
Defective and Clustered Graph Colouring

David R. Wood∗

School of Mathematical Sciences
Monash University

Melbourne, Australia

david.wood@monash.edu

Submitted: 20th October 2017
Accepted: 20th March 2018
Published: ??th March 2018

Abstract

Consider the following two ways to colour the vertices of a graph where the require-
ment that adjacent vertices get distinct colours is relaxed. A colouring has defect d if each
monochromatic component has maximum degree at most d. A colouring has clustering c if
each monochromatic component has at most c vertices. This paper surveys research on these
types of colourings, where the first priority is to minimise the number of colours, with small
defect or small clustering as a secondary goal. List colouring variants are also considered.
The following graph classes are studied: outerplanar graphs, planar graphs, graphs embed-
dable in surfaces, graphs with given maximum degree, graphs with given maximum average
degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly
or knotlessly embeddable graphs, graphs with given Colin de Verdière parameter, graphs
with given circumference, graphs excluding a fixed graph as an immersion, graphs with given
thickness, graphs with given stack- or queue-number, graphs excluding Kt as a minor, graphs
excluding Ks,t as a minor, and graphs excluding an arbitrary graph H as a minor. Several
open problems are discussed.
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1 Introduction

Consider a graph where each vertex is assigned a colour. A monochromatic component is a
connected component of the subgraph induced by all the vertices assigned a single colour. A
graph G is k-colourable with clustering c if each vertex can be assigned one of k colours such
that each monochromatic component has at most c vertices. A graph G is k-colourable with
defect d if each vertex of G can be assigned one of k colours such that each vertex is adjacent to
at most d neighbours of the same colour; that is, each monochromatic component has maximum
degree at most d.

This paper surveys results and open problems regarding clustered and defective graph colouring,
where the first priority is to minimise the number of colours, with small defect or small clustering
as a secondary goal. We include various proofs that highlight the main methods employed. The
emphasis is on general results for broadly defined classes of graphs, rather than more precise
results for more specific classes. With this viewpoint the following definitions naturally arise.

The clustered chromatic number of a graph class G, denoted by χ⋆(G), is the minimum integer k
for which there exists an integer c such that every graph in G has a k-colouring with clustering c.
If there is no such integer k, then G has unbounded clustered chromatic number. A graph class G
is defectively k-colourable if there exists an integer d such that every graph in G is k-colourable
with defect d. The defective chromatic number of G, denoted by χ∆(G), is the minimum integer
k such that G is defectively k-colourable. If there is no such integer k, then G has unbounded
defective chromatic number. Every colouring of a graph with clustering c has defect c−1. Thus
χ∆(G) ⩽ χ⋆(G) ⩽ χ(G) for every class G. Tables 1 and 2 summarise the results presented in
this survey; see Sections 1.2 and 1.3 for the relevant definitions.

1.1 History and Terminology

There is no single origin for the notions of defective and clustered graph colouring, and the
terminology used in the literature is inconsistent.

Early papers on defective colouring include [16, 17, 128, 138, 166, 211], although these did not use
the term ‘defect’. The definition of “k-colourable with defect d”, often written (k, d)-colourable,
was introduced by Cowen et al. [66]. This terminology is fairly standard, although d-relaxed or
d-improper is sometimes used. The minimum number of colours in a colouring of a graph G
with defect d has been called the d-improper chromatic number [144] or d-chromatic number [16]
of G. Cowen et al. [65] introduced the defective chromatic number of a graph class (as defined
above).

Also for clustered colouring, the literature is inconsistent. One of the early papers is by Kleinberg
et al. [151], who defined a colouring to be (k, c)-fragmented if, in our language, it is a k-colouring
with clustering c. I prefer “clustering” since as c increases, intuitively the “fragmentation” of
the monochromatic components decreases. Edwards and Farr [89, 90] called a monochromatic
component a chromon and called the clustered chromatic number of a class the metachromatic
number.
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Table 1: Summary of Results for Defective Colouring

graph class G χ∆(G) χℓ
∆(G) Sect.

outerplanar O 2 2 3.1
planar P 3 3 3.2
Euler genus ⩽ g Eg 3 3 3.4
max average degree ⩽ m Am ⌊m2 ⌋+ 1 ⌊m2 ⌋+ 1 5
linklessly embeddable L 4 4 7.2
knotlessly embeddable K 5 5 7.3
Colin de Verdière ⩽ k Vk k k 7.4
k-stack graphs Sk k + 1 k + 1 7.6
k-queue graphs Qk k + 1, . . . , 2k + 1 2k + 1 7.6
no Kt immersion It 2 t− 1 7.7
treewidth ⩽ k k + 1 k + 1 8.1
treewidth ⩽ k, max degree ⩽ ∆ 2 2 8.1
no Kt-minor MKt t− 1 t− 1 8.2

no H-minor MH td(H)− 1, . . . , 2td(H)+1 − 4 min{s : ∃tH ⪯ Ks,t} 8.3
no Ks,t-minor (s ⩽ t) MKs,t s s 8.4

circumference ⩽ k Ck ⌊log2 k⌋+ 1, . . . , ⌊3 log2 k⌋ ⌈k+1
2 ⌉ 8.5

no (k + 1)-path Hk ⌈log2(k + 2)⌉ − 1, . . . , ⌊3 log2 k⌋ ⌊k+1
2 ⌋ 8.5

g-thickness ⩽ k T g
k 2k + 1 2k + 1 9

Table 2: Summary of Results for Clustered Colouring

graph class G χ⋆(G) χℓ
⋆(G) Sect.

outerplanar O 3 3 3.1
planar P 4 4 3.2
Euler genus ⩽ g Eg 4 4 3.5
Euler genus ⩽ g, max degree ⩽ ∆ 3 3, 4 8.1

max degree ⩽ ∆ D∆

⌊
∆+6
4

⌋
, . . . ,

⌈
∆+1
3

⌉ ⌊
∆+6
4

⌋
, . . . ,∆+ 1 4

max average degree ⩽ m Am ⌊m2 ⌋+ 1, . . . , ⌊m⌋+ 1 ⌊m2 ⌋+ 1, . . . , ⌊m⌋+ 1 5
linklessly embeddable L 5 5 7.2
knotlessly embeddable K 6 6 7.3
Colin de Verdière ⩽ k Vk open open 7.4
k-stack graphs Sk k + 2, . . . , 2k + 2 k + 2 . . . 2k + 2 7.6
k-queue graphs Qk k + 1, . . . , 4k k + 1, . . . , 4k 7.6
no Kt immersion It ⩾ ⌊ t+4

4 ⌋ ⩾ t− 1 7.7
treewidth ⩽ k k + 1 k + 1 8.1
treewidth ⩽ k, max degree ⩽ ∆ 2 2 8.1
no Kt-minor MKt t− 1, . . . , 2t− 2 t− 1, . . . , ⌈312 t⌉ 8.2
no Kt-minor, max degree ⩽ ∆ 3 ⩾ 3 8.2

no H-minor MH td(H)− 1, . . . , 2td(H)+1 − 4 open 8.3
no Ks,t-minor (s ⩽ t) MKs,t s+ 1, . . . , 2s+ 2 open 8.4
circumference ⩽ k Ck ⌊log2 k⌋+ 1, . . . , ⌊3 log2 k⌋ open 8.5
no (k + 1)-path Hk ⌈log2(k + 2)⌉ − 1, . . . , ⌊3 log2 k⌋ open 8.5
g-thickness ⩽ k T g

k 2k + 2, . . . , 6k + 1 2k + 2, . . . , 6k + 1 9
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1.2 Definitions

This section briefly states standard graph theoretic definitions, familiar to most readers.

A clique in a graph is a set of pairwise adjacent vertices.

Let G be a graph. A k-colouring of G is a function that assigns one of k colours to each vertex
of G. An edge vw of G is bichromatic if v and w are assigned distinct colours. A vertex v of G
is properly coloured if v is assigned a colour distinct from every neighbour of v. A colouring of
G is proper if every vertex is properly coloured. The chromatic number of G, denoted χ(G), is
the minimum integer k such that there is a proper k-colouring of G.

A graph parameter is a real-valued function f on the class of graphs such that f(G1) = f(G2)
whenever graphs G1 and G2 are isomorphic. Say f is bounded on a graph class G if there exists
c such that f(G) ⩽ c for every G ∈ G, otherwise f is unbounded on G. If f is bounded on
G, then let f(G) := sup{f(G) : G ∈ G}. Most graph parameters considered in this survey are
integer-valued, in which case, if f is bounded on G, then f(G) = max{f(G) : G ∈ G}.

For a graph G, let mad(G) be the maximum average degree of a subgraph of G.

A graph is k-degenerate if every non-empty subgraph has a vertex of degree at most k. A greedy
colouring algorithm shows that every k-degenerate graph is (k + 1)-colourable.

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph
of G by contracting edges. A class of graphs G is minor-closed if for every graph G ∈ G every
minor of G is in G, and some graph is not in G. A graph G is H-minor-free if H is not a minor
of G. Let MH be the class of H-minor-free graphs.

To subdivide an edge vw in a graph Gmeans to delete vw, add a new vertex x, and add new edges
vx and xw. A subdivision of G is any graph obtained from G by repeatedly subdividing edges.
The 1-subdivision of G is the graph obtained from G by subdividing each edge of G exactly once.
A graph H is a topological minor of a graph G if a graph isomorphic to a subdivision of H is a
subgraph of G.

The Euler genus of the orientable surface with h handles is 2h. The Euler genus of the non-
orientable surface with c cross-caps is c. The Euler genus of a graph G is the minimum Euler
genus of a surface in which G embeds (with no crossings). See [177] for background on embed-
dings of graphs on surfaces.

A tree decomposition of a graph G is given by a tree T whose nodes index a collection (Tx ⊆
V (G) : x ∈ V (T )) of sets of vertices in G called bags, such that (1) for every edge vw of G,
some bag Tx contains both v and w, and (2) for every vertex v of G, the set {x ∈ V (T ) : v ∈
Tx} induces a non-empty (connected) subtree of T . The width of a tree decomposition T is
max{|Tx| − 1 : x ∈ V (T )}. The treewidth of a graph G, denoted by tw(G), is the minimum
width of the tree decompositions of G. See [32, 33, 118, 193, 194] for surveys on treewidth.

A layering of a graphG is a partition (V0, V1, . . . , Vℓ) of V (G) such that for every edge vw ∈ E(G),
if v ∈ Vi and w ∈ Vj , then |i− j| ⩽ 1. Each set Vi is called a layer. If r is a vertex in a connected
graph G and Vi := {v ∈ V (G) : distG(v, r) = i} for i ⩾ 0, then V0, V1, . . . is a layering called the
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BFS layering of G starting at r.

The layered treewidth of a graph G is the minimum integer k such that there is a tree decomposi-
tion (Tx ⊆ V (G) : x ∈ V (T )) of G and a layering (V0, V1, . . . , Vℓ) of G, such that |Vi∩Tx| ⩽ k for
every i ∈ [0, ℓ] and every x ∈ V (T ). Layered treewidth was introduced by Dujmović et al. [81].

A pair (G1, G2) is a separation of a graph G if G1 and G2 are induced subgraphs of G such that
G = G1∪G2, and V (G1) \V (G2) ̸= ∅ and V (G2) \V (G1) ̸= ∅. If, in addition, |V (G1∩G2)| ⩽ k,
then (G1, G2) is a k-separation. A separation (G1, G2) of G is minimal if every vertex in
V (G1) ∩ V (G2) has a neighbour in both V (G1) \ V (G2) and V (G2) \ V (G1).

A balanced separator in a graph G is a set S ⊆ V (G) such that every component of G− S has
at most 1

2 |V (G)| vertices.

The radius of a connected graph G is the minimum integer r such that for some vertex v of G,
every vertex of G is at distance at most r from v.

1.3 Choosability

Many defective and clustered colouring results hold in the setting of list colouring. Eaton and
Hull [86] first introduced defective list colouring.

A list assignment for a graph G is a function L that assigns a set L(v) of colours to each vertex
v ∈ V (G). Define a graph G to be L-colourable if there is a proper colouring of G such that
each vertex v ∈ V (G) is assigned a colour in L(v). A list assignment L is a k-list assignment if
|L(v)| ⩾ k for each vertex v ∈ V (G). The choice number of a graph G is the minimum integer
k such that G is L-colourable for every k-list-assignment L of G.

For a list-assignment L of a graph G and integer d ⩾ 0, define G to be L-colourable with defect
d if there is a colouring of G with defect d such that each vertex v ∈ V (G) is assigned a colour
in L(v). Define G to be k-choosable with defect d if G is L-colourable with defect d for every
k-list assignment L of G. Similarly, for an integer c ⩾ 1, G is L-colourable with clustering c if
there is a colouring of G with clustering c such that each vertex v ∈ V (G) is assigned a colour
in L(v). Define G to be k-choosable with clustering c if G is L-colourable with clustering c for
every k-list assignment L of G.

The defective choice number of a graph class G, denoted by χℓ
∆(G), is the minimum integer k for

which there exists an integer d ⩾ 0, such that every graph G ∈ G is k-choosable with defect d.
The clustered choice number of a graph class G, denoted by χℓ

⋆(G), is the minimum integer k for
which there exists an integer c ⩾ 1, such that every graph G ∈ G is k-choosable with clustering
c.

1.4 Standard Examples

The following construction, or variants of it, have been used by several authors [87, 119, 124,
183, 185] to provide lower bounds on the defective chromatic number. As illustrated in Figure 1,
let S(h, d) be defined recursively as follows. Let S(0, d) be the graph with one vertex and no
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edges. For h ⩾ 1, let S(h, d) be the graph obtained from d+ 1 disjoint copies of S(h− 1, d) by
adding one dominant vertex. Note that S(1, d) = K1,d+1, the star with d+ 1 leaves.

d+ 1

S1,d

Sh−1,d Sh−1,dSh−1,d Sh−1,d

d+ 1

Figure 1: The standard example S(h, d).

Lemma 1. For integers h ⩾ 1 and d ⩾ 0, the graph S(h, d) has no h-colouring with defect d.

Proof. We proceed by induction on h. In the base case, S(1, d) = K1,d+1, which obviously has
no 1-colouring with defect d. Now assume that h ⩾ 2 and the claim holds for h − 1. Suppose
on the contrary that S(h, d) has an h-colouring with defect d. Let v be the dominant vertex
in S(h, d), and say v is blue. Then S(h, d) − v has d + 1 components C1, . . . , Cd+1. Since v is
dominant and has monochromatic degree at most d, at most d of C1, . . . , Cd+1 contain a blue
vertex. Thus some Ci is (h − 1)-coloured with defect d. This is a contradiction since Ci is
isomorphic to S(h− 1, d). Thus S(h, d) has no h-colouring with defect d.

Similarly, as illustrated in Figure 2, let S(h, c) be defined recursively as follows. Let S(1, c) be
the path on c+1 vertices. For h ⩾ 2, let S(h, c) be the graph obtained from c disjoint copies of
S(h− 1, c) by adding one dominant vertex.

c+ 1

S1,c

Sh−1,c Sh−1,cSh−1,c Sh−1,c

c

Figure 2: The standard example S(h, c).

Lemma 2. For integers h, d ⩾ 1, the graph S(h, c) has no h-colouring with clustering c.
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Proof. We proceed by induction on h. In the base case, S(1, c) is the path on c + 1 vertices,
which obviously has no 1-colouring with clustering c. Now assume that h ⩾ 2 and the claim
holds for h− 1. Suppose on the contrary that S(h, c) has an h-colouring with defect c. Let v be
the dominant vertex in S(h, c), and say v is blue. Then S(h, c)− v has c components C1, . . . , Cc.
Since v is dominant and the monochromatic component containing v has at most c vertices, at
most c− 1 of C1, . . . , Cc contain a blue vertex. Thus some Ci is (h− 1)-coloured with clustering
c. This is a contradiction since Ci is isomorphic to S(h− 1, c). Thus S(h, d) has no h-colouring
with clustering c.

As illustrated in Figure 3, S(2, d) is planar, S(2, c) is outerplanar, and S(3, c) is planar.

b
b
b

bbb

b
b

b

b
b

b

S(2, d)

bbb b b bb b b

S(2, c)

bbbbbbbbb b b b b b b b b b

b b b

S(3, c)

Figure 3: Planar standard examples.

1.5 Two Fundamental Observations

The following elementary, but fundamental, result characterises those graph classes with
bounded defective or clustered chromatic number.

Proposition 3. The following are equivalent for a graph class G:

(1) G has bounded defective chromatic number,

(2) G has bounded clustered chromatic number,

(3) G has bounded chromatic number.

Moreover, χ∆(G) ⩽ χ⋆(G) ⩽ χ(G).

Proof. We first show that (3) implies (1) and (2). Suppose that G has bounded chromatic
number. That is, for some integer k, every graph G in G is properly k-colourable. Thus G is
k-colourable with defect 0 and with clustering 1. Hence χ∆(G) ⩽ χ⋆(G) ⩽ k.

We now show that (1) implies (3). Suppose that G has bounded defective chromatic number.
That is, for some integers k and d, every graph G in G is k-colourable such that each monochro-
matic subgraph has maximum degree d. Every graph with maximum degree d is properly
(d+ 1)-colourable by a greedy algorithm. Apply this result to each monochromatic subgraph of
G. Hence G is properly k(d+ 1)-colourable, and G has bounded chromatic number.
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We finally show that (2) implies (1). Suppose that G has bounded clustered chromatic number.
That is, for some integers k and c, every graph G in G is k-colourable such that each monochro-
matic subgraph has at most c vertices, and therefore has maximum degree at most c− 1. Hence
χ∆(G) ⩽ k, and G has bounded defective chromatic number.

We have the following analogous result for defective and clustered choosability.

Proposition 4. The following are equivalent for a graph class G:

(1) G has bounded defective choice number,

(2) G has bounded clustered choice number,

(3) G has bounded choice number.

(4) G has bounded maximum average degree.

Proof. A greedy algorithm shows that (4) implies (3). Alon [10] proved that (3) implies (4).
More generally, Kang [141] proved that (1) implies (4). It is immediate that (3) implies (1) and
(2). As in the proof of Proposition 3, if a graph G is k-choosable with clustering c, then G is
k-choosable with defect c− 1. Thus (2) implies (1).

1.6 Related Topics

We briefly mention here some related topics not covered in this survey:

• defective colourings of random graphs [142, 143, 144],

• defective versions of Ohba’s list colouring conjecture [214, 229],

• defective Nordhaus-Gaddum type results [2, 3],

• acyclic defective colourings [5, 34, 49, 100, 101],

• uniquely defectively colourable graphs [104]

• weighted defective colouring [20, 22, 123].

• defective colourings of triangle-free graphs [4, 204, 205],

• defective colouring of directed graphs [165],

• defective edge colouring [125, 126, 223],

• defective circular and fractional colouring [99, 111, 152, 174],

• equitable defective colouring [217],

• defective co-colouring [6],

Also note that defective colouring is computationally hard. In particular, it is NP-complete
to decide if a given graph G is 3-colourable with defect 1, even when G has maximum degree
6 or is planar with maximum degree 7 [18]. See [24, 28, 52, 55, 64, 115, 155, 178] for more
computational aspects of defective and clustered clustered colouring.
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2 Greedy Approaches

2.1 Light Edges

Light edges provide a generic method for proving results about defective colourings. An edge
e in a graph is ℓ-light if both endpoints of e have degree at most ℓ. There is a large literature
on light edges in graphs; see [35, 48, 50, 133, 135, 136] for example. Several results on defective
colouring use, sometimes implicitly, the following lemma [87, 119, 158, 185, 206].

Lemma 5. For integers ℓ ⩾ k ⩾ 1, if every subgraph H of a graph G has a vertex of degree at
most k or an ℓ-light edge, then G is (k + 1)-choosable with defect ℓ− k.

Proof. Let L be a (k+1)-list assignment for G. We prove by induction on |V (H)|+ |E(H)| that
every subgraph H of G is L-colourable with defect ℓ−k. The base case with |V (H)|+|E(H)| = 0
is trivial. Consider a subgraphH of G. IfH has a vertex v of degree at most k, then by induction
H − v is L-colourable with defect ℓ − k, and there is a colour in L(v) used by no neighbour of
v which can be assigned to v. Now assume that H has minimum degree at least k + 1. By
assumption, H contains an ℓ-light edge xy. By induction, H − xy has an L-colouring c with
defect ℓ − k. If c(x) ̸= c(y), then c is also an L-colouring of H with defect ℓ − k. Now assume
that c(x) = c(y). We may further assume that c is not an L-colouring of H with defect ℓ − k.
Without loss of generality, x has exactly ℓ − k + 1 neighbours (including y) coloured by c(x).
Since degH(x) ⩽ ℓ, there are at most k−1 neighbours not coloured by c(x). Since L(v) contains
k colours different from c(x), there is a colour used by no neighbour of x which can be assigned
to x.

2.2 Islands

Esperet and Ochem [98] introduced the following definition and lemma. A k-island in a graph G
is a non-empty set S ⊆ V (G) such that every vertex in S has at most k neighbours in V (G) \S.

Lemma 6 ([98]). If every non-empty subgraph of a graph G has a k-island of size at most c,
then G is (k + 1)-choosable with clustering c.

Proof. We proceed by induction on |V (G)|. The base case is trivial. Let L be a (k + 1)-list
assignment for G. By assumption, G has a k-island S. By induction, G−S is L-colourable with
clustering c. Assign each vertex v ∈ S a colour in L(v) not assigned to any neighbour of v in
V (G) \S. Each monochromatic component is contained in S or is a monochromatic component
of G−S. Since |S| ⩽ c, G is L-coloured with clustering c. Thus G is k-choosable with clustering
c.

Note that islands generalise the notion of degeneracy, since a graph is k-degenerate if and only
if every non-empty subgraph has a k-island of size 1. Thus Lemma 6 with c = 1 is equivalent to
the well-known statement that every k-degenerate graph is properly (k + 1)-choosable.
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3 Graphs on Surfaces

3.1 Outerplanar Graphs

Let O be the class of outerplanar graphs. Every outerplanar graph is 2-degenerate, and thus is
properly 3-colourable and 3-choosable. Since S(2, c) is outerplanar, by Lemma 2,

χ⋆(O) = χℓ
⋆(O) = 3.

Cowen et al. [66] proved the following result for defective colourings of outerplanar graphs.

Theorem 7 ([66]). Every outerplanar graph G is 2-colourable such that each monochromatic
component is a path (and thus with defect 2).

Proof. We may assume G is connected. Let V0, V1, . . . be the BFS layering starting from some
vertex r. Thus V0 = {r}. IfG[Vi] has maximum degree at least 3, for some i ⩾ 1, then contracting
V0 ∪ · · · ∪ Vi−1 into a single vertex gives a K2,3-minor, which is not outerplanar. Thus G[Vi]
has maximum degree at most 2. If G[Vi] contains a cycle, then contracting V0 ∪ · · · ∪ Vi−1 into
a single vertex gives a K4-minor, which is not outerplanar. Thus each component of G[Vi] is a
path. Colour each vertex in Vi by i mod 2. Then G is 2-coloured such that each monochromatic
component is a path.

Eaton and Hull [86] generalised Theorem 7 by showing that every outerplanar graph is 2-
choosable with defect 2. By Lemma 1, the outerplanar graph K1,d+1 is not 1-colourable with
defect d. Thus

χ∆(O) = χℓ
∆(O) = 2.

Moreover, the defect bound in the above results is best possible since the graph shown in Figure 4
is not 2-colourable with defect 1.

Figure 4: An outerplanar graph that is not 2-colourable with defect 1.

See [223, 225] for more results on defective colouring of outerplanar graphs.

3.2 Planar Graphs

Let P be the class of planar graphs. We now discuss defective colourings of P. First note
that many results about light edges in a planar graphs are known [136, 137]. Borodin [35]
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proved that every planar graph with minimum degree at least 3 contains an edge vw with
deg(v) + deg(w) ⩽ 13 (which is best possible for the graph obtained from the icosahedron by
stellating each face). This edge is 10-light. By Lemma 5, every planar graph is 3-choosable
with defect 8. Cowen et al. [66] improved the defect bound here to 2, and Poh [189] proved an
analogous result in which each monochromatic component is a path (see [124] for an alternative
proof).

Theorem 8 ([189]). Every planar graph is 3-colourable such that each monochromatic compo-
nent is a path (and thus with defect 2).

Proof. We proceed by induction on |V (G)| with the hypothesis that every planar graph G is
3-colourable such that for each edge v1v2 of G, there is such a 3-colouring of G such that each
monochromatic component is a path, and v1 and v2 are properly coloured. (Recall that this
means that every neighbour of v1 is assigned a distinct colour from v1, and every neighbour of
v2 is assigned a distinct colour from v2.) In the base case, if |V (G)| ⩽ 4, then assign v1 and v2
distinct colours, and assign the (at most two) other vertices a third colour. Each monochromatic
component is a path. Now assume that |V (G)| ⩾ 5. By adding edges, we may assume that G is
a planar triangulation. Say the faces containing v1v2 are v1av2 and v1bv2. Let G′ be obtained
from G by deleting the edge v1v2, and introducing a new vertex x adjacent to v1, v2, a, b. Then
G′ is a planar triangulation. Let C be a shortest cycle in (G′−v1)−v2 such that axb is a subpath
of C. Since G′ is 3-connected and |V (G)| ⩾ 5, such a cycle exists. Since C is shortest, C is an
induced cycle. Let G′

1 and G′
2 be the subgraphs of G′ ‘inside’ and ‘outside’ of C including C.

That is, G′ = G′
1 ∪G′

2 and V (G′
1) ∩ V (G′

2) = V (C) and E(G′
1) ∩ E(G′

2) = E(C). Without loss
of generality, vi ∈ V (G′

i) for i ∈ {1, 2}. Note that

|V (G)| = |V (G′)| − 1 = |V (G′
1)|+ |V (G′

2)| − |V (C)| − 1.

Let G′′
i be obtained from G′

i by contracting C into vertex xi. Then vixi ∈ E(G′′
i ) and |V (G′′

i )| =
|V (G′

i)| − |V (C)|+ 1. Thus

|V (G)| = (|V (G′′
1)|+ |V (C)| − 1) + (|V (G′′

2)|+ |V (C)| − 1)− |V (C)| − 1

= |V (G′′
1)|+ |V (G′′

2)|+ |V (C)| − 3.

Since |V (G′′
2)| ⩾ 2 and |V (C)| ⩾ 3, we have |V (G)| ⩾ |V (G′′

1)| + 2, implying |V (G′′
1)| < |V (G)|.

Similarly, |V (G′′
2)| < |V (G)|. By induction, each G′′

i is 3-colourable such that each monochro-
matic component is a path, and vi and xi are properly coloured. Permute the colours so that x1
and x2 get the same colour, and v1 and v2 get distinct colours. Colour each vertex in V (C)\{x}
by the colour assigned to x1 and x2. Note that V (C) \ {x} induces a path in G (since x is not
a vertex of G). Moreover, V (C) \ {x} is a monochromatic component, since each xi is properly
coloured in G′′

i . Every other monochromatic component of G is a monochromatic component of
G′′

1 or G′′
2, and is therefore a path in G.

Eaton and Hull [86] strengthened Theorem 8 by showing that every planar graph is 3-choosable
with defect 2. (See Theorem 33 or an alternative proof of a more general result with a weaker
defect bound.) Since S(2, d) is planar, by Lemma 1,

χ∆(P) = χℓ
∆(P) = 3.
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See [36, 38, 60, 110, 158, 206, 213, 223, 228] for more on defective colourings of planar graphs.
See [215, 224, 231] for more on defective choosability of planar graphs.

Now consider clustered colourings of planar graphs. The 4-colour theorem [19, 196] says that
every planar graph is properly 4-colourable. Cowen et al. [66] proved the weaker result that
every planar graph is 4-colourable with defect 1 and thus with clustering 2 (with a computer-
free elementary proof). Cushing and Kierstead [68] strengthened this result by proving that
every planar graph is 4-choosable with defect 1 and thus with clustering 2. Since S(3, c) is
planar, by Lemma 2,

χ⋆(P) = χℓ
⋆(P) = 4.

Thomassen [210] proved that every planar graph is properly 5-choosable. Voigt [212] and later
Mirzakhani [175] constructed planar graphs that are not 4-choosable. Thus χℓ(P) = 5.

3.3 Hex Lemma

Here we consider colourings of planar graphs with bounded degree. The following result is a
dual version of the Hex Lemma, which says that the game of Hex cannot end in a draw. The
proof is based on the proof of the Hex Lemma by Gale [105]. See [171, Section 6.1] for another
proof.

Theorem 9. For every integer k ⩾ 2 there is planar graph G with maximum degree 6 such that
every 2-colouring of G has a monochromatic path of length k.

Proof. A suitable subgraph of the triangular grid forms an embedded plane graph with
maximum degree 6, such that every internal face is a triangle, the outerface is a cycle
(a, . . . , b, . . . , c, . . . , d, . . . ), the distance between {a, . . . , b} and {c, . . . , d} is at least k, and the
distance between {b, . . . , c} and {d, . . . , a} is at least k. By Lemma 10 below, every 2-colouring
of G contains a monochromatic path between {a, . . . , b} and {c, . . . , d} or between {b, . . . , c} and
{d, . . . , a}, which has length at least k.

Lemma 10. Let G be an embedded plane graph with outerface (a, . . . , b, . . . , c, . . . , d, . . . ), such
that every internal face is a triangle, and a, b, c, d are distinct. Then for every 2-colouring of
G there is a monochromatic path between {a, . . . , b} and {c, . . . , d} or between {b, . . . , c} and
{d, . . . , a}.

Proof. Say the colours are blue and red. As shown in Figure 5, let G′ be obtained from G by
adding four new vertices w, x, y, z, where N(w) = {a, . . . , b} ∪ {z, x} and N(x) = {b, . . . , c} ∪
{w, y} and N(y) = {c, . . . , d} ∪ {x, z} and N(z) = {d, . . . , a} ∪ {y, w}. Colour w and y blue.
Colour x and z red. Note that G′ embeds in the plane, such that every internal face of G′ is
a triangle, and the outerface of G′ is the 4-cycle (w, x, y, z). The four internal faces of G′ that
share an edge with the outerface are (a,w, z), (b, x, w), (c, x, y) and (d, y, z). Call these faces
special. Let H be the graph with one vertex for each internal face of G′, where two vertices
of H are adjacent if the corresponding faces of H share an edge whose endpoints are coloured
differently. H is a subgraph of the dual of G′ and is therefore planar. Let A,B,C,D be the
vertices of H respectively corresponding to the special faces (a,w, z), (b, x, w), (c, x, y), (d, y, z).
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Since w and z are coloured differently, a has the same colour as exactly one of w and z, implying
A has degree 1 in H. Similarly, B, C and D each have degree 1 in H. If some face of G′ is
monochromatic, then the corresponding vertex of H has degree 0. Every non-monochromatic
non-special face F has two vertices of one colour and one vertex of the other colour, and F
does not share an edge with the outerface. Thus the vertex of H corresponding to F has degree
2 in H. In summary, every vertex of H has degree 0 or 2, except for A,B,C,D, which have
degree 1. Thus each component of H is either an isolated vertex, a cycle, or a path joining two
of A,B,C,D. The two paths joining A,B,C,D are disjoint and do not cross. Thus, without
loss of generality, H contains a path P with endpoints A and B. The red vertices on the faces
corresponding to vertices in P form a walk from {d, . . . , a} to {b, . . . , c}, which contains the
desired red path.

See [25, 145, 170, 172] for multi-dimensional generalisations of the Hex Lemma.

3.4 Defective Colouring of Graphs on Surfaces

For every integer g ⩾ 0, let Eg be the class of graphs with Euler genus at most g. This section
considers defective colourings of graphs in Eg. Cowen et al. [66] proved that every graph in Eg is
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Figure 5: Proof of the Hex Lemma
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defectively 4-colourable. Archdeacon [21] proved the conjecture of Cowen et al. [66] that every
graph in Eg is defectively 3-colourable. Since S(2, d) is planar, χ∆(Eg) = 3 by Lemma 1. The
following proof of Cowen et al. [65]1 provides a defect bound that is within a constant factor of
optimal (since Kn has Euler genus Θ(n2)).

Theorem 11 ([65]). Every graph G with Euler genus g is 3-colourable with defect d :=
max{12, ⌈

√
6g⌉+ 7}.

Proof. We proceed by induction on |V (G)|+ |E(G)|. If some vertex v has degree at most 2, then
by induction, G − v is 3-colourable with defect d. Assign v a colour different from the colours
assigned to the neighbours of v. Then G is 3-coloured with defect d. Now assume that G has
minimum degree at least 3. Let A be the set of vertices with degree at most d. If v, w ∈ A for
some edge vw, then by induction, G − vw is 3-colourable with defect d, which is a 3-colouring
of G with defect d. Now assume that A is a stable set. Let B be the set of vertices with degree
at least d+ 1. Since d ⩾ 12 and by Lemma 12 below, |B| ⩽ max{12(g−2),0}

d−11 . Colour the vertices

in A blue. Colour ⌈ |B|
2 ⌉ of the vertices in B red. Colour the other vertices in B green.

If g ⩽ 2 then B = ∅ and the defect is 0 ⩽ d, as desired. Otherwise |B| ⩽ 12(g−2)
d−11 , and the defect

is at most ⌈ |B|
2 ⌉ − 1. If g ∈ {3, 4} then d = 12 and |B| ⩽ 24 and the defect is at most 11, as

desired. Otherwise, g ⩾ 5, and the defect is at most |B|−1
2 ⩽ 6(g−2)

d−11 − 1
2 . We now show this

bound is at most d. Since g ⩾ 5, we have 12g + 36 ⩽ 12g + 7
√
6g, implying

12(g − 2) ⩽ 12g + (15− 8)
√

6g − 60 = (2
√
6g + 15)(

√
6g − 4).

Since d ⩾ √
6g + 7, we have 12(g − 2) ⩽ (2d + 1)(d − 11). That is, 6(g − 2) ⩽ (d + 1

2)(d − 11).

Since d ⩾ 12, we have 6(g−2)
d−11 − 1

2 ⩽ d, as claimed.

Lemma 12 ([65]). Let G be a graph with Euler genus g and minimum degree at least 3. Fix an
integer d. Let A be the set of vertices with degree at most d. Assume that A is a stable set. Let
B be the set of vertices with degree at least d+ 1. Then (d− 11)|B| ⩽ max{12(g − 2), 0}.

Proof. If B = ∅ then the result is vacuous. Now assume that B ̸= ∅. For each non-triangular
face f , add an edge between two non-consecutive vertices in B (which must exist since A is a
stable set). We obtain a multigraph triangulation G′, in which A is a stable set. Let ni be the
number of vertices with degree i in G′. Let α be the number of edges in G′ incident with vertices
in A. Let β be the number of edges in G′ with both endpoints in B. By Euler’s formula,

6(g − 2) =
∑
i⩾3

(i− 6)ni =
∑

3⩽i⩽d

(i− 6)ni +
∑

i⩾d+1

(i− 6)ni

=
∑

3⩽i⩽d

(i− 6)ni +
∑

i⩾d+1

( i2 − 6)ni +
1

2

∑
i⩾d+1

ini

=
∑

3⩽i⩽d

(i− 6)ni +
∑

i⩾d+1

( i2 − 6)ni +
1

2
(α+ 2β).

1 Cowen et al. [65] actually claim an upper bound on the defect of max{12,
√
6g+6}. We could not replicate this

calculation.
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Since G′ is a triangulation, each face of G′ has at most two edges incident with A, and at least
one edge with endpoints in B. It follows that α ⩽ 2β and

6(g − 2) ⩾
∑

3⩽i⩽d

(i− 6)ni +
∑

i⩾d+1

( i2 − 6)ni + α

=
∑

3⩽i⩽d

(2i− 6)ni +
∑

i⩾d+1

( i2 − 6)ni

⩾ 0 +
(
d+1
2 − 6

)
|B|.

The result follows.

Woodall [227] improved Theorem 11 to show that every graph with Euler genus g is 3-choosable
with defect max{9, 2 +

√
4g + 6}. Thus

χ∆(Eg) = χℓ
∆(Eg) = 3.

See Theorems 43 and 76 for generalisations of this result, and see [58, 59, 117, 190, 223, 234]
for further results on defective colourings of graphs embeddable on surfaces. One direction of
interest is the following definition, which allows for results that bridge the gap between proper
and defective colourings [39, 40, 56, 58, 59, 69, 178]: a graph G is (d1, . . . , dk)-colourable if there
is a partition V1, . . . , Vk of V (G) such that each induced subgraph G[Vi] has maximum degree
at most di. For example, Choi and Esperet [59] proved the following analogue of the 4-colour
theorem: every graph with Euler genus g > 0 is (0, 0, 0, 9g − 4)-colourable.

Note that the light edge approach also proves 3-choosability, but with a weaker defect bound. In
particular, results of Ivančo [130] and Jendro ’l and Tuhársky [134] together imply that every graph
in Eg with minimum degree at least 3 has an edge vw with deg(v) + deg(w) ⩽ max{2g + 7, 19}.
(Better results are known for specific surfaces with g ⩽ 5, and all the bounds are tight.) Thus
every graph in Eg with minimum degree at least 3 has a max{2g + 4, 16}-light edge. (See
Lemma 78 for a more general result with a slightly weaker bound.) Lemma 5 then implies that
every graph with Euler genus g is 3-choosable with defect max{2g + 2, 14}. See [57, 173, 232,
233, 234, 235] for more on defective choosability of graphs embedded on surfaces.

3.5 Clustered Colouring of Graphs on Surfaces

This section considers clustered colouring of graphs embeddable on surfaces. Esperet and
Ochem [98] proved that every graph of bounded Euler genus has a 4-island of bounded size, and
is thus 5-colourable with bounded clustering by Lemma 6. Kawarabayashi and Thomassen [148]
also proved that every graph of bounded Euler genus is 5-colourable with bounded clustering.
Dvořák and Norin [84] improved 5 to 4 via the following remarkably simple argument.

Lemma 13 ([84]). Let G be a graph, such that for some constants α, c > 0 and β ∈ (0, 1),

|E(G)| < (k + 1− α)|V (G)|,

and every subgraph of G with n vertices has a balanced separator of size at most cn1−β. Then
G has a k-island of size at most ⌈

2

(
c(k + 1)

α(2β − 1)

)1/β
⌉
.
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Proof. Let ϵ := α
k+1 . By Lemma 15 below, there exists X ⊆ V (G) of size at most ϵ|V (G)|

such that if K1, . . . ,Kp are the components of G−X, then each Ki has at most ⌈2( c
ϵ(2β−1)

)1/β⌉
vertices. Let e(Ki) be the number of edges of G with at least one endpoint in Ki. Then∑

i

e(Ki) ⩽ |E(G)| < (k + 1− α)|V (G)| = (1− ϵ)(k + 1) |V (G)| ⩽ (k + 1) |V (G) \X|

= (k + 1)
∑
i

|V (Ki)|.

Hence e(Ki) < (k+1) |V (Ki)| for some i. Repeatedly remove vertices from Ki with at least k+1
neighbours outside of Ki. Doing so maintains the property that e(Ki) < (k + 1) |V (Ki)|. Thus
the final set is non-empty. We obtain a k-island of size at most |V (Ki)| ⩽ ⌈2( c(k+1)

α(2β−1)
)1/β⌉.

The above proof depends on the following result by Edwards and McDiarmid [91]. Lipton and
Tarjan [160, 161] implicitly proved an analogous result for planar graphs.

Lemma 14 ([91]). Fix c > 0 and β ∈ (0, 1). Let G be a graph with n vertices such that every
subgraph G′ of G has a balanced separator of size at most c|V (G′)|1−β. Then for all p ⩾ 1 there

exists S ⊆ V (G) of size at most c2βn
(2β−1)pβ

such that each component of G − S has at most p
vertices.

Proof. Run the following algorithm. Initialise S := ∅. While G − S has a component X with
more than p vertices, let SX be a balanced separator of X with size at most c|V (X)|1−β, and
add SX to S.

Say a component of G − S at the end of the algorithm has level 0. Say X is a component of
G − S at some stage of the algorithm, but X is not a component of G − S at the end of the
algorithm. Then X is separated by some set SX , which is then added to S. Define the level of
X to 1 plus the maximum level of a component of X − SX .

By assumption, level 0 components have at most p vertices. Each level 1 component has more
than p vertices. By induction on i, each level i ⩾ 1 component has more than 2i−1p vertices.
Let ti be the number of components at level i ⩾ 1. Say X1, . . . , Xti are the components at level
i. Since level i components are pairwise disjoint,

ti2
i−1p <

ti∑
j=1

|V (Xj)| ⩽ n,

implying ti <
n

2i−1p
. The number of vertices added to S by separating X1, . . . , Xti is at most

c

ti∑
j=1

|V (Xj)|1−β,

which is maximised, subject to
∑

j |V (Xj)| ⩽ n, when |V (Xj)| = n
ti
. Thus

c

ti∑
j=1

|V (Xj)|1−β ⩽ cti

(
n

ti

)1−β

= ctβi n
1−β < c

(
n

2i−1p

)β

n1−β = cn

(
21−i

p

)β

.
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Hence

|S| ⩽ c
∑
i⩾1

n

(
21−i

p

)β

=
cn

pβ

∑
i⩾1

(21−i)β =
c 2βn

(2β − 1)pβ
.

Lemma 14 implies the following result. In the language of Edwards and McDiarmid [91], this
lemma provides a sufficient condition for a graph to be ‘fragmentable’; this idea is extended by
Edwards and Farr [88, 90].

Lemma 15 ([91]). Fix c > 0 and β ∈ (0, 1). Let G be a graph with n vertices such that
every subgraph G′ of G has a balanced separator of size at most c|V (G′)|1−β. Then for ϵ > 0
there exists S ⊆ V (G) of size at most ϵ|V (G)| such that each component of G − S has at most
⌈2( c

ϵ(2β−1)
)1/β⌉ vertices.

We now reach the main result of this section.

Theorem 16 ([84]). Every graph G with Euler genus g is 4-choosable with clustering 1500(g+2).

Proof. We proceed by induction on |V (G)|. Let L be a 4-list assignment for G. The claim
is trivial if |V (G)| = 0. Now assume that |V (G)| ⩾ 1. First suppose that |V (G)| ⩽ 6000g.
Let v be any vertex of G. By induction, G − v is L-colourable with clustering 1500(g + 2).
Since |L(v)| = 4 and |V (G − v)| < 6000g, some colour c ∈ L(v) is assigned to at most 1500g
vertices in G − v. Colour v by c. Thus G is L-coloured with clustering 1500(g + 2). Now
assume that |V (G)| > 6000g. Define α := 1999

2000 and k := 3. It follows from Euler’s formula that
|E(G)| < 3(|V (G)|+ g) ⩽ (k + 1− α)|V (G)|. Various authors [9, 78, 93, 109] proved that every
n-vertex graph with Euler genus at most g has a balanced separator of size O(

√
gn). Dujmović

et al. [81] proved a concrete upper bound of 2
√
(2g + 3)n. Thus Lemma 13 with β = 1

2 implies
that G has a 3-island of size at most2

(
4 · 2

√
2g + 3

1999
2000(

√
2− 1)

)2
 ⩽ ⌈747(2g + 3)⌉ < 747(2g + 3) + 1 < 1500(g + 2).

By induction, G− S is L-colourable with clustering 1500(g + 2). By the argument in Lemma 6,
G is L-colourable with clustering 1500(g + 2).

Since S(3, d) is planar, Lemma 2 and Theorem 16 imply

χ⋆(Eg) = χℓ
⋆(Eg) = 4.

It is still open to determine the best possible clustering function.

Open Problem 17. Does every graph in Eg have a 4-colouring with clustering O(
√
g)?

The following question also remains open; see Section 8.1 for relevant material.

Open Problem 18. Are graphs with bounded Euler genus and bounded maximum degree 3-
choosable with bounded clustering?
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The above method extends for embedded graphs with large girth (since |E(G)| < 2(|V (G)|+ g)
if the girth is at least 4, and |E(G)| < 5

3(|V (G)|+ g) if the girth is at least 5).

Theorem 19 ([84]). Let G be a graph with Euler genus g and girth k. If k ⩾ 4, then G is
3-choosable with clustering O(g). If k ⩾ 5, then G is 2-choosable with clustering O(g).

See Section 8.2 for more applications of the island method. Also note that Linial et al. [159] use
sublinear separators in a slightly different way (compared with Lemma 13) to obtain bounds on
the size of monochromatic components in 2-colourings of graphs.

4 Maximum Degree

The defective chromatic number of any graph class with bounded maximum degree equals 1.
Thus defective colourings in the setting of bounded degree graphs are only interesting if one
also considers the bound on the defect. Lovász [164] proved the following result for defective
colourings of bounded degree graphs; see [29, 43, 107, 156] for related results and extensions.

Theorem 20 ([164]). For d ⩾ 0, every graph with maximum degree ∆ is k-colourable with defect
d, where k := ⌊ ∆

d+1⌋+ 1.

Proof. Consider a k-colouring of G that maximises the number of bichromatic edges. Suppose
that some vertex v is adjacent to at least d + 1 vertices of the same colour. Some other colour
is assigned to at most ⌊(deg(v)− d− 1)/(k − 1)⌋ ⩽ d neighbours of v. Recolour v this colour.
The number of bichromatic edges increases by at least 1. This contradiction shows that every
vertex v is adjacent to at most d vertices of the same colour.

We now show that Theorem 20 is best possible. Say G = Kn is k-colourable with defect d. Some
monochromatic subgraph has at least ⌈nk ⌉ vertices. Thus d ⩾ ⌈nk ⌉ − 1 and k ⩾ n

d+1 = ∆(G)+1
d+1 .

Moreover, if k does not divide n, then k > ∆(G)+1
d+1 , implying k ⩾ ⌊∆(G)+1

d+1 ⌋ + 1, which exactly
matches the bound in Theorem 20.

Clustered colourings of bounded degree graphs are more challenging than their defective cousins.
Let D∆ be the class of graphs with maximum degree ∆. First note the following straightforward
lemma.

Lemma 21. For ∆ > d ⩾ 1,

χ⋆(D∆) ⩽
(⌊

∆

d+ 1

⌋
+ 1

)
χ⋆(Dd).

Proof. Let k1 := ⌊ ∆
d+1⌋ + 1 and k2 := χ⋆(Dd). Let G be a graph with maximum degree ∆.

By Theorem 20, G is k1-colourable with defect d. Each monochromatic subgraph, which has
maximum degree d, is k2-colourable with clustering c (depending only on d). The product gives
a k1k2-colouring of G with clustering c. Thus χ⋆(D∆) ⩽ k1k2.
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We now show a series of improving upper bounds on χ⋆(D∆). Theorem 20 with d = 1 implies
every graph with maximum degree ∆ is (⌊∆/2⌋ + 1)-colourable with defect 1, and thus with
clustering 2. Hence

χ⋆(D∆) ⩽
⌊
∆

2

⌋
+ 1.

In particular, this shows that every graph with maximum degree 3 is 2-colourable with clustering
2. Alon et al. [11] proved that every graph with maximum degree 4 is 2-colourable with clustering
57. Haxell et al. [120] improved this bound on the cluster size from 57 to 6. Lemma 21 with
d = 4 then implies that

χ⋆(D∆) ⩽ 2

(⌊
∆

5

⌋
+ 1

)
.

Alon et al. [11] pushed their method further to prove that

χ⋆(D∆) ⩽
⌈
∆+ 2

3

⌉
.

In fact, Alon et al. [11] showed that for ϵ ∈ (0, 3) every graph of maximum degree ∆ is
⌈(∆ + 2)/(3− ϵ)⌉-colourable with clustering c(ϵ) (independent of ∆).

For the sake of brevity, we present slightly weaker results with simpler proofs. The following
result was implicitly proved by Alon et al. [11].

Theorem 22. Let G be a graph with maximum degree ∆. If G has a k-colouring with defect 2,
then G has a (k + 1)-colouring with clustering 24∆.

Proof. Say an induced cycle or path in G is short if it has at most 8∆ vertices, otherwise it is
long. Let X1, . . . , Xk be a partition of V (G) corresponding to the given k-colouring with defect
2. Thus each G[Xi] is a collection of pairwise disjoint induced cycles and paths. Consider such a
cycle or path Y that is long. Then |Y | = a(8∆) + b for some a ⩾ 1 and b ∈ [1, 8∆]. Partition Y
into a set of paths Y1, . . . , Ya, Ya+1, where |V (Yj)| = 8∆ for j ∈ [1, a], and |V (Ya+1)| = b. Here
the last vertex in Yj is adjacent to the first vertex in Yj+1 for j ∈ [1, a], and if Y is a cycle then
the last vertex in Ya+1 is adjacent to the first vertex in Y1. Let Z1, . . . , Zn be the collection of
all these induced paths with exactly 8∆ vertices (which might include some Ya+1).

Let G′ be the subgraph of G induced by V (Z1 ∪ · · · ∪ Zn). Thus G′ has maximum degree
at most ∆. By Lemma 23 below, G has a stable set S = {v1, . . . , vn} with vi ∈ Zi for each
i ∈ [n]. We claim that {S,X1 \ S, . . . ,Xk \ S} defines a (k + 1)-colouring with clustering 24∆.
By construction, S is a stable set in G. Say Q is a component of G[Xi \S]. Then Q is contained
in some component Y of G[Xi]. If Y is short, then |Q| ⩽ 8∆ as desired. Now assume that Y is
long. Let (Y1, . . . , Ya, Ya+1) be the above partition of Y . Since each of Y1, . . . , Ya has a vertex
in S, Q is contained in Yj ∪ Yj+1 ∪ Yj+2 for some j ∈ [1, a+ 1], where Ya+2 means Y1 and Ya+3

means Y2. Thus |Q| ⩽ 24∆.

The proof of Theorem 22 used the following well-known lemma about ‘independent transversals’.

Lemma 23. Let G be a graph with maximum degree at most ∆. Let V1, . . . , Vn be a partition
of V (G), with |Vi| ⩾ 8∆ for each i ∈ [n]. Then G has a stable set {v1, . . . , vn} with vi ∈ Vi for
each i ∈ [n].
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Proof. The proof uses the Lovász Local Lemma [96], which says that if X is a set of events
in a probability space, such that each event in X has probability at most p and is mutually
independent of all but D other events in X , and 4pD ⩽ 1, then with positive probability no
event in X occurs.

We may assume that |Vi| = 8∆ for i ∈ [n]. For each i ∈ [n], independently and randomly choose
one vertex vi ∈ Vi. Each vertex in Vi is chosen with probability at most 1

8∆ . Consider an edge
vw, where v ∈ Vi and w ∈ Vj . Let Xvw be the event that both v and w are chosen. Thus Xvw

has probability at most p := 1
64∆2 . Observe that Xvw is mutually independent of every event

Xxy where x ̸∈ Vi ∪ Vj and y ̸∈ Vi ∪ Vj . Thus Xvw is mutually independent of all but at most
D := ∆(|Vi|+ |Vj |) = 16∆2 other events. Thus 4pD = 4( 1

64∆2 )(16∆
2) ⩽ 1. By the Lovász Local

Lemma, with positive probability, no event Xvw occurs. Hence there exist v1, . . . , vn such that
no event Xvw occurs. That is, {v1, . . . , vn} is the desired stable set.

The 8∆ term in Lemma 23 was improved to 2∆ by Haxell [121], which means the 24∆ term in
Theorem 22 can be improved to 6∆.

Theorem 20 with d = 2 and Theorem 22 imply

χ⋆(D∆) ⩽
⌊
∆

3

⌋
+ 2. (1)

Answering a question of Alon et al. [11], Haxell et al. [120] proved that every graph with maxi-
mum degree 5 is 2-colourable with clustering less than 20000. For two colours, maximum degree 5
is best possible, by the Hex Lemma (Theorem 9). Thus χ⋆(D∆) = 2 if and only if ∆ ∈ {2, . . . , 5}.
Lemma 21 with d = 5 then implies

χ⋆(D∆) ⩽ 2

(⌊
∆

6

⌋
+ 1

)
.

Haxell et al. [120] proved that every graph with maximum degree 8 is 3-colourable with bounded
clustering. Using their result for the ∆ = 5 case and the ∆ = 8 case, Haxell et al. [120] proved
that

χ⋆(D∆) ⩽
⌈
∆+ 1

3

⌉
.

Moreover, Haxell et al. [120] proved for large ∆ one can do slightly better: for some constants
ϵ > 0 and for all ∆ ⩾ ∆0,

χ⋆(D∆) ⩽
(
1

3
− ϵ

)
∆.

Note that for both these results by Haxell et al. [120] the clustering bound is independent of ∆.

It is open whether every graph with maximum degree 9 is 3-colourable with bounded cluster-
ing [120]. If this is true, then Lemma 21 with d = 9 would imply

χ⋆(D∆) ⩽ 3

(⌊
∆

10

⌋
+ 1

)
,

which would be the best known upper bound on χ⋆(D∆). Graphs with maximum degree 10 are
not 3-colourable with bounded clustering [11], as shown by the following general lower bound,
which also implies a 3-colour lower bound for graphs of maximum degree 6.
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Theorem 24 ([11, 120]). For every integer ∆ ⩾ 2,

χ⋆(D∆) ⩾
⌊
∆+ 6

4

⌋
.

Proof. If ∆ is odd, then ⌊∆+6
4 ⌋ = ⌊ (∆−1)+6

4 ⌋, and the result for ∆ − 1 implies the result for ∆.
Thus we may assume that ∆ is even. Let k := ⌊∆+6

4 ⌋. Our goal is to show that for every integer
c ⩾ 3 there is a graph G that has no (k − 1)-colouring with clustering c. Erdős and Sachs [94]
proved that there is a (∆2 +1)-regular graph G0 with girth greater than c. Say |V (G0)| = n. Let
G be the line graph of G0. Then G is ∆-regular with (∆+2

4 )n vertices. Suppose on the contrary
that G is (k − 1)-colourable with clustering c. For some colour class X of G,

|X| ⩾ |V (G)|
k − 1

=
(∆ + 2)n

4k − 4
⩾ n.

Thus X corresponds to a set X ′ of at least n edges in G0, which therefore contains a cycle of
size greater than c. Thus, X contains a monochromatic component of size greater than c, which
is a contradiction.

The following problem remains open for ∆ ⩾ 9.

Open Problem 25. What is χ⋆(D∆)? The best known bounds are⌊
∆+ 6

4

⌋
⩽ χ⋆(D∆) ⩽

⌈
∆+ 1

3

⌉
,

and for some ϵ > 0 and all ∆ at least some constant ∆0.

χ⋆(D∆) ⩽
(
1

3
− ϵ

)
∆.

Open Problem 26. What is χℓ
⋆(D∆)? The best known bounds are⌊

∆+ 6

4

⌋
⩽ χℓ

⋆(D∆) ⩽ ∆,

where the upper bound follows from known Brooks-type bounds on the choice number [67].

It is interesting that for many of the above results the bound on the clustering is independent
of ∆. We now show that from any upper bound on χ⋆(D∆) with clustering linear in ∆, one can
obtain a slightly larger upper bound that is independent of ∆. The idea of the proof is by Alon
et al. [11].

Theorem 27. Suppose that every graph with maximum degree ∆ is (∆x + y)-colourable with
clustering α∆, for some constants α, x, y > 0. Then for every ϵ > 0 there is a number c =
c(ϵ, α, x, y) such that every graph with maximum degree ∆ is ((1 + ϵ)∆x + y)-colourable with
clustering c.
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Proof. Let d := ⌈2ϵ (xy − 1)⌉ − 1 and c := max{αd, 2αdϵ }. If α∆ ⩽ c then the result holds by

assumption. Now assume that α∆ > c ⩾ 2αd
ϵ implying d ⩽ ϵ∆

2 . By Theorem 20, G is k-
colourable with defect d, where k := ⌊ ∆

d+1⌋+ 1. By assumption, each of these k monochromatic

subgraphs is ( dx + y)-colourable with clustering αd. Thus G is k′-colourable with clustering
αd ⩽ c, where

k′ :=

(
∆

d+ 1
+ 1

)(
d

x
+ y

)
=

∆

x
+

∆(xy − 1)

x(d+ 1)
+

d

x
+ y.

Since xy − 1 ⩽ ϵ
2(d+ 1) and d ⩽ ϵ∆

2 ,

k′ ⩽ ∆

x
+

ϵ∆

2x
+

ϵ∆

2x
+ y =

(1 + ϵ)∆

x
+ y.

See [26, 27, 89, 159] for more results about clustered colourings of graphs with given maximum
degree.

5 Maximum Average Degree

Recall that mad(G) is the maximum average degree of a subgraph of G. For m ∈ R+, let Am

be the class of graphs G with mad(G) ⩽ m. A greedy algorithm shows that χ(Am) ⩽ ⌊m⌋+ 1.
Havet and Sereni [119] determined χ∆(Am) as follows.

Theorem 28 ([119]). For m ∈ R+,

χℓ
∆(Am) = χ∆(Am) =

⌊m
2

⌋
+ 1.

We prove Theorem 28 below. The key is the following lemma, which is a slightly weaker version
of a result by Havet and Sereni [119], who proved that every graph G with mad(G) < k + kd

k+d
is k-choosable with defect d.

Lemma 29 (Frédéric Havet). For all m ∈ R+ and k, d ∈ Z+ such that 1
k + 1

d ⩽ 2
m , every graph

G with mad(G) ⩽ m is k-choosable with defect d.

Proof. Let G be a counterexample with |V (G)| + |E(G)| minimum (with r, k, d fixed). By
Lemma 5, G has minimum degree k and has no d-light edge. Let

A :={v ∈ V (G) : deg(v) ⩽ m},
B :={v ∈ V (G) : m < deg(v) ⩽ d} and

C :={v ∈ V (G) : d < deg(v)}.

Since 1
k + 1

d ⩽ 2
m we have m

k − 1 ⩽ 1 − m
d . Let γ be a real number with m

k − 1 ⩽ γ ⩽ 1 − m
d .

Associate with each vertex v an initial charge of deg(v). The total charge is
∑

v deg(v) = 2|E(G)|.
Redistribute the charge as follows: for each edge vw with v ∈ A, let w send γ charge to v. Note
that w ∈ C since G has no d-light edge. Now, each vertex v ∈ A has charge (1 + γ) deg(v) ⩾
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(1 + γ)k ⩾ m. The charge for each vertex v ∈ B is unchanged. Each vertex v ∈ C has charge at
least (1− γ) deg(v) > (1− γ)d ⩾ m. We may assume that C ̸= ∅, as otherwise G is 1-colourable
with defect d. Thus the total charge is greater than m|V (G)|, implying the average degree is
greater than m, which is a contradiction.

Proof of Theorem 28. Let k := ⌊m2 ⌋ + 1. Thus k > m
2 . Let d := ⌈ m2

4k−2m + m
2 ⌉, which is well-

defined since 4k > 2m. Then

4d− 2m ⩾ m2

k − m
2

,

implying

k ⩾ m

2
+

m2

4d− 2m
=

m(2d−m) +m2

4d− 2m
=

md

2d−m
=

1
2
m − 1

d

.

Since 2d > m,
1

k
⩽ 2

m
− 1

d

and 1
k + 1

d ⩽ 2
m . By Lemma 29, every graph G with mad(G) ⩽ m is (⌊m2 ⌋ + 1)-choosable with

defect d. Thus χ∆(Am) ⩽ χℓ
∆(Am) ⩽

⌊
m
2

⌋
+ 1.

For the lower bound, let h := ⌊m2 ⌋. Then the standard example S(h, d) has maximum average
degree less than 2h ⩽ m and is not h-colourable with defect d by Lemma 1. Thus χ∆(Am) ⩾ h+1,
as required.

See [37, 39, 40, 41, 42, 44, 45, 46, 47, 79, 149, 150] for more results about defective colourings
of graphs with given maximum average degree.

Little is known about clustered colourings of graphs with given maximum average degree.

Open Problem 30. What is χ⋆(Am)? The best known bounds are ⌊m2 ⌋+1 ⩽ χ⋆(Am) ⩽ ⌊m⌋+1.

Maximum average degree is closely related to degeneracy. Recall that a graph G is k-degenerate
if every subgraph of G has minimum degree at most k. A greedy algorithm shows that every
k-degenerate graph is properly (k + 1)-colourable. Since the standard example S(k, d) is k-
degenerate, this bound cannot be improved even for defective colourings. Thus for the class
of k-degenerate graphs, the defective chromatic number, defective choice number, clustered
chromatic number, clustered choice number, and (proper) chromatic number all equal k + 1.

6 Excluding a Subgraph

For every graph H, the class of graphs with no H subgraph has bounded chromatic number if
and only if H is a forest. The same result holds for defective chromatic number and clustered
chromatic number. To see this, observe that if H contains a cycle, then graphs with girth greater
than |V (H)| contain no H subgraph, and by the classical result of Erdős [95] there are graphs
with arbitrarily large girth and chromatic number. By Proposition 3, the defective and clustered
chromatic numbers are also arbitrarily large. Conversely, say F is a forest with n vertices. A well
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known greedy embedding procedure shows that every graph with minimum degree at least n−1
contains F as a subgraph. That is, every graph containing no F subgraph is (n− 2)-degenerate,
and is thus (n − 1)-colourable. This bound is tight since Kn−1 contains no F subgraph and is
(n − 1)-chromatic. In short, for the class of graphs containing no F subgraph, the chromatic
number equals n−1. The following result by Ossona de Mendez et al. [185] shows that defective
colourings exhibit qualitatively different behaviour.

Theorem 31 ([185]). Let T be a tree with n ⩾ 2 vertices and radius r ⩾ 1. Then every graph
containing no T subgraph is r-colourable with defect n− 2.

Proof. For i = 1, 2, . . . , r − 1, let Vi be the set of vertices v ∈ V (G) \ (V1 ∪ · · · ∪ Vi−1) that have
at most n− 2 neighbours in V (G) \ (V1 ∪ · · · ∪ Vi−1). Let Vr := V (G) \ (V1 ∪ · · · ∪ Vr−1). Then
V1∪· · ·∪Vr is a partition of V (G). For i ∈ [1, r−1], by construction, G[Vi] has maximum degree
at most n−2, as desired. Suppose that G[Vr] has maximum degree at least n−1. We now show
that T is a subgraph of G, where each vertex v of T is mapped to a vertex v′ of G. Let x be
the centre of T . Map the vertices of T to vertices in G in order of their distance from x in T ,
where x is mapped to a vertex x′ with degree at least n− 1 in G[Vr]. The key invariant is that
each vertex v at distance j ∈ [1, r] from x in T is mapped to a vertex v′ in Vr−j+1 ∪ · · · ∪ Vr. If
j = 0 then v = x and by assumption, v′ = x′ has at least n− 1 neighbours in Vr. If j ∈ [1, r− 1]
then by construction, v′ has at least n− 1 neighbours in Vr−j ∪ · · · ∪ Vr (otherwise v′ would be
in Vr−j). Thus there are always unmapped vertices in Vr−j ∪ · · · ∪ Vr to choose as the children
of v. Hence T is a subgraph of G. This contradiction shows that G[Vr] has maximum degree at
most n− 2, and G is r-colourable with defect n− 2.

The number of colours in Theorem 31 is best possible for the complete binary tree T of radius
r. Since S(r− 1, d) contains no T subgraph, Lemma 1 and Theorem 31 imply that the defective
chromatic number of the class of graphs containing no T subgraph equals r.

Open Problem 32. For a tree T , what is the clustered chromatic number of the class of graphs
with no T subgraph?

The results in Section 4 on χ⋆(D∆) are relevant to this question since a graph has maximum
degree at most ∆ if and only if it excludes K1,∆+1 as a subgraph. Section 8.5 studies colourings
of graphs that exclude a given path subgraph.

7 Excluding a Shallow Minor

7.1 Excluding K∗
s,t

As illustrated in Figure 6, for integers s, t ⩾ 1, let K∗
s,t be the bipartite graph obtained from Ks,t

by adding
(
s
2

)
new vertices, each adjacent to a distinct pair of vertices in the colour class of s

vertices in Ks,t. Ossona de Mendez et al. [185] studied defective colourings for graphs excluding
K∗

s,t as a subgraph, where the defect bound depends on the density of shallow topological minors.
Let ∇(G) be the maximum average degree of a graph H such that the 1-subdivision of H is a
subgraph of G.
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Figure 6: The graph K∗
7,13.

Theorem 33 ([185]). Every graph G with no K∗
s,t subgraph is s-choosable with defect ℓ− s+ 1,

where δ = mad(G) and ∇ = ∇(G) and

ℓ := ℓ(s, t, δ,∇) :=


⌊(δ − s)

((⌊∇⌋
s−1

)
(t− 1) + 1

2∇
)
+ δ⌋ if s > 2,

⌊12(δ − 2)∇t+ δ⌋ if s = 2,

t− 1 if s = 1.

Proof. Assume for contradiction that G has minimum degree at least s (thus s ⩽ δ) and that G
contains no ℓ-light edge. The case s = 1 is simple: Since G has minimum degree at least 1, G
has at least one edge, which is ℓ-light since ∆(G) ⩽ t− 1 and ℓ = t− 1. Now assume that s ⩾ 2.

Let A be the set of vertices in G of degree at most ℓ. Let B := V (G) \ A. Let a := |A| and
b := |B|. Since G has a vertex of degree at most δ and δ ⩽ ℓ, we deduce that a > 0. Note that
no two vertices in A are adjacent.

Since the average degree of G is at most δ,

(ℓ+ 1)b+ sa ⩽ 2|E(G)| ⩽ δ(a+ b).

That is,
(ℓ+ 1− δ)b ⩽ (δ − s)a. (2)

Let G′ be the graph obtained from G−E(G[B]) by greedily finding a vertex w ∈ A having a pair
of non-adjacent neighbours x, y in B and replacing w by an edge joining x and y (by deleting
all edges incident with w except xw, yw and contracting xw), until no such vertex w exists.

Let A′ := V (G′) \ B and a′ := |A′|. Clearly the 1-subdivision of G′[B] is a subgraph of G. So
every subgraph of G′[B] has average degree at most ∇. Since G′[B] contains at least a − a′

the electronic journal of combinatorics (2018), #DS23 26



edges,
a− a′ ⩽ 1

2∇b. (3)

Let M be the number of cliques of size s in G′[B]. Since G′[B] is ⌊∇⌋-degenerate,

M ⩽
(
⌊∇⌋
s− 1

)
b

(See [180, p. 25] or [221]). If s = 2, then the following better inequality holds:

M ⩽ 1
2∇b.

For each vertex v ∈ A′, since v was not contracted in the creation of G′, the set of neighbours of
v in B is a clique of size at least s. Thus if a′ > M(t− 1), then there are at least t vertices in A′

sharing at least s common neighbours in B. These t vertices and their s common neighbours in
B with the vertices in A−A′ form a K∗

s,t subgraph of G, contradicting our assumption. Thus,

a′ ⩽ M(t− 1). (4)

By (2), (3) and (4),

ℓ+ 1 ⩽ (δ − s)

(
M

b
(t− 1) + 1

2∇
)
+ δ,

contradicting the definition of ℓ. Thus G has minimum degree at most s − 1 or G contains an
ℓ-light edge. The theorem now follows from Lemma 5.

Theorem 33, in conjunction with the standard example, determines the defective chromatic
number for several graph classes of interest; see Sections 7.2 to 7.6. Moreover, Theorem 33
determines the defective choice number for a very broad class of graphs—complete bipartite
subgraphs are the key.

Theorem 34 ([84, 185]). Let G be a subgraph-closed class of graphs with mad(G) and ∇(G)
bounded (which holds if G is minor-closed). Then χℓ

∆(G) equals the minimum integer s such that
Ks,t ̸∈ G for some integer t.

Proof. If Ks,t ̸∈ G for some s, t ⩾ 1, then by Theorem 33, every graph in G is s-choosable with
defect bounded by a function of s, t, mad(G) and ∇(G). This proves the claimed upper bound.
Conversely, let s := χℓ

∆(G). Then for some d, every graph in G is s-choosable with defect d. By
Lemma 35 below, if t = (ds+ 1)ss then Ks,t is not in G.

Lemma 35. For s ⩾ 1 and d ⩾ 0, if t = (ds + 1)ss, then the complete bipartite graph Ks,t is
not s-choosable with defect d.

Proof. Let A and B be the colour classes of Ks,t with |A| = s and |B| = t. Say A = {v1, . . . , vs}.
Let X1, . . . , Xs be pairwise disjoint sets of colours, each of size s. Let L be the following s-list
assignment for Ks,t. Let L(vi) := Xi for each vertex vi ∈ A. For each vector (c1, . . . , cs) with
ci ∈ Xi for each i ∈ [s], let L(x) := {c1, . . . , cs} for ds+ 1 vertices x in B. This is possible since
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|B| = (ds + 1)ss. Consider an L-colouring of Ks,t. Say each vertex vi is coloured ci ∈ L(vi).
Since Xi ∩ Xj = ∅, we have ci ̸= cj for distinct i, j ∈ [s]. By construction, there are ds + 1
vertices x ∈ B with L(x) = {c1, . . . , cs}. At least d + 1 of these vertices are assigned the same
colour, say ci. Thus vi has monochromatic degree at least d+1. Hence Ks,t is not L-colourable
with defect d. Therefore Ks,t is not s-choosable with defect d.

Note that Theorem 34 generalises several previous results. For example, Theorem 34 says that
χℓ
∆(O) = 2 since K2,3 is not outerplanar, but K1,n is outerplanar for all n. Similarly, χℓ

∆(P) = 3
since K3,3 is not planar, but K2,n is planar for all n. More generally, Theorem 34 immediately
implies:

Corollary 36. For every graph H, χℓ
∆(MH) equals the minimum integer s such that H is a

minor of Ks,t for some integer t.

Theorem 34 also determines the defective choice number for graphs excluding a fixed immersion
(see Theorem 52).

7.2 Linklessly Embeddable Graphs

A graph is linklessly embeddable if it has an embedding in R3 with no two linked cycles [199, 201].
Let L be the class of linklessly embeddable graphs. Then L is a minor-closed class whose minimal
excluded minors are the so-called Petersen family [200], which includes K6, K4,4 minus an edge,
and the Petersen graph. Since linklessly embeddable graphs exclude K6 minors, they are 5-
colourable [198] and 8-choosable [23]. It is open whether K6-minor-free graphs or linklessly
embeddable graphs are 6-choosable [23].

Ossona de Mendez et al. [185] determined χ∆(L) as follows. A graph is apex if deleting at most
one vertex makes it planar. Every apex graph is linklessly embeddable [199]. Since S(2, d) is
planar, S(3, d) is apex, and thus linklessly embeddable. By Lemma 1, χ∆(L) ⩾ 4. Note that
the weaker lower bound, χℓ

∆(L) ⩾ 4, follows from Theorem 34 since K4,4 ̸∈ L. Mader’s theorem
[168] for K6-minor-free graphs implies that linklessly embeddable graphs have average degree
less than 8 and minimum degree at most 7. Since linklessly embeddable graphs exclude K4,4

minors, Theorem 33 implies the upper bound in the following theorem.

Theorem 37 ([185]). Every linklessly embeddable graph is 4-choosable with defect 440, and

χ∆(L) = χℓ
∆(L) = 4.

Note that Theorem 34 also implies χℓ
∆(L) = 4 since K4,4 is not linkless, but K3,n is linkless for

all n.

We have the following result for clustered colourings of linklessly embeddable graphs.

Theorem 38. Every linklessly embeddable graph is 5-choosable with clustering 62948, and

χ⋆(L) = χℓ
⋆(L) = 5.
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Figure 7: S(4, d) is knotlessly embeddable.

Proof. The upper bound follows from Theorem 58 since every linkless graph contains no K6-
minor. Since S(3, c) is planar, S(4, c) is apex, and thus linklessly embeddable. The lower bound
then follows from Lemma 2.

7.3 Knotlessly Embeddable Graphs

A graph is knotlessly embeddable if it has an embedding in R3 in which every cycle forms a
trivial knot; see [191] for a survey. Let K be the class of knotlessly embeddable graphs. Then K
is a minor-closed class whose minimal excluded minors include K7 and K3,3,1,1 [63, 102]. More
than 260 minimal excluded minors are known [112], but the full list of minimal excluded minors
is unknown. Since knotlessly embeddable graphs exclude K7 minors, they are 8-colourable [7,
132]. Mader [168] proved that K7-minor-free graphs have average degree less than 10, which
implies they are 9-degenerate and thus 10-choosable. It is open whether K7-minor-free graphs
or knotlessly embeddable graphs are 6-colourable or 7-choosable [23].

Ossona de Mendez et al. [185] determined the defective chromatic number of knotlessly embed-
dable graphs as follows. A graph is 2-apex if deleting at most two vertices makes it planar. Blain
et al. [31] and Ozawa and Tsutsumi [186] proved that every 2-apex graph is knotlessly embed-
dable. Since every block of S(4, d) is 2-apex, S(4, d) is knotlessly embeddable, as illustrated in
Figure 7. By Lemma 1, χ∆(K) ⩾ 5. Since K3,3,1,1 is a minor of K∗

5,3, knotlessly embeddable
graphs do not contain a K∗

5,3 subgraph. Since mad(K) < 10, Theorem 33 implies the following
result.

Theorem 39 ([185]). Every knotlessly embeddable graph is 5-choosable with defect 660, and

χ∆(K) = χℓ
∆(K) = 5.

We have the following result for clustered colourings of knotlessly embeddable graphs.

Theorem 40. Every knotlessly embeddable graph is 6-choosable with clustering 99958, and

χ⋆(K) = χℓ
⋆(K) = 6.
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Proof. The upper bound follows from Theorem 58 since every knotless graph contains no K7-
minor. Since every block of S(5, d) is 2-apex, S(5, d) is knotlessly embeddable. The lower bound
then follows from Lemma 2.

7.4 Colin de Verdière Parameter

The Colin de Verdière parameter µ(G) is an important graph invariant introduced by Colin de
Verdière [61, 62]; see [127, 202] for surveys. It is known that µ(G) ⩽ 1 if and only if G is a
disjoint union of paths, µ(G) ⩽ 2 if and only if G is outerplanar, µ(G) ⩽ 3 if and only if G is
planar, and µ(G) ⩽ 4 if and only if G is linklessly embeddable. A famous conjecture of Colin de
Verdière [61] states that χ(G) ⩽ µ(G) + 1 (which implies the 4-colour theorem, and is implied
by Hadwiger’s Conjecture). Ossona de Mendez et al. [185] showed that for defective colourings
one fewer colour suffices. Let Vk := {G : µ(G) ⩽ k}.

Theorem 41 ([185]). For k ⩾ 1,

χ∆(Vk) = χℓ
∆(Vk) = k.

Proof. Vk is a minor-closed class [61, 62]. van der Holst et al. [127] proved that µ(Ks,t) = s+ 1
for t ⩾ max{s, 3}. Thus, if µ(G) ⩽ k then G contains no Kk,max(k,3) minor, and mad(G) ⩽
2∇(G) ⩽ O(k

√
log k). Theorem 33 with s = k and t = max{k, 3} implies that G is k-choosable

with defect 2O(k log log k). Thus χ∆(Vk) ⩽ χℓ
∆(Vk) ⩽ k. For the lower bound, van der Holst

et al. [127] proved that µ(G) equals the maximum of µ(G′), taken over the components G′ of
G, and if G has a dominant vertex v, then µ(G) = µ(G − v) + 1. It follows that the standard
example S(k − 1, d) is in Vk for d ⩾ 2. Lemma 1 then implies that χ∆(Vk) ⩾ k. Note that the
weaker lower bound, χℓ

∆(Vk) ⩾ k, follows from Theorem 34 since Kk,max{k,3} ̸∈ Vk.

Theorem 41 generalises Theorem 37 which corresponds to the case k = 4.

Clustered colourings provide a natural approach to the conjecture of Colin de Verdière [61]
mentioned above.

Conjecture 42. χ⋆(Vk) = k + 1.

Note that Conjecture 42 with k ⩽ 7 is implied by Theorem 58 below since graphs in Vk contain
no Kk+2 minor.

7.5 Crossings

This section considers defective colourings of graphs with linear crossing number. For an integer
g ⩾ 0 and real number k ⩾ 0, let Ek

g be the class of graphs G such that every subgraph H of
G has a drawing on a surface of Euler genus g with at most k |E(H)| crossings. (In a drawing,
we assume that no three edges cross at a common point.) This says that the average number of
crossings per edge is at most 2k (for every subgraph). Of course, a graph is planar if and only
if it is in E0, and a graph has Euler genus at most g if and only if it is in E0

g .
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Graphs that can be drawn in the plane with at most k crossings per edge, so called k-planar

graphs, are examples of graphs in E(k/2)
0 . Pach and Tóth [187] proved that k-planar graphs

have average degree O(
√
k). It follows that k-planar graphs are O(

√
k)-colourable, which is best

possible since Kn is O(n2)-planar. Say a graph is (g, k)-planar if it can be drawn on a surface

with Euler genus g with at most k crossings per edge. Such graphs are in E(k/2)
g . Also note that

even 1-planar graphs do not form a minor-closed class. For example, the n × n × 2 grid graph
is 1-planar, as illustrated in Figure 8, but contracting the i-th row in the front grid with the
i-column in the back grid (plus the edge joining them) creates Kn as a minor.

Figure 8: The n× n× 2 grid graph is 1-planar.

Ossona de Mendez et al. [185] showed that Theorem 33 is applicable for graphs in Ek
g . In partic-

ular, such graphs contain no K3,3k(2g+3)(2g+2)+2 subgraph and have mad ⩽ O(
√

(k + 1)(g + 1))

and ∇ ⩽ O(
√

(k + 1)(g + 1)). The first claim here is proved using a standard technique of count-
ing copies of K3,3. The second claim is proved using the crossing lemma. The next theorem
follows. It is a substantial generalisation of Theorem 8 (the g = k = 0 case) and Theorem 11
(the k = 0 case), with a worse defect bound.

Theorem 43 ([185]). For every integer g ⩾ 0 and real number k ⩾ 0,

χ∆(Ek
g ) = χℓ

∆(Ek
g ) = 3.

In particular, every graph in Ek
g is 3-choosable with defect O((k + 1)5/2(g + 1)7/2).

Open Problem 44. What is the clustered chromatic number of k-planar graphs? What is the
clustered chromatic number of (g, k)-planar graphs? What is the clustered chromatic number of
Ek
g ?

It may be that the answer to all these questions is 4. Here we prove the answer is at most 12
for the first two questions.

Proposition 45. Every (g, k)-planar graph G is 12-colourable with clustering O((k + 1)7/2(g +
1)9/2).
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Proof. By Theorem 43, G is 3-colourable with defect O((k+1)5/2(g+1)7/2). That is, G contains
three induced subgraphs G1, G2 and G3 of G each with maximum degree at most O((k+1)5/2(g+
1)7/2), where V (G) =

∪
i V (Gi). Dujmović et al. [80] proved that every (g, k)-planar graph has

layered treewidth O((g + 1)(k + 1)). Apply this result to each Gi. Thus, for some layering
V1, . . . , Vn of Gi, each layer Gi[Vj ] has treewidth O((g + 1)(k + 1)). By Theorem 55, Gi[Vj ] is
2-colourable with clustering O((k + 1)7/2(g + 1)9/2). Within Gi, use two colours for odd j and
two distinct colours for even j. Each monochromatic component is contained in some Vi. The
total number of colours is 3× 2× 2 = 12.

7.6 Stack and Queue Layouts

A k-stack layout of a graph G consists of a linear ordering v1, . . . , vn of V (G) and a partition
E1, . . . , Ek of E(G) such that no two edges in Ei cross with respect to v1, . . . , vn for each i ∈ [1, k].
Here edges vavb and vcvd cross if a < c < b < d. A graph is a k-stack graph if it has a k-stack
layout. The stack-number of a graph G is the minimum integer k for which G is a k-stack graph.
Stack layouts are also called book embeddings, and stack-number is also called book-thickness,
fixed outer-thickness and page-number. Let Sk be the class of k-stack graphs. Dujmović and
Wood [83] showed that χ(Sk) ∈ {2k, 2k+1, 2k+2}. For defective colourings, Ossona de Mendez
et al. [185] showed that k + 1 colours suffice.

Theorem 46 ([185]). The class of k-stack graphs has defective chromatic number and defective
choice number equal to k+ 1. In particular, every k-stack graph is (k+ 1)-choosable with defect
2O(k log k).

Proof. The lower bound follows from Lemma 1 since an easy inductive argument shows that
S(k, d) is a k-stack graph for all d. For the upper bound, Kk+1,k(k+1)+1 is not a k-stack graph [30];
see also [70]. Every k-stack graph G has average degree less than 2k+2 (see [30, 83]) and ∇(G) ⩽
20k2 (see [92, 181]). The result follows from Theorem 33 with s = k + 1 and t = k(k + 1) + 1,
since ℓ(k + 1, k(k + 1) + 1, 2k + 2, 40k2) ⩽ 2O(k log k).

A k-queue layout of a graph G consists of a linear ordering v1, . . . , vn of V (G) and a partition
E1, . . . , Ek of E(G) such that no two edges in Ei are nested with respect to v1, . . . , vn for each
i ∈ [1, k]. Here edges vavb and vcvd are nested if a < c < d < b. The queue-number of a graph
G is the minimum integer k for which G has a k-queue layout. A graph is a k-queue graph if
it has a k-queue layout. Let Qk be the class of k-queue graphs. Dujmović and Wood [83] state
that determining χ(Qk) is an open problem, and showed lower and upper bounds of 2k+1 and
4k. Ossona de Mendez et al. [185] proved the following partial answer to this question.

Theorem 47 ([185]). Every k-queue graph is (2k + 1)-choosable with defect 2O(k log k).

Proof. Heath and Rosenberg [122] proved thatK2k+1,2k+1 is not a k-queue graph. Every k-queue
graph G has mad(G) < 4k (see [83, 122, 188]) and ∇(G) < (2k+2)2 (see [181]). The result then
follows from Theorem 33 with s = 2k+1 and t = 2k+1, since ℓ(2k+1, 2k+1, 4k, 2(2k+2)2) ⩽
2O(k log k).
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An easy inductive construction shows that S(k, n) has a k-queue layout. Thus k+1 ⩽ χ∆(Qk) ⩽
2k + 1 by Lemma 1 and Theorem 47. It remains an open problem to determine χ∆(Qk).

Now consider clustered colourings of k-stack and k-queue graphs. The standard example S(2, c)
is outerplanar, and thus has a 1-stack layout. An easy inductive construction then shows that
S(k, c) has a (k − 1)-stack layout (for k ⩾ 2) and a k-queue layout. The best known upper
bounds come from degeneracy: every k-stack graph is (2k + 1)-degenerate and every k-queue
graph is (4k − 1)-degenerate (see [83]). Thus

k + 2 ⩽ χ⋆(Sk) ⩽ χℓ
⋆(Sk) ⩽ χℓ(Sk) ⩽ 2k + 2 and

k + 1 ⩽ χ⋆(Qk) ⩽ χℓ
⋆(Qk) ⩽ χℓ(Qk) ⩽ 4k.

Closing the gap in these bounds is interesting because the existing methods say nothing about
clustered colourings of k-stack or k-queue graphs. For example, Lemma 13 is not applicable
since 3-stack and 2-queue graphs do not have sublinear balanced separators. Indeed, Dujmović
et al. [82] constructed (cubic bipartite) 3-stack expander graphs and (cubic bipartite) 2-queue
expander graphs.

7.7 Excluded Immersions

This section considers colourings of graphs excluding a fixed immersion. A graph G contains a
graph H as an immersion if the vertices of H can be mapped to distinct vertices of G, and the
edges of H can be mapped to pairwise edge-disjoint paths in G, such that each edge vw of H
is mapped to a path in G whose endpoints are the images of v and w. The image in G of each
vertex in H is called a branch vertex. A graph G contains a graph H as a strong immersion if
G contains H as an immersion such that for each edge vw of H, no internal vertex of the path
in G corresponding to vw is a branch vertex. Let It be the class of graphs not containing Kt as
an immersion. Let I ′

t be the class of graphs not containing Kt as a strong immersion.

Lescure and Meyniel [157] and Abu-Khzam and Langston [1] independently conjectured that
every Kt-immersion-free graph is properly (t− 1)-colourable. Often motivated by this question,
structural and colouring properties of graphs excluding a fixed immersion have recently been
widely studied. The best upper bound, due to Gauthier et al. [106], says that everyKt-immersion-
free graph is properly (3.54t+ 3)-colourable

Van den Heuvel and Wood [124] proved that the defective chromatic number of Kt-immersion-
free graphs equals 2. The proof, presented below, is based on the following structure theorem
of DeVos et al. [74]. Almost the same result can be concluded from a structure theorem by
Wollan [218]. Since Lemma 48 is not proved explicitly in [74] we include the full proof, which
relies on the following definitions. For each edge xy of a tree T , let T (xy) and T (yx) be the
components of T − xy, where x is in T (xy) and y is in T (yx). For a tree T and graph G, a
T -partition of G is a partition (Tx ⊆ V (G) : x ∈ V (T )) of V (G) indexed by the nodes of T .
Each set Tx is called a bag. Note that a bag may be empty. For each edge e = xy ∈ E(T ),
let G(T, xy) =

∪
z∈V (T (xy)) Tz and G(T, yx) =

∪
z∈V (T (yx)) Tz, and let E(G,T, e) be the set of

edges in G between G(T, xy) and G(T, yx). The adhesion of a T -partition is the maximum,
taken over all edges e of T , of |E(G,T, e)|. For each node x of T , the torso of x (with respect
to a T -partition) is the graph obtained from G by identifying G(T, yx) into a single vertex for
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each edge xy incident to x, deleting resulting parallel edges and loops. Note that a tree T for
which V (G) ⊆ V (T ) implicitly defines a T -partition of G with Tx = {x} ∩ V (G) for each node
x ∈ V (T ).

Lemma 48 ([74]). For every graph G that does not contain Kt as an immersion, there is a tree
T and a T -partition of G with adhesion less than (t− 1)2, such that each bag has at most t− 1
vertices.

Proof. Gomory and Hu [113] proved that for every graph G there is a tree F with vertex set
V (G) such that for all distinct vertices v, w ∈ V (G), the size of the smallest edge-cut in G
separating v and w equals

ζ(e) := min
e

|E(G,F, e)|,

where the minimum is taken over all edges e on the vw-path in F . Let S be the set of edges
e ∈ E(F ) with ζ(e) < (t− 1)2.

Suppose that some component X of F −S has at least t vertices. Let x, v2, v3, . . . , vt be distinct
vertices in X. Let G′ be the multigraph obtained from G by adding a new vertex w and adding
t − 1 parallel edges between w and vi for each i ∈ [2, t]. We claim that G′ contains (t − 1)2

edge-disjoint xw-paths. Consider a set of vertices R ⊆ V (G) with x ∈ R, such that there are
less than (t−1)2 edges between R and V (G′)−R in G′. Since w ∈ V (G′)−R has degree (t−1)2,
some neighbour vi of w is also in V (G′) − R (where i ∈ [2, t]). Thus in G, there is an edge-cut
with less than (t − 1)2 edges separating x and vi, meaning that ζ(e) < (t − 1)2 for some edge
e on the xvi-path in F . But every such edge e is in X, which implies ζ(e) ⩾ (t − 1)2. This
contradiction shows (by Menger’s Theorem) that G′ contains (t − 1)2 edge-disjoint xw-paths.
Hence G contains (t− 1)2 edge-disjoint paths starting at x, exactly t− 1 of which end at vi for
each i ∈ [2, t]. Label these xvi-paths as Pi,j , for j ∈ [2, t]. For j ̸= i, the combined path Pi,jPj,i

is a vivj-path, while each Pi,i is a vix path. Since all these paths are edge-disjoint, G contains
a Kt-immersion. This contradiction shows that every component of F − S has at most t − 1
vertices.

Let T be obtained from F by contracting each connected component of F−S into a single vertex.
For each node x of T , let Tx be the set of vertices contracted into x. Then

(
Tx : x ∈ V (T )

)
is

the desired partition.

Lemma 49 ([124]). If a graph G has a T -partition with V (G) ⊆ V (T ) and adhesion at most k,
then G is 2-colourable with defect k.

Proof. We proceed by induction on |V (G)| + |E(G)|. The result is trivial if |V (G)| ⩽ 2. Now
assume |V (G)| ⩾ 3. Call a vertex v of G large if degG(v) ⩾ k + 1; otherwise v is small. If
degG(v) ⩽ 1 for some vertex v, then by induction, G− v is 2-colourable with defect k; assign v
a colour distinct from its neighbour. Now G is 2-coloured with defect k. Now assume that G
has minimum degree at least 2. If two small vertices v and w are adjacent, then by induction,
G−vw is 2-colourable with defect k, which is also a 2-colouring of G with defect k. Now assume
that the small vertices are a stable set. If G has no large vertices, then every 2-colouring of G
has defect k. Now assume that G has some large vertex. Let X be the union of all paths in T
whose endpoints are large. Let u be a leaf in X. Thus u is large. Let v be the neighbour of u in
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X, or any neighbour of u if |V (X)| = 1. Let Y := V (T (uv)) \ {u}. Every vertex in Y is small.
Since no two small vertices are adjacent and G has minimum degree at least 2, every vertex in
Y has at least one neighbour in T (vu). Also, u has at least degG(u)− |Y | neighbours in T (vu).
Thus |E(G,T, uv)| ⩾ |Y |+ degG(u)− |Y | ⩾ k + 1, which is a contradiction.

Note that Lemma 49 with a O(k3) defect bound can be concluded from Theorem 33 with s = 2.

The following result by Van den Heuvel and Wood [124] is the first main contribution of this
section.

Theorem 50 ([124]). Every graph G ∈ It is 2-colourable with defect (t− 1)3, and

χ∆(It) = 2.

Proof. By Lemma 48, there is a tree T and a T -partition of G with adhesion at most (t−1)2−1,
such that each bag has at most t − 1 vertices. Let Q be the graph with vertex set V (T ),
where xy ∈ E(Q) whenever there is an edge of G between Tx and Ty. Any one edge of Q
corresponds to at most t − 1 edges in G. By Lemma 49, the graph Q is 2-colourable with
defect (t − 1)2 − 1. Assign to each vertex v in G the colour assigned to the vertex x in Q
with v ∈ Tx. Since at most t − 1 vertices of G are in each bag, G is 2-coloured with defect
(t− 1) ·

(
(t− 1)2 − 1

)
+ (t− 2) < (t− 1)3.

Van den Heuvel and Wood [124] proved the following result for excluded strong immersions. The
omitted proof is based on a more involved structure theorem of Dvořák and Wollan [85].

Theorem 51 ([124]). Every graph G ∈ I ′
t is 2-colourable with defect at most some function d(t),

and thus
χ∆(I ′

t) = 2.

While only two colours suffice for defective colourings of graphs excluding a fixed immersion,
significantly more colours are needed for defective list colouring.

Theorem 52. For all t ⩾ 2,
χℓ
∆(It) = χℓ

∆(I ′
t) = t− 1.

Proof. DeVos et al. [73] proved that mad(I ′
t) ⩽ O(t). If the 1-subdivision of a graph H is a

subgraph of G, then G contains H as a strong immersion, implying ∇(I ′
t) ⩽ O(t). Theorem 34

then implies that χℓ
∆(I ′

t) equals the minimum integer s such that Ks,n contains Kt as a strong
immersion for some n. It is easily seen that Kt−1,(t−1

2 )+1 contains Kt as a strong immersion, but

Kt−2,n does not contain Kt as a weak immersion for all n. The result follows.

It is an open problem to determine the clustered chromatic number and clustered choice number
of graphs excluding a (strong or weak)Kt immersion. We have the following lower bounds. Since
every graph with maximum degree at most t− 2 contains no Kt immersion, by Theorem 24,

χ⋆(I ′
t) ⩾ χ⋆(It) ⩾ χ⋆(Dt−2) ⩾

⌊
t+ 4

4

⌋
.
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By Theorem 52,
χℓ

⋆(I ′
t) ⩾ χℓ

⋆(It) ⩾ χℓ
∆(It) = t− 1.

8 Minor-Closed Classes

This section studies defective and clustered colourings of graphs in a minor-closed class. Had-
wiger’s Conjecture states that every Kt-minor-free graph is (t − 1)-colourable [116]. This is
widely considered one of the most important open problems in graph theory; see [203] for a sur-
vey. Defective and clustered colourings of Kt-minor-free graphs provide an avenue for attacking
Hadwiger’s Conjecture.

8.1 Excluding a Minor and Bounded Degree

All the known examples of planar graphs that are not 3-colourable with bounded clustering have
unbounded maximum degree. This observation motivated several authors [11, 151, 159] to ask
whether planar graphs with bounded maximum degree are 3-colourable with bounded clustering.
Esperet and Joret [97] solved this question in the affirmative and extended the result to graphs
of bounded Euler genus.

Theorem 53 ([97]). Every graph with maximum degree ∆ and Euler genus g is 3-colourable
with clustering f(∆, g), for some function f .

Esperet and Joret [97] posed the following open problem

Open Problem 54 ([97]). Are triangle-free planar graphs with bounded maximum degree 2-
colourable with bounded clustering?

Graphs with treewidth k are properly (k+1)-colourable, which is best possible for Kk+1. More-
over, since the standard example S(k, d) has treewidth k, the defective chromatic number of
graphs with treewidth k equals k + 1. On the other hand, Alon et al. [11] proved that every
graph with maximum degree ∆ and treewidth k is 2-colourable with clustering 24k∆. The proof
was based on a result about tree-partitions by Ding and Oporowski [75], which was improved
by Wood [219]. It follows that:

Theorem 55. Every graph with maximum degree ∆ and treewidth k is 2-colourable with clus-
tering 5

2(k + 1)(72∆− 1).

Liu [162] proved a list colouring analogue of Theorem 55: every graph with maximum degree ∆
and treewidth k is 2-choosable with clustering f(k,∆), for some function f .

DeVos et al. [72] proved the conjecture of Robin Thomas that graphs excluding a fixed minor
can be 2-coloured so that each monochromatic subgraph has bounded treewidth. Alon et al. [11]
observed that this result and Theorem 55 together imply that graphs excluding a fixed minor
and with bounded maximum degree are 4-colourable with bounded clustering. Answering a
question of Esperet and Joret [97], this result was improved by Liu and Oum [163] (using the
graph minor structure theorem):
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Theorem 56 ([163]). Every graph containing no H-minor and with maximum degree ∆ is
3-colourable with clustering f(∆,H), for some function f .

This theorem generalises Theorem 53 above. It is open whether graphs with bounded maximum
degree and excluding a fixed minor are 3-choosable with bounded clustering (Open Problem 18
is a special case).

The above results lead to the following connection between clustered and defective colourings,
which was implicitly observed by Edwards et al. [87]. The second observation was made by
Norin et al. [183].

Lemma 57 ([87, 183]). For every minor-closed class G,

χ⋆(G) ⩽ 3χ∆(G).

Moreover, if some planar graph is not in G then

χ⋆(G) ⩽ 2χ∆(G).

Proof. As mentioned above, Liu and Oum [163] proved that for every integer d there is an integer
c = c(G, d) such that every graph in G with maximum degree d has a 3-colouring with clustering
c. Let k := χ∆(G). That is, for some integer d, every graph G in G is k-colourable with defect
d. Apply the result of Liu and Oum [163] to each monochromatic component of G, which has
maximum degree at most d. Then G is 3k-colourable with clustering c, and χ⋆(G) ⩽ 3k. For
the second claim, Robertson and Seymour [197] proved that a minor-closed class not containing
all planar graphs has bounded treewidth. The result follows from the method used above, with
Theorem 55 in place of the result of Liu and Oum [163].

8.2 Kt-Minor-Free Graphs

First consider defective colourings of Kt-minor-free graphs. Edwards et al. [87] proved that
every Kt-minor-free graph is (t − 1)-colourable with defect O(t2 log t). Their proof gives the
same result for (t− 1)-choosability. This result is implied by Theorem 33 since K∗

t−1,1 contains
a Kt minor. Indeed, the proof of Theorem 33 in this case is identical to the proof of Edwards
et al. [87] (which predated [185]). Van den Heuvel and Wood [124] improved the upper bound
on the defect in the result of Edwards et al. [87] to t − 2; see Theorem 61 below. Edwards
et al. [87] also showed that the standard example S(t− 2, d) is Kt-minor-free. Thus, Lemma 1
implies the following defective version of Hadwiger’s Conjecture:

χ∆(MKt) = χℓ
∆(MKt) = t− 1. (5)

Now consider clustered colourings of Kt-minor-free graphs. Note that (5) implies

χ⋆(MKt) ⩾ t− 1.

We now show that the island-based method of Dvořák and Norin [84] determines χ⋆(MKt) for
t ⩽ 9.
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Theorem 58 ([84]). For t ⩽ 9,
χ⋆(MKt) = t− 1.

In particular, every Kt-minor-free graph G is (t− 1)-choosable with clustering

ct :=

2
(

5t3/2√
2− 1

)2
 .

Proof. For t ⩽ 9, the exact extremal function for Kt-minor-free graphs is known [77, 139, 167,
168, 169, 207]. In particular, every Kt-minor-free graph on n vertices has less than (t − 2)n
edges for t ⩽ 9. For all t, every such graph has a balanced separator of size t3/2n1/2 [12]. By
Lemma 13 with k = t − 2 and α = 1 and β = 1

2 and c = t3/2, G has a (t − 2)-island of size at
most ct. By Lemma 6, G is (t − 1)-choosable with clustering ct. Since the standard example
S(t− 2, d) is Kt-minor-free, the clustered chromatic number of Kt-minor-free graphs is at least
t− 1. Thus for t ⩽ 9, the clustered chromatic number of Kt-minor-free graphs equals t− 1.

The only obstacle for extending Theorem 58 for larger values of t is that the exact extremal
function is not precisely known. Moreover, for large t, the maximum average degree of Kt-minor-
free graphs tends to Θ(t

√
log t); see [153, 154, 208, 209]. Thus Lemma 13 alone cannot determine

the clustered chromatic number of Kt-minor-free graphs for large t.

Kawarabayashi and Mohar [147] first proved a O(t) upper bound on χ⋆(MKt). The constants
in this result have been successively improved, as shown in Table 3, to

χ⋆(MKt) ⩽ 2t− 2.

Dvořák and Norin [84] have announced a proof that χ⋆(MKt) = χℓ
⋆(MKt) = t− 1.

Table 3: Upper bounds on the clustered chromatic number of Kt-minor-free graphs (t ⩾ 3).

χ⋆(MKt) ⩽ clustering choosability

Kawarabayashi and Mohar [147] ⌈312 t⌉ c(t) yes
Wood [220] 1 ⌈7t−3

2 ⌉ c(t) yes
Edwards et al. [87] 4t− 4 c(t)
Liu and Oum [163] 3t− 3 c(t)
Norin [182] 2 2t− 2 c(t)
Van den Heuvel and Wood [124] 2t− 2 ⌈ t−2

2 ⌉
Dvořák and Norin [84] 2t− 2 c(t)

Most of the results shown in Table 3 depend on the graph minor structure theorem, so the
clustering function is large and not explicit. The exception is the self-contained proof of Van
den Heuvel and Wood [124], which we now present.

1 This result depended on a result announced by Norin and Thomas [184] which has not yet been written.
2 See [203] for some of the details.
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Lemma 59 ([124]). For every set A of k ⩾ 1 vertices in a connected graph G, and for every
minimal induced connected subgraph H of G containing A,

(1) H has maximum degree at most k, and

(2) H can be 2-coloured with clustering
⌈
1
2k
⌉
.

Proof. Say v ∈ V (H). Let T be a spanning tree of H that includes each edge of H incident with
v. By the minimality of H, every leaf of T is in A. Thus, the number of leaves in T is at least
degH(v) and at most k. Hence degH(v) ⩽ k, implying ∆(H) ⩽ k.

To prove (2) by induction on |V (H)|. In the base case, |V (H)| = |A| = k and the result is
trivial. Now assume that |V (H)| > k. Thus V (H −A) ̸= ∅, and by the minimality of H, every
vertex in H − A is a cut-vertex of H. Consider a leaf-block L of H. Every vertex in L, except
the one cut-vertex in L, is in A. There are at least two leaf-blocks. Thus |V (L − v)| ⩽ 1

2k
for some leaf block L, where v is the one cut-vertex of H in L. Let H ′ = H − V (L − v) and
A′ = (A \ V (L)) ∪ {v}. Then H ′ is a minimal induced connected subgraph of G containing A′,
and |A′| ⩽ k. By induction, H ′ has a 2-colouring with clustering

⌈
1
2k
⌉
. Colour every vertex in

L \ {v} by the colour not assigned to v in H ′. Now H is 2-coloured with clustering
⌈
1
2k
⌉
.

Disjoint subgraphs H1 and H2 in a graph G are adjacent if some edge of G has one endpoint in
H1 and one endpoint in H2.

Lemma 60 ([124]). For t ⩾ 4, for every Kt-minor-free graph G, there are induced subgraphs
H1, . . . , Hn of G that partition V (G), and for i ∈ [n]:

(1) The subgraph Hi has maximum degree at most t− 2, and can be 2-coloured with clustering⌈
1
2(t− 2)

⌉
;

(2) For each component C of G−
(
V (H1)∪· · ·∪V (Hi)

)
, at most t−2 subgraphs in H1, . . . , Hi

are adjacent to C, and these subgraphs are pairwise adjacent.

Proof. We may assume that G is connected. We construct H1, . . . , Hn iteratively, maintaining
properties (1) and (2). Let H1 be the subgraph induced by a single vertex in G. Then (1) and (2)
hold for i = 1.

Assume thatH1, . . . , Hi satisfy (1) and (2) for some i ⩾ 1, but V (H1), . . . , V (Hi) do not partition
V (G). Let C be a component of G −

(
V (H1) ∪ · · · ∪ V (Hi)

)
. Let Q1, . . . , Qk be the elements

of {H1, . . . , Hi} that are adjacent to C. By (2), Q1, . . . , Qk are pairwise adjacent and k ⩽ t− 2.
Since G is connected, k ⩾ 1.

For j ∈ [k], let vj be a vertex in C adjacent to Qj . By Lemma 59 with k ⩽ t − 2, there is an
induced connected subgraph Hi+1 of C containing v1, . . . , vk that satisfies (1).

Consider a component C ′ of G−
(
V (H1)∪ · · · ∪V (Hi+1)

)
. Either C ′ is disjoint from C, or C ′ is

contained in C. If C ′ is disjoint from C, then C ′ is a component of G−
(
V (H1) ∪ · · · ∪ V (Hi)

)
and C ′ is not adjacent to Hi+1, implying (2) is maintained for C ′.

Now assume C ′ is contained in C. The subgraphs in H1, . . . , Hi+1 that are adjacent to C ′ are
a subset of Q1, . . . , Qk,Hi+1, which are pairwise adjacent. Suppose that k = t − 2 and C ′ is
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adjacent to all ofQ1, . . . , Qt−2,Hi+1. Then C is adjacent to all ofQ1, . . . , Qt−2. Contracting each
of Q1, . . . , Qt−2,Hi+1, C

′ into a single vertex gives Kt as a minor of G, which is a contradiction.
Hence C ′ is adjacent to at most t − 2 of Q1, . . . , Qt−2,Hi+1, and property (2) is maintained
for C ′.

The following is the main result of Van den Heuvel and Wood [124].

Theorem 61 ([124]). For t ⩾ 4, every Kt-minor-free graph G is (t − 1)-colourable with defect
t− 2 and is (2t− 2)-colourable with clustering ⌈12(t− 2)⌉.

Proof. Let H1, . . . , Hn be the subgraphs from Lemma 60. By property (2) in Lemma 60, each
subgraph Hi is adjacent to at most t− 2 of H1, . . . , Hi−1. For i = 1, 2, . . . , n colour Hi with one
of t−1 colours different from the colours assigned to the at most t−2 subgraphs in H1, . . . , Hi−1

adjacent to Hi. Since Hi has maximum degree t−2, we obtain a (t−1)-colouring of G with defect
t− 2. Each Hi has a 2-colouring with clustering

⌈
1
2(t− 2)

⌉
. The product of these colourings is

a (2t− 2)-colouring with clustering ⌈12(t− 2)⌉.

Note that the O(t) upper bound on χ⋆(MKt) has been extended to the setting of odd minors. In
particular, Kawarabayashi [146] proved that every graph with no oddKt-minor is 496t-colourable
with clustering at most some function f(t). The bound of 496t was improved to 10t−13 by Kang
and Oum [140]. By Proposition 4, these results do not generalise to the setting of choosability
(even for defective colourings), since complete bipartite graphs contain no odd K3 minor and
have unbounded maximum average degree.

8.3 H-Minor-Free Graphs

Hadwiger’s Conjecture implies that for every graph H with t vertices, the maximum chromatic
number of H-minor-free graphs equals t−1 (since Kt−1 is H-minor-free). However, for clustered
and defective colourings, fewer colours often suffice. For example, as discussed in Section 3.4,
Archdeacon [21] proved that graphs embeddable on a fixed surface are defectively 3-colourable,
whereas the maximum chromatic number for graphs of Euler genus g is Θ(

√
g). The natural

question arises: what is the defective or clustered chromatic number of the class of H-minor-free
graphs, for an arbitrary graph H? We will see that the answer depends on the structure of H,
unlike the chromatic number which only depends on |V (H)|.

Ossona de Mendez et al. [185] observed that the following definition is a key to answering this
question. Let T be a rooted tree. The depth of T is the maximum number of vertices on a
root–to–leaf path in T . The closure of T is obtained from T by adding an edge between every
ancestor and descendent in T , as illustrated in Figure 9. The connected tree-depth2 of a graph
H, denoted by td(H), is the minimum depth of a rooted tree T such that H is a subgraph of
the closure of T . Note that the connected tree-depth is closed under taking minors.

2 This definition is a variant of the more commonly studied notion of the tree-depth of H, denoted by td(H),
which equals the maximum connected tree-depth of the connected components of H. See [180] for background
on tree-depth. If H is connected, then td(H) = td(H). In fact, td(H) = td(H) unless H has two connected
components H1 and H2 with td(H1) = td(H2) = td(H), in which case td(H) = td(H) + 1. Norin et al. [183]
introduced connected tree-depth to avoid this distinction.
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Figure 9: The closure of a tree of depth 6 contains K5,9.

Note that the standard example, S(h, d), is the closure of the complete (d+1)-ary tree of depth
h+1. By Lemma 1, for every graph H, the defective chromatic number of H-minor-free graphs
satisfies

χ∆(MH) ⩾ td(H)− 1, (6)

as observed by Ossona de Mendez et al. [185], who conjectured that equality holds.

Conjecture 62 ([185]). For every graph H,

χ∆(MH) = td(H)− 1.

Since Ks,t has connected tree-depth min{s, t} + 1, by Theorem 33, Conjecture 62 is true if
H = Ks,t, as proved by Ossona de Mendez et al. [185], who also proved Conjecture 62 if
td(H) = 3. Norin et al. [183] provided further evidence for the conjecture by showing that
χ⋆(MH) is bounded from above by some function of td(H). This implies that both χ∆(MH)
and χ⋆(MH) are tied to td(H).

Theorem 63 ([183]). For every graph H,

χ⋆(MH) ⩽ 2td(H)+1 − 4.

While Ossona de Mendez et al. [185] conjectured that χ∆(MH) = td(H)−1, the following lower
bound by Norin et al. [183] shows that χ⋆(MH) might be larger, thus providing some distinction
between defective and clustered colourings.

Theorem 64 ([183]). For each k ⩾ 2, if Hk is the the standard example S(k − 1, 2) then Hk

has connected tree-depth k and
χ⋆(MHk

) ⩾ 2k − 2.

Proof. Fix an integer c. We now recursively define graphs Gk (depending on c), and show by
induction on k that Gk has no (2k− 3)-colouring with clustering c, and Hk is not a minor of Gk.
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For the base case k = 2, let G2 be the path on c+1 vertices. Then G2 has no H2 = S(1, 2) = K1,3

minor, and G2 has no 1-colouring with clustering c.

Assume Gk−1 is defined for some k ⩾ 3, that Gk−1 has no (2k − 5)-colouring with clustering c,
and Hk−1 is not a minor of Gk−1. As illustrated in Figure 10, let Gk be obtained from a path
(v1, . . . , vc+1) as follows: for i ∈ {1, . . . , c} add 2c− 1 pairwise disjoint copies of Gk−1 complete
to {vi, vi+1}.

Suppose that Gk has a (2k − 3)-colouring with clustering c. Then vi and vi+1 receive distinct
colours for some i ∈ {1, . . . , c}. Consider the 2c − 1 copies of Gk−1 complete to {vi, vi+1}. At
most c− 1 such copies contain a vertex assigned the same colour as vi, and at most c− 1 such
copies contain a vertex assigned the same colour as vi+1. Thus some copy avoids both colours.
Hence Gk−1 is (2k − 5)-coloured with clustering c, which is a contradiction. Therefore Gk has
no (2k − 3)-colouring with clustering c.

It remains to show that Hk is not a minor of Gk. Suppose that Gk contains a model
{Jx : x ∈ V (Hk)} of Hk. Let r be the root vertex in Hk. Choose the Hk-model to min-
imise

∑
x∈V (H) |V (Jx)|. Thus Jr is a connected subgraph of (v1, . . . , vc+1). Say Jr = (vi, . . . , vj).

Note that Hk − r consists of three pairwise disjoint copies of Hk−1. The model X of one such
copy avoids vi−1 and vj+1 (if these vertices are defined). Since Hk−1 is connected, X is contained
in a component of Gk − {vi−1, . . . , vj+1} and is adjacent to (vi, . . . , vj). Each such component
is a copy of Gk−1. Thus Hk−1 is a minor of Gk−1, which is a contradiction. Thus Hk−1 is not a
minor of Gk.

Norin et al. [183] conjectured an analogous upper bound:

Conjecture 65 ([183]). For every graph H,

χ⋆(MH) ⩽ 2 td(H)− 2.

Norin et al. [183] observed that Conjecture 65 holds for every graph H with td(H) = 3. In this
case, as mentioned above, Ossona de Mendez et al. [185] proved that χ∆(MH) = 2. Since H is
planar, by Lemma 57, χ⋆(MH) ⩽ 2χ∆(MH) = 4 = 2 td(H)− 2, as claimed.

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

Gk−1 Gk−1

b b b

2c− 1

v1 v2 v3 v4 v5 v6 b b b vc+1

Figure 10: Construction of Gk in Theorem 64.
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In the remainder of this section we prove Theorem 63. The proof depends on the following
Erdős-Pósa Theorem by Robertson and Seymour [197]. For a graph H and integer p ⩾ 1, let
pH be the disjoint union of p copies of H.

Theorem 66 ([197]; see [192, Lemma 3.10]). For every graph H with c connected components
and for all integers p, w ⩾ 1, for every graph G with treewidth at most w and with no pH minor,
there is a set X ⊆ V (G) of size at most (p− 1)(wc− 1) such that G−X has no H minor.

The next lemma is the heart of the proof of Theorem 63.

Lemma 67 ([183]). For all integers h, k, w ⩾ 1, every S(h − 1, k − 1)-minor-free graph G of
treewidth at most w is (2h − 2)-colourable with clustering (k − 1)(w − 1).

Proof. We proceed by induction on h ⩾ 1, with w and k fixed. The case h = 1 is trivial since
S(0, k − 1) is the 1-vertex graph. Now assume that h ⩾ 2, the claim holds for h− 1, and G is a
S(h− 1, k − 1)-minor-free graph with treewidth at most w. Let V0, V1, . . . be the BFS layering
of G starting at some vertex r.

Fix i ⩾ 1. Then G[Vi] contains no k S(h − 2, k − 1) as a minor, as otherwise contracting
V0 ∪ · · · ∪ Vi−1 to a single vertex gives a S(h − 1, k − 1) minor (since every vertex in Vi has
a neighbour in Vi−1). Since G has treewidth at most w, so does G[Vi]. By Theorem 66 with
H = S(h − 2, k − 1) and c = 1, there is a set Xi ⊆ Vi of size at most (k − 1)(w − 1) such that
G[Vi \Xi] has no S(h− 2, k − 1) minor. By induction, G[Vi \Xi] is (2

h−1 − 2)-colourable with
clustering (k − 1)(w − 1). Use one new colour for Xi. Thus G[Vi] is (2

h−1 − 1)-colourable with
clustering (k− 1)(w− 1). Use disjoint sets of colours for even and odd i, and colour r by one of
the colours used for even i. No edge joins Vi with Vj for j ⩾ i+ 2. Now G is (2h − 2)-coloured
with clustering (k − 1)(w − 1).

To drop the assumption of bounded treewidth, we use the following result of DeVos, Ding,
Oporowski, Sanders, Reed, Seymour, and Vertigan [72].

Theorem 68 ([72]). For every graph H there is an integer w such that for every graph G with
no H-minor, there is a partition V1, V2 of V (G) such that G[Vi] has treewidth at most w, for
i ∈ {1, 2}.

Proof of Theorem 63. Let k := |V (H)| and h := td(H). By definition, H is a subgraph of
S(h − 1, k − 1). Thus every H-minor-free graph G contains no C(h, k)-minor. Lemma 67
and Theorem 68 implies that G is (2h+1 − 4)-colourable with clustering at most some function
g(h, k). The claim follows.

Note that Norin et al. [183] proved a weaker bound, roughly χ⋆(MH) ⩽ 4td(H), with a self-
contained proof avoiding Theorem 68 and thus avoiding the graph minor structure theorem.
See [222, 226] for more about defective choosability in minor-closed classes.

the electronic journal of combinatorics (2018), #DS23 43



G Gb b b

c

G′
:=

if G ∈ Xk−1,c then

is in Xk,c

G

G+ :=

k(c− 1) + 1

∀k-clique

if G ∈ Xk−1,c then

is in Xk,c

G

G++ :=

(c− 1)2(k − 1) + c+ 1

∀(k − 1)-clique

if G ∈ Xk−2,c then

is in Xk,c

Figure 11: Construction of Xk,c.

8.4 Conjectures

We now present a conjecture of Norin et al. [183] about the clustered chromatic number of
an arbitrary minor-closed class of graphs. Consider the following recursively defined class of
graphs, illustrated in Figure 11. Let X1,c := {Pc+1,K1,c}. For k ⩾ 2, let Xk,c be the set of
graphs obtained by the following three operations. For the first two operations, consider an
arbitrary graph G ∈ Xk−1,c.

• Let G′ be the graph obtained from c disjoint copies of G by adding one dominant vertex.
Then G′ is in Xk,c.

• Let G+ be the graph obtained from G as follows: for each k-clique D in G, add a stable
set of k(c− 1) + 1 vertices complete to D. Then G+ is in Xk,c.

• If k ⩾ 3 and G ∈ Xk−2,c, then let G++ be the graph obtained from G as follows: for each
(k− 1)-clique D in G, add a path of (c2− 1)(k− 1)+ (c+1) vertices complete to D. Then
G++ is in Xk,c.

A vertex-coloured graph is rainbow if every vertex receives a distinct colour.

Lemma 69 ([183]). For every c ⩾ 1 and k ⩾ 2, for every graph G ∈ Xk,c, every colouring of G
with clustering c contains a rainbow Kk+1. In particular, no graph in Xk,c is k-colourable with
clustering c.

Proof. We proceed by induction on k ⩾ 1. In the case k = 1, every colouring of Pc+1 or K1,c

with clustering c contains a bichromatic edge, and we are done. Now assume the claim for k− 1
and for k − 2 (if k ⩾ 3).

Let G ∈ Xk−1,c. Consider a colouring of G′ with clustering c. Say the dominant vertex v is blue.
At most c− 1 copies of G contain a blue vertex. Thus, some copy of G has no blue vertex. By
induction, this copy of G contains a rainbow Kk. With v we obtain a rainbow Kk+1.

Now consider a colouring of G+ with clustering c. By induction, the copy of G in G+ contains a
clique {w1, . . . , wk} receiving distinct colours. Let S be the set of k(c− 1) + 1 vertices adjacent
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to w1, . . . , wk in G+. At most c−1 vertices in S receive the same colour as wi. Thus some vertex
in S receives a colour distinct from the colours assigned to w1, . . . , wk. Hence G+ contains a
rainbow Kk+1.

Now suppose k ⩾ 3 and G ∈ Xk−2,c. Consider a colouring of G++ with clustering c. By
induction, the copy of G in G++ contains a clique {w1, . . . , wk−1} receiving distinct colours.
Let P be the path of (c2 − 1)(k − 1) + (c + 1) vertices in G++ complete to {w1, . . . , wk−1}.
Let Xi be the set of vertices in P assigned the same colour as wi, and let X :=

∪
iXi. Thus

|Xi| ⩽ c− 1 and |X| ⩽ (c− 1)(k− 1). Hence P −X has at most (c− 1)(k− 1) + 1 components,
and |V (P −X)| ⩾ (c2 − 1)(k − 1) + (c+ 1)− (c− 1)(k − 1) = c

(
(c− 1)(k − 1) + 1

)
+ 1. Some

component of P −X has at least c + 1 vertices, and therefore contains a bichromatic edge xy.
Then {w1, . . . , wk−1} ∪ {x, y} induces a rainbow Kk+1 in G++.

Norin et al. [183] conjectured that every minor-closed class that excludes every graph in Xk,c for
some c is k-colourable with bounded clustering. More precisely:

Conjecture 70 ([183]). For every minor-closed class M of graphs, χ⋆(M) equals the minimum
integer k such that M∩Xk,c = ∅ for some integer c.

Note that the lower bound in Conjecture 70 follows from Lemma 69. Conjecture 70 is trivial
when k = 1, and Norin et al. [183] proved it when k = 2. It is easily seen that Conjecture 70
implies Conjecture 65; see [183].

Now consider the class of graphs excluding the complete bipartite graph Ks,t as a minor, where
s ⩽ t.Theorem 33 and (6) imply that

χ∆(MKs,t) = χℓ
∆(MKs,t) = s.

For clustered colouring, Lemma 57 implies χ⋆(MKs,t) ⩽ 3s. This bound was improved by Dvořák
and Norin [84] who proved that χ⋆(MKs,t) ⩽ 2s+2, which is the best known upper bound. Van
den Heuvel and Wood [124] proved the lower bound, χ⋆(MKs,t) ⩾ s+1 for t ⩾ max{s, 3}. Their
construction is a special case of the construction shown in Figure 11. Conjecture 70 says that
χ⋆(MKs,t) = s+ 1.

8.5 Circumference

The circumference of a graph G is the length of the longest cycle if G contains a cycle, and is 2
if G is a forest. This section studies clustered colourings of graphs of given circumference. Let
Ck be the class of graphs with circumference at most k. A graph has circumference at most k if
and only if it contains no Ck+1 minor, where Ck+1 is the cycle on k + 1 vertices. Thus Ck is a
minor-closed class.

Lemma 71. For all k, d ⩾ 1, the standard example S(k, d) contains no path on 2k+1 vertices
and no cycle of length at least 2k + 1.

Proof. We proceed by induction on k ⩾ 1 with d fixed. In the base case, S(1, d) = K1,d+1, which
contains no 4-vertex path and no cycle. Now assume the result for S(k−1, d). Let v be the root
vertex of S(k, d).
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Figure 12: The path on n vertices is a subgraph of S(k, 1), where k = ⌈log2(n+ 1)⌉.

Suppose that S(k, d) contains a cycle C of length at least 2k + 1. Since v is a cut vertex, C is
contained in one copy of S(k − 1, d) plus v. Thus S(k − 1, d) contains a path on 2k vertices,
which is a contradiction. Thus S(k, d) has no cycle of length at least 2k + 1.

If S(k, d) contains a path P on 2k+1 vertices, then P − v contains a path component with least
⌈12(2

k+1 − 1)⌉ = 2k vertices that is contained in a copy of S(k − 1, d), which is a contradiction.
Hence S(k, d) contains no path of order 2k+1.

It follows from Lemma 71 that

td(Ck+1) = 1 + ⌈log2(k + 1)⌉ = 2 + ⌊log2 k⌋.

By (6),
χ⋆(Ck) ⩾ χ∆(Ck) ⩾ td(Ck+1)− 1 = 1 + ⌊log2 k⌋.

Mohar et al. [176] proved an upper bound within a factor of 3 of this lower bound.

Theorem 72 ([176]). For every integer k ⩾ 2, every graph G with circumference at most k is
(3 log2 k)-colourable with clustering k. Thus

χ∆(Ck) ⩽ χ⋆(Ck) ⩽ 3 log2 k.

This result is implied by the following lemma with C = ∅.

Lemma 73 ([176]). For every integer k ⩾ 2, for every graph G with circumference at most k
and for every pre-coloured clique C of size at most 2 in G, there is a ⌊3 log2 k⌋-colouring of G
with clustering k, such that every monochromatic component that intersects C is contained in
C.

Proof. We proceed by induction on k+ |V (G)|. The result is trivial if |V (G)| ⩽ 2. Now assume
|V (G)| ⩾ 3.
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First suppose that k = 2. Then G is a forest, which is properly 2-colourable. If |C| ⩽ 1 or
|C| = 2 and two colours are used on C, we obtain the desired colouring (with 2 < ⌊3 log2 k⌋
colours). Otherwise, |C| = 2 with the same colour on the vertices in C. Contract the edge C
and 2-colour the resulting forest by induction, to obtain the desired colouring of G. Now assume
that k ⩾ 3.

Suppose that G is not 3-connected. Then G has a minimal separation (G1, G2) with S :=
V (G1 ∩ G2) of size at most 2. If |S| = 2, then add the edge on S if the edge is not already
present. Consider both G1 and G2 to contain this edge. Observe that since the separation
is minimal, there is a path in each Gj (j = 1, 2) between the two vertices of S. Therefore,
adding the edge does not increase the circumference of G. Also note that any valid colouring of
the augmented graph will be valid for the original graph. Since C is a clique, we may assume
that C ⊆ V (G1). By induction, there is a ⌊3 log2 k⌋-colouring of G1, with C precoloured, such
that every monochromatic component of G1 has order at most k and every monochromatic
component of G1 that intersects C is contained in C. This colours S. By induction, there is a
⌊3 log2 k⌋-colouring of G2, with S precoloured, such that every monochromatic component of G2

has order at most k and every monochromatic component of G2 that intersects S is contained in
S. By combining the two colourings, every monochromatic component of G has order at most
k and every monochromatic component of G that intersects C is contained in C, as required.
Now assume that G is 3-connected.

Every 3-connected graph contains a cycle of length at least 4. Thus k ⩾ 4.

If G contains no cycle of length k, then apply the induction hypothesis for k − 1; thus we may
assume that G contains a cycle Q of length k. Let A be the set of cycles in G of length at least
⌈12(k − 5)⌉. Suppose that a cycle A ∈ A is disjoint from Q. Since G is 3-connected, there are
three disjoint paths between A and Q. It follows that G contains three cycles with total length
at least 2(|A| + |Q| + 3) > 3k. Thus G contains a cycle of length greater than k, which is a
contradiction. Hence, every cycle in A intersects Q.

Let S := V (Q)∪C. As shown above, G′ := G−S contains no cycle of length at least ⌈12(k − 5)⌉.
Then G′ has circumference at most ⌈12(k − 7)⌉, which is at most ⌊12k⌋, which is at least 2. By
induction (with no precoloured vertices), there is a ⌊3 log2⌊12k⌋⌋-colouring of G′ such that every
monochromatic component of G′ has order at most ⌊12k⌋. Use a set of colours for G′ disjoint
from the (at most two) preassigned colours for C. Use one new colour for S\C, which has size at
most k. In total, there are at most ⌊3 log2⌊12k⌋⌋+ 3 ⩽ ⌊3 log2 k⌋ colours. Every monochromatic
component of G has order at most k, and every monochromatic component of G that intersects
C is contained in C.

Similar results are obtained for graph classes excluding a fixed path. Let Pk be the path on k
vertices. It follows from Lemma 71 that

td(Pk) = td(Pk) = ⌈log2(k + 1)⌉.

Let Hk be the class of graphs containing no path of order k + 1 (or equivalently, with no Pk+1

minor). Thus Conjecture 62, in the case of excluded paths, asserts that

χ∆(Hk) = td(Pk+1)− 1 = ⌈log2(k + 2)⌉ − 1.
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Every graph with no Pk+1-minor has circumference at most k. Thus Theorem 72 implies the
following upper bound that is which is within a factor of 3 of Conjecture 62 for excluded paths.

Theorem 74 ([176]). For every integer k ⩾ 2, every graph G with no path of order k + 1 is
(3 log2 k)-colourable with clustering k. Thus

χ∆(Hk) ⩽ χ⋆(Hk) ⩽ ⌊3 log2 k⌋,

To conclude this section, we show that Theorem 34 determines the defective choosability of Ck
and Pk.

First consider Ck. Say s ⩽ t. Then the circumference of Ks,t equals 2s. If s ⩾ ⌈k+1
2 ⌉ then Ks,t

contains a (k + 1)-cycle and is not in Ck. On the other hand, if s ⩽ ⌈k+1
2 ⌉ − 1 then 2s ⩽ k and

Ks,t ∈ Ck. Thus χℓ
∆(Ck) = ⌈k+1

2 ⌉.

Now consider Pk. Say t > s. Then Ks,t contains a path order 2s + 1, and contains no path of
order 2s+2. Thus Ks,t ∈ Hk if and only if 2s+1 ⩽ k. That is, Ks,t ̸∈ Hk if and only if s > k−1

2 .

By Theorem 34, χℓ
∆(Hk) = ⌊k+1

2 ⌋.

9 Thickness

The thickness of a graph G is the minimum integer k such that G is the union of k planar
subgraphs; see [179] for a survey. Let Tk be the class of graphs with thickness k. Graphs with
thickness k have maximum average degree less than 6k. Thus χ(Tk) ⩽ 6k. For k = 2, which
corresponds to the so-called earth-moon problem, it is known that χ(T2) ∈ {9, 10, 11, 12}. For
k ⩾ 3, complete graphs provide a lower bound of 6k − 2, implying χ(Tk) ∈ {6k − 2, 6k − 1, 6k}.
It is an open problem to improve these bounds; see [129].

9.1 Defective Colouring

This section studies defective colourings of graphs with given thickness. Yancey [230] first
proposed studying this topic. The results in this section are due to Ossona de Mendez et al. [185].
Since the maximum average degree is less than 6k, Theorem 28 implies that such graphs are
(3k + 1)-choosable with defect O(k2), but gives no result with at most 3k colours.

Lemma 75 ([185]). The standard example S(2k, d) has thickness at most k.

Proof. We proceed by induction on k ⩾ 1. In the base case, S(2, d) is planar, and thus has
thickness 1. Let G := S(2k, d) for some k ⩾ 2. Let r be the vertex of G such that G− r is the
disjoint union of d + 1 copies of S(2k − 1, d). For i ∈ [d + 1], let vi be the vertex of the i-th
component Ci of G− r such that Ci− vi is the disjoint union of d+1 copies of S(2k− 2, d). Let
H := G− {r, v1, v2, . . . , vd+1}. Observe that each component of H is isomorphic to S(2k − 2, d)
and by induction, H has thickness at most k−1. Since G−E(H) consists of d+1 copies of K2,d′

pasted on r for some d′, G − E(H) is planar and thus has thickness 1. Hence G has thickness
at most k.
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Lemmas 1 and 75 imply that χ∆(Tk) ⩾ 2k+1. Ossona de Mendez et al. [185] proved that equality
holds. In fact, the proof works in the following more general setting, implicitly introduced by
Jackson and Ringel [131]. For an integer g ⩾ 0, the g-thickness of a graph G is the minimum
integer k such that G is the union of k subgraphs each with Euler genus at most g. Let T g

k be
the class of graphs with g-thickness k. As an aside, note that the g-thickness of complete graphs
is closely related to bi-embeddings of graphs [13, 14, 15, 54].

Theorem 76 ([185]). For integers g ⩾ 0 and k ⩾ 1,

χ∆(T g
k ) = χℓ

∆(T
g
k ) = 2k + 1.

In particular, every graph with g-thickness at most k is (2k+1)-choosable with defect 2kg+8k2+
2k.

The lower bound in Theorem 76 follows from Lemma 75. The upper bound follows from Lemma 5
and the next lemma.

Lemma 77 ([185]). For integers g ⩾ 0 and k ⩾ 1, every graph with minimum degree at least
2k + 1 and g-thickness at most k has an (ℓ− 1)-light edge, where ℓ := 2kg + 8k2 + 2k + 1.

Proof. We claim that Lemma 78 below with δ = 2k+1 implies the result. Equations (7) and (8)
are immediately satisfied. Let β :=

(
(4k − 1)(2k + 1) + 2k(g − 1)

)
and γ := 4k(2k + 1)(g − 1).

(9) requires that ℓ2 − βℓ − γ > 0. The larger root of ℓ2 − βℓ − γ is 1
2(β +

√
β2 + 4γ), which is

at most β + γ
β since β + 2α

β > 0. Elementary manipulations show that ℓ > β + γ
β . Thus (9) is

satisfied.

Lemma 78. Let G be a graph with n vertices, g-thickness at most k, and minimum degree at
least δ, where

6k ⩾ δ ⩾ 2k + 1, (7)

(δ − 2k)ℓ > 4kδ, and (8)

(δ − 2k)ℓ2 −
(
(4k − 1)δ + 2k(g − 1)

)
ℓ− 4k(g − 1)δ > 0. (9)

Then G has an (ℓ− 1)-light edge.

Proof. By Euler’s Formula, G has at most 3k(n + g − 2) edges, and every spanning bipartite
subgraph has at most 2k(n+g−2) edges. Let X be the set of vertices with degree at most ℓ−1.
Since vertices in X have degree at least δ and vertices not in X have degree at least ℓ,

δ|X|+ (n− |X|)ℓ ⩽
∑

v∈V (G)

deg(v) = 2|E(G)| ⩽ 6k(n+ g − 2).

Thus
(ℓ− 6k)n− 6k(g − 2) ⩽ (ℓ− δ)|X|.

Suppose on the contrary that X is a stable set in G. Let G′ be the spanning bipartite subgraph
of G consisting of all edges between X and V (G) \X. Since each of the at least δ edges incident
with each vertex in X are in G′,

δ|X| ⩽ |E(G′)| ⩽ 2k(n+ g − 2).
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Since ℓ > 4k
δ−2kδ > δ (hence ℓ− δ > 0) and δ ⩾ 0,

δ(ℓ− 6k)n− 6k(g − 2)δ ⩽ δ(ℓ− δ)|X| ⩽ (ℓ− δ)(2k)(n+ g − 2)

=⇒
(
δ(ℓ− 6k)− 2k(ℓ− δ)

)
n ⩽ (ℓ− δ)2k(g − 2) + 6k(g − 2)δ

=⇒
(
(δ − 2k)ℓ− 4kδ

)
n ⩽ 2k(g − 2)ℓ+ 4k(g − 2)δ.

If n ⩽ ℓ then every edge is (ℓ− 1)-light. Now assume that n ⩾ ℓ+ 1. Since (δ − 2k)ℓ− 4kδ > 0,(
(δ − 2k)ℓ− 4kδ

)
(ℓ+ 1) ⩽ 2k(g − 2)ℓ+ 4k(g − 2)δ.

Thus
(δ − 2k)ℓ2 −

(
(4k − 1)δ + 2k(g − 1)

)
ℓ− 4k(g − 1)δ ⩽ 0,

which is a contradiction. Thus X is not a stable set. Hence G contains an (ℓ−1)-light edge.

Lemma 78 with k = 1 and ℓ = 2g+13 implies that every graph G with minimum degree at least
3 and Euler genus g has a (2g+12)-light edge. Note that this bound is within +10 of being tight
since K3,2g+2 has minimum degree 3, embeds in a surface of Euler genus g, and every edge has
an endpoint of degree 2g + 2. More precise results, which are typically proved by discharging
with respect to an embedding, are known [35, 130, 134]. Theorem 76 then implies that every
graph with Euler genus g is 3-choosable with defect 2g + 10. As mentioned in Section 3.4, this
result with a better degree bound was proved by Woodall [227]; also see [59]. The utility of
Lemma 78 is that it applies for k > 1.

The case g = 0 and k = 2 relates to the famous earth–moon problem [8, 108, 129, 131, 195],
which asks for the maximum chromatic number of graphs with thickness 2. The answer is known
to be in {9, 10, 11, 12}. Since the maximum average degree of every graph G with thickness 2
is less than 12, the result of Havet and Sereni [119] mentioned in Section 5 implies that G is
k-choosable with defect d, for (k, d) ∈ {(7, 18), (8, 9), (9, 5), (10, 3), (11, 2)}. This result gives no
bound with at most 6 colours. On the other hand, Theorem 76 says that the class of graphs
with thickness 2 has defective chromatic number and defective choice number equal to 5. In
particular, the method shows that every graph G with thickness 2 is k-choosable with defect d,
for (k, d) ∈ {(5, 36), (6, 19), (7, 12), (8, 9), (9, 6), (10, 4), (11, 2)}. This 11-colouring result, which
is also implied by the result of Havet and Sereni [119], is close to the conjecture that graphs
with thickness 2 are 11-colourable. Improving these degree bounds provides an approach for
attacking the earth–moon problem.

9.2 Clustered Colouring

Consider the clustered chromatic number of T g
k . We have the following upper bound.

Proposition 79. For all integers g ⩾ 0 and k ⩾ 1, every graph G with g-thickness at most k is
(6k + 1)-choosable with clustering max{g, 1}.

Proof. We proceed by induction on |V (G)|. Let L be a (6k + 1)-list assignment for G. In the
base case, the claim is trivial if |V (G)| = 0. Now assume that |V (G)| ⩾ 1.
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First suppose that |V (G)| ⩽ 6kg. Thus g ⩾ 1. Let v be any vertex of G. By induction, G− v is
L-colourable with clustering g. Since |L(v)| ⩾ 6g and |V (G− v)| < 6kg, some colour c ∈ L(v) is
assigned to at most g− 1 vertices in G− v. Colour v by c. Thus G is L-coloured with clustering
g.

Now assume that |V (G)| > 6kg. Every graph with g-thickness at most k and more than 6kg
vertices has a vertex v of degree at most 6k, since |E(G)| < 3k(|V (G)| + g) ⩽ (3k + 1

2)|V (G)|,
implying G has average degree less than 6k + 1. By induction, G − v is (6k + 1)-choosable
with clustering max{g, 1}. Since |L(v)| ⩾ 6k + 1 and deg(v) ⩽ 6k, some colour c ∈ L(v) is
not assigned to any neighbour of v. Colour v by c. Thus v is in a singleton monochromatic
component, and G is L-coloured with clustering max{g, 1}.

Since S(3, c) is planar, an analogous proof to that of Lemma 75 shows that S(2k + 1, c) has
thickness at most k. By Lemma 2 and Proposition 79,

2k + 2 ⩽ χ⋆(T g
k ) ⩽ 6k + 1.

Closing this gap is an interesting problem because the existing methods say nothing for graphs
with given thickness. For example, as illustrated in Figure 13, the 1-subdivision of Kn has
thickness 2. Thus thickness 2 graphs have unbounded ∇. Similarly, Lemma 13 is not applicable
since graphs with thickness 2 do not have sublinear balanced separators. Indeed, Dujmović
et al. [82] constructed ‘expander’ graphs with thickness 2, bounded degree, and with no o(n)
balanced separators. Returning to the earth-moon problem, it is open whether thickness 2
graphs are 11-colourable with bounded clustering.

Figure 13: The 1-subdivision of Kn has thickness 2.

10 General Setting

Consider a graph parameter f . Several authors have studied colourings of graphs such that f is
bounded for each monochromatic subgraph, or equivalently each monochromatic subgraph satis-
fies a particular property; see [51, 53, 71, 103, 138, 216] for example. For a graph class G, define
χf(G) to be the minimum integer k such that for some c, every graph G ∈ G has a k-colouring
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such that f(H) ⩽ c for each monochromatic subgraph H of G. This definition incorporates
the clustered and defective chromatic numbers. In particular, if f(H) is the maximum number
of vertices in a connected component of H, then χf(G) = χ⋆(G), and if f(H) = ∆(H) then
χf(G) = χ∆(G). There are many choices for f and G.

First consider when f is the treewidth. Recall that DeVos et al. [72] proved that χtw(G) ⩽ 2 for
every minor-closed class G. Bounded degree classes and χtw(D∆) look interesting. In particular,
what is the maximum integer ∆ such that every graph with maximum degree ∆ is 2-colourable
with bounded monochromatic treewidth? The answer is at least 5 since every graph with
maximum degree 5 is 2-colourable with bounded clustering [120]. The answer is at most 25
since Berger et al. [25] proved that for every 2-colouring of the n × n × n grid with diagonals
(which has maximum degree 26), there is a monochromatic subgraph with unbounded treewidth
(as n → ∞). This upper bound is probably easily improved by eliminating some of the diagonals
in the 3-dimensional grid. Can the lower bound be improved? In particular, does every graph
with maximum degree 6 have a 2-colouring with bounded monochromatic treewidth?

Let η(H) be the maximum integer t such that Kt is a minor of H, sometimes called the Hadwiger
number of H. For example, η(H) ⩽ 1 if and only if H is edgeless, and η(H) ⩽ 2 if and only if
H is a forest. Ding et al. [76] conjectured that for every graph G and integer k ∈ [1, η(G)], G
is k-colourable with η(H) ⩽ η(G)− k + 1 for each monochromatic subgraph H of G. The case
k = η(G) is Hadwiger’s Conjecture. Alternately 2-colouring the layers in a BFS layering proves
this conjecture for k = 2. Gonçalves [114] proved it for k = 3. χη(D∆) also looks interesting.
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paud. (k, 1)-coloring of sparse graphs. Discrete Math., 312(6):1128–1135, 2012.
doi: 10.1016/j.disc.2011.11.031. MR: 2876359. [p. 24]

[43] Oleg V. Borodin and Alexandr V. Kostochka. On an upper bound of a graph’s
chromatic number, depending on the graph’s degree and density. J. Combinatorial Theory
Ser. B, 23(2-3):247–250, 1977. doi: 10.1016/0095-8956(77)90037-5. MR: 0469803. [p. 19]

[44] Oleg V. Borodin and Alexandr V. Kostochka. Vertex decompositions of sparse
graphs into an independent set and a subgraph of maximum degree at most 1. Sibirsk.
Mat. Zh., 52(5):1004–1010, 2011. doi: 10.1134/S0037446611050041. MR: 2908122. [p. 24]

[45] Oleg V. Borodin and Alexandr V. Kostochka. Vertex decompositions of sparse
graphs into an independent vertex set and a subgraph of maximum degree at most 1. Sib.
Math. J., 52:796–801, 2011. doi: 10.1134/S0037446611050041. MR: 2908122. [p. 24]

[46] Oleg V. Borodin and Alexandr V. Kostochka. Defective 2-colorings of sparse
graphs. J. Combin. Theory Ser. B, 104:72–80, 2014. doi: 10.1016/j.jctb.2013.10.002.
MR: 3132745. [p. 24]

[47] Oleg V. Borodin, Alexandr V. Kostochka, and Matthew Yancey. On
1-improper 2-coloring of sparse graphs. Discrete Math., 313(22):2638–2649, 2013.
doi: 10.1016/j.disc.2013.07.014. MR: 3095439. [p. 24]

[48] Oleg V. Borodin and Daniel P. Sanders. On light edges and trian-
gles in planar graphs of minimum degree five. Math. Nachr., 170:19–24, 1994.
doi: 10.1002/mana.19941700103. MR: 1302363. [p. 10]

[49] Mieczys law Borowiecki, Katarzyna Jesse-Józefczyk, and Elżbieta Sidorow-
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[134] Stanislav Jendro ’l and Milan Tuhársky. A Kotzig type theorem for non-orientable
surfaces. Mathematica Slovaca, 56(3):245–253, 2006. http://dml.cz/dmlcz/130967.
MR: 2250077. [pp. 16, 50]

[135] Stanislav Jendro ’l and Heinz-Jürgen Voss. Light subgraphs of multigraphs on com-
pact 2-dimensional manifolds. Discrete Math., 233(1–3):329–351, 2001. doi: 10.1016/S0012-
365X(00)00250-8. MR: 1825625. [p. 10]

[136] Stanislav Jendro ’l and Heinz-Jürgen Voss. Light subgraphs of graphs embedded
in 2-dimensional manifolds of Euler characteristic ⩽ 0. A survey. In Paul Erdős and his
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