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Abstract

We introduce the notion of locally identifying coloring of a graph. A proper
vertex-coloring c of a graph G is said to be locally identifying, if for any adjacent
vertices u and v with distinct closed neighborhoods, the sets of colors that appear
in the closed neighborhood of u and v, respectively, are distinct. Let χlid(G) be
the minimum number of colors used in a locally identifying vertex-coloring of G. In
this paper, we give several bounds on χlid for different families of graphs (planar
graphs, some subclasses of perfect graphs, graphs with bounded maximum degree)
and prove that deciding whether χlid(G) = 3 for a subcubic bipartite graph G with
large girth is an NP-complete problem.

∗This research is supported by the ANR IDEA, under contract ANR-08-EMER-007, 2009-2011.
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1 Introduction

In this paper we focus on colorings allowing to distinguish the vertices of a graph. In
[?], Horňák and Soták considered edge-coloring of a graph such that (i) the edge-coloring
is proper (i.e. no adjacent edges receive the same color) and (ii) for any vertices u, v
(with u 6= v) the set of colors assigned to the edges incident to u differs from the set of
colors assigned to the edges incident to v. Such a coloring is called a vertex-distinguishing
proper edge-coloring. The minimum number of colors required in any vertex-distinguishing
proper edge-coloring of G is called the observability of G and was studied for different
families of graphs [?, ?, ?, ?, ?, ?, ?]. This notion was then extended to adjacent vertex-
distinguishing edge-coloring where Property (ii) must be true only for pairs of adjacent
vertices; see [?, ?, ?].

In the present paper we introduce the notion of locally identifying colorings: a vertex-
coloring is said to be locally identifying if (i) the vertex-coloring is proper (i.e. no adjacent
vertices receive the same color), and (ii) for any pair of adjacent vertices u, v the set of
colors assigned to the closed neighborhood of u differs from the set of colors assigned
to the closed neighborhood of v whenever these neighborhoods are distinct. The locally
identifying chromatic number of the graph G (or lid-chromatic number, for short), denoted
by χlid(G), is the smallest number of colors required in any locally identifying coloring
of G. In the following we study the parameter χlid for different families of graphs, such
as bipartite graphs, k-trees, interval graphs, split graphs, cographs, graphs with bounded
maximum degree, planar graphs with high girth, and outerplanar graphs.

Let G = (V,E) be a graph. For any vertex u, we denote by N(u) its neighborhood
and by N [u] its closed neighborhood (u together with its adjacent vertices) and by d(u)
its degree. Let c be a vertex-coloring of G. For any S ⊆ V , let c(S) be the set of
colors that appear on the vertices of S. More formally, a locally identifying coloring of G
(or a lid-coloring, for short) is proper vertex-coloring c of G such that for any edge uv,
N [u] 6= N [v]⇒ c(N [u]) 6= c(N [v]). Observe that the lid-chromatic number of a graph G
is the maximum of the lid-chromatic numbers of its connected components. Hence, in the
proofs of most of our results it will be enough to restrict ourselves to connected graphs. A
graph G is k-lid-colorable if it admits a locally identifying coloring using at most k colors.
Notice the following:

Observation 1. A connected graph G is 2-lid-colorable if and only if G has at most two
vertices.

Proof. Let G be a connected graph with a 2-lid-coloring c and at least 3 vertices. Consider
an edge uv. Then we have N [u] 6= N [v], since otherwise G would contain a triangle and
then we would have χlid(G) > χ(G) > 3. Since c is a 2-coloring and N [u] and N [v] both
contain u and v, we have c(N [u]) = c(N [v]) = {c(u), c(v)}, a contradiction.

The other implication is trivial.

Note that locally identifying coloring is not hereditary. For instance, if Pn denotes the
path on n vertices, then χlid(P5) = 3 whereas χlid(P4) = 4.
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In Section ??, we prove that every bipartite graph has lid-chromatic number at most
4. Moreover, deciding whether a bipartite graph is 3-lid-colorable is an NP-complete
problem, whereas it can be decided in linear time whether a tree is 3-lid-colorable.

In general, χlid is not bounded by a function of the usual chromatic number χ. Never-
theless it turns out that for several nice classes of graphs such a function exists: we study
k-trees (Section ??), interval graphs (Section ??), split graphs (Section ??), cographs
(Section ??), and give tight bounds in each of these cases. We also conjecture that every
chordal graph G has a lid-coloring with 2χ(G) colors.

Section ?? is dedicated to graphs with bounded maximum degree. We prove that the
lid-chromatic number of graphs with maximum degree ∆ is O(∆3) and that there are
examples with lid-chromatic number Ω(∆2).

In Section ??, we study graphs with a topological structure. Our result on 2-trees does
not give any information on outerplanar graphs, since lid-coloring is not monotone under
taking subgraphs. So we use a completely different strategy to prove that outerplanar
graphs and planar graphs with large girth have lid-colorings using a constant number of
colors.

Finally, in Section ??, we propose a tool allowing to extend the lid-colorings of the
2-connected components of a graph to the whole graph.

2 Bipartite graphs

This section is dedicated to bipartite graphs. The main interest of the study of bipartite
graphs here comes from the following lemmas:

Lemma 2. If a connected graph G satisfies χlid(G) 6 3, then G is either a triangle or a
bipartite graph.

Proof. Consider a 3-lid-coloring c of G with colors 1, 2, 3. By Observation ??, we can
assume that G has at least three vertices.

Define the coloring c′ by c′(x) = |c(N [x])| for any vertex x. Since G is connected,
c′(x) ∈ {2, 3} for any vertex x. If two adjacent vertices u, v satisfy c′(u) = c′(v) = 3,
then c(N [u]) = c(N [v]) = {1, 2, 3}, and if c′(u) = c′(v) = 2, then c(N [u]) = c(N [v]) =
{c(u), c(v)}. It follows that c′ is a proper 2-coloring of G unless N [u] = N [v] for some
edge uv. In this case, since G does not consist of the single edge uv, there exists a vertex
w adjacent to u and v. But then c(N [u]) = c(N [v]) = c(N [w]) = {1, 2, 3}, which implies
that N [u] = N [v] = N [w]. This is only possible if G is a triangle.

Indeed, more can be said about the color classes in a 3-lid-coloring of a (bipartite)
graph:

Lemma 3. Let G be a 3-lid-colorable connected bipartite graph on at least three vertices,
with bipartition {U, V }, and let c be a 3-lid-coloring of G with colors 1, 2, 3. Then G
has a vertex u with c(N [u]) = {1, 2, 3} and if u ∈ U , then c(U) = {c(u)} and c(V ) =
{1, 2, 3} \ {c(u)}.
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Proof. Let uv be an edge of G. We have N [u] 6= N [v] because G is a bipartite connected
graph on at least three vertices. Then c(N [u]) = {1, 2, 3} or c(N [v]) = {1, 2, 3}. Without
loss of generality, assume that c(N [u]) = {1, 2, 3} and c(u) = 1. Then all the neighbors
of u must be colored 2 or 3, and the vertices at distance two from u must be colored 1
(otherwise there would be a neighbor w of u with c(N [w]) = {1, 2, 3} and N [u] 6= N [w]).
Iterating this observation, we remark that all the vertices at even distance from u must be
colored 1, while the vertices at odd distance from u must be colored either 2 or 3, which
yields the conclusion.

As a corollary we obtain a precise description of 3-lid-colorable trees.

Corollary 4. A tree T with at least 3 vertices is 3-lid-colorable if and only if the distance
between every two leaves is even.

Proof. Observe that for each leaf u of T , we have |c(N [u])| = 2 in any proper coloring c
of T , so by Lemma ?? the distance between every two leaves is even.

Now assume that the distance between every two leaves of T is even, and fix a leaf
u of T . Let c be the 3-coloring of T defined by c(v) = 2 if d(u, v) is odd, c(v) = 1 if
d(u, v) ≡ 0 mod 4, and c(v) = 3 if d(u, v) ≡ 2 mod 4. The coloring c is clearly proper, and
we have c(N [v]) = {1, 2} if d(u, v) ≡ 0 mod 4, and c(N [v]) = {2, 3} if d(u, v) ≡ 2 mod 4.
If v is a vertex at odd distance from u, then v is not a leaf and c(N [v]) = {1, 2, 3}. As a
consequence, c is a 3-lid-coloring of T .

Another class of bipartite graphs that behaves nicely with regards to locally identifying
coloring is the class of graphs obtained by taking the Cartesian product of two bipartite
graphs. For two graphs G1 = (V1, E1) and G2 = (V2, E2), the Cartesian product of G1 and
G2, denoted by G1�G2, is the graph with vertex set V1×V2, in which two vertices (u1, u2)
and (v1, v2) are adjacent whenever u2 = v2 and u1v1 ∈ E1, or u1 = v1 and u2v2 ∈ E2.

Theorem 5. If G1 and G2 are bipartite graphs without isolated vertices, then G1�G2 is
3-lid-colorable.

Proof. Let {U1, V1} and {U2, V2} be the bipartitions of G1 and G2, respectively. Then
G1�G2 is a bipartite graph with partition {(U1 × U2) ∪ (V1 × V2), (U1 × V2) ∪ (V1 × U2)}
and because there are no isolated vertices in G1 and G2, each vertex of (U1×U2)∪(V1×V2)
has a neighbor in U1 × V2 and a neighbor in V1 × U2.

We define c by c(u) = 1 if u ∈ (U1 × U2) ∪ (V1 × V2), c(u) = 2 if u ∈ U1 × V2, and
c(u) = 3 if u ∈ V1×U2. Then c is a lid-coloring of G1�G2: c(N [u]) = {1, 2, 3} for vertices
of (U1 × U2) ∪ (V1 × V2), c(N [u]) = {1, 2} for vertices of U1 × V2 and c(N [u]) = {1, 3} for
vertices of V1 × U2.

By Observation ??, G1�G2 does not have a 2-lid-coloring.

As a corollary, we obtain that hypercubes and grids in any dimension are 3-lid-
colorable. We now focus on bipartite graphs that are not 3-lid-colorable.

Theorem 6. If G is a bipartite graph, then χlid(G) 6 4.
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Proof. We can assume that G is a connected graph with at least five vertices. Then there
exists a vertex u of G that is not adjacent to a vertex of degree one. For any vertex v of
G, set c(v) to be the element of {0, 1, 2, 3} congruent with d(u, v) modulo 4. We claim
that c is a lid-coloring of G. Since G is bipartite, c is clearly a proper coloring. Let v, w
be two adjacent vertices in G. We may assume that they are at distance k > 0 and k+ 1
from u, respectively. If k = 0, then v = u and w has a neighbor at distance two from u,
so c(N [v]) = {0, 1} and c(N [w]) = {0, 1, 2}. If k > 1, then (k − 1) mod 4 is in c(N [v])
but not in c(N [w]), so c(N [v]) 6= c(N [w]).

We now prove that deciding whether a bipartite graph is 3 or 4-lid-colorable is a hard
problem.

Theorem 7. For any fixed integer g, deciding whether a bipartite graph with girth at least
g and maximum degree 3 is 3-lid-colorable is an NP-complete problem.

Proof. We recall that a 2-coloring of a hypergraphH = (V , E) is a partition of its vertex set
V into two color classes such that no edge in E is monochromatic. We reduce our problem
to the NP-complete problem of deciding the 2-colorability of 3-uniform hypergraphs [?].

Let H = (V , E) be a hypergraph with at least one hyperedge. We construct the
bipartite graph G = (V,E) in the following way. To each vertex v ∈ V , we associate a
path Pv with vertices {v0, . . . , v4t} in G (where t will depend on the degree of v in H and
the girth g we want for G). All the paths Pv are built on pairwise disjoint sets. To each
hyperedge e ∈ E , we associate a vertex we in G. If a hyperedge e contains a vertex v in H,
then we add an edge in G between we and a vertex vi of Pv for some index i ≡ 2 mod 4.
We require that a vertex vi on a path Pv is adjacent to at most one vertex corresponding
to a hyperedge containing v. It follows that the graph G is bipartite with maximum
degree 3. Moreover, we can construct G in polynomial time and ensure that the girth of
G is at least g by leaving enough space (at least g/2 vertices of degree two) between any
two consecutive vertices of degree 3 on the paths Pv.

We shall prove that H is 2-colorable if and only if χlid(G) = 3.
Assume first that H admits a 2-coloring C : V → {1, 2}. We define the following

3-coloring c of G such that c(vi≡2 mod 4) = C(v), c(vi≡0 mod 4) = 3−C(v), c(vi≡1 mod 2) = 3 if
v ∈ V , and c(we) = 3 for all vertices we with e ∈ E . Let us check that c is a lid-coloring of
G. We have c(N [we]) = {1, 2, 3} since c(we) = 3 and we is adjacent to a vertex colored 1
and to a vertex colored 2 because of the 2-coloring of H. Also, c(N [vi≡1 mod 2]) = {1, 2, 3},
c(N [vi≡2 mod 4]) = {C(v), 3}, and c(N [vi≡0 mod 4]) = {3− C(v), 3}. So, for every edge uv in
G, we have c(N [u]) 6= c(N [v]).

Conversely, assume that G (with bipartition {U, V }) admits a lid-coloring c using
colors 1, 2, 3. By Lemma ??, we can assume that c(U) = {1, 2} and c(V ) = {3}, and
that the vertices of degree one in G are in U . This implies that c(vi≡2 mod 4) ∈ {1, 2},
c(vi≡0 mod 4) = 3−c(vi≡2 mod 4), and c(vi≡1 mod 2) = c(we) = 3. Hence, the vertex-coloring of
V , in which each vertex v receives the color c(vi≡2 mod 4), is 2-coloring of the hypergraphH.
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It turns out that the connection between 3-lid-coloring and hypergraph 2-coloring
highlighted in the proof of Theorem ?? has further consequences. For a connected bi-
partite graph G with bipartition {U, V }, let HU be the hypergraph with vertex set U
and hyperedge set {N(v), v ∈ V }. A direct consequence of Lemmas ?? and ?? is that a
connected graph G distinct from a triangle is 3-lid-colorable if and only if it is bipartite
(say with bipartition {U, V }) and at least one of HU and HV is 2-colorable.

A consequence of a result of Moret [?] (see also [?] for further details) is that if G is a
subcubic bipartite planar graph with bipartition {U, V }, then we can check in polynomial
time whether HU (or HV ) is 2-colorable. As a counterpart of Theorem ??, this implies:

Theorem 8. It can be checked in polynomial time whether a planar graph G with maxi-
mum degree three is 3-lid-colorable.

It was proved by Burstein [?] and Penaud [?] that every planar hypergraph in which all
hyperedges have size at least three is 2-colorable, and Thomassen [?] proved that for any
k > 4 any k-regular k-uniform hypergraph is 2-colorable. As a consequence, we obtain
the following two results:

Theorem 9. Let G be a bipartite planar graph with bipartition {U, V } such that all
vertices in U or all vertices in V have degree at least three. Then G is 3-lid-colorable.

Theorem 10. For k > 4, a k-regular graph is 3-lid-colorable if and only if it is bipartite.

Since bipartite graphs have bounded lid-chromatic number, a natural question is
whether χlid is upper-bounded by a function of the (usual) chromatic number. However,
this is not true, since the graph G obtained from a clique on n vertices by subdividing each
edge exactly twice has χlid(G) = n (it suffices to observe that two vertices of the initial
clique cannot have the same color in the subdivided graph), whereas it is 3-colorable. This
example also shows that if the edges of a graph G are partitioned into two sets E1 and
E2, and the subgraphs of G induced by E1 and E2 have bounded lid-chromatic number,
then χlid(G) is not necessarily bounded.

We propose the following conjecture relating χlid and χ for highly structured graphs.
A graph is chordal if it does not contain an induced cycle of length at least four.

Conjecture 11. For any chordal graph G, χlid(G) 6 2χ(G).

The next three sections are dedicated to important subclasses of chordal graphs for
which we are able to verify Conjecture ??.

3 k-trees

This section is devoted to the study of k-trees. A k-tree is a graph whose vertices can be
ordered v1, v2, . . . , vn in such a way that the vertices v1 up to vk+1 induce a (k+ 1)-clique
and for each k + 2 6 i 6 n, the neighbors of vi in {vj | j < i} induce a k-clique. By
definition, for every k + 1 6 i 6 n the graph Gi induced by {vj | j 6 i} is a k-tree and
every k-clique in a k-tree is contained in a (k + 1)-clique.

the electronic journal of combinatorics 16 (2009), #R00 6



Theorem 12. If G is a k-tree, then χlid(G) 6 2k + 2.

Proof. In this proof the colors are the integers modulo 2k + 2. In particular, this implies
that the function on integers x 7→ x+ k + 1 is an involution.

Let v1, . . . , vn be the n vertices of G ordered as above.
We construct the following coloring c of G iteratively for 1 6 i 6 n. If i 6 k+ 1, then

we set c(vi) = i. Suppose i > k+ 2. Let C be the neighborhood of vi in Gi. Since Gi−1 is
a k-tree, the clique C is contained in a (k + 1)-clique C ′ of Gi−1. Let {vj} = C ′ \ C. We
set c(vi) = c(vj) + k + 1 (we may have several choices for C ′ and thus for j).

We now prove that c is a lid-coloring of G. Throughout the procedure, the following
two properties remain trivially satisfied: (i) c is a proper coloring of G, and (ii) no vertex
colored i has a neighbor colored i+ k+ 1. Consider an edge vivj of G with N [vi] 6= N [vj].
We may assume without loss of generality that some neighbors of vi are not adjacent to
vj. If i, j 6 k + 1, then consider the minimum index ` such that v` is a neighbor of vi
not adjacent to vj. By definition of c and minimality of `, we have c(vj) = c(v`) + k + 1.
Otherwise we can assume that j > i and j > k + 1. Let C be the neighborhood of
vj in Gj. By definition of c, there exists a (k + 1)-clique C ′ of Gj−1 containing C such
that c(vj) = c(v`) + k + 1, where C ′ \ C = {v`}. In both cases, c(v`) ∈ c(N [vi]) while
c(v`) 6∈ c(N [vj]) by Property (ii). Hence, c is a lid-coloring of G.

vk+2

vk+3

v2k+2

v1

v2

vk+1

v3 vk+4

...

...

(a)

v1 v2vk+2 vk+3 v2k+2vk+1v3 vk+4 . . .

(b)

Figure 1: The graph P k
2k+2 as an interval graph (a) and as a permutation graph (b).

For fixed t, the fact that a graph admits a lid-coloring with at most t colors can
be easily expressed in monadic second-order logic. Thus Theorem ?? together with [?]
imply that for fixed k, the lid-chromatic number of a k-tree can be computed in linear
time. Another remark is that for trees, Theorem ?? provides the same 4-lid-coloring as
Theorem ??.

For any two integers k, ` > 1, we define P k
` as the graph with vertex set v1, . . . , v`

in which vi and vj are adjacent whenever |i − j| 6 k. The graph P k
2k+2 is clearly a k-

tree: it can be constructed from the clique formed by v1, . . . , vk+1 by adding at each step
k + 2 6 i 6 2k + 2 a vertex vi adjacent to vi−k, . . . , vi−1. The graph P k

2k+2 is also an
interval graph (see Figure ??) and a permutation graph (see Figure ??). We now prove
that the graph P k

2k+2 also provides an example showing that Theorem ?? is best possible.

Proposition 13. For any k > 1, we have χlid(P k
2k+2) = 2k + 2.
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Proof. Let c be a lid-coloring of P k
2k+2. Without loss of generality we have c(vi) = i for

each 1 6 i 6 k + 1. Observe that for any 1 6 i 6 k, the symmetric difference between
N [vi] and N [vi+1] is precisely {vi+k+1}. In addition, N [vi] = {v1, . . . , vi+k} and so c(N [vi])
contains colors 1 up to k+ 1. Therefore, c(vi) > k+ 1 whenever k+ 2 6 i 6 2k+ 1. And
we can assume that c(vi) = i for any 1 6 i 6 2k + 1.

Let α = c(v2k+2), and assume for the sake of contradiction that α 6= 2k + 2. Since
vertices vk+2, . . . , v2k+2 induce a clique, we have α 6 k + 1. The symmetric difference
between N [vα+k] and N [vα+k+1] is precisely {vα} if α > 2 and is {v1, v2k+2} if α = 1.
In both cases, c(v2k+2) = c(vα) = α would imply that c(N [vα+k]) = c(N [vα+k+1]), a
contradiction.

4 Interval graphs

In this section, we prove that the previous example is also extremal for the class of interval
graphs.

Theorem 14. For any interval graph G, χlid(G) 6 2ω(G).

Proof. Let k = ω(G). In this proof the colors are the integers modulo 2k. Let G be a
connected interval graph on n vertices. We identify the vertices v1, . . . , vn of G with a
family of intervals (Ii = [ai, bi])16i6n such that vivj is an edge of G precisely if Ii and
Ij intersect. We may assume that a1 6 a2 6 . . . 6 an. Without loss of generality, we
can assume that if ai < aj and Ii ∩ Ij 6= ∅, then there exists an interval I` such that
ai 6 b` < aj; otherwise, we can change Ij to the interval [ai, bj] and the intersection
graph remains the same. By a similar argument, we can also assume that if bj < bi and
Ii ∩ Ij 6= ∅, then there exists an interval I` such that bj < a` 6 bi.

Let {a1 = at1 < at2 < . . . < ats} be the set of left ends. At each step i = 1, . . . , s,
we color all the intervals starting at ati . We first color the intervals starting at at1 with
distinct colors in {0, . . . , k − 1}. Assume we have colored all the intervals starting before
ati . Now, we color all the intervals of the set I(ti) = {Ij : aj = ati}. First, we define the
following subsets of intervals:

• V(ti): intervals Ij such that aj < ati 6 bj,

• U(ti): intervals Ij such that ati−1
6 bj < ati ,

• T (ti): intervals Ij of U(ti) such that there is an interval I` in V(ti) with aj = a`.

Note that V(ti) is the set of intervals that are already colored and intersect all the
intervals of I(ti). Due to the connectedness of G, this set is not empty. The set U(ti)
is a subset of intervals already colored that intersect all the intervals of V(Ti). It is not
empty (take any interval finishing before ati with rightmost right end). Necessarily, all
the intervals of U(ti) have the same right end because no interval starts between ati−1

and
ati . Finally, if T (ti) 6= ∅, then let I0 be an interval of T (ti) with leftmost left end, and
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otherwise let I0 be any interval of U(ti). Let c0 be the color of I0. Note that any interval
of U(ti) and V(ti) intersects I0, and thus has color c0 in its neighborhood. We can now
color the intervals of I(ti). We color with color c0 + k one of the intervals having the
rightmost right end. We color the other intervals with colors in {0, . . . , 2k− 1} such that
no vertex with color j is adjacent to a vertex with color j or j+ k (this is always possible
since intervals of V(ti)∪I(ti) induce a clique of size at most k). This coloring c is clearly
a proper 2k-coloring and there is no vertex with color j, 0 6 j 6 k − 1, adjacent to a
vertex with color j + k.

We now show that c is a lid-coloring of G. Let Ii and Ij be two intersecting intervals
with N [Ii] 6= N [Ij]. Assume first that ai 6= aj. Without loss of generality, ai < aj.
During the process, when Ij is colored, an interval I` also starting at aj is colored with
a color c0 + k such that c0 ∈ c(N [Ii]). Necessarily, Ij ⊆ I` since I` has the rightmost
right end among all intervals starting at aj. So c0 + k ∈ c(N [Ij]) but c0 /∈ c(N [I`]) and
so c0 /∈ c(N [Ij]). Hence, c(N [Ii]) 6= c(N [Ij]). Assume now that ai = aj. Without loss of
generality, bj < bi and so Ij ⊆ Ii. Let at` be the leftmost left end such that bj < at` 6 bi (it
exists because N [Ii] 6= N [Ij]). Then we have Ii ∈ V(t`) and Ij ∈ T (t`). By construction,
one of the intervals of I(t`), say I, will receive the color c0 + k where c0 is the color of
an interval I0 ∈ T (t`). Necessarily, Ij ⊆ I0 and c0 ∈ c(N [Ij]) ⊆ c(N [Ii]). We also have
c0+k ∈ c(N [Ii]) because Ii is a neighbor of I. But c0+k /∈ c(N [Ij]) since c0+k /∈ c(N [I0])
and Ij ⊆ I0. Hence, c(N [Ii]) 6= c(N [Ij]).

5 Split graphs

A split graph is a graph G = (K ∪ S,E) whose vertex set can be partitioned into a clique
K and an independent set S. In the following, we will always consider partitions K ∪ S
with K of maximum size. A split graph is a chordal graph and its clique number and
chromatic number are equal to |K|. We prove that it is lid-colorable with 2|K|− 1 colors.

We say that a set S ′ ⊆ S discriminates a set K ′ ⊆ K if for any u, v ∈ K ′ with
N [u] 6= N [v], we also have N [u]∩S ′ 6= N [v]∩S ′. The following theorem is due to Bondy:

Theorem 15 ([?, ?]). If A1, A2, . . . , An is a family of n distincts subsets of a set A with
at least n elements, then there is a subset A′ of A of size n − 1 such that all the sets
Ai ∩ A′ are distinct.

Corollary 16. Let G = (K ∪ S,E) be a split graph. For any K ′ ⊆ K, there is a subset
S ′ of S of size at most |K ′| − 1 such that S ′ discriminates K ′.

Proof. We apply Theorem ?? to the (at most) |K ′| pairwise distinct sets among {N [v] ∩
S | v ∈ K ′}.

One can easily show that every split graph G has lid-chromatic number at most 2|K|
by giving colors 1, . . . , |K| to the vertices of K, colors |K|+ 1, . . . , |K|+ k − 1, for some
k 6 |K|, to the vertices of a smallest discriminating set S ′ ⊆ S of K, and finally color
|K|+ k to the vertices of S \ S ′.
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We now prove the following stronger result:

Theorem 17. Let G = (K ∪ S,E) be a split graph. If ω(G) > 3 or if G is a star, then
χlid(G) 6 2ω(G)− 1.

Proof. Assume that |K| = k and denote the vertices of K by v1, . . . , vk. If k = 1, then
G has no edges and it is clear that χlid(G) 6 1. If G = K1,n, then χlid(G) 6 3 by
Corollary ??. So we can assume that k > 3. If |S| 6 k − 1 or if S contains a set of
size at most k − 2 that discriminates K, then the result is trivial. Therefore, we assume
that |S| > k and consider a minimal set S1 that discriminates K. We can assume that
the set S1 has size precisely k − 1 and there is no edge uv with N [u] = N [v]. Indeed, if
N [u] = N [v] for an edge uv, then any set discriminating K \ {v} discriminates also K.
We consider two cases.

Case 1. There is a vertex x ∈ S \ S1 of degree k− 1 and a neighbor vi ∈ K of x such
that N [vi] ∩ S1 = ∅. Without loss of generality, we can assume that vi = vk−1 and that
K \ N(x) = {vk}. Let Sx = {y ∈ S,N(y) = N(x) = K \ {vk}}. We have Sx ∩ S1 = ∅
(recall that vk−1 has no neighbor in S1) and by definition of S1, for each vertex vi 6= vk−1,
N [vi] ∩ S1 6= ∅ (S1 is a discriminating set).

Let K1 = K \ {vk−1, vk}, and let S2 be a subset of S1 of size at most |K1| − 1 = k− 3
that discriminates K1. Let S ′ = S \ (S1 ∪ Sx). We define a coloring c as follows:

• for 1 6 i 6 k, c(vi) = i;

• assign pairwise distinct colors from k + 1, . . . , 2k − 3 to the vertices of S2;

• for u ∈ S1 \ S2, c(u) = 2k − 2;

• for u ∈ Sx, c(u) = 2k − 1;

• for u ∈ S ′, take vi ∈ K \N(u) (vi exists by maximality of K), and set c(u) = c(vi).

Then c is a proper coloring of G. We show that c is a lid-coloring of G. First observe
that for each vertex vi of K, c(N [vi]) contains one color of {k + 1, . . . , 2k − 1}. Indeed
2k − 1 ∈ c(N [vk−1]) and if vi 6= vk−1, then N [vi] ∩ S1 6= ∅ and therefore c(N [vi]) ∩
{k + 1, . . . , 2k − 2} 6= ∅. This implies that for each vi ∈ K, c(N [vi]) is distinct from all
c(N [y]), y ∈ S. In fact, either c(y) ∈ c(K) and then c(N [y]) ⊆ c(K), or c(y) /∈ c(K)
but then there is at least one color of c(K) that c(N [y]) does not contain. Furthermore,
c(N [vk]) is different from all the sets c(N [vi]) with i 6= k because 2k − 1 ∈ c(N [vi]) and
2k− 1 /∈ c(N [vk]). The set c(N [vk−1]) is different from all the sets c(N [vi]) with i 6= k− 1
because c(N [vk−1]) contains no color of c(S1) whereas c(N [vi]) contains at least one color
of this set. Finally, c(N [vi]) 6= c(N [vj]) for i, j 6 k − 2 because there is a vertex in S2

that separates them and its color is used only once. Hence, for each edge uv of G such
that N [u] 6= N [v], we have c(N [u]) 6= c(N [v]).

Case 2. For each vertex x of S \ S1, either x has degree at most k − 2 or x has
degree k − 1 and each vertex of N(x) has a neighbor in S1. We define a coloring c as
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follows: vertices of K are assigned colors 1, . . . , k, and vertices of S1 are assigned (pairwise
distinct) colors within k + 1, . . . , 2k − 1. For any vertex x in S \ S1, take a vertex vi in
K \ N(x) (such a vertex exists by the maximality of K) and set c(x) = c(vi). We claim
that c is a lid-coloring of G. It is clear that c is a proper coloring of G. Let uv be an
edge of G with N [u] 6= N [v]. If u, v ∈ K, then without loss of generality there is a vertex
w of S1 such that, w ∈ N [u] and w /∈ N [v]. Then, c(w) ∈ c(N [u]) and c(w) /∈ c(N [v]).
Otherwise, without loss of generality, u ∈ K and v ∈ S. If v ∈ S1, then S1 does not
contain the whole set c(K) and so c(N [u]) 6= c(N [v]). Otherwise, v /∈ S1. If the degree
of v is k − 1, then u has a neighbor w in S1 and c(w) ∈ c(N [u]), c(w) /∈ c(N [v]). If the
degree of v is at most k − 2, then there is a color 1 6 i 6 k such that i ∈ c(N [u]) and
i /∈ c(N [v]). In all cases, c(N [u]) 6= c(N [v]). Hence, c is a lid-coloring of G.

Observe that this bound is sharp: the graph obtained from a k-clique by adding a
pendant vertex to each of the vertices of the clique is a split graph and requires 2k − 1
colors in any lid-coloring.

6 Cographs

A cograph is a graph that does not contain the path P4 on 4 vertices as an induced sub-
graph. Cographs are a subclass of permutation graphs, and so they are perfect (however,
they are not necessarily chordal). It is well-known that the class of cographs is closed
under disjoint union and complementation [?]. Let G ∪ H denote the disjoint union of
G and H, and let G + H denote the complete join of G and H, i.e. the graph obtained
from G ∪H by adding all possible edges between a vertex from G and a vertex from H.
A consequence of the previously mentioned facts is that any cograph G is of one of the
three following types:

(S) G is a single vertex.

(U) G =
⋃k
i=1Gi with k > 2 and every Gi is a cograph of type S or J.

(J) G =
∑k

i=1Gi with k > 2 and every Gi is a cograph of type S or U.

We will use this property to prove the following theorem:

Theorem 18. If G is a cograph, then χlid(G) 6 2ω(G)− 1.

Proof. A universal vertex of G is a vertex adjacent to all the vertices of G. Observe that
if a cograph G has a universal vertex, then G must be of type S or J. Let χ̃lid(G) be
the least integer k such that G has a lid-coloring c with colors 1, . . . , k such that for any
vertex v that is not universal, c(N [v]) 6= {1, . . . , k} (in other words, if a vertex sees all
the colors, then it is universal). Such a coloring is called a strong lid-coloring of G. We
will prove the following result by induction:

Claim. For any cograph G, χlid(G) 6 2ω(G)− 1 and χ̃lid(G) 6 2ω(G).
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IfG is a single vertex, then it is universal and therefore χ̃lid(G) = χlid(G) = 1 = 2×1−1
and the assumption holds.

Assume now that G is of type J. There exist G1, . . . , Gk, k > 2, each of type S or U,
such that G =

∑k
i=1Gi. Let G1, . . . , Gs (0 6 s 6 k) be of type S and Gs+1, . . . , Gk be of

type U. Consider a lid-coloring c1 of G1 and a strong lid-coloring ci of Gi for 2 6 i 6 k,
such that the sets of colors within Gi and Gj, i 6= j, are disjoint. Then the coloring c of
G defined by c(v) = ci(v) for any v ∈ Gi is a lid-coloring of G. To see this, assume two
adjacent vertices u and v such that N [u] 6= N [v] and c(N [u]) = c(N [v]). Since every ci is
a lid-coloring of Gi the vertices u and v must be in different Gi’s, say u ∈ Gi and v ∈ Gj,
i < j. But then in order to have c(N [u]) = c(N [v]), u and v must see all the colors in
ci and cj, respectively. Since cj is a strong lid-coloring of Gj, v is universal in Gj. This
means that Gj (and therefore Gi) is of type S. Hence, u and v are universal in G. This
contradicts the fact that N [u] 6= N [v]. As a consequence c is a lid-coloring of G.

If c1 is a strong lid-coloring of G1, then c is a strong lid-coloring of G: take a vertex
v ∈ Gi that sees all the colors in c. Then it also sees all the colors in ci, so it is universal
in Gi and G.

So we have χlid(G) 6 χlid(G1) +
∑k

i=2 χ̃lid(Gi) and χ̃lid(G) 6
∑k

i=1 χ̃lid(Gi). Since

ω(G) =
∑k

i=1 ω(Gi) we have by induction:

χlid(G) 6 2ω(G1)− 1 +
k∑
i=2

2ω(Gi) = 2×
k∑
i=1

ω(Gi)− 1 = 2ω(G)− 1

and

χ̃lid(G) 6
k∑
i=1

2ω(Gi) = 2ω(G).

Assume now thatG is of type U. There existG1, . . . , Gk, k > 2, each of type S or J, such
that G =

⋃k
i=1Gi. Consider a lid-coloring ci of Gi with colors 1, . . . , χlid(Gi). Without

loss of generality we have χlid(G1) = maxki=1 χlid(Gi). The coloring c of G defined by
c(v) = ci(v) for any v ∈ Gi is clearly a lid-coloring of G, and so χlid(G) = maxki=1 χlid(Gi).

To obtain a strong lid-coloring, assign a new color χlid(G1) + 1 to all the vertices
colored 1 in G1, and color all the other vertices of G as they were colored in c. The
obtained coloring c′ is still a lid-coloring of G. Since no vertex u satisfies c(N [u]) =
{1, . . . , χlid(G1) + 1} (the vertices in G1 miss the color 1, while the others miss the color
χlid(G1) + 1), c′ is also a strong lid-coloring of G. Therefore χ̃lid(G) 6 maxki=1 χlid(Gi) + 1.
Since ω(G) = maxki=1 ω(Gi) we have by induction

χlid(G) 6
k

max
i=1

(2ω(Gi)− 1) = 2ω(G)− 1

and
χ̃lid(G) 6

k
max
i=1

(2ω(Gi)− 1) + 1 = 2ω(G).
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The bound of Theorem ?? is tight. The following construction gives an example of
cographs of clique number ω requiring 2ω−1 colors in any lid-coloring. For any k > 1, take
a complete graph with vertex set v1, . . . , vk and for each 2 6 i 6 k add a vertex ui such
that N(ui) = {vi, vi+1, . . . , vk}. This graph is a cograph with clique number k, the vertices
ui form an independent set U , and every vertex vi satisfies N(vi)∩U = {u2, . . . , ui}. Let
c be a lid-coloring of this graph, then for any 3 6 i 6 k the vertex ui must be assigned
a color distinct from c(u2), . . . , c(ui−1) and c(v1), . . . , c(vk) since otherwise we would have
c(N [vi]) = c(N [vi−1]). Hence, at least k + (k − 1) = 2k − 1 distinct colors are required.

As mentionned in Section ??, for fixed t, the fact that a graph admits a lid-coloring
with at most t colors can be expressed in monadic second-order logic. It is well known
that the class of cographs is exactly the class of graphs with clique-width at most two.
It follows from [?] and Theorem ?? that, for a fixed k, the lid-chromatic number of a
cograph of clique number at most k can be computed in linear time.

Given the results in Sections ?? to ??, it seems natural to conjecture that every
perfect graph G has lid-chromatic number at most 2χ(G). This is not true, however, as
the following example shows. Take three stable sets S1, S2, S3, each of size k (k > 2), add
all possible edges between S1 and S2, add a perfect matching between S1 and S3, and
add the complement of a perfect matching between S2 and S3. The obtained graph Gk

is perfect: since the subgraph of Gk induced by S1 and S2 is a complete bipartite graph,
an induced subgraph of Gk is bipartite if and only if it does not have a triangle, and is
3-colorable otherwise.

Consider a lid-coloring c of Gk, and a vertex x2 of S2. Let x3 be the only vertex of
S3 that is not adjacent to x2, and x1 be the unique neighbor of x3 in S1. Observe that
N [x1] = N [x3] ∪ {x2}. Since c(N [x1]) 6= c(N [x3]), the color of x2 appears only once in
S2. Hence, all the vertices of S2 have distinct colors and it follows that χlid(Gk) > k + 2,
whereas χ(Gk) = ω(Gk) = 3.

7 Graphs with bounded maximum degree

Proposition 19. If a graph G has maximum degree ∆, then χlid(G) 6 ∆3−∆2 + ∆ + 1.

Proof. Let c be a coloring of G so that vertices at distance at most three in G have distinct
colors. Since every vertex has at most ∆3 − ∆2 + ∆ vertices at distance at most three,
such a coloring using at most ∆3−∆2 + ∆ + 1 colors exists. Let uv be an edge of G. Let
Nu be the set of neighbors of u not in N [v] and Nv be the set of neighbors of v not in
N [u]. Using that vertices at distance at most two in G have distinct colors, we obtain that
all the elements of Nu (resp. Nv) have distinct colors. Since vertices at distance at most
three have distinct colors, the sets of colors of Nu and Nv are disjoint. If N [u] 6= N [v],
then Nu ∪Nv 6= ∅, and c(N [u]) 6= c(N [v]) by the previous remark.

We believe that this result is not optimal, and that the bound should rather be
quadratic in ∆:
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Question 20. Is it true that for any graph G with maximum degree ∆, we have χlid(G) =
O(∆2)?

If true, then this result would be best possible. Take a projective plane P of order n,
for some prime power n. Let Gn+1 be the graph obtained from the complete graph on n+1
vertices by adding, for every vertex v of the clique, a vertex v′ adjacent only to v. Note
that in any lid-coloring of Gn+1, all vertices v′ must receive distinct colors. For any line l
of the projective plane P , consider a copy Gl

n+1 of Gn+1 in which the new vertices v′ are
indexed by the n+ 1 points of l. For any point p of P , identify the n+ 1 vertices indexed
p in the graphs Gl

n+1, where p ∈ l, into a single vertex p∗. The resulting graph Hn+1 is
(n+ 1)-regular and has (n2 + n+ 1)(n+ 2) vertices. By construction, all the vertices p∗,
p ∈ P , have distinct colors in any lid-coloring. Hence, at least n2 + n + 1 = ∆2 −∆ + 1
colors are required in any lid-coloring of this ∆-regular graph. The 3-regular graph H3

with χlid(H3) > 7 is depicted in Figure ??.

Figure 2: In any lid-coloring of the 3-regular graph H3, the seven white vertices must
receive pairwise distinct colors.

We saw that the lid-chromatic number cannot be upper-bounded by the chromatic
number. For a graph G, the square of G, denoted by G2, is the graph with the same
vertex set as G, in which two vertices are adjacent whenever they are at distance at most
two in G. The following question is somehow related to the previous one (depending on
the possible linearity of f).

Question 21. Does there exist a function f so that for any graph G, we have χlid(G) 6
f(χ(G2))?

8 Planar and outerplanar graphs

This section is devoted to graphs embeddable in the plane. A maximal outerplanar graph
is a 2-tree and so is 6-lid colorable by Theorem ??. However, χlid is not monotone under
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taking subgraphs and so this result does not extend to all outerplanar graphs. So we have
to use a different strategy to give an upper bound of the lid-chromatic number on the
class of outerplanar graphs.

Theorem 22. Every outerplanar graph is 20-lid-colorable.

Proof. Let G be a connected outerplanar graph, and let H be any maximal outerplanar
graph containing G (that is, H is obtained by adding edges to G). The graph H is 2-
connected, and has minimum degree two. Consider a drawing of H in the plane, such
that all the vertices lie on the outerface, and take the clockwise ordering x1, . . . , xn of the
vertices around the outerface, starting at some vertex x1 of degree two in H (and thus at
most two in G). This ordering has the following properties:

• For any four integers i, j, k, ` ∈ {1, . . . , n} with i < j < k < `, at most one of the
pairs {xi, xk} and {xj, x`} corresponds to an edge of G.

• Let xi0 be a vertex and xi1 , . . . , xik be its neighbors in G such that xi0 , xi1 , . . . , xik
appear in clockwise order around the outerface of H. The previous property implies
that, for 1 6 j 6 k, the neighbors of xij distinct from xi0 appear (in clockwise order
around the outerface of H) between xij−1

and xij+1
(if j 6= k) and between xik−1

and
xi0 (if j = k). Moreover, two distinct vertices xij and xi` have at most one common
neighbor outside N [xi0 ]. If such a common neighbor exists, then we have |j−`| = 1.

For any i > 0, let Li = {xi1 , . . . , xiki} be the set of vertices at distance i from x1 in
G, with i1 < · · · < iki , and let Ls be the last nonempty Li-set. For the sake of clarity,
we write xi1, . . . , x

i
ki

instead of xi1 , . . . , xiki , and we say that two vertices xij and xij+1 are
consecutive in Li. Observe the following:

• A vertex in Li+1 has at most two neighbors in Li.

• Two vertices of Li have at most one common neighbor in Li+1.

• If two vertices of Li have a common neighbor in Li+1, they are consecutive in Li.

• If two vertices of Li are adjacent, then they are consecutive in Li. This implies that
the graph induced by Li is a disjoint union of paths.

Indeed, if one of the two first facts was not true, there would be a subdivision of K2,3

in G. The two last facts are due to the embedding of G and H and to the previous
properties. From now on, we forget about H and consider G only (the sole purpose of
H was to give a clean definition of the order x1, . . . , xn). With the facts above, we can
notice that in the ordering of Li+1, we find first the neighbors of xi1, then the neighbors
of xi2, and so on...

We will color the vertices of G with 20 colors partitioned in four classes of colors C0,
C1, C2 and C3 with Cj = {5j, . . . , 5j + 4}. Vertices in Li will be colored with colors from
Ci mod 4, almost as we did for bipartite graphs in Theorem ??. We will slightly modify
this coloring by using marked vertices.
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Algorithm 1 Lid-coloring of outerplanar graphs

1: c(x1) = 0
2: Mark vertex x1k1
3: for i = 1 to s do
4: for j = 1 to ki do
5: Mark, if it exists, the last neighbor of xij in Li+1.
6: end for
7: for k = 0 to 3 do
8: ck ← k + 5× (i mod 4)
9: end for

10: c∅ ← 4 + 5× (i mod 4)
11: for j = 1 to ki do
12: c(vij) = cj mod 4

13: if vij is marked then
14: tmp ← c(j+1) mod 4

15: c(j+1) mod 4 ← c∅
16: c∅ ← c(j−1) mod 4

17: c(j−1) mod 4 ← tmp
18: end if
19: end for
20: end for
21: return c

We start by coloring x1 with color 0, and mark the last vertex x1k1 of L1. We then
apply Algorithm 1.

Let us describe this algorithm. Sets Li are colored one after the other (line ??). When
we color Li, we first mark some vertices in Li+1 (the last neighbors in Li+1 of vertices in
Li, see lines ?? to ??). Then we color vertices of Li in the order they appear. There are
four current colors of Ci mod 4 which are used, c0 to c3 and one forbidden color c∅, that
are originally set to 5× (i mod 4), 1 + 5× (i mod 4), 2 + 5× (i mod 4), 3 + 5× (i mod 4),
and 4 + 5× (i mod 4), respectively. The vertices of Li are then colored with the pattern
c0c1c2c3c0... (line ??), but every time a marked vertex vij is colored, we perform a cyclic
permutation on the values of c(j+1) mod 4, c∅, and c(j−1) mod 4 (lines ?? to ??). This is done
in such a way that:

• The coloring is proper.

• Four consecutive vertices in Li receive four different colors.

• Two consecutive vertices of Li−1 do not have the same set of colors in their neigh-
borhood in Li, when these neighborhoods differ.

Thus, this algorithm provides a proper coloring c of G with 20 colors such that for
any i, c(Li) ⊆ Ci mod 4.
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Let us prove that the coloring given by the algorithm is locally identifying. Let uv
be an edge of G such that N [u] 6= N [v]. If uv is not an edge of a layer Li, then we can
assume that u ∈ Li and v ∈ Li+1. If u 6= x1, then there is a neighbor t of u in Li−1 and
then c(t) /∈ c(N [v]). So we may assume that u = x1. If the vertex v has degree 1, then
u has degree 2 and has an other neighbor, t, and c(t) /∈ c(N [v]). Otherwise, the vertex v
has degree at least 2, so there is a neighbor t 6= u of v. If t ∈ L1 then there is another
neighbor t′ of v in L2 (because N [u] 6= N [v]). So we can assume that t ∈ L2 and then
c(t) /∈ c(N [u]). So in any case, c(N [u]) 6= c(N [v]).

Assume now that u, v ∈ Li for some i. Without loss of generality, we may assume that
u = xij, v = xij+1 for some j and that there is a vertex t adjacent to exactly one vertex
among {u, v}. If t ∈ Li, then we are done because four consecutive vertices have different
colors in Li. If t ∈ Li−1, and t ∈ N(u) \ N(v), then v has at most two neighbors in
Li−1. Those neighbors (if any) are just following t in the layer Li−1 and so c(t) /∈ c(N [v]).
Otherwise, t ∈ Li+1, the vertices u and v are consecutive and have distinct neighborhoods
in Li+1, so the sets of colors in their neighborhoods in Li+1 are distinct.

We believe that this bound is far from tight.

Question 23. Is it true that every outerplanar graph G satisfies χlid(G) 6 6?

We now prove that sparse enough planar graphs have low lid-chromatic number.

Theorem 24. If G is a planar graph with girth at least 36, then χlid(G) 6 5.

Proof. Let us call nice a lid-coloring c using at most 5 colors such that every vertex v
with degree at least 2 satisfies |c(N [v])| = 3. We show that every planar graph with girth
at least 36 admits a nice lid-coloring.

Observe first that a cycle of length n > 12 has a nice lid-coloring that consists of
subpaths of length 4 colored 1234 and subpaths of length 5 colored 12345 following the
clockwise orientation of G (the number of subpaths of length 5 is exactly n mod 4).

Suppose now that G is a planar graph with girth at least 36 that does not admit a nice
lid-coloring and with the minimum number of vertices. Let us first show that G does not
contain a vertex of degree at most 1. The case of a vertex of degree 0 is trivial, so suppose
that G contains a vertex u of degree 1 adjacent to another vertex v. By minimality of G,
the graph G′ = G \ u admits a nice lid-coloring c. We consider three cases according to
the degree of v in G′, and in all three cases, we extend c to a nice lid-coloring of G in order
to obtain a contradiction. If v has degree at least 2 in G′, then we assign to u a color
in c(N [v]) \ {c(v)}. So c(N [v]) is unchanged, and c(N [u]) 6= c(N [v]) since |c(N [u])| = 2
and |c(N [v])| = 3. We thus have a nice lid-coloring of G. If v has degree 1 in G′, then v
is adjacent to another vertex w in G′ and we assign to u a color that does not belong to
c(N [w]). Such a color exists since |c(N [w])| 6 3 and the obtained coloring of G is nice:
|c(N [v])| = 3 and c(N [v]) 6= c(N [w]) since c(u) ∈ c(N [v]) but c(u) 6∈ c(N [w]). If v has
degree 0 in G′, then N [u] = N [v] in G, so u and v need not to be identified.
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It follows that G has minimum degree at least 2 and G is not a cycle. It is well-known
that if the girth of a planar graph is at least 5k + 1, then it contains either a vertex of
degree at most 1, or a path consisting of k consecutive vertices of degree 2. The graph
G thus contains a path of seven vertices of degree 2. So we can assume that G contains
a path P = x1x2 . . . x9 such that d(x1) > 3 (G is not a cycle), d(xi) = 2 for 2 6 i 6 8,
and d(x9) > 2. By minimality of G, the graph G′ = G \ {x2, x3, . . . , x8} admits a nice
lid-coloring c. Without loss of generality, assume that c(x1) = 1 and c(N [x1]) = {1, 2, 3},
since the degree of x1 is at least 2 in G′. We denote a = c(x9). If the degree of x9
in G′ is at least 2, then we denote {b1, b2} = c(N(x9)). If the degree of x9 in G′ is 1,
then x9 is adjacent to a vertex x10 and we denote b1 = c(x10) and b2 is any element of
{1, 2, 3, 4, 5} \ c(N [x10]).

The following table gives the colors of x2, x3, . . . , x8 for all the possible values of
(a; b1, b2). Note that c(x2) ∈ {2, 3}, c(x3) /∈ {2, 3}, c(x6) 6= a, c(x7) /∈ {a, b1, b2},
c(x8) = b2, and four consecutive vertices have different colors. This implies that the
coloring c can be extended to a nice lid-coloring of G, a contradiction.

2431243 (1;2,3) 2431543 (2;1,3) 2431542 (3;1,2) 2534152 (4;1,2) 2435142 (5;1,2)
2431254 (1;2,4) 2541354 (2;1,4) 2431254 (3;1,4) 2431253 (4;1,3) 2431243 (5;1,3)
2431245 (1;2,5) 2451345 (2;1,5) 2431245 (3;1,5) 2451235 (4;1,5) 2435124 (5;1,4)
2431254 (1;3,4) 3512354 (2;3,4) 2431254 (3;2,4) 2431253 (4;2,3) 2431243 (5;2,3)
2431245 (1;3,5) 3412345 (2;3,5) 2431245 (3;2,5) 2451235 (4;2,5) 2435214 (5;2,4)
2531425 (1;4,5) 3521435 (2;4,5) 2531425 (3;4,5) 2534125 (4;3,5) 2435124 (5;3,4)

We conjecture that planar graphs have bounded lid-chromatic number.

9 Connectivity and lid-coloring

Most of the proofs we gave in this article heavily depend on the structure of the classes
of graphs we were considering. We now give a slightly more general tool, allowing us to
extend results on the 2-connected components of a graph to the whole graph:

Theorem 25. Let k be an integer and G be a graph such that every 2-connected component
of G is k-lid-colorable. Let H be the subgraph of G induced by the cut-vertices of G. Then
χlid(G) 6 k + χ(H).

Proof. In this proof, we will consider two different colorings of the vertices: the lid-coloring
of the vertices of G and the proper coloring of the graph H induced by the cut-vertices.
To avoid confusion, we call type the color of a cut-vertex in the second coloring. We prove
the following stronger result:

Claim: If t is a proper coloring of H with colors t1, . . . , th, then G admits a (k + h)-
lid-coloring c such that for each maximal 2-connected component C of G, (∗) there are h
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colors not appearing in c(C), say cC1 , . . . , c
C
h , such that for every cut-vertex v of G lying

in C, if t(v) = ti, then c(N(v)) contains cCi but none of the cCj , j 6= i.

We prove the claim by induction on the number of cut-vertices of G. We may assume
that G has a cut-vertex, otherwise the property is trivially true.

Let u be a cut-vertex of G and let C1, . . . , Cs be the connected components of G− u.
We can choose u so that at most one of the Ci’s, say C1, contains the remaining cut-
vertices. For 1 6 i 6 s, let Gi be the graph induced by the set of vertices Ci ∪ {u}. Let
C be the maximal 2-connected component of G1 containing u. Observe that the vertex
u is not a cut-vertex in G1. By the induction, G1 has a (k + h)-lid-coloring c such that,
without loss of generality, c(C) ⊆ {1, . . . , k} and every cut-vertex v of C with t(v) = ti
has a neighbor colored k + i, but no neighbor colored k + j, 1 6 j 6 h, j 6= i. We can
also assume that t(u) = t1 and 1 ∈ c(N(u)) (thus c(u) 6= 1).

We now extend the coloring c to G by lid-coloring each component G2, ...Gs with colors
2, 3, . . . , k + 1 such that k + 1 ∈ c(N(u)) (these components share the vertex u but we
can assume that u always has the same color in all the lid-colorings of G2,...,Gs). Let us
prove that the obtained coloring is a lid-coloring of G satisfying (∗). In order to prove
that c is a lid-coloring, by the induction one just needs to check that u has no neighbor
v with c(N [v]) = c(N [u]). For the sake of contradiction, suppose that such a vertex v
exists. Since 1 ∈ c(N [u]), v has to lie in C. If v is a cut-vertex of G1, then t(v) 6= t1 (t is
a proper coloring of H) and by the induction, k + 1 6∈ c(N [v]). If v is not a cut-vertex of
G1, then all its neighbors lie in C and again, k + 1 6∈ c(N [v]). Since k + 1 ∈ c(N [u]), we
obtain a contradiction.

It remains to prove that (∗) holds for every maximal 2-connected component of G.
It clearly does for G2,...,Gs, since u is the only cut-vertex of G they contain and 1 ∈
c(N [u]) ⊆ {1, . . . , k + 1}, while none of these components contains color 1 or color k + i
with 2 6 i 6 h. The component C also satisfies (∗), since u has a neighbor colored k + 1
and no neighbor colored k + i with 2 6 i 6 h. By the induction, Property (∗) trivially
holds for the remaining maximal 2-connected components of G. This completes the proof
of the claim.

Among other things, this result can be used to prove that outerplanar graphs without
triangles can be 8-lid-colored. We omit the details; we suspect that Theorem ?? can be
used to prove results on much wider classes of graphs.

Remark. During the review of the paper, Question ?? has been answered positively,
see [?].

Acknowledgements. We would like to acknowledge E. Duchêne about early discussions
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[8] J. Cerný, M. Horňák, and R. Soták. Observability of a graph. Mathematica Slovaca,
46(1):21–31, 1996.

[9] I. Charon, G. Cohen, O. Hudry, and A. Lobstein. Discriminating codes in bipartite
graphs: bounds, extremal cardinalities, complexity. Adv. Math. Comm., 4(2):403–
420, 2008.

[10] B. Courcelle, J. Makowski and U. Rotics. Linear Time Solvable Optimization Prob-
lems on Graphs of Bounded Clique Width. Theory Comput. Syst., 33(2):125–150,
2000.
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