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Abstract

Let n > 4 be even. It is shown that every set S of n points in the plane can be connected
by a (possibly self-intersecting) spanning tour (Hamiltonian cycle) consisting of n straight-
line edges such that the angle between any two consecutive edges is at most 2π/3. For n = 4
and 6, this statement is tight. It is also shown that every even-element point set S can be
partitioned into at most two subsets, S1 and S2, each admitting a spanning tour with no
angle larger than π/2. Fekete and Woeginger conjectured that for sufficiently large even n,
every n-element set admits such a spanning tour. We confirm this conjecture for point sets
in convex position. A much stronger result holds for large point sets randomly and uniformly
selected from an open region bounded by finitely many rectifiable curves: for any ε > 0,
these sets almost surely admit a spanning tour with no angle larger than ε.

Keywords: Hamiltonian cycle, turning angle, geometric graph.

1 Introduction

In the Euclidean traveling salesman problem (TSP), given a set of points in the plane, one seeks
a shortest tour that visits each point. In recent years, there has been an increased interest in
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Polytechnique Fédérale de Lausanne.

‡Research partially supported by NSF grant CCF-08-30272, grants from OTKA, SNF, and PSC-CUNY.
§Supported by OTKA K 83767 and NN 102029, and by TÁMOP - 4.2.2.B-10/1–2010-0009, in the framework
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studying tours that optimize objective functions related to angles between consecutive edges
in the tour, rather than the length. The problem has applications in motion planning, where
restrictions on turning angles have to be enforced. For example, an aircraft or a boat moving
at high speed, required to pass through a set of given locations, cannot make sharp turns in its
motion. This and other applications to planning curvature-constrained paths for auto-vehicles
and aircraft are discussed in [2, 7, 13, 14].

Consider a set of n > 2 points. A spanning tour is a directed Hamiltonian cycle, drawn
with straight-line edges; if n = 2 the tour consists of the two edges, with opposite orientations,
connecting the two points. When three points, p1, p2, and p3, are traversed in this order, their
rotation angle ∠p1p2p3 is the angle in [0, π] determined by segments p1p2 and p2p3; see Figure 1.
If p3 is on the left (resp. right) side of the oriented line −−→p1p2 we say that the tour, or path makes
a left (resp. right) turn at p2. If a tour (or path) makes only right turns, we call it pseudo-convex.
If all of its rotation angles are at most π/2, we call it an acute tour (or path). If all rotation
angles are at least π/2, the tour (or path) is obtuse.

Given a set A of angles, the angle-restricted tour (ART) problem is to decide whether a set
S of n points in the plane allows a (possibly self-intersecting) spanning tour such that all the n
angles between consecutive segments belong to the set A; see [12].
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Figure 1: (a) acute (b) obtuse (c) obtuse and pseudo-convex (d) acute and pseudo-convex

Fekete and Woeginger [12] proved that every finite set of at least five points admits a pseudo-
convex tour and a non-intersecting pseudo-convex spanning path. They also noticed that every
n-element point set S admits an acute spanning path. To see this, start at any point p1 ∈ S.
Assuming that the initial portion p1 . . . pi of such a path has already been defined and i < n, let
pi+1 be an element of S \{p1, . . . , pi} farthest away from pi. It is easy to check that the resulting
path p1 . . . pn is acute. It is also clear that such a path cannot be always completed to an acute
tour. Indeed, if all points are on a line and n is odd, then along any (spanning) tour, one of the
rotation angles must be equal to π.

The question arises: Does every even-element point set admit a tour with small rotation
angles? More precisely, given an n-element point set S in the plane, where n is even, let
α = α(S) > 0 denote the smallest angle such that S admits a (spanning) tour with the property
that all of its rotation angles belong to [0, α]. Finally, let α(n) be the maximum of α(S) over
all n-element point sets in the plane. Trivially, α(2) = 0. The 4-element point set formed by
the 3 vertices and the center of an equilateral triangle shows that α(4) > 2π/3. The 6-point
configuration depicted in Fig. 2 (left) shows that α(6) > 2π/3.
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Figure 2: Left: ∆abc is an isosceles triangle with ∠bac = 2π/3. Point a and the 3 points below it are
placed on the altitude of the triangle, and very closely inter-spaced. Every tour on these 6 points has a
rotation angle of at least 2π/3 − ε. Right: n− 1 equidistant points very closely inter-spaced on a small
circular arc of a circle, and one point at the center. Every tour on these n points has a rotation angle of
at least π/2− ε.

In this note we show that α(n) 6 2π/3, for all even n > 4.

Theorem 1. Let n > 4 be even. Every set of n points in the plane admits a spanning tour such
that all of its rotation angles are at most 2π/3. This bound is tight for n = 4, 6. Such a tour
can be computed in O(n4/3 log1+ε n) time, for every ε > 0.

It remains open whether the bound 2π/3 can be replaced by π/2, for every even n > 8, as
was conjectured in [12]. In other words, every n-element set may admit an acute tour, whenever
n > 8 is even. The point set depicted in Fig. 2 (right) demonstrates that this statement, if true,
cannot be improved. That is, we have α(n) > π/2, for all even n > 8.

We confirm three weaker versions of this statement. In Section 4, we show that if we enforce
acute rotation angles, two tours instead of one will certainly suffice.

Theorem 2. Let n > 8 be even.
(i) Every set of n points in the plane can be partitioned into two even parts, each of which

admits an acute spanning tour. Given the n points, the two tours can be computed in O(n) time.
(ii) Every set of n points in the plane can be partitioned into two parts of sizes 2⌊n

4
⌋ and

2⌈n
4
⌉, each of which admits an acute spanning tour. Given the n points, the two tours can be

computed in O(n4/3 log1+ε n) time, for every ε > 0.

In Section 5, we prove the existence of an acute tour in the special case when the points are
in convex position.

Theorem 3. Every even set S of n points in the plane in convex position, with n > 12, admits
an acute spanning tour. Given the n points, such a tour can be computed in O(n) time.

A much stronger statement holds for random point sets, uniformly selected from a not
necessarily connected region.

Theorem 4. Let B be an open region in the plane bounded by finitely many rectifiable Jordan
curves and let S be a set of n points, randomly and uniformly selected from B. Then, for any
ε > 0, the point set S almost surely admits a spanning tour with no rotation angle larger than
ε, as n tends to infinity.

The last result easily generalizes to higher dimensions.
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Related problems and results. Various angle conditions imposed on geometric graphs
(graphs with straight-line edges) drawn on a given set of points have been studied in [3, 4,
5, 6, 12]. In particular, Fekete and Woeginger [12] have focused on rotation angles of Hamil-
tonian cycles and paths and raised many challenging questions. For instance, they conjectured
that any point set admits a (possibly self-intersecting) Hamiltonian path in which each turning
angle is at most 5π/6. Bárány, Pór, and Valtr [6] obtained a first partial result by showing that
any point set admits a (possibly self-intersecting) Hamiltonian path in which each turning angle
is at most 8π/9.

Aichholzer et al. [3] studied similar questions for planar geometric graphs. Among other
results, they showed that any point set in general position in the plane admits a non-intersecting
Hamiltonian (spanning) path with the property that each rotation angle is at most 3π/4. They
also conjectured that this value can be replaced by π/2. Arkin et al. introduced the notion of
reflexivity of a point set, as the minimum number of reflex vertices in a polygonalization (i.e.,
simple polygon) of the set [5]. They gave estimates for the maximum reflexivity of an n-element
point set. Recently, Ackerman et al. have made further progress on this problem [1].

2 Balanced partitions

It is well known (see, e.g. [10], Section 6.6) that every region (every continuous probability
measure) in the plane can be cut into four parts of equal area (measure) by two orthogonal
lines. This statement immediately implies:

Lemma 1. Given a set S of n > 8 points in the plane (n even), one can always find two
orthogonal lines ℓ1, ℓ2 and a partition S = S1∪S2∪S3∪S4 with |S1| = |S3| = ⌊n

4
⌋, |S2| = |S4| =

⌈n
4
⌉ such that S1 and S3 belong to two opposite closed quadrants determined by ℓ1 and ℓ2, and

S2 and S4 belong to the other two opposite quadrants.

Proof. By a standard compactness argument, it is sufficient to prove this statement for point
sets S in general position, in the sense that no 3 points of S are on a line, no 3 determine a
right angle, and no two segments spanned by 4 points are orthogonal to each other. Choose a
very small ε > 0 and replace each point p ∈ S by a disk of radius ε around p. Applying the
above mentioned result from [10] to the union of these n disks, we obtain two orthogonal lines
that meet the requirements of the lemma.

Lemma 2. Given a set S of n points in the plane (n even), there exist three concurrent lines
such that the angle between any two of them is π/3, and there is a partition S = S1 ∪ . . . ∪ S6

with |S1| = |S4|, |S2| = |S5|, and |S3| = |S6|, such that Si is contained in the ith closed angular
region (wedge) determined by the lines, in counterclockwise order.

Proof. Just like before, by compactness, it is sufficient to prove the statement for point sets
in general position. This time, it is convenient to assume that no 3 points of S determine an
angle which is an integer multiple of π/3, and there are no 2 pairs of points such that the angle
between their connecting lines is an integer multiple of π/3.

Choose again a very small ε > 0 and replace each point p ∈ S by a disk Dp of radius ε
centered at p. Approximate very closely the union of these disks by a continuous measure µ
which is strictly positive on every Jordan region in the plane and for which µ(R2) = n and
|µ(Dp)− 1| < ε for every p ∈ S.
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We say that a line ℓ is a bisecting line with respect to the continuous measure µ if the
measures of both half-planes bounded by ℓ are equal to n/2. Clearly, there is a unique bisecting
line parallel to every direction, and this line changes continuously as the direction varies. Choose
three bisecting lines ℓ1, ℓ2, ℓ3 such that the angle between any two of them is π/3. By changing
the direction of ℓ1, we can achieve that these lines pass through the same point. Indeed, as
we turn ℓ1 by π/3, the crossing point of the other two lines moves from one side of ℓ1 to the
other. Therefore, there is an intermediate position in which the three lines pass through the
same point.

An easy case analysis shows that if ε was sufficiently small, then either no ℓi intersects any
disk Dp or there is one ℓi that intersects two Dp’s and the others do not intersect any. In the
former case, the lines satisfy the conditions in the lemma, in the latter one, they can be slightly
perturbed so as to meet the requirements.

Given a set S of n points in general position in the plane (i.e., no three points are collinear),
a line passing through two elements of S is called a halving line if there are ⌊(n − 2)/2⌋ points
on one of its sides and ⌈(n − 2)/2⌉ points on the other [15]. The number of halving lines of
an n-element point set in the plane is bounded from above by O(n4/3), as was established by
Dey [11]. It is also known that the set of halving lines can be computed in O(n4/3 log1+ε n) time
[8], for every ε > 0.

Remark. Starting with an arbitrary halving line ℓ and following the rotation scheme described
in [15], one can enumerate all halving lines for S. Using this approach, one obtains algorithmic
proofs of Lemmas 1 and 2 that run in O(n4/3 log1+ε n) time, for every ε > 0.

3 Constructing a tour with rotation angles at most 2π/3

In this section, we prove Theorem 1. As we mentioned in the Introduction, for small even values
of n, namely for n = 4 and n = 6, we need to allow rotation angles as large as 2π/3. Here we
show that this value suffices for all even n.

Let ℓ1, ℓ2, ℓ3 be three concurrent lines satisfying the conditions of Lemma 2. They divide the
plane into six wedges.

Let X,Y,Z,X ′, Y ′, Z ′ denote the six wedges in counterclockwise order, labeled as in Fig. 3.
Note that the angle between the x-axis and any edge pi−1pi of a tour with pi−1 ∈ X and pi ∈ X ′,
say, belongs to the interval [0, π/3]. A piece pi−1pipi+1 of a tour is of the form XX ′X, say, if
pi−1, pi+1 ∈ X and pi ∈ X ′.

Observation 1. Consider a piece of a tour, which is of the form XQX, where Q = Y ′,X ′,
or Z. Then the rotation angle at the middle point of this piece, which belongs to Q, is at most
2π/3. The same holds for any other piece consisting of two edges, which starts and ends in the
same wedge, and whose middle point belongs to one of the three opposite wedges.

Observation 2. Consider a piece of a tour, which is of the form XX ′Y or XX ′Z ′. Then the
rotation angle at the middle point of this piece, which belongs to X ′, is at most 2π/3. The same
holds for any other piece of the form X ′XZ, X ′XY ′, Y Y ′X, Y Y ′Z, Y ′Y X ′, Y ′Y Z ′, ZZ ′Y ,
ZZ ′X ′, Z ′ZX, Z ′ZY ′.

Proof of Theorem 1. We distinguish two cases:
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Figure 3: Three concurrent bisecting lines of S: ℓ1, ℓ2, ℓ3, at angles 0, π/3, and 2π/3.

Case 1. There are at most two nonempty double wedges. If all points are contained in a
unique double wedge, say XX ′, then by Observation 1, they can be connected by an acute tour
of the form (XX ′)∗. The tours starts in X, ends in X ′, and alternates between the wedges
X and X ′ until all points in X ∪ X ′ are exhausted. Assume now that there are exactly two
nonempty double wedges, XX ′ and Y Y ′, say, and refer to Fig. 4. Consider a spanning tour of the

Y ′

X

Y

X ′

Figure 4: Case 1: points in two double wedges. A tour of the form XX ′XX ′XX ′Y Y ′Y Y ′ is shown; its
starting vertex in X is drawn as an empty circle.

form (XX ′)∗(Y Y ′)∗, where (XX ′)∗ and (Y Y ′)∗ are point sequences that alternate between the
corresponding opposite wedges until all points in those wedges are exhausted. By Observations 1
and 2, at each vertex of this tour the rotation angle is at most 2π/3.

Case 2. There are exactly three nonempty double wedges; refer to Fig. 5. Arbitrarily pick
one point from each wedge: x ∈ X, y ∈ Y , z ∈ Z, x′ ∈ X ′, y′ ∈ Y ′, z′ ∈ Z ′. Consider the
two triangles ∆xzy′ and ∆yx′z′. The sum of the interior angles of the two triangles is obviously
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Figure 5: Case 2: points in three double wedges. Left: a tour of the formX ′XY ′Y Y ′Y y′xzz′x′y is shown;
its starting vertex in X ′ is drawn as an empty circle. Right: a tour of the form Y ′Y Y ′Y y′xzZ ′Zz′x′y is
shown; its starting vertex in Y ′ is drawn as an empty circle.

2π. By averaging, there is one pair of points lying in opposite wedges, say x and x′, whose
angles sum up to at most 2π/3. Thus, each of these angles is at most 2π/3: ∠zxy′ 6 2π/3, and
∠yx′z′ 6 2π/3.

If |X ∩ S| = |X ′ ∩ S| > 2, consider a spanning tour (X ′X)+(Y ′Y )+y′xz(Z ′Z)+z′x′y. Here
(X ′X)+ denotes a nonempty alternating path between the wedges X ′ and X, that starts in X ′,
ends in X, and involves all points except x and x′. The notations (Y ′Y )+ and (Z ′Z)+ are used
analogously. An example is depicted in Fig. 5 (left). By Observations 1 and 2, and by our choice
of x, y, z, x′, y′, z′, all rotation angles along this tour are at most 2π/3, as required.

If |X∩S| = |X ′∩S| = 1, consider a spanning tour (Y ′Y )+y′xz(Z ′Z)+z′x′y; see Fig. 5 (right).
The arguments justifying that all rotation angles are at most 2π/3 are the same as before.

The proof of Theorem 1 is now complete.

4 Covering by two acute tours

Proof of Theorem 2. (i) Take a horizontal line ℓ and a partition of our point set S = S+∪S−

into two subsets, each of size n/2, such that S+ and S− are in the closed half-planes above and
below ℓ, respectively. If some points of S lie on ℓ, we can include them in either of these sets so
as to satisfy the condition. Next, take a vertical line ℓ′ which gives rise to another equipartition
of S. Assume for simplicity that ℓ and ℓ′ coincide with the x and y coordinate axes. See Fig. 6,
for an illustration.

Thus, we obtain a partition S = S1 ∪ S2 ∪ S3 ∪ S4 such that all points of Si belong to
the ith closed quadrant determined by the axes (enumerated in the counterclockwise order),
|S1| = |S3| = a, and |S2| = |S4| = b for some integers a and b with a+ b = n/2. Connect now all
elements of S1∪S3 by a tour of length 2a alternating between S1 and S3. Similarly, connect the
elements of S2 ∪ S4 by an alternating tour of length 2b. Obviously, both tours are acute. The
above procedure can be performed in linear time, using any linear time selection algorithm [9].
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Figure 6: Even set covered by two tours with 6 and 2 points, respectively; a = 3, and b = 1. (A
double-edge counts as a tour.)

(ii) Find two orthogonal lines and a partition S = S1∪S2∪S3∪S4 satisfying the conditions
of Lemma 1. Using the notation of the proof of part (i), now we have a = ⌊n

4
⌋ and b = ⌈n

4
⌉. As

above, we obtain two acute tours, of lengths 2⌊n
4
⌋ and 2⌈n

4
⌉, respectively. This completes the

proof of part (ii) of Theorem 2.

By keeping only the larger tour, Theorem 2 immediately implies

Corollary 1. For any even n, every n-element point set in the plane admits an acute even tour
covering at least half of its elements.

5 Acute tours for points in convex position

Throughout this section, let S denote a set of n > 8 points in the plane, in convex position and
let S = S1 ∪ S2 ∪ S3 ∪ S4 be a partition satisfying the conditions in Lemma 1. A 3-edge path
(on 4 points) is called a hook if the rotation angles at its two intermediate vertices are acute.

Lemma 3. Let P = {p1, p2, p3, p4} be the vertex set of a convex quadrilateral, with pi ∈ Si,
i = 1, 2, 3, 4. Then at least one of the following two conditions is satisfied.

(i) p1p3p4p2 and p3p1p2p4 are hooks, or
(ii) p1p3p2p4 and p3p1p4p2 are hooks.

Proof. At least one of the two angles defined by the diagonals p1p3 and p2p4 is larger or equal
to π/2. Let x denote the crossing point of these diagonals. If ∠p1xp2 > π/2, then the two 3-edge
paths p1p3p4p2 and p3p1p2p4 are hooks, while if ∠p2xp3 > π/2, then p1p3p2p4 and p3p1p4p2 are
hooks.

We say that a convex quadrilateral P , as in Lemma 3, is of type 1 if ∠p1xp2 > π/2, and of
type 2, otherwise (i.e., if ∠p2xp3 > π/2).

Lemma 4. Let P = {p1, p2, p3, p4}, Q = {q1, q2, q3, q4}, and R = {r1, r2, r3, r4} be three vertex-
disjoint convex quadrilaterals with pi, qi, ri ∈ Si, for i = 1, 2, 3, 4. Then there exist two hooks
induced by two of these quadrilaterals such that the two endpoints of the first one and the two
endpoints of the second one lie in different parts of the partition S1 ∪ S2 ∪ S3 ∪ S4. Two such
hooks are called opposite. (See Fig. 7 (left).)
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Figure 7: Left: p1p3p4p2 and r3r1r2r4 are two opposite hooks. Right: an acute tour of S of the form
(S1S3)

+p1p3p4p2(S4S2)
+q4q2q1q3, starting at s ∈ S1.

Proof. By the pigeonhole principle, two out of the three quadrilaterals, say P and Q, must
have the same type. By Lemma 3, one can find a hook in each of them such that their endpoints
are all in different parts of the partition, i.e., two opposite hooks.

Proof of Theorem 3. Consider a partition S = S1 ∪ S2 ∪ S3 ∪ S4 satisfying the conditions in
Lemma 1. Since |S| > 12, we have |Si| > 3. Pick 3 points from each Si, and using these points
construct three vertex-disjoint convex quadrilaterals, P , Q, and R. By Lemma 4, two of these
quadrilaterals, P and Q, say, determine opposite vertex-disjoint hooks. Suppose without loss of
generality that P and Q are of type 1, and these two hooks are p1p3p4p2 and q4q2q1q3, where
pi, qi ∈ Si, i = 1, 2, 3, 4. See Fig. 7(right).

Let (SiSj)
+ denote a polygonal path starting in Si, ending in Sj, alternating between Si

and Sj , and exhausting all points of Si ∪ Sj, except for pi, pj , qi, qj . The following tour is acute:
(S1S3)

+p1p3p4p2(S4S2)
+q4q2q1q3, and this completes the proof.

6 Random point sets

We first verify Theorem 4 for centrally symmetric convex bodies, and then in its full generality.

Lemma 5. Let B be a centrally symmetric convex body in the plane and let S be a set of n
points, randomly and uniformly selected from B. Then, for any ε > 0, S almost surely admits
a spanning tour with no rotation angle larger than ε, as n tends to infinity.

Proof. Let ε be fixed, and let o denote the center of B. Assume without loss of generality that
area(B) = 1. Any chord through o divides the area of B into two equal parts. Therefore, there
is a positive constant δ = δ(B, ε), depending only on B and ε, such that for every wedge W
with angle at most π − ε

2
and apex at o, we have that area(W ∩B) 6 1/2− δ. Let m = ⌈n/2⌉.

Let p1, p2, . . . pn be n random points, independently and uniformly selected from B, listed
in their circular order of visibility from o. The indices are taken modulo n, so that pn+1 = p1.
Note that almost surely all points pi are distinct and different from o.
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If n is odd, consider the spanning tour C = p1pm+1p2pm+2 . . . pmp1. For every i, almost
surely we have

π −
ε

2
6 ∠piopm+i−1 6 π +

ε

2
,

and
π −

ε

2
6 ∠piopm+i 6 π +

ε

2
.

Therefore, we almost surely have ∠pm+i−1pipm+i 6 ε, for every i, and the tour C meets the
requirements.

If n is even, we choose two odd numbers n1, n2 with n1 + n2 = n such that 0 6 n1 − n2 6 2.
That is, n1 is m or m+ 1 while n2 is m or m− 1. Connect the points pi by two disjoint cycles,
C1 and C2, of length n1 and n2, with property that (1) in the cyclic order around o, the points
p1, p2, . . . belong alternately to C1 and C2, as much as possible; and (2) every edge of C1 and
C2 connects two points, pi and pj, with |j − i−m| 6 3 (mod n). We distinguish two cases.

Case 1. n1 = n2 = m. Let

C1 = p1p2+mp3p4+mp5 . . . pn−1pm,

C2 = p2p3+mp4p5+mp6 . . . pnp1+m.

Switching between these two cycles at two points, we can combine them into a single spanning
tour C, as follows.

C = p1p2+mp3p4+mp5 . . . pn−1pmp2p3+mp4p5+mp6 . . . pnp1+m.

It remains true that |j − i−m| 6 3 (mod n) for every edge pipj of C, so that almost surely all
rotation angles of C will be smaller than ε.

Case 2. n1 = m+ 1, n2 = m− 1. Let

C1 = p1p2+mp3p4+mp5 . . . pnpm+1,

C2 = p2p3+mp4p5+mp6 . . . pn−1pm.

We can combine them into a single spanning tour C, as follows.

C = p1p2+mp3p4+mp5 . . . pnpm+1p2p3+mp4p5+mp6 . . . pn−1pm.

It remains true that |j − i−m| 6 3 (mod n) for every edge pipj of C, so that almost surely all
rotation angles of C will be smaller than ε.

To prove Theorem 4 in its full generality, we need the following technical lemma. Its proof
is very similar to that of Lemma 5. The minor modifications are left to the reader.

Lemma 6. Let B be a centrally symmetric convex set in the plane with nonempty interior. Let
o denote the center of B, let ε > 0 be fixed, let s and t be two points of B, and let S′ be a set of
at most εn/4 points not belonging to B.

Then, for any set S of n points randomly and uniformly selected from B, the set S ∪ S′

almost surely admits a spanning path satisfying the following conditions, as n → ∞:
(i) all of its turning angles are at most ε;
(ii) its first two points are p1 and p2 such that ∠op1p2 6 ε/3, and ∠sop1 6 ε/3;
(iii) its last two points are q2 and q1 such that ∠oq1q2 6 ε/3, and ∠toq1 6 ε/3.
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Proof of Theorem 4. Assume without loss of generality that area(B) = 1. Consider a square
lattice of minimum distance δ, for some δ > 0 to be specified later. Let A = A(δ) denote the total
area of all cells (lattice squares of side length δ) completely contained in B, and let A′ = A′(δ)
denote the total area of all those cells that intersect B, but are not completely contained in it.
Obviously, A+A′ > 1. Since the boundary of B is the union of finitely many rectifiable curves,
we have

lim
δ→0

A = 1, lim sup
δ→0

A′

δ
< ∞.

Therefore, we can choose δ > 0 so that A′ 6 ε/6.
Let X1,X2, . . . ,Xm denote the cells completely contained in B, in some arbitrary order, and

let oi denote the center of Xi. For any 1 6 i 6 m, let si be a point on the line oioi−1 such that
oi belongs to the segment sioi−1. Analogously, let ti be a point on the line oioi+1 such that oi
belongs to the segment tioi+1. Here the indices are taken modulo m.

Let S be a set of n points in B, selected independently, randomly, and uniformly. Let
Si = S ∩ Xi, for 1 6 i 6 m, and let S′ = S \ ∪m

i=1
Si. Divide S′ into m almost equal parts,

S′
1, S

′
2, . . . , S

′
m with ||S′

i| − |S′
j|| 6 1, for any i, j = 1, . . . ,m.

For each 1 6 i 6 m, apply Lemma 6 with Si, S
′
i, si, and ti, to obtain a spanning path

Pi. The spanning tour P1P2 . . . Pm obtained by the concatenation of these paths now meets the
requirements.
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