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Abstract

A vertex colouring of a graph is nonrepetitive on paths if there is no path
v1,v3,...,vy such that v; and wviy; receive the same colour for all ¢ = 1,2,...%.
We determine the maximum density of a graph that admits a k-colouring that is
nonrepetitive on paths. We prove that every graph has a subdivision that admits
a 4-colouring that is nonrepetitive on paths. The best previous bound was 5. We
also study colourings that are nonrepetitive on walks, and provide a conjecture
that would imply that every graph with maximum degree A has a f(A)-colouring
that is nonrepetitive on walks. We prove that every graph with treewidth k and
maximum degree A has a O(kA)-colouring that is nonrepetitive on paths, and a
O(kA3)-colouring that is nonrepetitive on walks.

1 Introduction

We consider simple, finite, undirected graphs G with vertex set V(G), edge set E(G), and
maximum degree A(G). Let [t] := {1,2,...,t}. A walk in G is a sequence vy, vy, . .., v; of
vertices of G, such that v, € E(G) for all ¢ € [t — 1]. A k-colouring of G is a function
f that assigns one of k£ colours to each vertex of G. A walk vy, vy, ..., vy is repetitively
coloured by f if f(v;) = f(vey) for all i € [t]. A walk vy, vs, ..., vy is boring if v; = vy,
for all ¢ € [t]. Of course, a boring walk is repetitively coloured by every colouring. We
say a colouring f is nonrepetitive on walks (or walk-nonrepetitive) if the only walks that
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are repetitively coloured by f are boring. Let o(G) denote the minimum k& such that G
has a k-colouring that is nonrepetitive on walks.

A walk vy, v,...,v; is a path if v; # v; for all distinct 4,5 € [t]. A colouring f is
nonrepetitive on paths (or path-nonrepetitive) if no path of G is repetitively coloured by
f. Let m(G) denote the minimum & such that G has a k-colouring that is nonrepetitive
on paths. Observe that a colouring that is path-nonrepetitive is proper, in the sense that
adjacent vertices receive distinct colours. Moreover, a path-nonrepetitive colouring has no
2-coloured P, (a path on four vertices). A proper colouring with no 2-coloured P; is called
a star colouring since each bichromatic subgraph is a star forest; see [1, 8, 17, 18, 25, 28|.
The star chromatic number x«(G) is the minimum number of colours in a proper colouring
of G with no 2-coloured P,;. Thus

X(G) < xst(G) < 7(G) < a(G). (1)

Path-nonrepetitive colourings are widely studied [2-5, 9, 10, 12, 13, 19, 21, 23, 24]; see
the surveys by Grytczuk [20, 22]. Nonrepetitive edge colourings have also been considered
4, 6].

The seminal result in this field is by Thue [27], who in 1906 proved! that the n-vertex
path P, satisfies

n ifn <2,
m(Pn) = { (2)

3  otherwise.

A result by Kiindgen and Pelsmajer [23] (see Lemma 3.4) implies
o(P,) <4 . (3)

Currie [11] proved that the n-vertex cycle C,, satisfies

m(Cn) = (4)

4 ifn e {5,7,9,10,14,17},
3 otherwise.
Let m(A) and o(A) denote the maximum of 7(G) and o(G), taken over all graphs G
with maximum degree A(G) < A. Now 7(2) =4 by (2) and (4). In general, Alon et al.
[4] proved that

aA?
< (A) < A? 5
o <) < A (5)
for some constants o and 3. The upper bound was proved using the Lovasz Local Lemma,
and the lower bound is attained by a random graph.
In Section 2 we study whether o(A) is finite, and provide a natural conjecture that
would imply an affirmative answer.

!The nonrepetitive 3-colouring of P, by Thue [27] is obtained as follows. Given a nonrepetitive
sequence over {1,2, 3}, replace each 1 by the sequence 12312, replace each 2 by the sequence 131232, and
replace each 3 by the sequence 1323132. Thue [27] proved that the new sequence is nonrepetitive. Thus
arbitrarily long paths can be nonrepetitively 3-coloured.
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In Section 3 we study path- and walk-nonrepetitive colourings of graphs of bounded
treewidth?. Kiindgen and Pelsmajer [23] and Bardt and Varju [5] independently proved
that graphs of bounded treewidth have bounded 7. The best bound is due to Kiindgen
and Pelsmajer [23] who proved that 7(G) < 4* for every graph G with treewidth at
most k. Whether there is a polynomial bound on 7 for graphs of treewidth £ is an open
question. We answer this problem in the affirmative under the additional assumption of
bounded degree. In particular, we prove a O(kA) upper bound on 7, and a O(kA3) upper
bound on o.

In Section 4 we will prove that every graph has a subdivision that admits a path-
nonrepetitive 4-colouring; the best previous bound was 5. In Section 5 we determine the
maximum density of a graph that admits a path-nonrepetitive k-colouring, and prove
bounds on the maximum density for walk-nonrepetitive k-colourings.

2 Is 0(A) bounded?

Consider the following elementary lower bound on o, where G2 is the square graph of G.
That is, V(G?) = V(G), and vw € F(G?) if and only if the distance between v and w in
G is at most 2. A proper colouring of G? is called a distance-2 colouring of G.

Lemma 2.1. Every walk-nonrepetitive colouring of a graph G is distance-2. Thus o(G) >
x(G?) = A(G) + 1.

Proof. Consider a walk-nonrepetitive colouring of G. Adjacent vertices v and w receive
distinct colours, as otherwise v,w would be a repetitively coloured path. If u,v,w is
a path, and u and w receive the same colour, then the non-boring walk w,v,w,v is
repetitively coloured. Thus vertices at distance at most 2 receive distinct colours. Hence
o(G) > x(G?). In a distance-2 colouring, each vertex and its neighbours all receive
distinct colours. Thus x(G?) > A(G) + 1. O

Hence A(G) is a lower bound on ¢(G). Whether high degree is the only obstruction
for bounded ¢ is an open problem.

Open Problem 2.2. Is there a function f such that o(A) < f(A)?

First we answer Open Problem 2.2 in the affirmative for A = 2. The following lemma
will be useful.

Lemma 2.3. Fiz a distance-2 colouring of a graph G. If W = (v1,v9,...,09) is a
repetitively coloured non-boring walk in G, then v; # vy, for all i € [t].

Proof. Suppose on the contrary that v; = v,,; for some i € [t —1]. Since W is repetitively

coloured, ¢(viy1) = c(vipiv1). Each neighbour of v; receives a distinct colour. Thus
Vit1 = Uppip1. By induction, v; = v,y for all j € [4,¢]. By the same argument, v; = viy;
for all j € [1,7]. Thus W is boring, which is the desired contradiction. O

2The treewidth of a graph G can be defined to be the minimum integer k such that G is a subgraph of
a chordal graph with no clique on k + 2 vertices. Treewidth is an important graph parameter, especially
in structural graph theory and algorithmic graph theory; see the surveys [7, 26].
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Proposition 2.4. 0(2) < 5.

Proof. A result by Kiindgen and Pelsmajer [23] implies that o(P,) < 4 (see Lemma 3.4).
Thus it suffices to prove that o(C),) < 5. Fix a walk-nonrepetitive 4-colouring of the path
(v1,v9,...,U2,_4). Thus for some i € [1,n — 2|, the vertices v; and v,,4;_» receive distinct
colours. Create a cycle C),, from the sub-path v;,v;y1,...,v,4;_ 2 by adding one vertex x
adjacent to v; and v, ;. Colour x with a fifth colour. Observe that since v; and v, ; o
receive distinct colours, the colouring of C), is distance-2. Suppose on the contrary that
C, has a repetitively coloured walk W = y1,99,...,y9. If z is not in W, then W is a
repetitively coloured walk in the starting path, which is a contradiction. Thus x = y;
for some ¢ € [t] (with loss of generality, by considering the reverse of W). Since z is the
only vertex receiving the fifth colour and W is repetitive, x = y;,,. By Lemma 2.3, W is
boring. Hence the 5-colouring of C), is walk-nonrepetitive. U

Below we propose a conjecture that would imply a positive answer to Open Prob-
lem 2.2. First consider the following lemma which is a slight generalisation of a result by
Barat and Varju [6]. A walk vy, vs,...,v; has length ¢t and order |{v; : 1 <i < t}|. That
is, the order is the number of distinct vertices in the walk.

Proposition 2.5. Suppose that in some coloured graph, there is a repetitively coloured
non-boring walk. Then there is a repetitively coloured non-boring walk of order k and
length at most 2k2.

Proof. Let k be the minimum order of a repetitively coloured non-boring walk. Let
W = wv1,v9,...,v9 be a repetitively coloured non-boring walk of order k£ and with ¢
minimum. If 2¢ < 2k?%, then we are done. Now assume that ¢t > k?. By the pigeonhole
principle, there is a vertex x that appears at least k4 1 times in vy, vo, ..., v;. Thus there
is a vertex y that appears at least twice in the set {v;1; : v; = x,i € [t]}. As illustrated
in Figure 1, W = AzBxCA'yB'yC" for some walks A, B,C, A, B',C" with |A| = |A/|,
|B| = |B'|, and |C| = |C’|. Consider the walk U := AxCA'yC’. If U is not boring, then
it is a repetitively coloured non-boring walk of order at most k and length less than 2t,
which contradicts the minimality of W. Otherwise U is boring, implying z =y, A = A’,
and C' = C'. Thus B # B’ since W is not boring, implying xBxB’ is a repetitively
coloured non-boring walk of order at most k and length less than 2¢, which contradicts
the minimality of W. U

We conjecture the following strengthening of Proposition 2.5.

Conjecture 2.6. Let G be a graph. Consider a path-nonrepetitive distance-2 colouring
of G with ¢ colours, such that G contains a repetitively coloured non-boring walk. Then
G contains a repetitively coloured non-boring walk of order k and length at most h(c) - k,
for some function h that only depends on c.

Theorem 2.7. If Conjecture 2.6 is true, then there is a function f for which o(A) <
f(A). That is, every graph G has a walk-nonrepetitive colouring with f(A(G)) colours.
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Figure 1: Illustration for the proof of Proposition 2.5.

Theorem 2.7 is proved using the Lovasz Local Lemma [16].

Lemma 2.8 ([16]). Let A=A UA;U---U A, be a partition of a set of ‘bad’ events A.
Suppose that there are sets of real numbers {p; € [0,1) : i € [r]}, {z; € [0,1) : 7 € [r]},
and {D;; > 0 : 4,5 € [r]} such that the following conditions are satisfied by every event
A c Az

e the probability P(A) < p; < xiH(l—xj)Dij , and

j=1

o A is mutually independent of A\ ({A}UD,), for some Dy C A with |DaNA;| < D;;
for all j € [r].

Then

P(/\Z) > ﬁ(l—xi)w' >0 .

AcA i=1

That is, with positive probability, no event in A occurs.

Proof of Theorem 2.7. Let f; be a path-nonrepetitive colouring of G with 7(G) colours.
Let fy be a distance-2 colouring of G with x(G?) colours. Note that 7(G) < SA? for some
constant 3 by Equation (5), and x(G?) < A(G?) +1 < A? + 1 by a greedy colouring of
G?. Hence f; and f, together define a path-nonrepetitive distance-2 colouring of G. The
number of colours 7(G) - x(G?) is bounded by a function solely of A(G). Consider this
initial colouring to be fixed. Let ¢ be a positive integer to be specified later. For each
vertex v of G, choose a third colour f3(v) € [¢] independently and randomly. Let f be
the colouring defined by f(v) = (f1(v), fa(v), f3(v)) for all vertices v.

Let h := h(n(G) - x(G?)) from Conjecture 2.6. A non-boring walk vy, vy, ..., vy of
order ¢ is interesting if its length 2¢ < hi, and fi(v;) = fi(viy;) and fa(v;) = fo(vey)
for all j € [t]. For each interesting walk W, let Ay be the event that W is repetitively
coloured by f. Let A; be the set of events Ay, where W is an interesting walk of order

We will apply Lemma 2.8 to prove that, with positive probability, no event Ay occurs.
This will imply that there exists a colouring f3 such that no interesting walk is repetitively
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coloured by f. A non-boring non-interesting walk vy, vs, ..., vy of order ¢ satisfies (a)
2t > hi, or (b) fi(v;) # fi(viyj) or fa(v;) # fo(viy;) for some j € [t]. In case (a), by
the assumed truth of Conjecture 2.6, W is not repetitively coloured by f. In case (b),
f(v;) # f(ug;) and W is not repetitively coloured by f. Thus no non-boring walk is
repetitively coloured by f, as desired.

Consider an interesting walk W = vy, vq, ..., vy of order 1.

We claim that v, # vy, for all £ € [t]. Suppose on the contrary that v, = v, for some
¢ € [t]. Since W is not boring, v; # v,y for some j € [t]. Thus v; = vy, and vj4 # Viyj
for some j € [t] (where viy4y1 means vy). Since W is interesting, fo(vit1) = fo(vigjv1),
which is a contradiction since v;4q and v, ;4 have a common neighbour v; (= vy4;). Thus
vj # vy for all j € [t], as claimed.

This claim implies that for each of the ¢ vertices x in W, there is at least one other
vertex y in W, such that f3(x) = f3(y) must hold for W to be repetitively coloured. Hence
at most ¢/2 of the ¢ possible colourings of W under f;, lead to repetitive colourings of
W under f. Thus the probability P(Ay) < p; := ¢ /2, and Lemma 2.8 can be applied
as long as

SR | [ (6)
J

Every vertex is in at most hjA" interesting walks of order j. Thus an interesting
walk of order i shares a vertex with at most hijA™ interesting walks of order j. Thus we
can take D;; := hijAM. Define x; := (2A")~*. Note that z; < % So1—z; > e ?%. Thus
to prove (6) it suffices to prove that

C—Z/2 < le | e—QZ‘JDU ,
J

c—i/2 < (2Ah)—iHe—2(2Ah)_jhijAhj :
J
(2Ah)_1He_2(2)_jhj :
J
< <2Ah)71872h2jj2*i :
671/2 < <2Ah)flef4h :
> 4(e*A)?

12

N

12

L |

C

Choose ¢ to be the minimum integer that satisfies this inequality, and the lemma is
applicable. We obtain a c-colouring f3 of G such that f is nonrepetitive on walks. The
number of colours in f is at most h[4(e*A)?"], which is a function solely of A. O

3 Trees and Treewidth

We start this section by considering walk-nonrepetitive colourings of trees.
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Theorem 3.1. Let T be a tree. A colouring ¢ of T is walk-nonrepetitive if and only if ¢
18 path-nonrepetitive and distance-2.

Proof. For every graph, every walk-nonrepetitive colouring is path-nonrepetitive (by def-
inition) and distance-2 (by Lemma 2.1).

Now fix a path-nonrepetitive distance-2 colouring ¢ of T'. Suppose on the contrary that
T has a repetitively coloured non-boring walk. Let W = (vy,vq,...,vy) be a repetitively
coloured non-boring walk in 7" of minimum length. Some vertex is repeated in W, as
otherwise W would be a repetitively coloured path. By considering the reverse of W,
without loss of generality, v; = v; for some i € [1,¢—1] and j € [i+2,2t]. Choose i and j to
minimise j—i. Thus v; is not in the sub-walk (v;+1, Vita,...,vj_1). Since T is a tree, v;11 =
vj_1. Thusi+1 = j—1, as otherwise j —1 is not minimised. That is, v; = v;12. Assuming
i #t—1, since W is repetitively coloured, ¢(viy;) = ¢(v41442), which implies that vy, =
Vsiiqo because c is a distance-2 colouring. Thus, even if ¢ = ¢ — 1, deleting the vertices
Vi, Vit1, Vpai, Vpriv1 from W gives a walk (v, vg, ..., 01, Vo, ooy Uptio1, Vttit2, - - - Uat)
that is also repetitively coloured. This contradicts the minimality of the length of W. [

Note that Theorem 3.1 implies that Conjecture 2.6 is vacuously true for trees. Also,
since every tree 1" has a path-nonrepetitive 4-colouring [23] and a distance-2 (A(T") 4 1)-
colouring, Theorem 3.1 implies the following result, where the lower bound is Lemma 2.1.

Corollary 3.2. Fuvery tree T satisfies A(T) + 1 < o(T) < 4(A(T) + 1).

In the remainder of this section we prove the following polynomial upper bounds on
m and o in terms of the treewidth and maximum degree of a graph.

Theorem 3.3. FEvery graph G with treewidth k and mazimum degree A > 1 satisfies
7(G) < ckA and o(G) < ckA? for some constant c.

We prove Theorem 3.3 by a series of lemmas. The first is by Kiindgen and Pelsmajer
[23]3.

Lemma 3.4 ([23]). Let P" be the pseudograph obtained from a path P by adding a loop
at each vertex. Then o(PT) < 4.

Now we introduce some definitions by Kiindgen and Pelsmajer [23]. A levelling of
a graph G is a function A : V(G) — Z such that |A(v) — A(w)| < 1 for every edge
vw € E(G). Let Gh—p and G-y denote the subgraphs of G respectively induced by
{v € V(G) : M(v) = k} and {v € V(G) : A(v) > k}. The k-shadow of a subgraph H of
G is the set of vertices in G —; adjacent to some vertex in H. A levelling \ is shadow-
complete if the k-shadow of every component of GG\~ induces a clique. Kiindgen and
Pelsmajer [23] proved the following lemma for repetitively coloured paths. We show that
the same proof works for repetitively coloured walks.

3The 4-colouring in Lemma 3.4 is obtained as follows. Given a nonrepetitive sequence on {1,2,3},
insert the symbol 4 between consecutive block of length two. For example, from the sequence 123132123
we obtain 1243143241243.
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Lemma 3.5. For every levelling \ of a graph G, there is a 4-colouring of G, such that
every repetitively coloured walk vy,vs, . .., vy satisfies A(vj) = N(vgy;) for all j € [t].

Proof. The levelling A\ can be thought of as a homomorphism from G into P*, for some
path P. By Lemma 3.4, P* has a 4-colouring that is nonrepetitive on walks. Colour
each vertex v of G by the colour assigned to A(v) (thought of as a vertex of P*). Sup-

pose vy, Vg, ..., Uy is a repetitively coloured walk in G. Thus A(vy), A(ve), ..., A(vy) is a
repetitively coloured walk in P*. Since the 4-colouring of P is nonrepetitive on walks,
A1), AM(v2), ..., A(ve) is boring. That is, A(v;) = A(vey;) for all j € [¢]. O

Lemma 3.6 ([23]). If \ is a shadow-complete levelling of a graph G, then

m(G) <4- ml?xw(G)\:k).

Now we generalise Lemma 3.6 for walks.

Lemma 3.7. If H is a subgraph of a graph G, and X\ is a shadow-complete levelling of
G, then

o(H) < 4x(H?)- ml?xa(G)\:k) < 4AH)?*+1) - mI?XO'(G)\:k).

Proof. Let ¢; be the 4-colouring of G from Lemma 3.5. Let ¢ be an optimal walk-
nonrepetitive colouring of each level Gy—;. Let c3 be a proper Y(H?)-colouring of H?2.
The second inequality in the lemma follows from the first since x(H?) < A(H)? + 1. Let

c(v) == (c1(v), c2(v), c3(v)) for each vertex v of H. We claim that ¢ is nonrepetitive on
walks in H.
Suppose on the contrary that W = wvy,..., vy is a non-boring walk in H that is

repetitively coloured by ¢. Then W is repetitively coloured by each of ¢y, ¢, and ¢3. Thus
A(v;) = A(vgy) for all i € [t] by Lemma 3.5. Let Wy, be the sequence (allowing repetitions)
of vertices v; € W such that A\(v;) = k. Since v; € Wy, if and only if vy, € Wy, each
sequence Wy is repetitively coloured. That is, if Wy = xq,. .., 9 then c(z;) = c(xsy;) for
all i € [s].

Let k£ be the minimum level containing a vertex in W. Let v; and v; be consecutive
vertices in W, with ¢ < j. If j =i 4 1 then v;v; is an edge of W. Otherwise there is walk
from v; to v; in G~y (since k was chosen minimum), implying v;v; is an edge of G (since
A is shadow-complete). Thus Wy forms a walk in G— that is repetitively coloured by
co. Hence Wy is boring. In particular, some vertex v; = vyy; is in Wj. Since W is not
boring, v; # wv4; for some j € [t]. Without loss of generality, i < j and v, = vy for
all £ € [i,7 —1]. Thus v; and v;y; have a common neighbour v;_; = v;;_; in H, which
implies that c3(v;) # c3(viy;). But ¢(v;) = ¢(viy;) since W is repetitively coloured, which
is the desired contradiction. O

Note that some dependence on A(H) in Lemma 3.7 is unavoidable, since o(H) >
X(H?) > A(H) + 1.
Lemma 3.7 enables the following strengthening of Corollary 3.2.
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Lemma 3.8. Every tree T satisfies A(T)+ 1< o(T) < 4A(T).

Proof. Let r be a leaf vertex of T'. Let A(v) be the distance from r to v in 7. Then A
is a shadow-complete levelling of 7" in which each level is an independent set. A greedy
algorithm proves that x(7?) < A(T)+1. Thus Lemma 3.7 implies that o(T) < 4 A(T)+4.
Observe that the proof of Lemma 3.7 only requires c3(v) # c3(w) whenever v and w are
in the same level and have a common parent. Since r is a leaf, each vertex has at most
A(T)—1 children. Thus a greedy algorithm produces a A(T")-colouring with this property.
Hence o(T) < 4 A(T). O

A tree-partition of a graph G is a partition of its vertices into sets (called bags) such
that the graph obtained from G by identifying the vertices in each bag is a forest (after
deleting loops and replacing parallel edges by a single edge)?.

Lemma 3.9. Let G be a graph with a tree-partition in which every bag has at most £
vertices. Then G is a subgraph of a graph G’ that has a shadow-complete levelling in
which each level satisfies

m(Ghop) < o(Ghoy) <L

Proof. Let G’ be the graph obtained from G by adding an edge between all pairs of
nonadjacent vertices in a common bag. Let F' be the forest obtained from G’ by identifying
the vertices in each bag. Root each component of F'. Consider a vertex v of G’ that is
in the bag that corresponds to node z of F'. Let A(v) be the distance between z and
the root of the tree component of F' that contains z. Clearly \ is a levelling of G’. The
k-shadow of each connected component of G, is contained in a single bag, and thus
induces a clique on at most ¢ vertices. Hence A is shadow-complete. By colouring the
vertices within each bag with distinct colors, we have 7(G,\_,) < o(Gh_,) < L. O

Lemmas 3.6, 3.7 and 3.9 imply:

Lemma 3.10. If a graph G has a tree-partition in which every bag has at most { vertices,
then m(G) < 40 and o(G) < 4U(A(G)* +1).

Wood [30] proved® that every graph with treewidth k¥ and maximum degree A > 1
has a tree-partition in which every bag has at most 2(k 4+ 1)(ZA — 1) vertices. With
Lemma 3.10 this proves the following quantitative version of Theorem 3.3.

Theorem 3.11. Fvery graph G with treewidth k and mazimum degree A > 1 satisfies
m(G) < 10(k +1)(3A — 1) and o(G) < 10(k + 1)(FA — 1)(A? + 1),

4The proof by Kiindgen and Pelsmajer [23] that 7(G) < 4% for graphs with treewidth at most k can
also be described using tree-partitions; cf. [15, 29].

>The proof by Wood [30] is a minor improvement to a similar result by an anonymous referee of the
paper by Ding and Oporowski [14].
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4 Subdivisions

The results of Thue [27] and Currie [11] imply that every path and every cycle has a
subdivision H with w(H) = 3. Bresar et al. [9] proved that every tree has a subdivision
H such that m(H) = 3. Which graphs have a subdivision H with 7(H) = 3 is an open
problem [20]. Grytczuk [20] proved that every graph has a subdivision H with =(H) < 5.
Here we improve this bound as follows.

Theorem 4.1. Every graph G has a subdivision H with w(H) < 4.

Proof. Without loss of generality G is connected. Say V(G) = {wvo,v1,...,0,-1}. As
illustrated in Figure 2, let H be the subdivision of G obtained by subdividing every edge
viv; € E(G) (with ¢ < j) j —i — 1 times. The distance of every vertex in H from v
defines a levelling of H such that the endpoints of every edge are in consecutive levels.
By Lemma 3.5, there is a 4-colouring of H, such that for every repetitively coloured path
X1, T2, ..., T, Y1, Y2, - - -, Y in H, z; and y; have the same level for all j € [¢]. Hence there
is some j such that x;_; and x4, are at the same level. Thus z; is an original vertex v; of
G. Without loss of generality x;_; and x4, are at level 7 — 1. There is only one original
vertex at level i. Thus y;, which is also at level 7, is a division vertex. Now y; has two
neighbours in A, which are at levels i — 1 and ¢+ 1. Thus y;_; and y;4, are at levels i — 1
and ¢ + 1, which contradicts the fact that x;_; and x;;, are both at level ¢« — 1. Hence we
have a 4-colouring of H that is nonrepetitive on paths. O

Vo V1 V2 V3 (] Vs

Figure 2: The subdivision H with G = K.

It is possible that every graph has a subdivision H with 7(H) < 3. If true, this would
provide a striking generalisation of the result of Thue [27] discussed in Section 1.

5 Maximum Density

In this section we study the maximum number of edges in a nonrepetitively coloured
graph.
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Proposition 5.1. The mazimum number of edges in an n-vertez graph G with 7(G) < ¢
is (c—1n— (5).

Proof. Say G is an n-vertex graph with 7(G) < ¢. Fix a c-colouring of G that is non-
repetitive on paths. Say there are n; vertices in the i-th colour class. Every cycle receives
at least three colours. Thus the subgraph induced by the vertices coloured 7 and j is a
forest, and has at most n; +n; — 1 edges. Hence the number of edges in G is at most

S mtn,—1)=Y (e — (;) —(c—1)n— (g)

1<i<j<ce 1<i<e

This bound is attained by the graph consisting of a complete graph K. ; completely
connected to an independent set of n — (¢ — 1) vertices, which obviously has a c-colouring
that is nonrepetitive on paths. O

Now consider the maximum number of edges in a coloured graph that is nonrepetitive
on walks. First note that the example in the proof of Proposition 5.1 is repetitive on
walks. Since 0(G) > A(G) + 1 and |E(G)| < $A(G)|V(G)|, we have the trivial upper
bound,

|E(G)| < 5(0(G) = DIV(G)].

2

This bound is tight for ¢ = 2 (matchings) and o = 3 (cycles), but is not known to be
tight for o > 4.
We have the following lower bound.

Proposition 5.2. For all p > 1, there are infinitely many graphs G with o(G) < 4p and

[E(G)] = 5(30(G) = )|V(G)| - 50(G)*.
Proof. Let G be the lexicographic product of a path and K,; that is, G is the graph with a
levelling A in which each level induces K, and every edge is present between consecutive
levels. Let c; be the 4-colouring of G from Lemma 3.5. If v is the j-th vertex in its
level, where j € [p], then let ¢(v) := (c1(v),7). The number of colours is 4p. Applying
Lemma 3.5, it is easily verified that ¢ is nonrepetitive on walks. Hence o(G) < 4p. Now we
count the edges: |E(G)| = £(3p—1)|V(G)|—p?. Asalower bound, o(G) > A(G)+1 = 3p.
Thus |E(G)| > 3(30(G)/4 = DV(G)| = (o(G)/3)*. O
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