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Abstract

A vertex colouring of a graph is nonrepetitive on paths if there is no path
v1, v2, . . . , v2t such that vi and vt+i receive the same colour for all i = 1, 2, . . . , t.
We determine the maximum density of a graph that admits a k-colouring that is
nonrepetitive on paths. We prove that every graph has a subdivision that admits
a 4-colouring that is nonrepetitive on paths. The best previous bound was 5. We
also study colourings that are nonrepetitive on walks, and provide a conjecture
that would imply that every graph with maximum degree ∆ has a f(∆)-colouring
that is nonrepetitive on walks. We prove that every graph with treewidth k and
maximum degree ∆ has a O(k∆)-colouring that is nonrepetitive on paths, and a
O(k∆3)-colouring that is nonrepetitive on walks.

1 Introduction

We consider simple, finite, undirected graphs G with vertex set V (G), edge set E(G), and
maximum degree ∆(G). Let [t] := {1, 2, . . . , t}. A walk in G is a sequence v1, v2, . . . , vt of
vertices of G, such that vivi+1 ∈ E(G) for all i ∈ [t− 1]. A k-colouring of G is a function
f that assigns one of k colours to each vertex of G. A walk v1, v2, . . . , v2t is repetitively

coloured by f if f(vi) = f(vt+i) for all i ∈ [t]. A walk v1, v2, . . . , v2t is boring if vi = vt+i

for all i ∈ [t]. Of course, a boring walk is repetitively coloured by every colouring. We
say a colouring f is nonrepetitive on walks (or walk-nonrepetitive) if the only walks that
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are repetitively coloured by f are boring. Let σ(G) denote the minimum k such that G
has a k-colouring that is nonrepetitive on walks.

A walk v1, v2, . . . , vt is a path if vi 6= vj for all distinct i, j ∈ [t]. A colouring f is
nonrepetitive on paths (or path-nonrepetitive) if no path of G is repetitively coloured by
f . Let π(G) denote the minimum k such that G has a k-colouring that is nonrepetitive
on paths. Observe that a colouring that is path-nonrepetitive is proper, in the sense that
adjacent vertices receive distinct colours. Moreover, a path-nonrepetitive colouring has no
2-coloured P4 (a path on four vertices). A proper colouring with no 2-coloured P4 is called
a star colouring since each bichromatic subgraph is a star forest; see [1, 8, 17, 18, 25, 28].
The star chromatic number χst(G) is the minimum number of colours in a proper colouring
of G with no 2-coloured P4. Thus

χ(G) 6 χst(G) 6 π(G) 6 σ(G). (1)

Path-nonrepetitive colourings are widely studied [2–5, 9, 10, 12, 13, 19, 21, 23, 24]; see
the surveys by Grytczuk [20, 22]. Nonrepetitive edge colourings have also been considered
[4, 6].

The seminal result in this field is by Thue [27], who in 1906 proved1 that the n-vertex
path Pn satisfies

π(Pn) =

{

n if n 6 2,

3 otherwise.
(2)

A result by Kündgen and Pelsmajer [23] (see Lemma 3.4) implies

σ(Pn) 6 4 . (3)

Currie [11] proved that the n-vertex cycle Cn satisfies

π(Cn) =

{

4 if n ∈ {5, 7, 9, 10, 14, 17},

3 otherwise.
(4)

Let π(∆) and σ(∆) denote the maximum of π(G) and σ(G), taken over all graphs G
with maximum degree ∆(G) 6 ∆. Now π(2) = 4 by (2) and (4). In general, Alon et al.
[4] proved that

α∆2

log∆
6 π(∆) 6 β∆2, (5)

for some constants α and β. The upper bound was proved using the Lovász Local Lemma,
and the lower bound is attained by a random graph.

In Section 2 we study whether σ(∆) is finite, and provide a natural conjecture that
would imply an affirmative answer.

1The nonrepetitive 3-colouring of Pn by Thue [27] is obtained as follows. Given a nonrepetitive
sequence over {1, 2, 3}, replace each 1 by the sequence 12312, replace each 2 by the sequence 131232, and
replace each 3 by the sequence 1323132. Thue [27] proved that the new sequence is nonrepetitive. Thus
arbitrarily long paths can be nonrepetitively 3-coloured.

the electronic journal of combinatorics 15 (2008), #R99 2



In Section 3 we study path- and walk-nonrepetitive colourings of graphs of bounded
treewidth2. Kündgen and Pelsmajer [23] and Barát and Varjú [5] independently proved
that graphs of bounded treewidth have bounded π. The best bound is due to Kündgen
and Pelsmajer [23] who proved that π(G) 6 4k for every graph G with treewidth at
most k. Whether there is a polynomial bound on π for graphs of treewidth k is an open
question. We answer this problem in the affirmative under the additional assumption of
bounded degree. In particular, we prove a O(k∆) upper bound on π, and a O(k∆3) upper
bound on σ.

In Section 4 we will prove that every graph has a subdivision that admits a path-
nonrepetitive 4-colouring; the best previous bound was 5. In Section 5 we determine the
maximum density of a graph that admits a path-nonrepetitive k-colouring, and prove
bounds on the maximum density for walk-nonrepetitive k-colourings.

2 Is σ(∆) bounded?

Consider the following elementary lower bound on σ, where G2 is the square graph of G.
That is, V (G2) = V (G), and vw ∈ E(G2) if and only if the distance between v and w in
G is at most 2. A proper colouring of G2 is called a distance-2 colouring of G.

Lemma 2.1. Every walk-nonrepetitive colouring of a graph G is distance-2. Thus σ(G) >
χ(G2) > ∆(G) + 1.

Proof. Consider a walk-nonrepetitive colouring of G. Adjacent vertices v and w receive
distinct colours, as otherwise v, w would be a repetitively coloured path. If u, v, w is
a path, and u and w receive the same colour, then the non-boring walk u, v, w, v is
repetitively coloured. Thus vertices at distance at most 2 receive distinct colours. Hence
σ(G) > χ(G2). In a distance-2 colouring, each vertex and its neighbours all receive
distinct colours. Thus χ(G2) > ∆(G) + 1.

Hence ∆(G) is a lower bound on σ(G). Whether high degree is the only obstruction
for bounded σ is an open problem.

Open Problem 2.2. Is there a function f such that σ(∆) 6 f(∆)?

First we answer Open Problem 2.2 in the affirmative for ∆ = 2. The following lemma
will be useful.

Lemma 2.3. Fix a distance-2 colouring of a graph G. If W = (v1, v2, . . . , v2t) is a

repetitively coloured non-boring walk in G, then vi 6= vt+i for all i ∈ [t].

Proof. Suppose on the contrary that vi = vt+i for some i ∈ [t−1]. Since W is repetitively
coloured, c(vi+1) = c(vt+i+1). Each neighbour of vi receives a distinct colour. Thus
vi+1 = vt+i+1. By induction, vj = vt+j for all j ∈ [i, t]. By the same argument, vj = vt+j

for all j ∈ [1, i]. Thus W is boring, which is the desired contradiction.

2The treewidth of a graph G can be defined to be the minimum integer k such that G is a subgraph of
a chordal graph with no clique on k + 2 vertices. Treewidth is an important graph parameter, especially
in structural graph theory and algorithmic graph theory; see the surveys [7, 26].
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Proposition 2.4. σ(2) 6 5.

Proof. A result by Kündgen and Pelsmajer [23] implies that σ(Pn) 6 4 (see Lemma 3.4).
Thus it suffices to prove that σ(Cn) 6 5. Fix a walk-nonrepetitive 4-colouring of the path
(v1, v2, . . . , v2n−4). Thus for some i ∈ [1, n− 2], the vertices vi and vn+i−2 receive distinct
colours. Create a cycle Cn from the sub-path vi, vi+1, . . . , vn+i−2 by adding one vertex x
adjacent to vi and vn+i−2. Colour x with a fifth colour. Observe that since vi and vn+i−2

receive distinct colours, the colouring of Cn is distance-2. Suppose on the contrary that
Cn has a repetitively coloured walk W = y1, y2, . . . , y2t. If x is not in W , then W is a
repetitively coloured walk in the starting path, which is a contradiction. Thus x = yi
for some i ∈ [t] (with loss of generality, by considering the reverse of W ). Since x is the
only vertex receiving the fifth colour and W is repetitive, x = yt+i. By Lemma 2.3, W is
boring. Hence the 5-colouring of Cn is walk-nonrepetitive.

Below we propose a conjecture that would imply a positive answer to Open Prob-
lem 2.2. First consider the following lemma which is a slight generalisation of a result by
Barát and Varjú [6]. A walk v1, v2, . . . , vt has length t and order |{vi : 1 6 i 6 t}|. That
is, the order is the number of distinct vertices in the walk.

Proposition 2.5. Suppose that in some coloured graph, there is a repetitively coloured

non-boring walk. Then there is a repetitively coloured non-boring walk of order k and

length at most 2k2.

Proof. Let k be the minimum order of a repetitively coloured non-boring walk. Let
W = v1, v2, . . . , v2t be a repetitively coloured non-boring walk of order k and with t
minimum. If 2t 6 2k2, then we are done. Now assume that t > k2. By the pigeonhole
principle, there is a vertex x that appears at least k+1 times in v1, v2, . . . , vt. Thus there
is a vertex y that appears at least twice in the set {vt+i : vi = x, i ∈ [t]}. As illustrated
in Figure 1, W = AxBxCA′yB′yC ′ for some walks A,B,C,A′, B′, C ′ with |A| = |A′|,
|B| = |B′|, and |C| = |C ′|. Consider the walk U := AxCA′yC ′. If U is not boring, then
it is a repetitively coloured non-boring walk of order at most k and length less than 2t,
which contradicts the minimality of W . Otherwise U is boring, implying x = y, A = A′,
and C = C ′. Thus B 6= B′ since W is not boring, implying xBxB′ is a repetitively
coloured non-boring walk of order at most k and length less than 2t, which contradicts
the minimality of W .

We conjecture the following strengthening of Proposition 2.5.

Conjecture 2.6. Let G be a graph. Consider a path-nonrepetitive distance-2 colouring

of G with c colours, such that G contains a repetitively coloured non-boring walk. Then

G contains a repetitively coloured non-boring walk of order k and length at most h(c) · k,
for some function h that only depends on c.

Theorem 2.7. If Conjecture 2.6 is true, then there is a function f for which σ(∆) 6

f(∆). That is, every graph G has a walk-nonrepetitive colouring with f(∆(G)) colours.
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Figure 1: Illustration for the proof of Proposition 2.5.

Theorem 2.7 is proved using the Lovász Local Lemma [16].

Lemma 2.8 ([16]). Let A = A1 ∪A2 ∪ · · · ∪ Ar be a partition of a set of ‘bad’ events A.

Suppose that there are sets of real numbers {pi ∈ [0, 1) : i ∈ [r]}, {xi ∈ [0, 1) : i ∈ [r]},
and {Dij > 0 : i, j ∈ [r]} such that the following conditions are satisfied by every event

A ∈ Ai:

• the probability P(A) 6 pi 6 xi ·
r
∏

j=1

(1− xj)
Dij , and

• A is mutually independent of A\({A}∪DA), for some DA ⊆ A with |DA∩Aj | 6 Dij

for all j ∈ [r].

Then

P

(

∧

A∈A

A

)

>

r
∏

i=1

(1− xi)
|Ai| > 0 .

That is, with positive probability, no event in A occurs.

Proof of Theorem 2.7. Let f1 be a path-nonrepetitive colouring of G with π(G) colours.
Let f2 be a distance-2 colouring of G with χ(G2) colours. Note that π(G) 6 β∆2 for some
constant β by Equation (5), and χ(G2) 6 ∆(G2) + 1 6 ∆2 + 1 by a greedy colouring of
G2. Hence f1 and f2 together define a path-nonrepetitive distance-2 colouring of G. The
number of colours π(G) · χ(G2) is bounded by a function solely of ∆(G). Consider this
initial colouring to be fixed. Let c be a positive integer to be specified later. For each
vertex v of G, choose a third colour f3(v) ∈ [c] independently and randomly. Let f be
the colouring defined by f(v) = (f1(v), f2(v), f3(v)) for all vertices v.

Let h := h(π(G) · χ(G2)) from Conjecture 2.6. A non-boring walk v1, v2, . . . , v2t of
order i is interesting if its length 2t 6 hi, and f1(vj) = f1(vt+j) and f2(vj) = f2(vt+j)
for all j ∈ [t]. For each interesting walk W , let AW be the event that W is repetitively
coloured by f . Let Ai be the set of events AW , where W is an interesting walk of order
i. Let A =

⋃

i Ai.
We will apply Lemma 2.8 to prove that, with positive probability, no event AW occurs.

This will imply that there exists a colouring f3 such that no interesting walk is repetitively
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coloured by f . A non-boring non-interesting walk v1, v2, . . . , v2t of order i satisfies (a)
2t > hi, or (b) f1(vj) 6= f1(vt+j) or f2(vj) 6= f2(vt+j) for some j ∈ [t]. In case (a), by
the assumed truth of Conjecture 2.6, W is not repetitively coloured by f . In case (b),
f(vj) 6= f(vt+j) and W is not repetitively coloured by f . Thus no non-boring walk is
repetitively coloured by f , as desired.

Consider an interesting walk W = v1, v2, . . . , v2t of order i.
We claim that vℓ 6= vt+ℓ for all ℓ ∈ [t]. Suppose on the contrary that vℓ = vt+ℓ for some

ℓ ∈ [t]. Since W is not boring, vj 6= vt+j for some j ∈ [t]. Thus vj = vt+j and vj+1 6= vt+j+1

for some j ∈ [t] (where vt+t+1 means v1). Since W is interesting, f2(vj+1) = f2(vt+j+1),
which is a contradiction since vj+1 and vt+j+1 have a common neighbour vj (= vt+j). Thus
vj 6= vt+j for all j ∈ [t], as claimed.

This claim implies that for each of the i vertices x in W , there is at least one other
vertex y in W , such that f3(x) = f3(y) must hold for W to be repetitively coloured. Hence
at most ci/2 of the ci possible colourings of W under f3, lead to repetitive colourings of
W under f . Thus the probability P(AW ) 6 pi := c−i/2, and Lemma 2.8 can be applied
as long as

c−i/2
6 xi ·

∏

j

(1− xj)
Dij , (6)

Every vertex is in at most hj∆hj interesting walks of order j. Thus an interesting
walk of order i shares a vertex with at most hij∆hj interesting walks of order j. Thus we
can take Dij := hij∆hj . Define xi := (2∆h)−i. Note that xi 6

1
2
. So 1−xi > e−2xi . Thus

to prove (6) it suffices to prove that

c−i/2
6 xi ·

∏

j

e−2xjDij ,

⇐= c−i/2
6 (2∆h)−i ·

∏

j

e−2(2∆h)−jhij∆hj

,

⇐= c−1/2
6 (2∆h)−1 ·

∏

j

e−2(2)−jhj ,

⇐= c−1/2
6 (2∆h)−1e−2h

∑
j j2

−j

,

⇐= c−1/2
6 (2∆h)−1e−4h ,

⇐= c > 4(e4∆)2h .

Choose c to be the minimum integer that satisfies this inequality, and the lemma is
applicable. We obtain a c-colouring f3 of G such that f is nonrepetitive on walks. The
number of colours in f is at most h⌈4(e4∆)2h⌉, which is a function solely of ∆.

3 Trees and Treewidth

We start this section by considering walk-nonrepetitive colourings of trees.
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Theorem 3.1. Let T be a tree. A colouring c of T is walk-nonrepetitive if and only if c
is path-nonrepetitive and distance-2.

Proof. For every graph, every walk-nonrepetitive colouring is path-nonrepetitive (by def-
inition) and distance-2 (by Lemma 2.1).

Now fix a path-nonrepetitive distance-2 colouring c of T . Suppose on the contrary that
T has a repetitively coloured non-boring walk. Let W = (v1, v2, . . . , v2t) be a repetitively
coloured non-boring walk in T of minimum length. Some vertex is repeated in W , as
otherwise W would be a repetitively coloured path. By considering the reverse of W ,
without loss of generality, vi = vj for some i ∈ [1, t−1] and j ∈ [i+2, 2t]. Choose i and j to
minimise j−i. Thus vi is not in the sub-walk (vi+1, vi+2, . . . , vj−1). Since T is a tree, vi+1 =
vj−1. Thus i+1 = j−1, as otherwise j− i is not minimised. That is, vi = vi+2. Assuming
i 6= t − 1, since W is repetitively coloured, c(vt+i) = c(vt+i+2), which implies that vt+i =
vt+i+2 because c is a distance-2 colouring. Thus, even if i = t − 1, deleting the vertices
vi, vi+1, vt+i, vt+i+1 from W , gives a walk (v1, v2, . . . , vi−1, vi+2, . . . , vt+i−1, vt+i+2, . . . , v2t)
that is also repetitively coloured. This contradicts the minimality of the length of W .

Note that Theorem 3.1 implies that Conjecture 2.6 is vacuously true for trees. Also,
since every tree T has a path-nonrepetitive 4-colouring [23] and a distance-2 (∆(T ) + 1)-
colouring, Theorem 3.1 implies the following result, where the lower bound is Lemma 2.1.

Corollary 3.2. Every tree T satisfies ∆(T ) + 1 6 σ(T ) 6 4(∆(T ) + 1).

In the remainder of this section we prove the following polynomial upper bounds on
π and σ in terms of the treewidth and maximum degree of a graph.

Theorem 3.3. Every graph G with treewidth k and maximum degree ∆ > 1 satisfies

π(G) 6 ck∆ and σ(G) 6 ck∆3 for some constant c.

We prove Theorem 3.3 by a series of lemmas. The first is by Kündgen and Pelsmajer
[23]3.

Lemma 3.4 ([23]). Let P+ be the pseudograph obtained from a path P by adding a loop

at each vertex. Then σ(P+) 6 4.

Now we introduce some definitions by Kündgen and Pelsmajer [23]. A levelling of
a graph G is a function λ : V (G) → Z such that |λ(v) − λ(w)| 6 1 for every edge
vw ∈ E(G). Let Gλ=k and Gλ>k denote the subgraphs of G respectively induced by
{v ∈ V (G) : λ(v) = k} and {v ∈ V (G) : λ(v) > k}. The k-shadow of a subgraph H of
G is the set of vertices in Gλ=k adjacent to some vertex in H . A levelling λ is shadow-

complete if the k-shadow of every component of Gλ>k induces a clique. Kündgen and
Pelsmajer [23] proved the following lemma for repetitively coloured paths. We show that
the same proof works for repetitively coloured walks.

3The 4-colouring in Lemma 3.4 is obtained as follows. Given a nonrepetitive sequence on {1, 2, 3},
insert the symbol 4 between consecutive block of length two. For example, from the sequence 123132123
we obtain 1243143241243.
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Lemma 3.5. For every levelling λ of a graph G, there is a 4-colouring of G, such that

every repetitively coloured walk v1, v2, . . . , v2t satisfies λ(vj) = λ(vt+j) for all j ∈ [t].

Proof. The levelling λ can be thought of as a homomorphism from G into P+, for some
path P . By Lemma 3.4, P+ has a 4-colouring that is nonrepetitive on walks. Colour
each vertex v of G by the colour assigned to λ(v) (thought of as a vertex of P+). Sup-
pose v1, v2, . . . , v2t is a repetitively coloured walk in G. Thus λ(v1), λ(v2), . . . , λ(v2t) is a
repetitively coloured walk in P+. Since the 4-colouring of P+ is nonrepetitive on walks,
λ(v1), λ(v2), . . . , λ(v2t) is boring. That is, λ(vj) = λ(vt+j) for all j ∈ [t].

Lemma 3.6 ([23]). If λ is a shadow-complete levelling of a graph G, then

π(G) 6 4 ·max
k

π(Gλ=k).

Now we generalise Lemma 3.6 for walks.

Lemma 3.7. If H is a subgraph of a graph G, and λ is a shadow-complete levelling of

G, then

σ(H) 6 4χ(H2) ·max
k

σ(Gλ=k) 6 4(∆(H)2 + 1) ·max
k

σ(Gλ=k).

Proof. Let c1 be the 4-colouring of G from Lemma 3.5. Let c2 be an optimal walk-
nonrepetitive colouring of each level Gλ=k. Let c3 be a proper χ(H2)-colouring of H2.
The second inequality in the lemma follows from the first since χ(H2) 6 ∆(H)2 + 1. Let
c(v) := (c1(v), c2(v), c3(v)) for each vertex v of H . We claim that c is nonrepetitive on
walks in H .

Suppose on the contrary that W = v1, . . . , v2t is a non-boring walk in H that is
repetitively coloured by c. Then W is repetitively coloured by each of c1, c2, and c3. Thus
λ(vi) = λ(vt+i) for all i ∈ [t] by Lemma 3.5. Let Wk be the sequence (allowing repetitions)
of vertices vi ∈ W such that λ(vi) = k. Since vi ∈ Wk if and only if vt+i ∈ Wk, each
sequence Wk is repetitively coloured. That is, if Wk = x1, . . . , x2s then c(xi) = c(xs+i) for
all i ∈ [s].

Let k be the minimum level containing a vertex in W . Let vi and vj be consecutive
vertices in Wk with i < j. If j = i+ 1 then vivj is an edge of W . Otherwise there is walk
from vi to vj in Gλ>k (since k was chosen minimum), implying vivj is an edge of G (since
λ is shadow-complete). Thus Wk forms a walk in Gλ=k that is repetitively coloured by
c2. Hence Wk is boring. In particular, some vertex vi = vt+i is in Wk. Since W is not
boring, vj 6= vt+j for some j ∈ [t]. Without loss of generality, i < j and vℓ = vt+ℓ for
all ℓ ∈ [i, j − 1]. Thus vj and vt+j have a common neighbour vj−1 = vt+j−1 in H , which
implies that c3(vj) 6= c3(vt+j). But c(vj) = c(vt+j) since W is repetitively coloured, which
is the desired contradiction.

Note that some dependence on ∆(H) in Lemma 3.7 is unavoidable, since σ(H) >

χ(H2) > ∆(H) + 1.
Lemma 3.7 enables the following strengthening of Corollary 3.2.
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Lemma 3.8. Every tree T satisfies ∆(T ) + 1 6 σ(T ) 6 4∆(T ).

Proof. Let r be a leaf vertex of T . Let λ(v) be the distance from r to v in T . Then λ
is a shadow-complete levelling of T in which each level is an independent set. A greedy
algorithm proves that χ(T 2) 6 ∆(T )+1. Thus Lemma 3.7 implies that σ(T ) 6 4∆(T )+4.
Observe that the proof of Lemma 3.7 only requires c3(v) 6= c3(w) whenever v and w are
in the same level and have a common parent. Since r is a leaf, each vertex has at most
∆(T )−1 children. Thus a greedy algorithm produces a ∆(T )-colouring with this property.
Hence σ(T ) 6 4∆(T ).

A tree-partition of a graph G is a partition of its vertices into sets (called bags) such
that the graph obtained from G by identifying the vertices in each bag is a forest (after
deleting loops and replacing parallel edges by a single edge)4.

Lemma 3.9. Let G be a graph with a tree-partition in which every bag has at most ℓ
vertices. Then G is a subgraph of a graph G′ that has a shadow-complete levelling in

which each level satisfies

π(G′
λ=k) 6 σ(G′

λ=k) 6 ℓ.

Proof. Let G′ be the graph obtained from G by adding an edge between all pairs of
nonadjacent vertices in a common bag. Let F be the forest obtained fromG′ by identifying
the vertices in each bag. Root each component of F . Consider a vertex v of G′ that is
in the bag that corresponds to node x of F . Let λ(v) be the distance between x and
the root of the tree component of F that contains x. Clearly λ is a levelling of G′. The
k-shadow of each connected component of G′

λ>k is contained in a single bag, and thus
induces a clique on at most ℓ vertices. Hence λ is shadow-complete. By colouring the
vertices within each bag with distinct colors, we have π(G′

λ=k) 6 σ(G′
λ=k) 6 ℓ.

Lemmas 3.6, 3.7 and 3.9 imply:

Lemma 3.10. If a graph G has a tree-partition in which every bag has at most ℓ vertices,
then π(G) 6 4ℓ and σ(G) 6 4ℓ(∆(G)2 + 1).

Wood [30] proved5 that every graph with treewidth k and maximum degree ∆ > 1
has a tree-partition in which every bag has at most 5

2
(k + 1)(7

2
∆ − 1) vertices. With

Lemma 3.10 this proves the following quantitative version of Theorem 3.3.

Theorem 3.11. Every graph G with treewidth k and maximum degree ∆ > 1 satisfies

π(G) 6 10(k + 1)(7
2
∆− 1) and σ(G) 6 10(k + 1)(7

2
∆− 1)(∆2 + 1).

4The proof by Kündgen and Pelsmajer [23] that π(G) 6 4k for graphs with treewidth at most k can
also be described using tree-partitions; cf. [15, 29].

5The proof by Wood [30] is a minor improvement to a similar result by an anonymous referee of the
paper by Ding and Oporowski [14].
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4 Subdivisions

The results of Thue [27] and Currie [11] imply that every path and every cycle has a
subdivision H with π(H) = 3. Brešar et al. [9] proved that every tree has a subdivision
H such that π(H) = 3. Which graphs have a subdivision H with π(H) = 3 is an open
problem [20]. Grytczuk [20] proved that every graph has a subdivision H with π(H) 6 5.
Here we improve this bound as follows.

Theorem 4.1. Every graph G has a subdivision H with π(H) 6 4.

Proof. Without loss of generality G is connected. Say V (G) = {v0, v1, . . . , vn−1}. As
illustrated in Figure 2, let H be the subdivision of G obtained by subdividing every edge
vivj ∈ E(G) (with i < j) j − i − 1 times. The distance of every vertex in H from v0
defines a levelling of H such that the endpoints of every edge are in consecutive levels.
By Lemma 3.5, there is a 4-colouring of H , such that for every repetitively coloured path
x1, x2, . . . , xt, y1, y2, . . . , yt in H , xj and yj have the same level for all j ∈ [t]. Hence there
is some j such that xj−1 and xj+1 are at the same level. Thus xj is an original vertex vi of
G. Without loss of generality xj−1 and xj+1 are at level i− 1. There is only one original
vertex at level i. Thus yj , which is also at level i, is a division vertex. Now yj has two
neighbours in H , which are at levels i−1 and i+1. Thus yj−1 and yj+1 are at levels i−1
and i+1, which contradicts the fact that xj−1 and xj+1 are both at level i− 1. Hence we
have a 4-colouring of H that is nonrepetitive on paths.

v0 v1 v2 v3 v4 v5

Figure 2: The subdivision H with G = K6.

It is possible that every graph has a subdivision H with π(H) 6 3. If true, this would
provide a striking generalisation of the result of Thue [27] discussed in Section 1.

5 Maximum Density

In this section we study the maximum number of edges in a nonrepetitively coloured
graph.
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Proposition 5.1. The maximum number of edges in an n-vertex graph G with π(G) 6 c
is (c− 1)n−

(

c
2

)

.

Proof. Say G is an n-vertex graph with π(G) 6 c. Fix a c-colouring of G that is non-
repetitive on paths. Say there are ni vertices in the i-th colour class. Every cycle receives
at least three colours. Thus the subgraph induced by the vertices coloured i and j is a
forest, and has at most ni + nj − 1 edges. Hence the number of edges in G is at most

∑

16i<j6c

(ni + nj − 1) =
∑

16i6c

(c− 1)ni −

(

c

2

)

= (c− 1)n−

(

c

2

)

.

This bound is attained by the graph consisting of a complete graph Kc−1 completely
connected to an independent set of n− (c− 1) vertices, which obviously has a c-colouring
that is nonrepetitive on paths.

Now consider the maximum number of edges in a coloured graph that is nonrepetitive
on walks. First note that the example in the proof of Proposition 5.1 is repetitive on
walks. Since σ(G) > ∆(G) + 1 and |E(G)| 6 1

2
∆(G)|V (G)|, we have the trivial upper

bound,
|E(G)| 6 1

2
(σ(G)− 1)|V (G)|.

This bound is tight for σ = 2 (matchings) and σ = 3 (cycles), but is not known to be
tight for σ > 4.

We have the following lower bound.

Proposition 5.2. For all p > 1, there are infinitely many graphs G with σ(G) 6 4p and

|E(G)| > 1
8
(3σ(G)− 4)|V (G)| − 1

9
σ(G)2.

Proof. Let G be the lexicographic product of a path and Kp; that is, G is the graph with a
levelling λ in which each level induces Kp, and every edge is present between consecutive
levels. Let c1 be the 4-colouring of G from Lemma 3.5. If v is the j-th vertex in its
level, where j ∈ [p], then let c(v) := (c1(v), j). The number of colours is 4p. Applying
Lemma 3.5, it is easily verified that c is nonrepetitive on walks. Hence σ(G) 6 4p. Now we
count the edges: |E(G)| = 1

2
(3p−1)|V (G)|−p2. As a lower bound, σ(G) > ∆(G)+1 = 3p.

Thus |E(G)| > 1
2
(3σ(G)/4− 1)|V (G)| − (σ(G)/3)2.
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[5] János Barát and Péter P. Varjú. On square-free vertex colorings of graphs.
Studia Sci. Math. Hungar., 44(3):411–422, 2007.
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Cláudia L. Sales, eds., Recent Advances in Algorithms and Combinatorics, pp.
85–107. Springer, 2003.
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