no additional 
ost). The genus 
rossing

number of a graph G, gcr(G), is the smallest number of 
rossing points in a drawing

of G.

Referen
e: Mohar [343℄.

Comments: Mohar proves that the genus 
rossing number equals the non-orientable

genus of a graph. He 
onje
tures that gcr(G) = dcr(G) [343℄.

Complexity: NP-
omplete [343℄ (sin
e Carsten Thomassen showed that determining

the non-orientable genus of a graph is NP-
omplete [345℄).

Relationships: gcr(G) 6 mcr(G) sin
e gcr is minor-monotone. There are graphs for

whi
h gcr(G) < mcr(G) [343℄. Also, gcr(G) 6 dcr(G) by de�nition.

Values: Exa
t results for the non-orientable genus ofKm and Km,n were given by Ringel,

see [167℄ for a dis
ussion.

Also see: Degenerate 
rossing number.

Geodesi
 
rossing number

Definition: The geodesi
 
rossing number, crS(G), on a metri
 surfa
e S, is the smallest

number of 
rossings in a drawing of G on S where ea
h edge is represented by a

geodesi
 (with respe
t to the metri
) in S.59 Spe
ial 
ases in
lude the re
tilinear


rossing number, where S is the plane with the Eu
lidean metri
 (in whi
h 
ase we

write cr), the spheri
al (geodesi
) 
rossing number [347, 315, 471℄, where S is the

unit ball S2
in three-dimensional Eu
lidean spa
e, and the toroidal geodesi
 
rossing

number, where S is a (geometri
) torus in three-dimensional Eu
lidean spa
e.

Referen
e: Guy, Jenkyns, S
haer [227℄, also Harary, Hill [232℄.

Comments: The spheri
al geodesi
 
rossing number of 
omplete graphs is dis
ussed by

Harary and Hill [232℄. Moon [347℄ studies the number of 
rossings in a random

geodesi
 drawing of Kn on the sphere (verti
es are pi
ked at random, edges are

shortest ar
s). Both spheri
al and toroidal geodesi
 
rossing numbers are intro-

du
ed and studied expli
itly in [227℄. It is not 
lear from the paper whether the

authors believe that the toroidal geodesi
 
rossing number is independent of the

a
tual geometri
 shape of the torus; they 
on
entrate on a single model (the unit

square with opposite sides identi�ed). They expli
itly equate the re
tilinear 
ross-

ing number with the geodesi
 
rossing number, even though Harary and Hill [232℄

had earlier realized that K8 has a geodesi
 drawing on the sphere with at most 18

rossings, whereas cr(K8) = 19 was unproven, but expe
ted to be true at the time.

Guy [222, 224℄ later realized that the spheri
al 
rossing number of Kn is at most

59

Intuitively, geodesi
s are lo
ally shortest ar
s. Note that a geodesi
 is not ne
essarily a shortest ar


between two points on a surfa
e, and it need not be unique, as the example of antipodal points on the

sphere shows.
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Z(n) = X(n)X(n − 2)/4, where X(n) = ⌊n/2⌋⌊(n − 1)/2⌋; this again shows that

the spheri
al 
rossing number of K8 is at most 18. Sin
e he 
ould also show that

cr(K8) = 19 (also Barton [55℄ and Singer [433℄), this separates re
tilinear and spher-

i
al 
rossing number. It is not 
lear whether all papers dis
ussing geodesi
 
rossing

numbers distinguish between shortest ar
s and geodesi
s (ex
eptions are [347, 471℄

whi
h expli
itly de�ne the geodesi
 
rossing number in terms of shortest ar
s rather

than geodesi
s).

Complexity: Open, but likely to be ∃R-hard (and in ∃R assuming the metri
 is natu-

ral), see [409℄ for ∃R.

Relationships: crS2(G) 6 cr(G) (a su�
iently small drawing of G will realize this).

crS2(Kn) 6 Z(n), where Z(n) = X(n)X(n−2)/4, with X(n) = ⌊n/2⌋⌊(n−1)/2⌋, is
Zarankiewi
z's fun
tion, the 
onje
tured upper bound on cr(Kn) [224, 394, 471℄.

60

Let s(r, n) be the expe
ted number of 
rossings in a random geodesi
 drawing of a


omplete, balan
ed r-partite graph Kr
n. Then limn→∞ s(r, n)/max-cr(Kr

n) = ζ(r),

where ζ(r) := 3(r2−r)
8(r2+r−3)

, see [210℄.

Open Questions: Is there a Fary theorem for metri
 surfa
es? That is, is it true that

crS(G) = 0 implies that crS(G) = 0 for a surfa
e S equipped with a �natural�

metri
?

61

Does it matter whether the geodesi
 
rossing number is de�ned in terms

of geodesi
s or shortest ar
s? Shortest ar
s 
an 
ross more than on
e (without

overlapping) in some surfa
es; are there examples of graphs for whi
h every optimal

geodesi
 (or shortest ar
) drawing requires some edges to 
ross more than on
e?

62

Also see: Re
tilinear 
rossing number.

Geometri
 k-planar 
rossing number. See k-planar 
rossing number.

Grid 
rossing number

Definition: A d-dimensional grid drawing of a graph G is a geometri
 (straight-line)

embedding of G into Nd
, that is, verti
es are assigned to points in Nd

, edges are

straight-line segments between their endpoints, and we require that no vertex lies

on an edge, unless it is an endpoint of that edge. The volume of a d-dimensional grid

drawing of G is the volume of a smallest axis-parallel box 
ontaining all points of the

grid drawing. The d-dimensional volume N grid 
rossing number of G, cr#(G,N, d)
is the smallest number of 
rossings in a d-dimensional grid drawing of G of volume

at most N .

60

This result is 
laimed by Guy in [224℄ without any details. One 
an use the 
ylindri
al drawings of

Ri
hter and Thomassen [394℄ to see that the inequality is true. Wagner [471℄ obtains this result as an

appli
ation of Gale duality.

61

Thomassen [456℄ points out that it is likely that one 
an 
onstru
t metri
s for whi
h this fails, but

what about standard metri
s?

62

The answer is yes for pseudosurfa
es: take a sphere and two tori and atta
h ea
h torus to the sphere

at a single point (using two distin
t points). Take two 
opies of a graph whose planar 
rossing number is

large but whi
h 
an be embedded on the torus. Conne
t the two graphs by two edges whose endpoints

are adja
ent in the toroidal graphs. Then the graph has a geodesi
 drawing in whi
h only the two edges


ross, namely in the points of atta
hment. In parti
ular, the geodesi
 pair 
rossing number di�ers from

the geodesi
 
rossing number for this pseudosurfa
e.
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Referen
e: Based on Dujmovi¢, Morin, She�er [151℄, Swamy [443, Q5℄ for name.

Comments: Dujmovi¢, Morin, She�er [151℄ introdu
e the 
rossing number of a grid

graph (what we 
alled a grid drawing), whi
h they write cr(G), G being a grid

graph/drawing, and then study the 
rossing number of that, in parti
ular, the pa-

rameter crd(N,m) = min{cr(G) : G is a d-dimensional grid drawing of a graph with

m edges and volume at most N}, whi
h is quite natural, sin
e their main goal is a


rossing lemma result for grid graphs. They point to several previous papers that

have studied grid embeddings, that is, grid drawings without 
rossings (also 
alled

non-
rossing grid graphs in the literature), but theirs seems to be the �rst paper

to study the 
rossing number notion. The 2-dimensional grid 
rossing number is a

re�nement of the re
tilinear 
rossing number. It is well-known that cr(G) 
an be

realized on a grid of double exponential size and that grids of that size are ne
essary

for some graphs (Biensto
k [70℄). It is in this 
ontext that Swamy [443℄ 
oined the

term grid 
rossing number.

Complexity: NP-
omplete for d = 2.63

Relationships: cr(G) 6 cr#(G,N, 2) (by de�nition), and cr(G) = cr#(G,N, 2) for N =

22
cn

for some c > 064

and there are graphs for whi
h cr(G) < cr#(G,N, 2) ifN = 22
dn

for some 0 < d [70℄. cr#(G,N, 2) = Θ(m3/N2) for m > 4N (follows from [16℄ as

observed in [151℄), cr#(G,N, 3) = Ω(m2/N log log(m/N)) for m > 2(2d − 1)N ,

cr#(G,N, 3) = Ω(m2/N log(m/N)), and cr#(G,N, d)Ω(m
2/N) [151℄.

Values: cr(G, (n − 2)2, 2) = 0 for planar graphs G [417℄. cr(G,O(n), 3) = 0 for pla-

nar graphs [473℄. For 
omplete graphs, it is known that cr(Kn, 4n
3, 3) = 0, and

cr(Kn, o(n
3), 3) > 0 [129℄.

Open Questions: What is the 
omplexity of 
omputing cr(G,N, d) for dimensions d >
2?

Also see: Spa
e 
rossing number, re
tilinear 
rossing number.

Independent algebrai
 
rossing number

Definition: The independent algebrai
 
rossing number of G, iacr(G), is de�ned like

acr(G) ex
ept that we do not 
ount acr(e, f) for adja
ent edges e and f .

Referen
e: Tutte [463℄.

Comments: Tutte's paper �Toward a Theory of Crossing Numbers� is often 
ited 
laim-

ing it (impli
itly) 
ontains all kinds of 
rossing number de�nitions. A look at the

63

Biensto
k [70℄ showed that for every G there is a G′
with cr(G) = cr(G′), where G′

is obtained from G
by subdividing ea
h edge at most cn2

times (for some �xed c > 0). We 
laim that cr(G) = cr#(G
′, cn2, 2)

whi
h implies that 
omputing cr#(G,N, 2) is NP-hard. To see that cr(G′) = cr#(G
′, cn2, 2), take an

cr-optimal drawing of G′
. Repla
e ea
h 
rossing with a (very small) C4 
lose to that 
rossing, so that

the 
orners of C4 be
ome the endpoints of the four half-edges meeting at the 
rossing. Triangulate the

drawing, keeping the C4-fa
es empty; the resulting graph is 3-
onne
ted, so by a result from [122℄, it has

an embedding on the (n − 2) × (n − 2) grid in whi
h all fa
es are 
onvex. In parti
ular, we 
an repla
e

ea
h C4 by two diagonal edges, and remove all triangulation edges to obtain a grid drawing of G′
.

64

Folklore result; true, be
ause cr(G) 6 k 
an be expressed in the existential theory of the reals,

see [409℄, for example.
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text shows that Tutte de�nes two 
rossing numbers: the standard 
rossing number

(whi
h he 
alls c(G)) and what we now 
all the independent algebrai
 
rossing num-

ber; his 
rossing 
hains 
ount 
rossings algebrai
ally, that is, over Z, not modulo 2
as the odd 
rossing numbers do; moreover, he sets the 
oe�
ients of pairs of adja-


ent edges to 0 so they don't 
ount. The 
rossing number he de�nes based on that,

s(G), is iacr(G). Tutte writes: �It is 
lear that c(G) > s(G). Does equality always

hold?� This question was answered in the negative by Tóth [459℄ who 
onstru
ted

a graph G with iacr(G) = acr(G) < cr(G).

Complexity: In NP (similar to algebrai
 
rossing number). It is possible that NP-

hardness 
an be a
hieved along similar lines as in [384℄.

Relationships: iacr(G) 6 acr(G) and iocr(G) 6 iacr(G) (by de�nition). It follows from
results in [381℄ that there are graphs G for whi
h iocr(G) < iacr(G).

Also see: Algebrai
 
rossing number, independent odd 
rossing number.

Independent 
rossing number

Definition: The independent 
rossing number of G, cr−(G), is the smallest number of


rossings between pairs of independent edges in any drawing of G.

Referen
e: Pa
h, Tóth [369℄.

Comments: The �rst expli
it de�nition of the independent 
rossing number seems to be

in Pa
h, Tóth [369℄. Not 
ounting 
rossings between adja
ent edges is impli
it in

many early papers, and, for straight-line or geodesi
 drawings, entirely justi�ed [347℄.

Complexity: NP-
omplete.

Relationships: pcr−(G) 6 cr−(G) 6 cr(G) (from de�nition).

Open Questions: It is not known whether cr−(G) < cr(G) is possible. This would

follow from a separation of the 
orresponding monotone 
rossing numbers [198℄.

Independent odd 
rossing number

Definition: The independent odd 
rossing number of G, iocr(G), is the smallest number

of independent pairs of edges 
rossing an odd number of times in any drawing of G.

Referen
e: Székely [444℄.

Comments: This variant seems to have been introdu
ed and named by Székely. He at-

tributes it to Tutte [463℄, but Tutte really de�ned the independent algebrai
 
rossing

number.

65

Complexity: NP-
omplete [384℄ even if restri
ted to 
ubi
 graphs.

Relationships: iocr(G) 6 ocr(G) for all graphs G (by de�nition). iocr(G) = ocr(G) =
cr(G) for iocr(G) 6 2 [383℄, generalizing the Hanani-Tutte theorem (Footnote 6).

There are graphs G for whi
h iocr(G) < ocr(G) [198℄. cr(G) 6
(
2 iocr(G)

2

)
[383℄; this

implies that ocr, acr, pcr, cr and all their + and − variants are within a square of

ea
h other. There is a 
rossing lemma: iocr(G) > 1/64m3/n2
.

66

There are algebrai


65

Parity is only mentioned in one short passage in Tutte's paper [463℄, and that o

urs when he observes

that for two edges e and f , acr(e, f) ≡ cr(e, f) mod 2.
66

For a proof, see the se
tion on 
rossing lemma variants in Se
tion 1.
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su�
ien
y 
riteria for iocr(G) = cr(G) [446℄. For surfa
es other than the sphere,

the only known result is that iocrN1
(G) = 0 implies crN1

(G) = 0 [377℄. A smallest


ounterexample to iocrΣ(G) = 0 implying crΣ(G) = 0 must be 2-
onne
ted [413℄.

There is a graph G with iocrΣ(G) = 0 and crΣ(G) > 0 for any surfa
e Σ of genus at

least four [197℄.

Also see: Odd 
rossing number, independent algebrai
 
rossing number (under alge-

brai
 
rossing number), monotone 
rossing number (for monotone version).

Independent pair 
rossing number. See pair 
rossing number.

Independent string 
rossing number. See string 
rossing number.

Inner 
rossing number. See bipartite 
rossing number.

Joint 
rossing numbers

Definition: Suppose G1 and G2 are graphs embedded in the same surfa
e Σ; a joint

embedding of G1 and G2 is a simultaneous embedding of homeomorphi
 
opies of

G1 and G2 in whi
h the only shared points between G1 and G2 are (transversal)


rossings of an edge of G1 with an edge of G2; if we restri
t the homeomorphisms to

be orientation-preserving, we speak of a joint orientation-preserving embedding. If

we restri
t the homeomorphisms so that all verti
es of G1 lie in a fa
e of G2 and vi
e

versa, we 
all the joint embedding single-fa
ed. The (joint) (homeomorphi
) 
ross-

ing number of G1 and G2, cr(G1, G2), is the smallest number of 
rossings in any joint

embedding of G1 and G2 in Σ, the oriented 
rossing number,

−→cr(G1, G2) of G1 and

G2, is the smallest number of 
rossings in any joint orientation-preserving embed-

ding of G1 and G2. The single-fa
ed 
rossing number, crsf (G1, G2), is the smallest

number of 
rossings in any single-fa
ed joint embedding of G1 and G2. Similarly,

−→cr sf (G1, G2), is the single-fa
ed oriented 
rossing number. We 
an relax the notion of

joint embedding to a diagonal embedding by allowing verti
es of G1 to 
oin
ide with

verti
es of G2 and edges of G1 to 
oin
ide with edges of G2. The smallest number of


rossings in a diagonal embedding is the diagonal 
rossing number, cr∆(G1, G2). If
we want to emphasize the underlying surfa
e, we write cr(G1, G2; Σ), for example.

If instead of embedded graphs G1, G2 we have abstra
t topologi
al graphs that are

embeddable in Σ, we 
an still de�ne the (joint) 
rossing number and the diagonal


rossing number of G1 and G2 by additionally minimizing over all embeddings of

G1 and G2. Ri
hter and Salazar [391℄ suggest the notation cr(φ1(G1), φ2(G2)) for
the embedded graph variant (φi(Gi) is a 
lass of homeomorphi
 embeddings of Gi),

Hlin¥ný and Salazar [261℄ suggested the name joint homeomorphi
 
rossing number

for this 
ase to distinguish it from the topologi
al 
ase; we will rely on 
ontext.

Referen
e: Negami [356, 357℄. Also, Ar
hdea
on, Bonnington [32℄, Ri
hter, Salazar [391℄.

Comments: Joint 
rossing numbers, that is 
rossings numbers of pairs of (embedded)

graphs were �rst introdu
ed by Negami [356, 357℄. Ar
hdea
on and Bonnington [32℄

restri
t joint embeddings to orientation-preserving homeomorphisms, so their joint


rossing number is what Negami 
alled the oriented 
rossing number. Negami sim-

ply uses 
rossing number for the joint 
rossing number. Ri
hter and Salazar [391℄
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expli
itly de�ne the single-fa
ed 
rossing number whi
h is impli
it in Ar
hdea
on,

Bonnington [32℄. As examples for values of joint 
rossing numbers, Negami gives

cr(K5, K3,3;S1) = 2 and cr∆(K5, K3,3;S1) = 0. Sin
e G1 and G2 are both required

to be embeddable on Σ, the 
rossing number of pairs is always 0 for the plane.

Complexity: Joint 
rossing number (both homeomorphi
 and topologi
al version), and

joint oriented 
rossing number are NP-
omplete, for any orientable surfa
e of genus

at least 6, even for simple, 3-
onne
ted graphs [261℄. As [261℄ point out, an ear-

lier result by Ar
hdea
on and Bonnington [32, Theorem 2.2℄ implies that the joint

homeomorphi
 
rossing number of two graphs on the proje
tive plane 
an be solved

in polynomial time.

Open Questions: Negami [357℄ 
onje
tures that cr(G1, G2) 6 c|E(G1)| · |E(G2)| for
some 
onstant c independent of Σ; Ar
hdea
on and Bonnington [32℄ believe this


onje
ture to be false. They 
onje
tured that

−→cr(G1, G2) 6 cΣ ·−→cr sf (G1, G2) for em-

bedded graphs G1 and G2 whi
h was shown to be false by Ri
hter and Salazar [391℄

(who suggest a revised 
onje
ture).

Relationships: cr∆(G1, G2) 6 cr(G1, G2) (from de�nition). If γ(Σ) is the (orientable

or non-orientable) genus of Σ, then −→cr(G1, G2; Σ) 6 4γ(Σ)|E(G1)| · |E(G2)|, and−→cr(G1, G2;S1) 6 2/3|E(G1)| · |E(G2)| [357, 32℄.
Values: cr(G1, G2;Sn) = 2n if both G1 and G2 are 2-
ell embedded on Sn so that ea
h

embedding has a single fa
e [485℄.

Also see: Simultaneous 
rossing number. Red/blue 
rossing number.

k-layer 
rossing number

Definition: A leveling of a graph G = (V,E) is a mapping from V to {1, . . . , k}, assign-
ing ea
h vertex a level. The leveling is proper if all edges of G are between verti
es at

adja
ent levels. A layered drawing of a properly leveled (layered) graph is a drawing

in whi
h the verti
es are pla
ed on k parallel lines, with verti
es in layer i assigned
to the ith line, and edges are drawn as straight-line segments. The k-layer 
rossing
number of a layered graph is the smallest number of 
rossings in a k-layer drawing
of the graph.

Referen
e: War�eld [475℄, Sugiyama, Tagawa, Toda [442℄, Shahrokhi, Vr´o [432℄.

Comments: Shahrokhi and Vr´o [432℄ introdu
ed (and named) the 3-layer 
rossing num-

ber, but as a 
rossing minimization problem the k-layer 
rossing number is already

present in papers by War�eld [475℄ and Sugiyama, Tagawa, and Toda [442℄; these

earlier papers write K(M) for the layered 
rossing number of a leveled graph rep-

resented by a matrix M . The 2-layer 
rossing number is just the bipartite 
rossing

number. Layered 
rossing numbers are similar to leveled 
rossing numbers, ex-


ept that for the layered 
rossing numbers edges have to be realized as straight-line

segments (rather than just being monotone); if the leveling is proper, the leveled

and layered 
rossing numbers 
oin
ide. Leveling a graph imposes a linear stru
-

ture on the graph. One 
ould also imagine allowing other stru
tures, for example

trees [386℄, or 
y
les as in the 
y
li
 level 
rossing number. Wotzlaw, Spe
kenmeyer

the electronic journal of combinatorics 16 (2009), #R00 52



and Pors
hen [484℄ 
onsider the 
ase in whi
h the ordering of the verti
es in ea
h

layer is restri
ted by a tree (a generalization of the tanglegram problem, also see the


omment in the entry on the bipartite 
rossing number).

Complexity: NP-
omplete [204℄.

67

Can be approximated to within a fa
tor of O(logn)
in polynomial time [432℄. The embeddability problem 
an be de
ided in polynomial

time and this remains true if the ordering of verti
es in ea
h layer is 
onstrained by

trees [484℄.

Relationships: The k-layer 
rossing number of G is at most cr(G) and it 
an be stri
tly

less than cr(G). The leveled 
rossing number is a lower bound on the k-layer 
rossing
number.

Open Questions: If a graph has leveled 
rossing number zero, that is, if it has a mono-

tone leveled embedding, it has an embedding in whi
h all edges are straight-line

segments [159, 371℄, though the area of the graph may in
rease exponentially [321℄.

Are there leveled graphs for whi
h the k-layer 
rossing number is stri
tly larger than

the leveled 
rossing number?

Also see: Bipartite 
rossing number, leveled 
rossing number (under monotone 
rossing

number), 
y
li
 level 
rossing number.

k-page 
rossing number. See book 
rossing number.

k-planar 
rossing number

Definition: The k-planar 
rossing number, crk(G), of G = (V,E) is the minimum of∑k
i=1 cr(Gi), where the minimum is taken over all Gi = (V,Ei) with

⋃k
i=1Ei = E.

The spe
ial 
ase cr2 is also known as the biplanar 
rossing number. If we restri
t

the drawings to be re
tilinear, we get crk, the re
tilinear k-planar 
rossing number.
Given a re
tilinear drawingD of G, the geometri
 k-planar 
rossing number, crk(D),
is the minimum of

∑k
i=1 cr(Di), where the minimum is taken over all Gi = (V,Ei)

with

⋃k
i=1Ei = E, and Di is D restri
ted to Gi. The geometri
 k-planar 
rossing

number, crk(G), is the minimum of crk(D) over all re
tilinear drawings D of G.68

The thi
kness, Θ(G), is the smallest k su
h that crk(G) = 0; similarly, the geometri


thi
kness, Θ(G), is the smallest k su
h that crk(G) = 0.

Referen
e: Owens [364℄, Shahrokhi, Sýkora, Székely, Vr´o [428℄, Pa
h, Székely, Tóth,

Tóth [367℄.

Comments: Owens [364℄ introdu
ed the k-planar 
rossing number for arbitrary k, but
fo
ussed on the biplanar 
ase, Shahrokhi, Sýkora, Székely, Vr´o introdu
ed the re
ti-

linear version. The k-planar 
rossing numbers have also been 
alled the multiplanar


rossing numbers [136℄. The k-planar 
rossing number should not be 
onfused with

the 
rossing number of a k-planar drawing whi
h has only been studied for k = 1,
where it is 
alled the simple 
rossing number. The geometri
 variant was introdu
ed

67

The redu
tion by Garey and Johnson [204℄ is to bipartite multigraphs. The middle layer 
an be used

to repla
e multiple edges by parallel paths.

68

Equivalently, the geometri
 k-planar 
rossing number is the smallest number of 
rossings between

edges of the same 
olor in any k-
oloring of the edges of G in any re
tilinear drawing of G.
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by Pa
h, Székely, Tóth, Csaba, Tóth [367℄, re�ning Kainen's notion of geometri


thi
kness [284℄. If the geometri
 drawings were restri
ted to be 
onvex, then one

would get the k-page 
rossing number.

Complexity: The k-planar 
rossing number isNP-
omplete, sin
e the embedding prob-

lem crk(G) = 0 is equivalent to the thi
kness of G being at most k and even for

k = 2 this problem is NP-
omplete [326℄. The re
tilinear and geometri
 k-planar

rossing numbers are ∃R-
omplete, sin
e they 
oin
ide with cr for k = 1, but the

ase k > 2 is open, though likely to be ∃R-
omplete as well.

Relationships: crk 6 crk 6 crk 6 bkcrk (by de�nition). cr1 = cr and cr1 = cr1 = cr
(by de�nition). cr2(G) 6 (3/8) cr(G) [131℄. It has been announ
ed [367℄ that

crk(G) 6 c cr(G) and crk(G) 6 c cr(G), where c = (2/k2 − 1/k3) (and c > 1/k2

for some graphs G); moreover, crk(G) 6 c cr(G) for c = 1/k (and c > 1/k2 for

some graphs G). crk(G) 6 bkcr2k(G).
69

There is a 
rossing lemma, crk(G) >

1/64m3/(n2k2), where n = |V (G)| and m = |E(G)| [428℄. On the other hand,

crk(G) 6 1/(12k2)(1− 1/(4k))m2 +O(m2/(kn)) [428℄.

Values: See [130℄ for a 
omprehensive survey of biplanar 
rossing numbers of 
omplete

graphs, 
omplete bipartite graphs and some other graph families, also [404, 313℄.

For values of k-planar 
rossing numbers of 
omplete and 
omplete bipartite graphs,

see [428℄ and [157℄ for some re
ent improvementson Owens' 
onstru
tion for 
omplete

graphs.

Open Questions: Czabarka, Sýkora, Székely, and V°´o [130℄ ask for the smallest c with
cr2(G) 6 c cr(G) for all G. They show that 8/119 6 c 6 3/8, where the lower bound
is witnessed by Kn.

Also see: Simultaneous 
rossing number, red/blue 
rossing number, biplanar 
onvex


rossing number (under 
onvex 
rossing number).

Klein bottle 
rossing number. See 
rossing number.

Leveled 
rossing number. See monotone 
rossing numbers.

Linear 
rossing number. See book 
rossing number. Very rarely used as synonym for

re
tilinear 
rossing number.

Lo
al 
onvex 
rossing number. See 
onvex 
rossing number.

Lo
al 
rossing number

Definition: The lo
al 
rossing number of a drawingD of a graphG, lcr(D), is the largest
number of 
rossings on any edge of G. The lo
al 
rossing number of G, lcr(G), is the
minimum of lcr(D) over all drawings of G. De�ne the simple lo
al 
rossing number
lcr∗(G) as the minimum of lcr(D) over all interse
tion-simple drawingsD ofG (every

two edges interse
t at most on
e). For the lo
al 
rossing number on a surfa
e Σ, we
write lcrΣ. If we 
ount multiple 
rossings only on
e, we get the (simple) degenerate

69

Observed by Winterba
h [479℄, follows from cr(G) 6 mon-cr(G) 6 bkcr2(G). Winterba
h [479,

Question 8.2.5℄ asks whether there are graphs G for whi
h crk(G) < bkcr2k(G). De Klerk, Pase
hnik,

and Salazar give a positive answer in [136℄ for G = K2k+1,k2+2000k7/4 by showing that bkcr2k(G) > 0,
while crk(G) = 0 by a result of Beineke's.
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lo
al 
rossing number. If we maximize lcr(D) over all interse
tion-simple drawings
D of G, we obtain max- lcr(G), the maximum lo
al 
rossing number. If we restri
t

drawings to be straight-line, we get the re
tilinear lo
al 
rossing number, lcr(G).

Referen
e: Kainen [284℄. Also, Ringel [400℄, Guy, Jenkyns, S
haer [227℄. For the simple

lo
al 
rossing number, see S
huma
her [421℄ and Pa
h, Tóth [368℄. The simple

degenerate lo
al 
rossing number was introdu
ed by Eggleton [165℄. The maximum

lo
al 
rossing number is based on a paper by Harborth [240℄. The re
tilinear lo
al


rossing number seems to have �rst been mentioned in an earlier version of this

survey.

Comments: The lo
al 
rossing number was �rst introdu
ed by Gerhard Ringel in le
-

tures and 
onversations in the 1960s [220, 280℄. Guy, Jenkyns, and S
haer [227℄

de�ne the lo
al toroidal 
rossing number, the lo
al 
rossing number on a torus, lcrS1
.

Kainen [284℄ introdu
es the lo
al 
rossing number on arbitrary surfa
es, and also


redits Ringel [400℄. Ringel's paper shows that a graph with at most one 
rossing

per edge 
an be 7-
olored,70 but Ringel doesn't name the lo
al 
rossing number ex-

pli
itly in this paper. Graphs that 
an be drawn with at most one 
rossing per edge

were later 
alled 1-embeddable (Ringel [399℄), 1-planar71 (S
huma
her [420℄) and

even simple, on o

asion [90℄; the drawn graph has been 
alled 1-immersed [305℄.

Kainen [285℄ 
onsidered the lo
al 
rossing number on arbitrary surfa
es, he shows

that ΘΣ(G) 6 1 + lcrΣ(G), with ΘΣ(G) being the thi
kness of G on surfa
e Σ.
Cimikowski [126℄ in his de�nition of lo
al 
rossing number restri
ts drawings to be

cr-minimal. It is easy to see that this leads to a di�erent notion of lo
al 
rossing

number. Harary, Kainen, and S
hwenk [234℄ gave as an example W5�K2 whi
h has


rossing number 2 and lo
al 
rossing number 1, but any drawing ofW5�K2 realizing


rossing number 2 has lo
al 
rossing number at least 2. They 
onje
ture that their

example is the smallest possible. Eggleton [165℄ introdu
es a degenerate version of

the lo
al 
rossing number, that is, he 
ounts multiple 
rossings as a single 
rossing

(he also restri
ts drawings to be interse
tion-simple); he 
alls this variant the �edge


rossing number�, not to be 
onfused with the notion of edge 
rossing number we

introdu
e. Eggleton shows that every outerplanar drawing in whi
h ea
h edge has at

most one degenerate 
rossing is re
ti�able (realizable by straight-line segments and

maintaining topologi
al equivalen
e). Thomassen [454℄ 
alls lcr(D) the 
ross-index
of D and studies 
onditions under whi
h drawings D with lcr(D) 6 1 are re
ti�-

able (realizable by straight-line segments, maintaining topologi
al equivalen
e); this

suggests the notion of geometri
/straight-line 1-planarity [268, 410, 144℄, or, more

generally, a re
tilinear lo
al 
rossing number, lcr, 
alled 
rossing index in [314℄. S
hu-
ma
her [421℄ uses the term n-embeddable for graphs G with lcr(G) 6 n, and 
laims

that if we take a drawingD of G with lcr(D) 6 n and a minimal number of 
rossings,

�none of G's edges is 
rossing itself; two di�erent edges with one vertex in 
ommon

70

Borodin [84℄ shows that they 
an even be 6-
olored, whi
h is sharp, be
ause K6 is 1-planar. Eppstein
and Huynh [173℄ point out that the 
hromati
 number of graphs with lo
al 
rossing number k is of order

Θ(
√
k).

71

Not to be 
onfused with the notion of k-planarity in the multi-planar 
rossing number.
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do not 
ross either, and two di�erent edges without a vertex in 
ommon 
ross on
e

at the most.� The 
laim about self-
rossings is obviously true, but the remaining

two 
laims are false. See the graph in the margin for an example showing that

adja
ent edges 
an be for
ed to 
ross.

72

A slight modi�
ation of this example shows

that two edges 
an be for
ed to 
ross an arbitrary number of times in an lcr-optimal

drawing. One 
ould ask for an upper bound on the minimum number of 
rossings

in a drawing D of a graph with lcr(D) 6 n. For n = 1 this yields the simple 
ross-

ing number. Pa
h and Tóth [368℄ study the parameter we 
alled the simple lo
al


rossing number without naming it. Bodlaender and Grigoriev [213℄ redis
overed

the lo
al 
rossing number, 
alling it 
rossing parameter. In a later paper, Grigoriev,

Koutsonas, and Thilikios [214℄ use the term ξ-nearly planar for graphs with lo
al


rossing number at most ξ, and give an equivalent stru
tural 
hara
terization of

these graphs. For a 
onvex (our outerplanar) version see the lo
al 
onvex 
rossing

number (under 
onvex 
rossing number). Feng, Ye, and Xu [187℄ suggest studying

the minimal number of 
rossings along longest paths in a network (to model opti
al

router networks); this has a similar �avor to the lo
al 
rossing number, but is not

stri
tly speaking a 
rossing number in our sense. With a similar motivation, Stall-

man and Gupta [439, 438℄ 
onsider heuristi
s for the lo
al 
rossing number of layered

graphs, whi
h they 
all the bottlene
k 
rossing number; to be pre
ise, they really

de�ne what amounts to the lo
al pair 
rossing number in whi
h we minimize the

largest number of edges 
rossing ea
h edge (not the a
tual 
rossings), see the entry

for pair 
rossing number.

73

Harborth [240℄ studies the largest number of 
rossings

along an edge in (interse
tion)-simple drawings of 
omplete (multipartite) graphs.

Complexity: De
iding whether lcr(G) 6 1 is NP-
omplete, even if the graph is 3-

onne
ted, and a rotation system is known [213, 305, 99, 40℄, and there are results

on its parameterized 
omplexity [52℄. Known results imply that testing lcr 6 1 is

NP-
omplete [410℄. Maximal graphs with lcr(G) 6 1 (�optimal 1-planar graphs�)

72

This was also observed, without detailed proof, in [366, Figure 1℄. Some explanation of our example:


onsider a drawing of the graph with lcr(D) 6 4 in whi
h the outer fa
e is empty, in parti
ular, the edges

of the outer 
y
le are free of 
rossings. Then it is easy to argue that the two adja
ent top/bottom edges

have to 
ross in D. Here is how we enfor
e that the outer fa
e is empty: add a new vertex and 
onne
t

it to all verti
es on the outer 
y
le. The verti
es of this newly added star and the outer 
y
le form the

outer frame. For ea
h edge uv in the outer frame, add 4|V (G)|+1 = 89 parallel paths P3 between u and

v; let the new graph be G′
and �x a drawing D′

with lcr(D′) 6 4 and minimizing cr(D′). We 
an assume

that no two adja
ent edges 
ross in D′
(otherwise we're done). Let uv be an edge of the outer frame, and

xy be another edge. Then uv and xy 
annot 
ross oddly: pi
k a 
y
le C 
ontaining xy, but not uv (if

xy also belongs to the outer frame, then the 
y
le 
an be 
ompleted with a P3). The 
y
le has length at

most |V (G)| = 22. Ea
h of the 89 
y
les of the form uv + P3 
rosses C evenly, so if uv 
rosses xy oddly,

then ea
h of the P3 must 
ross C oddly, so some edge in C has at least 89/22 > 4 
rossings, 
ontradi
ting
lcr(D′) 6 4. So uv 
rosses every edge evenly, so it 
rosses either one, or two edges. One 
an redu
e the

number of 
rossings in all 
ases, so uv and thus all edges of the outer frame are free of 
rossings.

73

The lo
al pair 
rossing number di�ers from the lo
al 
rossing number, using examples similar to the

ones presented above to separate lo
al and simple lo
al 
rossing numbers. The distin
tion was probably

not intended by the authors of [439, 438℄, sin
e they also de�ne the 
rossing number as pcr. For layered
drawings there is no di�eren
e between 
ounting all lo
al 
rossings or only 
ounting lo
al pair 
rossings.
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an be re
ognized in quadrati
 time [85℄.

Relationships: lcr(G) 6 lcr∗(G) 6 min{cr(G), E(G) − 1} and lcr∗(G) 6 lcr(G) 6

min{cr(G), E(G) − 1} by de�nition. lcr(G) = lcr∗(G) for lcr(G) 6 3,74 and there

are graphs G with 4 = lcr(G) < lcr∗(G) (Footnote 72). lcr(G) > cr(G)/|E(G)| by
de�nition. For every surfa
e Σ and every k there is a graph so that lcrΣ(G) = 1
and crΣ(G) > k [234℄. There is a graph G with cr(G) = 2 for whi
h any drawing

D with lcr(D) 6 1 ful�lls cr(D) > 3 [234, 90℄. Let m = |E(G)| and n = |V (G)|.
S
huma
her [419, 421℄ showed that m 6 (lcr∗S(G) + 3)(n− χ), where χ is the Euler


hara
teristi
 of the surfa
e S as long as lcr∗S(G) 6 2, and that these bounds are

tight.

75

Pa
h and Tóth showed that m 6 (lcr∗(G)+3)(n−2) as long as lcr∗(G) 6 4,
and that these bounds are tight for lcr∗(G) 6 2 [368℄. As it turns out, this is where

the obvious pattern stops: m 6 5.5(n− 2) for lcr∗(G) 6 3 [366℄, and m 6 6(n− 2)
for lcr∗(G) 6 4 [9℄ and both results are tight up to additive 
onstants.

76

For

unbounded lcr∗(G), the best 
urrent result is m 6 3.81 lcr∗(G)n [9℄, improving an

earlier bound by [368℄. For the re
tilinear lo
al 
rossing number Didimo [144℄ showed

that lcr(G) 6 1 implies m 6 4n− 9 (and this bound is tight for in�nitely many n).

lcrSg
(G) = O(m log2 g

g
) [149℄, improving an earlier bound [213℄. If lcrΣ(G) 6 k, then

tw(G) = O(
√
(g + 1)(k + 1)n), where tw(G) is the treewidth of G, and g = g(Σ) is

the Euler genus of Σ [149℄.

Values: lcrS1
(Kn) is known for n 6 9, and there are asymptoti
 results for lcrS1

(Kn) [227℄.
max- lcr(Kn) =

(
n−2
2

)
, and max- lcr(Kn1,n2

) = (n1 − 1)(n2 − 1), and, more gener-

ally, max- lcr(Kn1,...,nk
) = n1 + n2 +

(
ℓ
2

)
− 2ℓ −

∑k
i=1

(
ni

2

)
, where ℓ =

∑k
i=1 ni, and

n1 > n2 · · · > nk [240℄. lcr(Kn) is known for all n [7℄. For 
omplete bipartite graphs,

lcr(K3,n) = ⌈(n − 2)/4⌉, lcr(K4,n) = ⌈(n − 2)/2⌉ and there are asymptoti
 upper

and lower bounds [6℄.

Open Questions: Is it true that m 6 (lcr∗S(G)+3)(n−χ), where χ is the Euler 
hara
-

teristi
 of S, even just for S being the sphere? We saw above that lcr(G) < lcr∗(G)
is possible; 
an lcr∗(G) be bounded in lcr(G)? Has lcr(Kn) been studied? Is there

a relationship between lcr(G) and the pagenumber of G, that is, the smallest k
for whi
h bkcrk(G) = 0? (It is known that 1-planar graphs have pagenumber at

most 39 [64, 63℄.) Dujmovi¢, Eppstein, and Wood mention the 
onje
ture that

lcrSg
(G) = O( m

g+1
) [149℄

Also see: Lo
al 
onvex 
rossing number (under 
onvex 
rossing number), nodal 
rossing

number, simple 
rossing number, lo
al pair 
rossing number (under pair 
rossing

number).

Lo
al outerplanar 
rossing number. See 
onvex 
rossing number.

Lo
al pair 
rossing number. See pair 
rossing number.

74

For lcr(G) = 1 this was observed by Ringel [400℄, for lcr(G) 6 3, see [366, Lemma 1.1℄.

75

The spe
ial 
ase, m 6 4n− 8 for graphs with lcr∗(G) 6 1 on the sphere seems to go ba
k to [78℄.

76

A
kerman [9℄ uses his result to derive an improved 
onstant for the 
rossing lemma for cr, following
the same approa
h as [366℄.
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Lo
al toroidal 
rossing number. See lo
al 
rossing number.

Major Crossing number. See minor 
rossing number.

Map 
rossing number

Definition: A map is a graph G = (V,E) and a surfa
e Σ with boundary ∂Σ so that

V ⊆ ∂Σ. In a drawing of G ea
h edge is realized by a properly embedded ar
 (a


onne
ted 
urve that interse
ts ∂Σ in its endpoints only). The 
rossing number of

the map is the smallest number of 
rossings in a drawing of the map. Similarly,

one 
an de�ne odd, algebrai
 and pair 
rossing number for maps. We 
an introdu
e

spe
ial names based on the number of boundary 
omponents of Σ: disk 
rossing

number (one hole), annulus 
rossing number (two holes), pair of pants 
rossing

number (three holes), and so on.

Referen
e: Pelsmajer, S
haefer, �tefankovi£ [381℄.

Comments: The map 
rossing numbers were introdu
ed in [381℄ to separate ocr from cr.
One 
an turn every boundary 
omponent into a single vertex with rotation; as long

as one is 
onsidering a 
rossing number variant in whi
h adja
ent 
rossings 
ount

the same as independent 
rossings, the 
rossing number notion does not 
hange, so

one 
an alternatively look at map 
rossing numbers as 
rossing numbers of graphs

with rotation system; map 
rossing numbers 
an also be 
onsidered a spe
ial 
ase

of the 
onstrained 
rossing number. If we allow verti
es to arbitrarily move on

their boundary 
omponent, the disk 
rossing number be
omes the 
onvex 
rossing

number, and the annulus 
rossing number turns into the radial 
rossing number on

two levels. (The general 
ase does not seem to have been 
onsidered so far.)

Complexity: The disk 
rossing number 
an be 
omputed in time Θ(m logm), where
m = |E|; the annulus (algebrai
) 
rossing number 
an be 
omputed in polynomial

time [384℄.

77

The 
omplexity of 
omputing the pair-of-paints 
rossing number is

open. The general problem is NP-
omplete, sin
e 
omputation of the 
rossing

number of a graph with a given rotation is NP-
omplete [384℄.

Relationships: ocr(M) 6 pcr(M) 6 acr(M) = cr(M) for any map M ; there is a map

M for whi
h 13 = ocr(M) < pcr(M) = 15; if Σ has n boundary 
omponents, then

cr(M) 6 ocr(M)
(
n+4
4

)
/5 [381℄.

Also see: Radial 
rossing number (on two levels), 
rossing number (with rotation sys-

tem), 
onstrained 
rossing number, 
onvex 
rossing number, 
ylindri
al 
rossing

number, joint 
rossing numbers, wire 
rossing number.

Maximum 
rossing number

Definition: The maximum 
rossing number of a graph G, max-cr(G), is the largest

number of 
rossings in any drawing of G in whi
h every pair of edges has at most

one point in 
ommon (a shared endpoint 
ounts, tou
hing points are forbidden).

78

Referen
e: Ringel [398℄, Grünbaum [218℄.

77

Results in that paper are phrased for graphs with rotation systems.

78

In other words: an interse
tion-simple drawing.

the electronic journal of combinatorics 16 (2009), #R00 58



Comments: In a 1972 paper, Grünbaum [218℄ expresses surprise that max-cr(Kn) and
max-cr(Km,n) have not been studied; he mentionsmax-cr(K4) = 1 and Saaty's 
laim
that max-cr(Kn) =

(
n
4

)
[407℄ whi
h he 
alls �probably true but unsubstantiated�.

Ringel had already settled this problem earlier [398℄. This 
rossing number has also

been 
alled maximal 
rossing number [218℄.

Complexity: NP-
omplete [113℄.

Relationships: max- cr(G) 6 max-cr(G) for all graphs G. max-cr(G) 6 M(G), where
M(G) =

(
m(m+ 1)−

∑
v∈V deg2(v)

)
/2, with m = |E|, a parameter introdu
ed

in [385℄.

Values: max-cr(Kn) =
(
n
4

)
[398℄. max-cr(Kx1,...,xn

) =
(
x
4

)
−

∑n
i=1(

(
xi

4

)
+ (x − xi)

(
xi

3

)
),

where x =
∑n

i=1 xi and n > 2 [239℄. For trees T , max-cr(T ) = M(T ), with M(T )
as de�ned above [385℄. max-cr(C4) = 1, and max-cr(Cn) = n(n − 3)/2, for n 6=
5 [482, 243℄. max-cr(Q3) = 34, where Q3 is the 3-dimensional hyper
ube graph [244℄.

Asymptoti
ally, max-cr(Wn) is 5n
2/4 [251℄. Also, max-cr is known for all graphs on

up to 6 verti
es [251℄.

Open Questions: Ringeisen, Stue
kle, and Piazza [396℄ introdu
ed the Subgraph Prob-

lem: is it true that max-cr(H) 6 max-cr(G) if H is a subgraph of G? Ar
hdea-


on [31℄ 
onje
tures that it is. The 
onje
ture is unsettled even for indu
ed sub-

graphs H of G. For the maximum re
tilinear 
rossing number, it is easy to see that

max- cr(H) 6 max- cr(G) if H is a subgraph of G [396℄. The same authors also


onje
ture that max-cr(G) =M(G) if and only if G 
ontains at most one 
y
le and

that 
y
le is not C4, where M(G) is as de�ned above. This 
onje
ture is equiv-

alent to Conway's thra
kle 
onje
ture, a

ording to whi
h every graph for whi
h

max-cr(G) =M(G) satis�es |E(G)| 6 |V (G)| [482℄.
Also see: Maximum re
tilinear 
rossing number.

Maximum edge 
rossing number. See edge 
rossing number.

Maximum lo
al 
rossing number. See lo
al 
rossing number.

Maximum or
hard 
rossing number. See or
hard 
rossing number.

Maximum re
tilinear 
rossing number

Definition: The maximum re
tilinear 
rossing number of a graph G, max- cr(G), is the
largest number of 
rossings in any simple straight-line drawing of G (by requiring

the graph to be simple we avoid edge overlap). If we restri
t drawings to be 
onvex

(all verti
es on the boundary of a 
ir
le), we get the 
onvex maximum re
tilinear


rossing number, here denoted by max- cr◦(G).

Referen
e: Grünbaum [218℄. Also, Furry, Kleitman [199℄.

Comments: Originally de�ned by Grünbaum who mentions several results, in
luding

the 
al
ulation of max- cr(Cn) due to Steinitz [441℄.
79

Other names for this 
rossing

79

Steinitz's result from 1923 was pre
eded by several in
orre
t or in
omplete results, in
luding a note

by Baltzer [51℄ who seems to have originated the problem in 1885; in turn, it was redis
overed multiple

times, e.g. in [199℄.
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number in
lude maximal re
tilinear 
rossing number [218℄ and obfus
ation 
omplex-

ity [468℄. Verbitsky writes obf(G) for max- cr and obf◦ for max- cr◦. Thürmann [457℄


onsiders a variant max- crh of max- cr parameterized by the number h of verti
es

that lie on the boundary of the 
onvex hull of all verti
es (but only for 
omplete

graphs).

Complexity: The maximum re
tilinear 
rossing number isNP-hard [47℄, but not known

to lie inNP. Can be approximated e�
iently to within a fa
tor of 1/3 [468, 47℄. For
triangulations this bound 
an be improved to 56/39 [290℄. The 
onvex maximum

re
tilinear 
rossing number is NP-
omplete [47℄.

Relationships: max- cr(G) < 3|V (G)|2 [468℄. max- cr(G) 6 max-cr(G) (by de�nition)

and the inequality 
an be stri
t (e.g. 
ompare Steinitz's result on max- cr(Cn) to
max-cr(Cn) when n is even). max- cr◦(G) 6 max- cr(G) 6 3max- cr◦(G) [468, 46℄.

Values: max- cr(Kx1,...,xn
) =

(
x
4

)
−

∑n
i=1(

(
xi

4

)
+ (x − xi)

(
xi

3

)
), where x =

∑n
i=1 xi and

n > 2 (follows from [239℄, also see [25℄). max- cr(tK4) = 20
(
t
2

)
+t [22℄. max- cr(Cn) =

n(n−3)/2 if n is odd and max- cr(Cn) = n(n−4)/2+1 if n is even [441℄,

80

and there

is a 
losed formula for max- cr of 2-regular graphs (disjoint union of 
y
les) [76℄.

The value of max- crh(Kn) is known [250℄. max- cr(Wn) = (2n2 − 5n − 1)/2 if

n is odd and n2 − 3n + 1 if n is even [181℄; for generalized wheel graphs Wm,n

see [25℄. max- cr(Q3) = 28, where Q3 is the 3-dimensional hyper
ube graph [24℄.

max- cr(GP(2, 5)) = 49 [185℄, where GP(2, 5) is the Petersen graph. Also, see [186℄.

Cal
ulating max- cr(nP2), the largest number of 
rossings of n line segments, is an

old puzzle, as in Sam Loyd Jr's �When Drummers Meet�, see [434, 5.Q.1℄, also known

in textbooks [298, p.5, 3rd part℄, and, with variations, in [440℄.

Open Questions: Alpert, Feder and Harborth [23℄ asked whether it is true thatmax- cr(G) =
max- cr◦(G) for every graph G; it is now kown that this is not the 
ase [113℄, but it is

still possible that equality holds for bipartite graphs. (Also, see [77℄.) It is not known

whether max- cr lies inNP, the best known upper bound is ∃R. Alpert, Feder, Har-

borth and Klein [24℄ show that max- cr(Qn) > 2n−2[2n−1(n2 − 2n+ 3)− n2 − 1] and

onje
ture that this lower bound is tight.

Also see: Maximum 
rossing number, maximum (re
tilinear) edge 
rossing number (un-

der edge 
rossing number), 
onvex 
rossing number.

Maximum re
tilinear edge 
rossing number. See edge 
rossing number.

Metro-line 
rossing number

Definition: Let G be a graph embedded in the plane, and L a set of paths (without

repeated verti
es) in G 
alled lines. A routing of the lines orders all lines passing

through an edge at ea
h end of the edge. An edge 
rossing of two lines o

urs if

the ordering of the two lines at the two ends of some edge have swit
hed. A vertex

(station) is represented as a (
onvex) polygon with one side for ea
h in
ident edge.

The routing determines the order at ea
h side of the station. If the entry and exit

80

For more re
ent proofs in English, see [199, 23℄.
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points of two lines alternate along the boundary of a station, a station 
rossing

o

urs; that is, the two lines have to 
ross within the station. The Metro-line


rossing number of a parti
ular routing of L in the embedding of G is the number

of edge and station 
rossings of lines in edges. The Metro-line 
rossing number of L
is the smallest Metro-line 
rossing number of any routing of L.

81

Referen
e: Based on Benkert, Nöllenburg, Uno, Wol� [65℄, Argyriou, Bekos, Kauf-

mann, Symvonis [34℄.

Comments: The 
on
ept of metro-line 
rossing minimization was introdu
ed in Benkert,

Nöllenburg, Uno, Wol� [65℄, a more general model was suggested by Argyriou,

Bekos, Kaufmann, Symvonis [34℄. Both these papers 
onsider the problem a 
rossing

minimization problem and study it in various variants (e.g. stations have to be 2-
sided or 4-sided or the end of lines may be for
ed to be in parti
ular positions), so

the metro-line 
rossing number de�ned above is just one possible variant.

Complexity: Optimizing the Metro-line 
rossing number of a single edge in G 
an be

done in polynomial time [65℄ and there are NP-hard variants even if the underlying

graph is a path [34℄ or a 
aterpillar [192℄. There are polynomial-time and �xed-

parameter tra
table 
ases for some variants [361℄.

Also see: Con�uent 
rossing number, wire 
rossing number.

Minimum non-
rossing edge number. See edge 
rossing number.

Minor 
rossing number

Definition: The minor 
rossing number, mcr(G), of a graph G is the smallest 
rossing

number of any graph having G as a minor. The major 
rossing number, Mcr(G), of
a graph G is the largest 
rossing number of any minor of G. We write mcrΣ for the

minor 
rossing number on surfa
e Σ.

Referen
e: Bokal, Fijavº, Mohar [80℄.

Comments: The de�nition of the minor 
rossing number was motivated by an attempt

to �nd a 
rossing number that works well with minors, indeed it is minor-monotone

by de�nition (the genus 
rossing number also addresses this issue), and is sometimes


alled the minor monotone 
rossing number. Robertson and Seymour identi�ed the

41 forbidden minors of the set {G : mcr(G) 6 1} [80℄. Chimani and Gutwenger [114℄

introdu
e a variantmcrW (G), forW ⊆ V (G), in whi
h only verti
es inW are allowed

to be expanded in the minor relationship; this allows them to draw 
onne
tions to

a hypergraph 
rossing number variant.

81

One 
an distinguish between avoidable and unavoidable station 
rossings: two lines entering a station

through the same edge need not 
ross within the station, su
h a 
rossing 
an always be turned into an edge


rossing without in
reasing the Metro-line 
rossing number of the drawing. Sin
e the unavoidable station


rossings 
an be 
omputed in polynomial time, several papers restri
t themselves to drawings without

avoidable station 
rossings, and then only 
ount edge 
rossings. This also gives a more interesting variant

if one studies �xed-parameter tra
tability.
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Complexity: NP-
omplete [259, 384℄.

82

Testing mcr(G) 6 k is in polynomial time for

any �xed k, sin
e the property is 
losed under minors. However, only for k = 1 is

the set of forbidden minors known [80℄.

Relationships: mcrΣ(H) 6 mcrΣ(G) if H is a minor of G (from de�nition), mcrΣ(G) 6
crΣ(G) 6 McrΣ(G) (from de�nition). crΣ(G) 6 ⌊∆/2⌋2 mcrΣ(G) [80℄, where ∆ is

the maximum degree of G. mcrΣ(G) > (m − (3(n + g(Σ)) + 6))/2, where g(Σ) is
the Euler genus of Σ and n = |V (G)|, m = |E(G)| [80℄. There is a 
onstant c(H)
for every graph H so that mcr(G) 6 c(H)|V (G)| for every G that does not 
ontain

H as a minor [81℄.

Values: mcr(Kn) is known for n 6 8 [80℄. There are asymptoti
 bounds for 
omplete

graphs, 
omplete bipartite graphs and hyper
ubes [80, 79℄.

Also see: Genus 
rossing number.

Minor-monotone 
rossing number. Alternative name for minor 
rossing number.

Monotone 
rossing number. See monotone 
rossing numbers.

Monotone 
rossing numbers

Definition: A drawing is monotone if every verti
al line in the plane interse
ts ea
h

edge at most on
e. The monotone 
rossing number of G, mon-cr(G), is the smallest

number of 
rossings in a monotone drawing of G. If G is equipped with a preorder

� (re�exive and transitive) of its verti
es we restri
t the drawings of G to drawings

whi
h respe
t the preorder � in the sense that the total preorder 
reated by the

x-
oordinates of the verti
es extends �. We write mon-cr�(G) for the resulting

(�xed) monotone 
rossing number. If there is no danger of 
onfusion, we will drop

� in the notation. If � is the trivial preorder, then mon-cr� is simply the monotone


rossing number mon-cr; if � is a total preorder we get the leveled 
rossing number

83

of whi
h the bipartite 
rossing number and the k-layer 
rossing number are spe
ial


ases. If � is a total order (at most one vertex per level, by anti-symmetry), we get

the x-monotone 
rossing number. For a dire
ted a
y
li
 graph G with its indu
ed

preorder � we get the upward 
rossing number as mon-cr�(G).

For any 
rossing number notion ψ one 
an introdu
e the 
orresponding monotone

versionmon-ψ as above (with or without a given preorder), for example, one 
an talk

about the monotone pair 
rossing number, mon-pcr or the monotone odd 
rossing

number, mon-ocr.

Referen
e: Valtr [467℄, Fulek, Pelsmajer, S
haefer, �tefankovi£ [198℄.

82

Neither of those sour
es shows that the problem lies in NP. For that one needs to observe that for

every G there is a graph H so that mcr(G) = cr(H) and G 
an be obtained from H using a polynomial

(in size of G) number of 
ontra
tions and deletions.

83

More typi
ally 
alled the multi-level 
rossing minimization problem. A level is a set of verti
es that are

equivalent in the sense that u � v and v � u. Levels realized as parallel lines in a drawing are often 
alled

layers. In 
rossing minimization problems the �rst step typi
ally 
onsists in assigning verti
es to layers

and then ordering the verti
es within ea
h layer. One 
an 
onsider 
rossing number variants in whi
h

orderings of some layers are already spe
i�ed. E.g. in the well-known one-sided 
rossing minimization

problem the bipartite graph is drawn on two layers and the ordering of one layer is pre-spe
i�ed.
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Comments: The monotone 
rossing number was introdu
ed by Valtr [467℄ who also

mentions monotone pair 
rossing number and monotone odd 
rossing number. The

preorder versions are introdu
ed in [198℄, but many of these problems are impli
it in

the 
rossing minimization problems studied in leveled (layered) graph drawing. The

preorder version mon-cr� suggested here is a general tool to unify many of these

notions. One 
ould imagine a bi-monotone 
rossing number in whi
h orderings are

pres
ribed both for the x and the y dire
tion. Balko, Fulek, and Kyn£l [48℄ intro-

du
e the monotone odd + 
rossing number, mon-ocr+ (under the name monotone

semisimple odd 
rossing number), and the monotone odd ± 
rossing number, ocr±
(using the name monotone weakly semisimple odd 
rossing number).

Complexity: mon-cr(G) is NP-
omplete.

84

With two levels, 
rossing minimization is

NP-
omplete (see bipartite 
rossing number for a dis
ussion), even if the ordering

of one level is given (one-sided 
rossing minimization) [162, 163℄. Testing whether

a dire
ted graph has upward 
rossing number 0 is NP-
omplete [166℄.

Relationships: cr(G) 6 mon-cr(G) 6 cr(G) (de�nition). mon-cr(G) 6 4mon-pcr(G)4/3

for all G [467℄. mon-iocr(G) 6 mon-ocr(G) 6 mon-ocr±(G) 6 mon-ocr+(G) 6

mon-cr(G) (de�nition). mon-cr(G) 6
(
2 cr(G)

2

)
, and there are graphs G for whi
h

mon-cr(G) > 7/6 cr(G)−6 [374℄. If there is a graphG with a linear order� of its ver-

ti
es so thatmon-ψ�(G) < mon-φ�(G) for ψ, φ ∈ {ocr, iocr, acr, iacr, pcr+, pcr, pcr−,cr, cr−},
then there is a graph G′

for whi
h ψ(G′) < φ(G′); there is a graph G with a linear

order � of its verti
es, so that mon-iocr�(G) < mon-ocr�(G) and 
onsequently,

there is a graph G′
so that iocr(G) < ocr(G) [198℄.

Values: mon-cr(Kn) = Z(n) [3, 2℄, where Z(n) = X(n)X(n − 2)/4 is Zarankiewi
z's

fun
tion, with X(n) = ⌊n/2⌋⌊(n− 1)/2⌋.85 The same result was also found by [48℄

who prove the stronger result mon-ocr±(Kn) = mon-ocr+(Kn) = Z(n).

Open Questions: Is mon-iocr(Kn) = Z(n) [48℄?

Also see: Bipartite 
rossing number, radial 
rossing number, upward 
rossing number,

pseudolinear 
rossing number, lo
al 
rossing number (bottlene
k 
rossing minimiza-

tion).

Multiplanar 
rossing number. See k-planar 
rossing number.

Nodal 
rossing number

Definition: Let crD(e) be the number of 
rossings involving e in a drawing D. Let

crD(v) be the sum of crD(e) over all e in
ident to v . The nodal 
rossing number of

a drawing D of a graph G, ncr(D), is the largest crD(v) over all verti
es of G. The
nodal 
rossing number of G, ncr(G), is the minimum of ncr(D) over all drawings of
G. For the nodal 
rossing number on a surfa
e Σ, we write ncrΣ.

84

NP-hardness follows from the hardness of 
rossing number [204℄, simply subdivide ea
h edge su�-


iently often so ea
h part 
an be drawn as a monotone edge. The problem lies in NP: guess an ordering

of the verti
es and the ordering in whi
h edges pass above and below ea
h vertex. That is su�
ient to


al
ulate the 
rossing number of the drawing.

85

The result remains true if the edges in the drawing are only x-bounded, that is, ea
h edge lies

(horizontally) entirely between its endpoints.
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Referen
e: Guy, Jenkyns, S
haer [227℄.

Comments: The nodal toroidal 
rossing number, ncrS1
was introdu
ed by Guy, Jenkyns,

S
haer [227℄; Guy [175, p.364℄ also referred to it as the verti
al 
rossing number.

Complexity: Open.

Relationships: lcr(G) 6 ncr(G) 6 cr(G) (by de�nition).

Values: ncrS1
(Kn) is known for n 6 9, and there are asymptoti
 results for ncrS1

(Kn) [227℄.

Also see: Lo
al 
rossing number, Simple 
rossing number.

Non-
rossing edge number. See edge 
rossing number.

Odd 
rossing number

Definition: The odd 
rossing number of G, ocr(G), is the smallest number of pairs of

edges 
rossing an odd number of times in any drawing of G. The Rule + variant

of ocr is ocr+(G), the smallest number of pairs of edges 
rossing an odd number of

times in any drawing of G in whi
h adja
ent edges are forbidden to 
ross (
alled

semisimple in [48℄). One 
an de�ne an intermediate variant in whi
h adja
ent edges

have to 
ross evenly (su
h drawings are 
alled weakly semisimple in [48℄); denote

this variant by ocr±.
86

Referen
e: Pa
h, Tóth [370℄, also Levow [320℄.

Comments: First expli
itly de�ned (and named) by Pa
h and Tóth [370℄, although

Levow [320℄ deserves some 
redit; he realized that Tutte's algebrai
 theory of 
ross-

ing number 
ould be developed over binary �elds (Wu developed a theory parallel

to Tutte's over binary �elds, but he didn't tou
h on the subje
t of 
rossing num-

bers); Levow de�nes a parameter that 
ould be algebrai
 or odd 
rossing number

(or, indeed, an independent version). His de�nition is not pre
ise enough to de
ide.

Complexity: NP-
omplete [370℄ and remains NP-
omplete if the graph is 
ubi
 or

rotation system is given [384℄. The problem is �xed-parameter tra
table [378℄.

Relationships: There is a 
rossing lemma, ocr(G) > 1/64m3/n2
for m > 4n [370℄.

87

iocr(G) 6 ocr(G) 6 ocr± 6 ocr+(G) for all graphs G (by de�nition). ocr(G) 6

acr(G) 6 cr(G) (by de�nition). ocr(G) = cr(G) if ocr(G) 6 3 [380℄. There

are graphs for whi
h ocr(G) < (
√
3/2 + o(1)) acr(G) = pcr(G) = cr(G)) [381℄.

ocrΣ(G) 6
(
2 crΣ(G)

2

)
for all surfa
es Σ, and ocrΣ(G) = crΣ(G) if ocrΣ(G) 6 2 for all

surfa
es Σ [382℄.

Also see: Independent odd 
rossing number, algebrai
 
rossing number, monotone 
ross-

ing number (for monotone version).

Or
hard 
rossing number

86

The + rule for 
rossing numbers looks rather straightforward: we prohibit drawings in whi
h adja
ent

edges 
ross. One may ask, however, in what sense of the word 
ross? The standard interpretation is that

cr(e, f) = 0 for all pairs of adja
ent edges e and f . But why not require that ψ(e, f) = 0 if we are


onsidering the 
rossing number ψ? For cr and pcr (and cr, of 
ourse), this makes no di�eren
e, but for

ocr and acr we get a new variant whi
h we denote by ψ± [198℄. By de�nition, ψ 6 ψ± 6 ψ+.
87

See the se
tion on 
rossing lemma variants in Se
tion 1.
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Definition: An or
hard drawing of G is a straight-line drawing of G with verti
es in

general position to whi
h are added straight (in�nite) lines through every pair of

verti
es. The or
hard 
rossing number, orchard-cr(D), of an or
hard drawing D of

G is the total number of 
rossings between edges and lines (not 
ounting the line

an edge lies on). The or
hard 
rossing number of G, orchard-cr(G), is the smallest

or
hard 
rossing number of any or
hard drawing of G. The maximum or
hard


rossing number of G is the largest or
hard 
rossing number of any or
hard drawing

of G.

Referen
e: Feder, Garber [182℄.

Comments: One 
an also imagine a pseudoline version of the or
hard 
rossing number.

Repla
ing lines with line segments in the de�nition of the or
hard 
rossing number

leads to the airport 
rossing number [176℄. For the airport 
rossing number, a non-

re
tilinear version may be of interest as well.

Complexity: Open.

Relationships: cr(G) 6 orchard-cr(G)/2 [182℄ (sin
e every edge 
rossing 
ounts twi
e).

The drawing maximizing the or
hard 
rossing number of Kn realizes cr(Kn) [182℄.

Values: orchard-cr(Kn,n) = 4n
(
n
3

)
[183℄. Further results are in [184℄.

Also see: Re
tilinear 
rossing number

Oriented 
rossing number. See joint 
rossing numbers.

Outerplanar 
rossing number. See 
onvex 
rossing number.

Pair 
rossing number

Definition: The pair 
rossing number of G, pcr(G), is the smallest number of pairs

of edges 
rossing in any drawing of G. The independent pair 
rossing number of

G, pcr−(G), is the smallest number of pairs of independent edges 
rossing in any

drawing of G. The Rule + variant of pcr is pcr+(G), the smallest number of pairs

of edges 
rossing in any drawing of G in whi
h adja
ent edges are forbidden to


ross. The lo
al pair 
rossing number of G, lpcr(G), is the smallest k so that G
has a drawing in whi
h every edge 
rosses at most k other edges (possibly multiple

times).

Referen
e: Mohar (attributed in [301℄), Pa
h, Tóth [370, 369℄, A
kerman, S
haefer [11℄

for lpcr.

Comments: A

ording to Kolman and Matousek [301℄, the pair 
rossing number was �rst

expli
itly introdu
ed by Mohar who asked whether pcr = cr at an AMS Conferen
e

on topologi
al graph theory in 1995. The �rst mention in print seems to be by Pa
h

and Tóth [370℄ (as the pairwise 
rossing number), who pointed out that 
rossing

number is often de�ned as pair 
rossing number (whether intentionally or not), see

Se
tion 1 for a dis
ussion. The independent pair 
rossing number was also de�ned

by Pa
h and Tóth [369℄; Alon [21℄ and Tao and Vu [452℄ dis
uss the 
rossing lemma

holds for the independent pair 
rossing number. The lo
al pair 
rossing number

was expli
itly introdu
ed by A
kerman, S
haefer [11℄, though there had been earlier

impli
it de�nitions of this notion [439, 438℄.
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Complexity: The pair 
rossing number is NP-
omplete [370, 411℄ and remains NP-


omplete if the graph is 
ubi
 or rotation system is given [384℄. The independent pair


rossing number is also NP-
omplete. The pair 
rossing number is �xed-parameter

tra
table [378℄.

Relationships: There is a 
rossing lemma for the independent pair 
rossing number,

pcr−(G) > 1/64m3/n2
for m > 4n [21℄.

88

For pcr+ a stronger lower bound is

known, pcr+(G) > 1/32.4m3/n2
for m > 6.75n. ocr(G) 6 pcr(G) 6 cr(G),

pcr−(G) 6 pcr(G) 6 pcr+(G) for all G. If pcr−(G) = pcr(G), then pcr(G) =
pcr+(G).

89

There are graphs G for whi
h ocr(G) < pcr(G) [381℄, indeed ocr(G) =
acr(G) 6 0.855 pcr(G) is possible [459℄. Matousek [330℄ showed that cr(G) =
O(pcr(G)3/2 log2 pcr(G)) using a proof by Tóth [460℄ with stronger bounds on the

size of separators for string graphs. Earlier results using di�erent te
hniques are

due to Valtr and Tóth [467, 459℄. lpcr(G) 6 lcr(G) (by de�nition), and there are

graphs G for whi
h lpcr(G) < lcr(G) (see Footnote 73), however, lpcr(G) = lcr(G)
as long as lcr(G) 6 2 [11℄.

90

Pair-of-pants 
rossing number. See map 
rossing number.

Pair string 
rossing number. See string 
rossing number.

Pairwise 
rossing number. See pair 
rossing number.

Proje
tive plane 
rossing number. See 
rossing number.

Pseudolinear 
rossing number

Definition: A pseudoline is a simple 
losed 
urve in the proje
tive plane that is non-

separating. A pseudoline arrangement is a set of pseudolines so that ea
h pair of

pseudolines has exa
tly one point in 
ommon. A pseudolinear drawing of G is a

drawing of G in the proje
tive plane so that ea
h edge lies on a pseudoline in a

pseudoline arrangement. Edges are then 
alled pseudosegments. The pseudolinear


rossing number of G, c̃r(G), is the smallest number of 
rossings between pseudoseg-

ments in a pseudolinear drawing of G.

Referen
e: Balogh, Leaños, Pan, Ri
hter, and Salazar [375, 50℄.

Comments: The pseudolinear 
rossing number was introdu
ed in Pan's thesis [375℄.

Complexity: NP-
omplete [255℄. It is ∃R-
omplete to test whether c̃r(G) = cr(G) [255℄.

Relationships: mon-cr(G) 6 c̃r(G) 6 cr(G) (sin
e pseudolines 
an be realized as x-
monotone 
urves and be
ause every re
tilinear drawing 
an be extended to a pseu-

doline drawing). The pseudolinear 
rossing number di�ers from the standard 
ross-

ing number, even for 
omplete graphs: 18 = cr(K8) < c̃r(K8) = cr(K8) = 19.

88

See the se
tion on 
rossing lemma variants in Se
tion 1.

89

Consider a pcr-minimal drawing of G. Sin
e pcr−(G) = pcr(G), it does not have any 
rossings

between adja
ent edges (otherwise it would witness pcr−(G) < pcr(G)). So the drawing shows that

pcr+(G) = pcr(G).
90

A fa
t used in the proof of the 
rossing lemma for pcr+.
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Hernández-Vélez, Leaños, Jesús and Salazar [255℄ show that the graphs Gm intro-

du
ed by Biensto
k and Dean [72℄ separate cr from the pseudolinear 
rossing num-

ber, sin
e cr(Gm) = 4 and c̃r(Gm) = m. This also separates mon-cr from c̃r sin
e
mon-cr 6

(
2 cr
2

)
[374℄. For everym there is anHm so that c̃r(Hm) 6 cr(Hm)−m [255℄.

Values: c̃r(Kn) = cr(Kn) for n 6 27 [4℄. c̃r(Kn) 6 0.380448
(
n
4

)
+ O(n3) [49℄. c̃r(Kn) >

0.379972
(
n
4

)
− O(n3) [4℄. Some of the best asymptoti
 lower bounds for cr(Kn) are

a
hieved via c̃r(Kn).

Open Questions: Balogh, Leaños, Pan, Ri
hter, and Salazar [50℄ 
onje
ture that

c̃r(Kn) = cr(Kn). For example, it is known that the 
onvex hull of both a c̃r-
optimal and a cr-optimal drawing of Kn is a triangle [50, 15℄; it is open whether this

is true for the se
ond 
onvex hull as well (an earlier paper on this topi
 has been

withdrawn [316℄).

Also see: Re
tilinear 
rossing number, monotone 
rossing number.

Radial 
rossing number

Definition: A leveling of a graph G = (V,E) is a mapping from V to {1, . . . , k}, as-
signing ea
h vertex a level. A radial drawing of G is a drawing in whi
h verti
es of

level i are pla
ed on the ith 
ir
le of k 
on
entri
 
ir
les; edges are required to be

monotone in the sense that they 
ross every 
ir
le that is 
on
entri
 with the level


ir
les at most on
e. The radial 
rossing number of G is the smallest number of


rossings in a radial drawing of G.

Referen
e: Ba
hmaier [42℄. Ri
hter, Thomassen [394℄. Also, Northway [360℄.

Comments: Ba
hmaier [42℄ introdu
ed the general 
on
ept of radial 
rossing number. If

G is bipartite one 
an assign the verti
es of ea
h partition to one of two 
ir
les, result-

ing in the bipartite 
ylindri
al drawings introdu
ed by Ri
hter and Thomassen [394℄

to study the 
rossing number of Kn via bipartite 
ylindri
al drawings of Kn,n; there

also is a 
on
ept of 
ylindri
al 
rossing number for non-bipartite graphs. In a paper

from 1940, Northway [360℄, suggested radial layouts and used the number of 
rossing

lines as an aestheti
 
riterion.

Complexity: Radial level planarity 
an be tested in linear time [45℄. For two levels,

the radial 
rossing number is NP-
omplete (this easily follows from NP-hardness

of the bipartite 
rossing number), as is the one-sided version (in whi
h the ordering

of the verti
es on one level is �xed) [42, 162, 163℄. If orderings of verti
es on both

sides are �xed, the problem is in polynomial time [384℄.

91

Relationships: The leveled 
rossing number of G is an upper bound on its radial 
ross-

ing number. In parti
ular, the bipartite 
rossing number, bcr, is an upper bound

on radial 
rossing number with two levels (the upper bound may be stri
t, e.g. for

K2,2).

Values: The radial 
rossing number of Kn,n on two levels is n
(
n
3

)
[394℄ (with ea
h parti-

tion on a separate level). More re
ently, Sparks [436℄ showed that under the same

restri
tions the radial 
rossing number of Kn,m 
an be 
al
ulated.

91

In this 
ase, the radial 
rossing number turns into the annulus 
rossing number.

the electronic journal of combinatorics 16 (2009), #R00 67



Also see: Bipartite 
rossing number, leveled 
rossing number (under monotone 
ross-

ing numbers), annulus 
rossing number (under map 
rossing number), 
ylindri
al


rossing number.

Re
tilinear 
rossing number

Definition: The re
tilinear 
rossing number of G, cr(G), is the smallest number of


rossings in a straight-line drawing of G.

Referen
e: Harary, Hill [232℄.

Comments: The re
tilinear 
rossing number for arbitrary graphs was introdu
ed by

Harary and Hill [232℄. It is sometimes 
laimed that the re
tilinear 
rossing number

is also known as the linear or geometri
(al) 
rossing number, but eviden
e for that

is slim.

92

Complexity: ∃R-
omplete [70℄, see [409℄ for ∃R. Can be approximated to within an

additive error of o(|G|4) in polynomial time [195℄.

Relationships: cr(G) 6 cr(G) for all graphs G, and inequality 
an be stri
t, e.g. 18 =
cr(K8) < cr(K8) = 19 [55, 433℄.93 cr(G) = cr(G) if cr(G) 6 3, but for every k there is
a G su
h that cr(G) = 4 and cr(G) > k [72℄.

94

Also, cr(G) = O(∆ cr2(G)), where ∆
is the maximum degree of G [71℄; this was improved to cr(G) = O(∆ cr(G) log cr(G))
if |E| > 4|V | [423℄. Wilf [478℄ points out that cr(G) 6 ρM/3, whereM is the number

of times 2K2 o

urs as a subgraph in G, and ρ ≈ 0.38 is the re
tilinear 
rossing


onstant (de�nition under values).

95

Values: The values of cr(Kn) are now known up to n = 27 and for n = 30 (see [8℄ for

a re
ent survey, also [14℄). cr(Kn) > cr(Kn) for n = 8 and n > 10. 277/729
(
n
4

)
6

cr(Kn) 6 9363184/24609375
(
n
4

)
+ Θ(n3) (lower bound: [4℄, upper bound: [346℄;


urrent te
hniques are des
ribed in [8℄). Sin
e cr(Kn)/
(
n
4

)
is nonde
reasing and

bounded, ρ = limn→∞ cr(Kn)/
(
n
4

)
�sometimes 
alled the re
tilinear 
rossing 
on-

stant [190℄�exists, and is, surprisingly, related to Sylvester's Four Point Prob-

lem [416℄. For 
omplete bipartite cr(Km,n) 6 Z(m,n), where Z(m,n) = X(m)X(n)
and X(n) = ⌊n/2⌋⌊(n − 1)/2⌋ [489℄. It has been 
onje
tured that cr(Km,n) =
cr(Km,n) [31℄. This 
onje
ture is implied by Zarankiewi
z's 
onje
ture as Guy ob-

served [223℄. For tripartite 
omplete graphs Kn1,n2,n3
there is a fun
tion A(n1, n2, n3)

92

If it is used at all, the term �linear 
rossing number� typi
ally refers to the linear 
rossing number

introdu
ed by Ni
holson, the only ex
eptions I found are [61, 31℄. The use of �geometri
 drawing� for

straight-line drawing is quite 
ommon, but there only seem to be a small number of papers using the

term geometri
 
rossing number [31, 8℄.

93

Barton's thesis [55℄ and Singer's unpublished manus
ript [433℄ also 
ontain early upper bounds on

cr(Kn), Barton obtains cr(Kn) 6 11/648n4 + O(n3) and Singer shows cr(Kn) 6 5/312n4 + O(n3); see
the se
tion on values for 
urrent best bounds.

94

Some more light is thrown on these separating examples in [255℄

95

The paper doesn't supply an argument, but one imagines Wilf would have argued as follows: �x

an cr-optimal drawing of Kn, where n = |V (G)|. Randomly assign verti
es in V (G) to verti
es in the

drawing of Kn. Then the probability that four verti
es of V (G) are in 
onvex position, is ρ by de�nition

of ρ. The probability that two edges of G are mapped to the four endpoints so that the two edges 
ross,

is 1/3; hen
e, the expe
ted number of 
rossings of G is at most ρM/3.
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introdu
ed in [210℄ for whi
h the authors 
onje
ture that cr(Kn1,n2,n3
= cr(Kn1,n2,n3

) =
A(n1, n2, n3); they 
an show that 0.973A(n1, n2, n3) 6 cr(Kn1,n2,n3

) 6 A(n1, n2, n3)
(and a slighter weaker lower bound for cr). cr(C3�Cn) = n [397℄, cr(C4�Cn) =
2n [62℄. For 
omplements of 
y
les, see [225℄. Faria, de Figueiredo, Ri
hter and

Vr´o [179℄ give upper bounds on cr(Qn).

Open Questions: Harary, Kainen, and S
hwenk 
onje
tured that cr(Cm�Cn) = n(m−
2) for n > m > 3; sin
e there are straight-line drawings of Cm�Cn with n(m − 2)

rossings, a weaker 
onje
ture would be: cr(Cm�Cn) = n(m − 2) for n > m > 3;
the 
onje
ture is known to be true for the same 
ases as the original 
onje
ture

whi
h is dis
ussed in the entry on the 
rossing number. The separation of cr and
cr by Biensto
k and Dean [72℄ implies that cr 
annot be bounded in cr; however,
Hernández-Vélez, Leaños, Jesús and Salazar [255℄ 
onje
ture that this 
an be done,

that is, cr(G) 6 f(cr(G)) for some fun
tion f , as long as G is 3-
onne
ted. What

is the 
omplexity of cr(G) 6 4 (in 
omparison: cr is �xed-parameter tra
table;

pseudo-linear 
rossing number is also open)?

Also see: t-polygonal 
rossing number, pseudolinear 
rossing number, maximum re
ti-

linear 
rossing number, simultaneous geometri
 
rossing number (under simultane-

ous 
rossing number), grid 
rossing number, re
tilinear lo
al 
rossing number (under

lo
al 
rossing number).

Re
tilinear edge 
rossing number. See edge 
rossing number.

Re
tilinear k-planar 
rossing number. See k-planar 
rossing number.

Re
tilinear lo
al 
rossing number. See lo
al 
rossing number.

Re
tilinear spa
e 
rossing number. See spa
e 
rossing number.

Red/blue 
rossing number

Definition: Given graphs Gi = (Vi, Ei), and point-sets Pi in the Eu
lidean plane with

|Pi| = |Vi|, i ∈ {1, 2}, a red/blue drawing 
onsists of straight-line embeddings of

Gi on vertex set Pi, i ∈ {1, 2} (ea
h graph by itself is free of 
rossings). The

red/blue 
rossing number is the smallest number of 
rossings in a red/blue drawing

(ne
essarily between edges of G1, the red edges, and G2, the blue edges; in other

words, we 
ount red/blue 
rossings). It is possible that the Gi have no red/blue

drawing on the Pi, in whi
h 
ase we say that the red/blue 
rossing number is in�nite.

Referen
e: Based on Bereg, Jiang, Yang, Zhu [66℄.

Comments: Bereg, Jiang, Yang, Zhu [66℄ are interested in the smallest number of 
ross-

ings between any two 
rossing-free, geometri
 spanning trees on P1 and P2. However,

they do go on to study the spe
ial 
ase where the Gi are paths.

Complexity: Testing whether the red/blue 
rossing number of two paths is 0 is NP-


omplete [66℄. (Finding red/blue spanning trees with the minimum number of 
ross-

ings 
an be solved in time O(n logn).)

Also see: Simultaneous 
rossing number, joint 
rossing numbers, geometri
 k-planar

rossing number.
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Right-angle 
rossing number

Definition: The right-angle 
rossing number of G is the smallest number of 
rossings in

a straight-line drawing ofG in whi
h all pairs of 
rossing edges have to be orthogonal.

If no su
h drawing exists, the right-angle 
rossing number is in�nite.

Referen
e: Based on Didimo, Eades, and Liotta [145℄.

Comments: Didimo, Eades, and Liotta [145℄ introdu
ed the notion of RAC (Right Angle

Crossing) drawing based on the aestheti
 heuristi
 that drawings are easier to read

if angles at 
rossings are large [275℄. One 
an imagine a t-polygonal right-angle

rossing number, in whi
h ea
h edge is allowed to 
onsist of t line segments. Didimo,

Eades, and Liotta [145℄ showed that every graph has �nite 4-polygonal right-angle

rossing number. A more relaxed version may only require angles to be at least

some large α 6 90, see [142, 150℄.

Complexity: It is NP-hard to de
ide whether a graph has �nite right-angle 
rossing

number [33℄. It is not unlikely that this problem may be ∃R-
omplete (see [409℄ for

∃R).

Relationships: The right-angle 
rossing number of G is at least cr(G). If G has �nite

right-angle 
rossing number, then m 6 4n− 10 assuming that n > 4 [145℄.

Rotational 
rossing number. Crossing number of graph with rotation (or embedding)

system. See entry for 
rossing number.

Simple 
rossing number

Definition: The simple 
rossing number of G, cr×(G), is the smallest number of 
ross-

ings in any drawing of G in whi
h every edge has at most one 
rossing.

96

If there is

no su
h drawing, we let cr×(G) = ∞; the name �simple 
rossing number� 
on�i
ts

with the usual notion of a simple drawing (whi
h only requires that every two edges


ross at most on
e).

97

Kainen [285℄ 
alled a drawing in whi
h every edge has at

most one 
rossing nearly planar, Ringel [399℄ 
alled it a 1-embedding; the graphs

with cr×(G) 6 1 are 
alled 1-planar [420℄.

Referen
e: Bu
hheim, Ebner, Jünger, Klau, Mutzel, Weiskir
her [90℄.

Comments: Bu
hheim, Ebner, Jünger, Klau, Mutzel, Weiskir
her [90℄ introdu
e this

variant to simplify their integer linear program for 
rossing minimization; the use-

fulness of the simple 
rossing number lies in the fa
t that every graph G has a sub-

division G′
for whi
h cr(G) = cr×(G′). 1-planar graphs 
an be 6-
olored [400, 84℄

(in prin
iple) and 7-
olored in linear time [110℄.

Complexity: De
iding whether cr×(G) <∞ is NP-
omplete [213℄. De
iding cr×(G) 6
k for 1-planar graphs is also NP-
omplete, even if the graph is 3-
onne
ted, and a

rotation system is given [40℄.

96

Ringel [400℄ already observed that 
rossings between two adja
ent edges 
an always be removed in

su
h a drawing.

97

Another possible name, the 1-planar 
rossing number, 
lashes with the k-planar 
rossing number

introdu
ed by Owens. This is doubly unfortunate, sin
e that name suggests a ni
e generalization beyond

1-planarity.
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Relationships: cr×(G) < ∞ is equivalent to lcr(G) 6 1. If cr×(G) < ∞, then m 6

4n− 8 and cr×(G) 6 n− 2 [78℄.

98

Also see: Lo
al 
rossing number.

Simple degenerate 
rossing number. See degenerate 
rossing number. Simple de-

generate lo
al 
rossing number. See lo
al 
rossing number.

Simple lo
al 
rossing number. See lo
al 
rossing number.

Simultaneous 
rossing number

Definition: A simultaneous drawing of a family of graphs G = (Gi)
k
i=1, with Gi =

(Vi, Ei), is a drawing of G = (V,E) with V =
⋃k

i=1 Vi and E =
⋃k

i=1. In other

words, verti
es or edges that belong to more than one graph are drawn only on
e.

There are two di�erent types of 
rossings in the drawing of G: a proper 
rossing is

a 
rossing between two edges e and f that belong to the same graph Gi for some

i, otherwise the 
rossing is a phantom 
rossing. The simultaneous 
rossing number

of G, scr(G), of a family of graphs G = (Gi)
k
i=1 is the smallest number of proper


rossings in any simultaneous drawing of G as de�ned above. A proper 
rossing

of two edges e and f 
ounts on
e for ea
h graph Gi in whi
h it o

urs. A family

of graphs is simultaneous planar if scr(G) = 0. If we restri
t the drawings to be

straight-line drawings, we get the simultaneous geometri
 
rossing number of G, scr.
If we restri
t the drawings to be 
onvex (all verti
es on the boundary of a disk, all

edges inside the disk), we get the 
onvex simultaneous 
rossing number.

Referen
e: Chimani, Jünger, S
hulz [117℄, He, S l gean,and Mäkinen [252℄.

Comments: The 
rossing number scr(G) was introdu
ed in Chimani, Jünger, S
hulz

along with several minimization problems, in
luding the minimization of phantom


rossings in an scr-minimal drawing. Geiÿer [209℄ studies the number of phantom


rossings in a simultaneous embedding of G (so no proper 
rossings are allowed).

This 
ould be 
alled the simultaneously planar 
rossing number. Chimani, Jünger,

S
hulz also 
onsider a weighted variant of scr(G) whi
h is still restri
ted to 
ounting

only proper 
rossings. One 
ould 
onsider a more general variant in whi
h phantom


rossings are assigned weights. The restri
tion to drawings in whi
h edges belonging

to more than one graph are drawn only on
e is typi
ally known as the simultaneous

embedding with �xed edges (SEFE) style (an unfortunate name). When de�ning the


rossing number version, the �xed edges epithet was dropped. One 
ould 
onsider

de�ning a free version in whi
h edges belonging to multiple graphs may be drawn

di�erently for ea
h graph. Families of graphs on the same vertex set are known

as multiplex networks in information visualization, and there is resear
h on layout

algorithms in that area [180℄. The 
onvex simultaneous 
rossing number is based on

an observation by He, S l gean,and Mäkinen [252℄ whi
h implies that it 
orresponds

to a book drawing in whi
h edges belonging to the same Gi are assigned to the same

page. It extends the partitioned book 
rossing number; it is more powerful, sin
e in

an edge in a simultaneous drawing 
an belong to multiple graphs.

98

The result that any 1-planar drawing of a graph G on n verti
es has at most n−2 
rossings is impli
it

in several papers, e.g. [78, 178℄, an expli
it statement 
an be found in [132℄.
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Complexity: NP-
omplete [117℄.

99

Testing simultaneous planarity is NP-
omplete for

three graphs (the 
omplexity of testing simultaneous planarity of two graphs is

open) [206℄. The simultaneously planar 
rossing number is NP-
omplete [106, 98,

209℄. The 
onvex simultaneous 
rossing number generalizes the 
onvex 
rossing

number and therefore is NP-
omplete. Testing 
onvex simultaneous planarity is

NP-
omplete if the number of graphs k is not bounded [269℄; it is open whether the

problem remains NP-
omplete for �xed k.

Relationships: scr(G) 6 k cr(G), where G = (V,E) with V =
⋃k

i=1 Vi and E =⋃k
i=1Ei [117℄. The number of phantom 
rossings in an scr-minimal drawing 
an

be for
ed to be exponential [117℄, though it is not 
lear whether this is true for �xed

k; the 
ase k = 2 would be parti
ularly interesting. The top pi
ture in the margin

shows that for k = 2 adja
ent edges may have to 
ross in an embedding; a simple

modi�
ation shown just below shows that two independent edges may have to 
ross

at least twi
e.

100

Also see: Red/blue 
rossing number, joint 
rossing numbers.

Simultaneous geometri
 
rossing number. See simultaneous 
rossing number.

Single-fa
ed 
rossing number. See joint 
rossing numbers.

Spa
e 
rossing number

Definition: A spatial drawing of a graph G is a 
ontinuous embedding of G in R3
, it is

re
tilinear if edges are line segments. A spatial 
rossing is any (straight) line that


rosses four

101

vertex-disjoint edges. The spa
e 
rossing number ofG, space-cr(G), is
the smallest number of spatial 
rossings in any spatial drawing of G. The re
tilinear
spa
e 
rossing number, space-cr(G), is the smallest number of spatial 
rossings in

any re
tilinear spatial drawing of G.

Referen
e: Bukh, Hubard [94℄.

Comments: For a notion of 
rossing number for geometri
 hypergraphs, see [30, 29℄.

Complexity: Open.

Relationships: space-cr(G) 6
(
cr(G)

2

)
; for every k there is a graph G with space-cr(G) =

0 and cr(G) > k [94℄. There is a 
rossing lemma, space-cr(G) > m6/(cn4 log2 n) for
c = 4179, and n = |V |, m = |E| as long as m > 441n [94℄.

Open Questions: Bukh and Hubbard ask whether graphs with space-cr(G) = 0 are

minor-
losed and whether space-cr(G) = 0 is equivalent to space-cr(G) = 0. They


onje
ture negative answers in both 
ases.

99

NP-hardness follows sin
e for k = 1 scr is the same as cr. NP-membership is non-trivial for k >
1 [412℄.

100

In both examples, there are two graphs: green and red, and the bla
k edges belong to both the green

and the red graph; the outer fa
e is for
ed to be empty. These examples also show that not allowing

adja
ent or multiple phantom 
rossings 
an in
rease the simultaneous 
rossing number. The obvious

generalizations of these examples, e.g. showing that two edges may be made to 
ross an arbitrary number

of times, are in
orre
t.

101

Bukh and Hubbard also, in passing, mention the possibility of 
ounting lines that 
ross three edges.
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Also see: Grid 
rossing number.

Spheri
al 
rossing number. See geodesi
 
rossing number.

Spine 
rossing number

Definition: The spine 
rossing number

102

of G in a book of k pages is the smallest num-

ber of 
rossings between edges and the spine in a k-page topologi
al book embedding

of G. In a topologi
al book embedding edges are allowed to 
ross the spine.

Referen
e: Based on Miyau
hi [339℄.

Comments: Miyau
hi gives an upper bound on the number of spine 
rossings for Kn in

a 3-page book (also see dis
ussion in the entry on book 
rossing number).

Complexity: Open.

Relationships: Any graph G = (V,E) has a k + 1-page topologi
al book embedding

in whi
h ea
h edge 
rosses the spine at most ⌈logk |V |⌉ times, so the spine 
rossing

number of a graph G = (V,E) in a (k + 1)-page book is at most |E|⌈logk |V |⌉ [168,
338℄, and this bound is tight [169℄.

Also see: Book 
rossing number

Stable 
rossing number

Definition: The stable 
rossing number of G with parameter k is crΣ(G) where Σ =
Sγ(G)−k and γ(G) is the (orientable) genus of G.

Referen
e: Kainen [283℄.

Comments: Kainen's motivation in introdu
ing the stable 
rossing number seems to

have been to investigate in�nite families of graphs in surfa
es in whi
h they are

nearly embeddable and show that this 
an lead to small 
onstant (stable) 
rossing

numbers [283, Abstra
t℄.

Complexity: NP-
omplete even for k = 1, sin
e determining the planar 
rossing num-

ber of a toroidal graph is NP-
omplete, e.g. by the result of Cabello, Mohar [98℄.

Values: 4k 6 crΣ(Qn) 6 8k for Σ = Sγ(Qn)−k and 0 6 k 6 γ(Qn) [283℄. crΣ(Qn�K4,4) =
4k, where 0 6 k 6 2n, Σ = Sγ(Qn�K4,4)−k [288℄.

Open Questions: Kainen [283℄ 
onje
tured crΣ(Qn) = 8k for Σ = Sγ(Qn)−k.

String 
rossing number

Definition: The string 
rossing number of G, str-cr(G), is the smallest number of 
ross-

ings in any string drawing of G minus |E(G)|. A string drawing of G is a set of


urves (cv)v∈V (G) so that cu and cv 
ross for every edge uv ∈ E(G).103

Referen
e: Bokal, Czabarka, Székely, Vr´o [79℄.

102

This 
rossing parameter has never been named, the 
losest is the o

asional use of the phrase 
rossings

over the spine. It has also been studied as a minimization problem for upward planar drawings [333℄.

103

Crossings between cu and cv are allowed even if there is no edge uv; so a string drawing is not a

string representation in the stri
t sense in whi
h a string graph is the interse
tion graph of a set of 
urves

in the plane. String graphs 
orrespond to graphs of string 
rossing number 0.
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Comments: Bokal, Czabarka, Székely, Vr´o [79℄ also suggest the independent string


rossing number (they 
all it the faithful 
rossing number) and the pair string 
ross-

ing number. Ri
hter, Thomassen [393℄ study a similar notion for 
losed 
urves in

their proof that cr(C5�C5) = 15.

Complexity: Open.

Relationships: str-crΣ(G) 6 4mcrΣ(G) [79℄.

Surfa
e 
rossing number. See 
rossing number.

t-polygonal 
rossing number

Definition: The t-polygonal 
rossing number of G, crt(G), is the smallest number of


rossings in a straight-line drawing of G in whi
h every edge is allowed to 
onsist of

up to t line segments.

Referen
e: Biensto
k [70℄.

Comments: Introdu
ed by Biensto
k [70℄ to bridge the gap between cr and cr. In the

area of graph drawing, t-polygonal drawings would also be 
alled (t−1)-bend draw-

ings (ea
h edge having at most t− 1 bends).

Complexity: ∃R-
omplete [70℄ for t = 1, see [409℄ for ∃R. Open for t > 1.

Relationships: cr1(G) = cr(G) (by de�nition), cr2(G) 6 2 cr(G)2 [72℄. Let t(k) be the
smallest t so that crt(G) = cr(G) for allG with cr(G) 6 k. Then t(k) = Θ(k1/2) [70℄.

Also see: Re
tilinear 
rossing number.

Tile 
rossing number

Definition: A tile T is a graph G = (V,E) together with two disjoint sequen
es L =
{u1, . . . , uk} and R = {v1, . . . , vk} of verti
es in V . A tile drawing of T is a drawing

of T in the unit square with all verti
es of L on the left boundary of the square in

order, that is, ui above ui+1, and all verti
es of R on the right boundary with vi
above vi+1. The tile 
rossing number of T is the smallest number of 
rossings in a

tile drawing of T . T 2
is the tile obtained from T by pla
ing two 
opies of T next to

ea
h other and identifying vi of the left 
opy with ui of the right 
opy, for 1 6 i 6 k.
This de�nes tiles T n

for arbitrary integer powers n. The average 
rossing number

of T is the limit of the tile 
rossing number of T n
divided by n as n goes to in�nity.

Referen
e: Pinontoan, Ri
hter [387℄.

Comments: Pinontoan and Ri
hter [387℄ do not require that |L| = |R|, but they mostly

study tiles they 
all self-
ompatible for whi
h this is the 
ase, sin
e for those tiles the

average 
rossing number is de�ned. They 
an show that the average 
rossing number

of a tile always exists. The tile 
rossing number is rather spe
i�
 to 
onstru
tions of


rossing 
riti
al graphs. It bears similarity to bipartite and 
onvex 
rossing number,

but di�ers from them by allowing additional verti
es within the square. In that

respe
t, it resembles the an
hored 
rossing number most 
losely.
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Complexity: The tile 
rossing number is NP-
omplete,

104

and remains NP-
omplete

for twisted planar tiles (tiles whi
h be
ome planar after twisting one of the bound-

aries) [260℄. If L∪R = V , then the problem is in polynomial time. The 
omplexity

of the average 
rossing number is open, but Dvo°ák and Mohar [158℄ show that it


an be approximated in exponential time in the absolute error.

Relationships: tile-cr(T n) 6 n tile-cr(T ) [387℄. Let o(T n) be the graph 
onstru
ted

from T n
by identifying L and R of the tile T n

(in order). Then the average 
rossing

number of T equals limn→∞ cr(o(T n))/n [387℄.

Open Questions: Pinotoan and Ri
hter [387℄ 
onje
ture that if the average 
rossing

number of T equals tile-cr(T ), then there is an N so that cr(o(T n))/n = tile-cr(T )
for all n > N . Dvo°ák and Mohar [158℄ 
onje
ture that the average 
rossing number

of a tile is always a rational number.

Also see: An
hored 
rossing number (under �xed linear 
rossing number), bipartite


rossing number, 
onvex 
rossing number.

Toroidal 
rossing number. See 
rossing number.

Toroidal geodesi
 
rossing number. See geodesi
 
rossing number.

Triple 
rossing number

Definition: The triple 
rossing number of G, triple-cr(G), is the smallest number of

triple 
rossings (a point in whi
h three edges 
ross) in a drawing in whi
h there

are only triple 
rossings. We assume that there are no self-
rossings, no 
rossings

between adja
ent edges, and that independent edges 
ross at most on
e and do not

tou
h. The triple 
rossing number may be in�nite.

Referen
e: Tanaka, Teragaito [450℄.

Comments: As the de�nition shows, Tanaka, Teragaito [450℄ introdu
e a very restri
tive

version of a triple 
rossing number (whi
h more a

urately 
ould be 
alled the simple

triple 
rossing number). In this version, triple-cr(K5) = ∞, sin
e 
rossings have

to o

ur between independent edges (for
ing at least 6 endpoints in a non-planar

graph). However, it it easy to give a drawing of K5 with two triple 
rossings if


rossings between adja
ent edges are allowed. Another 
ondition that 
ould be

relaxed is that independent edges 
ross at most on
e.

Complexity: Open.

Relationships: cr(G) 6 3 triple-cr(G) (perturb triple 
rossings). The triple 
rossing

number is not monotone (for example, triple-cr(K4,4) = ∞, while triple-cr(K6,4) =
4 [450℄.

Values: Tanaka and Teragaito [450℄ dis
uss triple 
rossing numbers of 
omplete and


omplete bipartite (and k-partite) graphs.

Also see: Degenerate 
rossing number.

Tutte 
rossing number. See algebrai
 
rossing number.

104

The regular 
rossing number is a spe
ial 
ase for k = 0.

the electronic journal of combinatorics 16 (2009), #R00 75



Upward 
rossing number

Definition: A drawing is monotone if every verti
al line in the plane interse
ts ea
h

edge at most on
e. The upward 
rossing number of a dire
ted a
y
li
 graph G is the

smallest number of 
rossings in a monotone drawing of G in whi
h all edges point in

the same dire
tion. We write mon-cr�(G), where � is the partial ordering indu
ed

by the orientation of G. For mixed graphs, 
ontaining both dire
ted and undire
ted

edges, the mixed upward 
rossing number is the smallest number of 
rossings in a

monotone drawing of G in whi
h all dire
ted edges point in the same dire
tion.

Referen
e: Based on Eiglsperger, Kaufmann [166℄, also Chimani, Zeranski [119℄.

Comments: One of the monotone 
rossing numbers. The upward 
rossing number 
or-

responds to the layer-free upward 
rossing minimization problem [115℄. Eiglsperger

and Kaufmann de�ne the notion of a 
rossing number for a (mixed) upward pla-

narization, 
alling it the (mixed) upward 
rossing minimal problem. Chimani and

Zeranski [119℄ then use term upward 
rossing number. The upward 
rossing number


ould also be 
alled the dire
ted 
rossing number or the hierar
hi
al 
rossing number;

the latter term has been used in the 
ontext of leveled graphs [351℄. Generalizing to

re
urrent hierar
hies, one 
ould de�ne a 
lo
kwise 
rossing number (see 
y
li
 level


rossing number).

Complexity: Even testing whether a graph is upward planar, that is, has upward 
ross-

ing number 0, is NP-
omplete [205℄. See [118℄ for a survey on upward planarity

testing, and [119℄ for a survey on exa
t upward 
rossing minimization.

Relationships: mon-cr(G) 6 mon-cr�(G), where � is the partial ordering indu
ed by

the orientation of G. The bimodal 
rossing number is a lower bound on mon-cr�(G).

Open Questions: Computing the upward 
rossing number remains NP-
omplete even

if we restri
t the number of levels at whi
h verti
es 
an be pla
ed: for two levels,

the NP-
omplete bipartite 
rossing number is a spe
ial 
ase. Is upward planarity

�xed-parameter tra
table if the parameter is the number of levels?

Also see: Monotone 
rossing numbers, bimodal 
rossing number, bipartite 
rossing

number, 
lo
kwise 
rossing number (under 
y
li
 level 
rossing number).

Weighted 
rossing number

Definition: The weighted 
rossing number, cr(D,w) of a drawing D of a graph G =
(V,E) with weights w : E2 → R>0, is de�ned as

∑
e,f∈E w(e, f) · iD(e, f), where

iD(e, f) is the number of 
rossings between e and f in D. The weighted 
rossing

number, cr(G,w) is the minimum of cr(D,w) over all drawings of G.

Referen
e: Mohar [342℄, S
haefer, Sedgwi
k, �tefankovi£ [412℄.

Comments: Assigning weights to edges (as opposed to edge pairs) is an old idea. Integer

weights are typi
ally interpreted as parallel 
opies of simple edges; for many 
rossing

number variants, it is easy to show that k parallel edges 
orrespond to a single edge

of weight k. This argument may have �rst o

urred in a paper by Kainen [282℄ in

whi
h he shows that crΣ(G) 6 k2 crΣ(G
′) where G is a graph with at most k parallel

edges between every pair of verti
es, and G′
is the underlying simple graph of G. If
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G has exa
tly k parallel edges between every pair of verti
es, then equality holds.

This shows, as S
heinerman and Ullman [415, Theorem 7.1.4℄ observed, that the

fra
tional 
rossing number equals the 
rossing number and thus is of no independent

interest. Some 
rossing number variants, like independent 
rossing number and the


rossing number of abstra
t topologi
al graphs, 
an be 
onsidered spe
ial 
ases of

the weighted 
rossing number. Mohar and Stephen [344℄ study the expe
ted value

of randomly weighted graphs and derives a 
rossing lemma for this 
ase.

Complexity: NP-
omplete [412℄.

105

Also see: Crossing number of abstra
t topologi
al graph.

Wire 
rossing number

Definition: A layout is a partition of a re
tangle (the 
hip area) into two types of smaller

re
tangles: modules, where wires end, and regions, through whi
h wires are routed.

Verti
es are lo
ated on the boundary of modules. An edge between two verti
es

has asso
iated with it the netlist, the list of regions it passes through (in the given

order) to 
onne
t its endpoints. The wire 
rossing number is the smallest number

of 
rossings with whi
h all the netlists 
an be realized.

Referen
e: Based on Groenveld [215℄. Also, Chen and Lee [109℄.

Comments: The study of 
rossings numbers for VLSI layouts goes ba
k to Leighton [318℄,

of 
ourse, but after a while more spe
ialzed models developed.

106

The one des
ribed

above is 
losest in spirit to Groenveld's des
ription [215℄ and Chen and Lee's later

version [109℄. The name wire 
rossing number was not used in those papers, but �rst

appears, as far as we know, in [291℄, a paper that des
ribes a slightly di�erent model,

and introdu
es the notion of hyper
rossings, 
rossings of hyperedges (Groenveld [215℄

also 
onsiders hyperedges, multi-terminal nets in his terminology, but deals with

them di�erently). The wire 
rossing number as de�ned above is not parti
ularly

interesting as a graph 
rossing number, be
ause the topology of the edges does

not 
hange (with respe
t to the modules). Any two edges 
ross at most on
e, and

their isotopy 
lass determines whether they have to 
ross or not. We de
ided to

in
lude the wire 
rossing number, sin
e it 
ontains aspe
ts of several other 
rossing

numbers: it is really a spe
ial 
ase of the map 
rossing number or the 
onstrained


rossing number in whi
h the isotopy type of ea
h edge is �xed. The idea of routing

along given tra
ks (the netlists) is also similar to the Metro-line 
rossing number.

Marek-Sadowska and Sarrafzadeh [327℄ also 
onsider what Chen and Lee [109℄ 
all

the un
onstrained 
rossing minimization problem in whi
h the isotopy type of the

edges is not �xed. Both papers 
laim a polynomial time algorithm for the problem

105

This assumes w is 
onsidered part of the input (so weights 
an be large). NP-hardness follows from

Garey, Johnson [204℄ sin
e the regular 
rossing number is a spe
ial 
ase. NP-membership is harder.

106

We should mention that Hotz [270, Se
tion 3.6℄ develops a notion of (hyperedge) 
rossing number

for 
ir
uit layout and poses at least one interesting spe
ial problem for the bipartite 
rossing number.

Unfortunately, he works over an abstra
t notion of 
ir
uits introdu
ed using 
ategory theory, whi
h makes

his text unne
essarily hard to read. His notation for the 
rossing number of a 
ir
uit 
omputing a Boolean

fun
tion f is LV (f).
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in this 
ase, whi
h is unlikely, sin
e the un
onstrained version of the problem is

equivalent to 
omputing a map 
rossing number, whi
h is NP-
omplete [384℄.

107

Complexity: Polynomial time [215℄.

Relationships: Map 
rossing number, 
onstrained 
rossing number, Metro-line 
rossing

number.

x-monotone 
rossing number. See monotone 
rossing numbers.

4 Some New Questions on Crossing Numbers

Several open questions have already been embedded in the text above, we don't want to

repeat these here. The following questions, as far as we know, are new.

Several authors have studied the parity of 
rossing numbers of 
omplete graphs,

Guy [222℄, Kleitman [295, 296℄, Ar
hdea
on, Ri
hter, and others, but how hard is it

to 
ompute?

Question 10. What is the 
omplexity of determining cr(G) mod 2?

A solution has been announ
ed by Hlin¥ny and Thomassen [262℄, they show that the

problem is NP-
omplete under Turing (Cook) redu
tions; it remains open whether the

problems is NP-
omplete under many-one (Karp) redu
tions.

It's 
ommon knowledge that adja
ent 
rossings don't matter, so the following should

be easy:

Question 11. Is cr(Kn) = cr−(Kn)?

In reality, we do not even know whether there is a good bound on the total number of


rossings in a cr−-minimal drawing ofKn. There are many similar open questions for other


rossing numbers, for example, pcr(Kn) = cr(Kn) and ocr+(Kn) = ocr(Kn) = iocr(Kn).
For monotone 
rossing numbers some progress has been made [48℄.

We know that the cr problem is ∃R-
omplete so, as Biensto
k realized, optimal draw-

ings 
an require exponential pre
ision in the 
oordinates. What happens if we only have

polynomial pre
ision available?

Question 12. Is there a fun
tion f so that G has a straight-line grid drawing on a

O(n)×O(n) grid (that is, verti
es are grid points) with at most f(cr(G)) 
rossings?

We 
an broaden the question by using the grid 
rossing number: is there a fun
tion f
so that cr#(G, n

k, 2) 6 f(cr(G)) for some k?
One 
an also 
onsider games as the sour
e of 
rossing number de�nitions; here is a

pen and paper 
rossing game based on an idea from [350℄:

107

The two papers really show that one 
an e�
iently �nd a drawing in whi
h every pair of edges 
rosses

at most on
e. Su
h a drawing need not be 
rossing-minimal, of 
ourse.
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Question 13. Suppose we arrange 2n points on the boundary of a disk; players alter-

nate 
onne
ting pairs of points; 
rossing your own edge 
osts two points, 
rossing your

opponent's edge 
osts one point. Who wins?

A re
ent 
omputer game [56℄ suggests a 
on
rete notion of a game 
rossing number:

Question 14. Two players alternate pla
ing verti
es of a graph (a Cn in the original

game) for a straight-line drawing of the graph in the plane. A vertex on
e pla
ed 
annot

be moved. The �rst player attempts to minimize the number of 
rossings, the se
ond

player tries to maximize them. What is the largest number of 
rossings the se
ond player


an for
e in the �nal drawing?

By Fary's theorem, cr(G) = 0 implies that cr(G) = 0. Does Fary's theorem generalize

to other 
rossing numbers? For most, it is either an immediate 
onsequen
e (pair 
rossing

number, lo
al 
rossing number) or irrelevant (bipartite and book 
rossing number, for

example). The answer is �no� for the simultaneous 
rossing number, sin
e scr(T, P ) = 0
for any tree T and path P , and there are trees and paths for whi
h scr(T, P ) > 0 [28℄.

What about metri
 surfa
es other than the plane? To take the easiest open example:

Question 15. If a graph 
an be embedded in a torus, does it always have a geodesi


embedding in the torus?

We assume the torus is a standard geometri
 torus with the natural distan
e metri
 in-

herited from 3-dimensional spa
e. There is a related result by Mohar [340℄ for embeddings

on surfa
es of negative Euler 
hara
teristi
.

While it's been 
onje
tured that c̃r(Kn) = cr(Kn), we do not even know whether the

re
tilinear 
rossing number 
an be bounded in the pseudolinear 
rossing number.

Question 16. Is there a fun
tion f so that cr(G) 6 f(c̃r(G)) for all graphs G?
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