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Abstract

We introduce the notion of locally identifying coloring of a graph. A proper
vertex-coloring ¢ of a graph G is said to be locally identifying, if for any adjacent
vertices uw and v with distinct closed neighborhoods, the sets of colors that appear
in the closed neighborhood of u and v, respectively, are distinct. Let xjiq(G) be
the minimum number of colors used in a locally identifying vertex-coloring of G. In
this paper, we give several bounds on xjq for different families of graphs (planar
graphs, some subclasses of perfect graphs, graphs with bounded maximum degree)
and prove that deciding whether x;q(G) = 3 for a subcubic bipartite graph G with
large girth is an NP-complete problem.

*This research is supported by the ANR IDEA, under contract ANR-08-EMER-007, 2009-2011.
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1 Introduction

In this paper we focus on colorings allowing to distinguish the vertices of a graph. In
[7], Hornék and Soték considered edge-coloring of a graph such that (i) the edge-coloring
is proper (i.e. no adjacent edges receive the same color) and (ii) for any vertices u,v
(with u # v) the set of colors assigned to the edges incident to u differs from the set of
colors assigned to the edges incident to v. Such a coloring is called a vertex-distinguishing
proper edge-coloring. The minimum number of colors required in any vertex-distinguishing
proper edge-coloring of G is called the observability of G and was studied for different
families of graphs [?, 7, 7, 7, 7,7 ?]. This notion was then extended to adjacent vertez-
distinguishing edge-coloring where Property (i) must be true only for pairs of adjacent
vertices; see [?7, 7, ?].

In the present paper we introduce the notion of locally identifying colorings: a vertex-
coloring is said to be locally identifying if (i) the vertex-coloring is proper (i.e. no adjacent
vertices receive the same color), and (ii) for any pair of adjacent vertices u, v the set of
colors assigned to the closed neighborhood of u differs from the set of colors assigned
to the closed neighborhood of v whenever these neighborhoods are distinct. The locally
identifying chromatic number of the graph G (or lid-chromatic number, for short), denoted
by x1a(G), is the smallest number of colors required in any locally identifying coloring
of G. In the following we study the parameter x);q for different families of graphs, such
as bipartite graphs, k-trees, interval graphs, split graphs, cographs, graphs with bounded
maximum degree, planar graphs with high girth, and outerplanar graphs.

Let G = (V, E) be a graph. For any vertex u, we denote by N(u) its neighborhood
and by Nlu| its closed neighborhood (u together with its adjacent vertices) and by d(u)
its degree. Let ¢ be a vertex-coloring of G. For any S C V, let ¢(S) be the set of
colors that appear on the vertices of S. More formally, a locally identifying coloring of G
(or a lid-coloring, for short) is proper vertex-coloring ¢ of G such that for any edge v,
Nlu) # N[v] = ¢(Nu]) # c¢(N[v]). Observe that the lid-chromatic number of a graph G
is the maximum of the lid-chromatic numbers of its connected components. Hence, in the
proofs of most of our results it will be enough to restrict ourselves to connected graphs. A
graph G is k-lid-colorable if it admits a locally identifying coloring using at most k colors.
Notice the following;:

Observation 1. A connected graph G is 2-lid-colorable if and only if G has at most two
vertices.

Proof. Let G be a connected graph with a 2-lid-coloring ¢ and at least 3 vertices. Consider
an edge uv. Then we have N[u] # N[v], since otherwise G would contain a triangle and
then we would have xuq(G) = x(G) = 3. Since ¢ is a 2-coloring and N|[u] and N|[v] both
contain u and v, we have ¢(N[u]) = ¢(Nv]) = {¢(u), c(v)}, a contradiction.

The other implication is trivial. O

Note that locally identifying coloring is not hereditary. For instance, if P, denotes the
path on n vertices, then xjq(Ps) = 3 whereas yyq(Py) = 4.
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In Section 77?7, we prove that every bipartite graph has lid-chromatic number at most
4. Moreover, deciding whether a bipartite graph is 3-lid-colorable is an NP-complete
problem, whereas it can be decided in linear time whether a tree is 3-lid-colorable.

In general, x4 is not bounded by a function of the usual chromatic number y. Never-
theless it turns out that for several nice classes of graphs such a function exists: we study
k-trees (Section ?7), interval graphs (Section ?7), split graphs (Section ??), cographs
(Section ?77), and give tight bounds in each of these cases. We also conjecture that every
chordal graph G has a lid-coloring with 2y (G) colors.

Section ?7? is dedicated to graphs with bounded maximum degree. We prove that the
lid-chromatic number of graphs with maximum degree A is O(A?%) and that there are
examples with lid-chromatic number Q(A?).

In Section ??, we study graphs with a topological structure. Our result on 2-trees does
not give any information on outerplanar graphs, since lid-coloring is not monotone under
taking subgraphs. So we use a completely different strategy to prove that outerplanar
graphs and planar graphs with large girth have lid-colorings using a constant number of
colors.

Finally, in Section ??, we propose a tool allowing to extend the lid-colorings of the
2-connected components of a graph to the whole graph.

2 Bipartite graphs

This section is dedicated to bipartite graphs. The main interest of the study of bipartite
graphs here comes from the following lemmas:

Lemma 2. If a connected graph G satisfies x1a(G) < 3, then G is either a triangle or a
bipartite graph.

Proof. Consider a 3-lid-coloring ¢ of G with colors 1,2,3. By Observation 7?7, we can
assume that G has at least three vertices.

Define the coloring ¢ by ¢ (x) = |c¢(N][z])| for any vertex x. Since G is connected,
d(z) € {2,3} for any vertex z. If two adjacent vertices u,v satisfy ¢(u) = ¢(v) = 3,
then ¢(N[u]) = ¢(Nv]) = {1,2,3}, and if ¢(u) = ¢(v) = 2, then ¢(N[u]) = ¢(N[v]) =
{c(u),c(v)}. It follows that ¢ is a proper 2-coloring of G unless N[u] = NJv] for some
edge uv. In this case, since GG does not consist of the single edge uv, there exists a vertex
w adjacent to u and v. But then ¢(Nu]) = ¢(Nv]) = ¢(N[w]) = {1, 2,3}, which implies
that N[u] = N[v] = N[w]. This is only possible if G is a triangle. O

Indeed, more can be said about the color classes in a 3-lid-coloring of a (bipartite)
graph:

Lemma 3. Let G be a 3-lid-colorable connected bipartite graph on at least three vertices,
with bipartition {U,V'}, and let ¢ be a 3-lid-coloring of G with colors 1,2,3. Then G
has a vertex u with ¢(Nu]) = {1,2,3} and if u € U, then c(U) = {c(u)} and (V) =
{1,2,31\ {c(u)}.
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Proof. Let uv be an edge of G. We have N[u] # N[v] because G is a bipartite connected
graph on at least three vertices. Then ¢(Nu|) = {1,2,3} or ¢(N[v]) = {1, 2,3}. Without
loss of generality, assume that ¢(N[u]) = {1,2,3} and ¢(u) = 1. Then all the neighbors
of u must be colored 2 or 3, and the vertices at distance two from u must be colored 1
(otherwise there would be a neighbor w of u with ¢(N[w]) = {1,2,3} and N[u] # N[w)]).
Iterating this observation, we remark that all the vertices at even distance from u must be
colored 1, while the vertices at odd distance from u must be colored either 2 or 3, which
yields the conclusion. O

As a corollary we obtain a precise description of 3-lid-colorable trees.

Corollary 4. A tree T" with at least 3 vertices is 3-lid-colorable if and only if the distance
between every two leaves is even.

Proof. Observe that for each leaf u of T', we have |¢(N[u])| = 2 in any proper coloring ¢
of T', so by Lemma ?? the distance between every two leaves is even.

Now assume that the distance between every two leaves of T is even, and fix a leaf
u of T. Let ¢ be the 3-coloring of T" defined by c¢(v) = 2 if d(u,v) is odd, ¢(v) = 1 if
d(u,v) = 0 mod 4, and ¢(v) = 3 if d(u,v) = 2 mod 4. The coloring c is clearly proper, and
we have ¢(N[v]) = {1, 2} if d(u,v) = 0 mod 4, and ¢(N[v]) = {2, 3} if d(u,v) = 2 mod 4.
If v is a vertex at odd distance from u, then v is not a leaf and ¢(N[v]) = {1,2,3}. As a
consequence, ¢ is a 3-lid-coloring of T'. O

Another class of bipartite graphs that behaves nicely with regards to locally identifying
coloring is the class of graphs obtained by taking the Cartesian product of two bipartite
graphs. For two graphs G; = (V4, E1) and Gy = (V, E3), the Cartesian product of G; and
Gs, denoted by G100Gs, is the graph with vertex set V; x V5, in which two vertices (uq, uz)
and (v, v9) are adjacent whenever us = vy and uyvy € Ey, or u; = vy and ugvy € Es.

Theorem 5. If G, and G5 are bipartite graphs without isolated vertices, then GG is
3-lid-colorable.

Proof. Let {Uy,V1} and {Us,, V5} be the bipartitions of G; and Gs, respectively. Then
G10G@G, is a bipartite graph with partition {(U; x Up) U (V} x Vo), (Uy x Vo) U (V4 x Us)}
and because there are no isolated vertices in G; and G, each vertex of (U x Uy)U (V] x V5)
has a neighbor in U; x V5 and a neighbor in V; x Us,.

We define ¢ by c(u) = 1 if u € (U; x Uy) U (V) x V), c(u) = 2 if u € Uy x V3, and
c(u) = 3if u € V; x Uy. Then ¢ is a lid-coloring of G;0Gs: ¢(Nu)) = {1,2,3} for vertices
of (U x Us) U (V4 x Vi), ¢(N[u]) = {1,2} for vertices of U; x V3 and ¢(Nu]) = {1, 3} for
vertices of V] x Us.

By Observation 77, G1JG5 does not have a 2-lid-coloring. O

As a corollary, we obtain that hypercubes and grids in any dimension are 3-lid-
colorable. We now focus on bipartite graphs that are not 3-lid-colorable.

Theorem 6. If G is a bipartite graph, then xua(G) < 4.
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Proof. We can assume that GG is a connected graph with at least five vertices. Then there
exists a vertex u of G that is not adjacent to a vertex of degree one. For any vertex v of
G, set ¢(v) to be the element of {0,1,2,3} congruent with d(u,v) modulo 4. We claim
that ¢ is a lid-coloring of GG. Since G is bipartite, ¢ is clearly a proper coloring. Let v, w
be two adjacent vertices in G. We may assume that they are at distance £ > 0 and k + 1
from w, respectively. If k£ = 0, then v = u and w has a neighbor at distance two from u,
so ¢(N[v]) = {0,1} and ¢(N[w]) = {0,1,2}. If £ > 1, then (kK — 1) mod 4 is in ¢(N[v])
but not in ¢(N[w]), so ¢(N[v]) # ¢(Nw]). O

We now prove that deciding whether a bipartite graph is 3 or 4-lid-colorable is a hard
problem.

Theorem 7. For any fized integer g, deciding whether a bipartite graph with girth at least
g and maximum degree 3 is 3-lid-colorable is an NP-complete problem.

Proof. We recall that a 2-coloring of a hypergraph H = (V, £) is a partition of its vertex set
V into two color classes such that no edge in £ is monochromatic. We reduce our problem
to the NP-complete problem of deciding the 2-colorability of 3-uniform hypergraphs [?].

Let H = (V,€) be a hypergraph with at least one hyperedge. We construct the
bipartite graph G = (V, E) in the following way. To each vertex v € V, we associate a
path P, with vertices {vy,...,vy} in G (where ¢ will depend on the degree of v in H and
the girth ¢ we want for GG). All the paths P, are built on pairwise disjoint sets. To each
hyperedge e € £, we associate a vertex w, in G. If a hyperedge e contains a vertex v in H,
then we add an edge in G' between w, and a vertex v; of P, for some index i = 2 mod 4.
We require that a vertex v; on a path P, is adjacent to at most one vertex corresponding
to a hyperedge containing v. It follows that the graph G is bipartite with maximum
degree 3. Moreover, we can construct GG in polynomial time and ensure that the girth of
G is at least g by leaving enough space (at least g/2 vertices of degree two) between any
two consecutive vertices of degree 3 on the paths P,.

We shall prove that H is 2-colorable if and only if x;4(G) = 3.

Assume first that H admits a 2-coloring C : V' — {1,2}. We define the following
3-coloring ¢ of G such that ¢(vj=2 mod 4) = C(v), ¢(Vizo mod 4) = 3—C(v), ¢(Vi=1 moa 2) = 3 if
v eV, and c(w,) = 3 for all vertices w, with e € £. Let us check that ¢ is a lid-coloring of
G. We have ¢(N[w.]) = {1, 2,3} since c(w,) = 3 and w, is adjacent to a vertex colored 1
and to a vertex colored 2 because of the 2-coloring of H. Also, ¢(N[vi=1 moa 2]) = {1, 2, 3},
¢(N[vi=2 mod 4]) = {C(v), 3}, and ¢(N [vi=o moa 4]) = {3 — C(v), 3}. So, for every edge uv in
G, we have ¢(N[u]) # c(N[v]).

Conversely, assume that G (with bipartition {U,V}) admits a lid-coloring ¢ using
colors 1,2,3. By Lemma ??, we can assume that ¢(U) = {1,2} and ¢(V) = {3}, and
that the vertices of degree one in G are in U. This implies that ¢(vi=amodas) € {1,2},
C(Vi=0 mod 4) = 3—¢(Vi=2 mod 4), and ¢(V;=1 mod 2) = ¢(w,) = 3. Hence, the vertex-coloring of
V), in which each vertex v receives the color ¢(v;=2 moq 4), is 2-coloring of the hypergraph H.

O
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It turns out that the connection between 3-lid-coloring and hypergraph 2-coloring
highlighted in the proof of Theorem ?? has further consequences. For a connected bi-
partite graph G with bipartition {U,V'}, let Hy be the hypergraph with vertex set U
and hyperedge set {N(v),v € V}. A direct consequence of Lemmas ?? and ?? is that a
connected graph G distinct from a triangle is 3-lid-colorable if and only if it is bipartite
(say with bipartition {U,V'}) and at least one of Hy and Hy is 2-colorable.

A consequence of a result of Moret [?] (see also [?] for further details) is that if G is a
subcubic bipartite planar graph with bipartition {U, V'}, then we can check in polynomial
time whether Hy (or Hy) is 2-colorable. As a counterpart of Theorem ??, this implies:

Theorem 8. It can be checked in polynomial time whether a planar graph G with mazi-
mum degree three is 3-lid-colorable.

It was proved by Burstein [?] and Penaud [?] that every planar hypergraph in which all
hyperedges have size at least three is 2-colorable, and Thomassen [?] proved that for any
k > 4 any k-regular k-uniform hypergraph is 2-colorable. As a consequence, we obtain
the following two results:

Theorem 9. Let G be a bipartite planar graph with bipartition {U,V'} such that all
vertices in U or all vertices in V' have degree at least three. Then G is 3-lid-colorable.

Theorem 10. For k > 4, a k-regular graph is 3-lid-colorable if and only if it is bipartite.

Since bipartite graphs have bounded lid-chromatic number, a natural question is
whether xjq is upper-bounded by a function of the (usual) chromatic number. However,
this is not true, since the graph G obtained from a clique on n vertices by subdividing each
edge exactly twice has xua(G) = n (it suffices to observe that two vertices of the initial
clique cannot have the same color in the subdivided graph), whereas it is 3-colorable. This
example also shows that if the edges of a graph G are partitioned into two sets F; and
E5, and the subgraphs of G induced by F; and E5 have bounded lid-chromatic number,
then x)iq(G) is not necessarily bounded.

We propose the following conjecture relating xyuq and x for highly structured graphs.
A graph is chordal if it does not contain an induced cycle of length at least four.

Conjecture 11. For any chordal graph G, x5q4(G) < 2x(G).

The next three sections are dedicated to important subclasses of chordal graphs for
which we are able to verify Conjecture ?7?.

3 k-trees

This section is devoted to the study of k-trees. A k-tree is a graph whose vertices can be
ordered vy, vg, ..., v, in such a way that the vertices v; up to vx4 induce a (k + 1)-clique
and for each k£ 4+ 2 < ¢ < n, the neighbors of v; in {v;|j < i} induce a k-clique. By
definition, for every k + 1 < i < n the graph G; induced by {v;|j < i} is a k-tree and
every k-clique in a k-tree is contained in a (k + 1)-clique.
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Theorem 12. If G is a k-tree, then xyqa(G) < 2k + 2.

Proof. In this proof the colors are the integers modulo 2k 4 2. In particular, this implies
that the function on integers x — x + k + 1 is an involution.

Let vy, ..., v, be the n vertices of G ordered as above.

We construct the following coloring ¢ of G iteratively for 1 < i < n. If i < k+1, then
we set ¢(v;) = i. Suppose i > k+ 2. Let C' be the neighborhood of v; in G;. Since G;_; is
a k-tree, the clique C'is contained in a (k + 1)-clique C’ of G;_1. Let {v;} = C"\ C. We
set c(v;) = ¢(v;) + k + 1 (we may have several choices for C" and thus for j).

We now prove that c is a lid-coloring of G. Throughout the procedure, the following
two properties remain trivially satisfied: (i) ¢ is a proper coloring of GG, and (ii) no vertex
colored 7 has a neighbor colored i + k + 1. Consider an edge v;v; of G with Nv;] # N|v;].
We may assume without loss of generality that some neighbors of v; are not adjacent to
v;. If 4,5 < k + 1, then consider the minimum index ¢ such that v, is a neighbor of v;
not adjacent to v;. By definition of ¢ and minimality of ¢, we have c(v;) = c(ve) + k + 1.
Otherwise we can assume that j > 7 and j > kK + 1. Let C be the neighborhood of
v; in G;. By definition of ¢, there exists a (k + 1)-clique C’ of G,_; containing C' such
that c(v;) = c(ve) + k + 1, where C" \ C' = {v;}. In both cases, c(v) € ¢(N[v;]) while

c(vy) € c(Nlv;]) by Property (ii). Hence, c is a lid-coloring of G. O
v } | V2 VI Vkg2 V2 Vi3 V3 Via Vil V2kt2
vy b f ot t Vk+3
V3t ! k i V4
Vi1 o V2

(a) (b)

Figure 1: The graph P}, ., as an interval graph (a) and as a permutation graph (b).

For fixed t, the fact that a graph admits a lid-coloring with at most ¢ colors can
be easily expressed in monadic second-order logic. Thus Theorem ?? together with [?]
imply that for fixed k, the lid-chromatic number of a k-tree can be computed in linear
time. Another remark is that for trees, Theorem ?? provides the same 4-lid-coloring as
Theorem ?77.

For any two integers k,¢ > 1, we define PF as the graph with vertex set vy, ..., v,
in which v; and v; are adjacent whenever |i — j| < k. The graph PJ,, is clearly a k-
tree: it can be constructed from the clique formed by vy, ..., vx11 by adding at each step
k42 < i< 2k+ 2 a vertex v; adjacent to v;_g,...,v;_1. The graph P2k,ch2 is also an
interval graph (see Figure ??7) and a permutation graph (see Figure ??). We now prove
that the graph Py, 42 also provides an example showing that Theorem ?7? is best possible.

Proposition 13. For any k > 1, we have xya(Pay,s) = 2k + 2.
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Proof. Let ¢ be a lid-coloring of Py, +o- Without loss of generality we have c(v;) = i for
each 1 <7 < k+ 1. Observe that for any 1 < ¢ < k, the symmetric difference between
Nv;] and N|viyq] is precisely {viig11}. In addition, N|v;] = {v1,...,vix} and so ¢(N[v;])
contains colors 1 up to k + 1. Therefore, c(v;) > k+ 1 whenever k+2 < i < 2k+1. And
we can assume that c(v;) =i for any 1 <i < 2k + 1.

Let o = ¢(vgr42), and assume for the sake of contradiction that o # 2k + 2. Since
vertices vgya, ..., V1o induce a clique, we have a < k + 1. The symmetric difference
between N[vaix] and N|vaixt1] is precisely {v,} if o > 2 and is {vy, vop2} if @ = 1.
In both cases, c(vory2) = c(ve) = « would imply that ¢(Nvaix]) = ¢(Nvasrsi1]), a
contradiction. O]

4 Interval graphs

In this section, we prove that the previous example is also extremal for the class of interval
graphs.

Theorem 14. For any interval graph G, xiq4(G) < 2w(G).

Proof. Let k = w(G). In this proof the colors are the integers modulo 2k. Let G be a
connected interval graph on n vertices. We identify the vertices vy, ...,v, of G with a
family of intervals (I; = [ai, bi])1<i<n such that vv; is an edge of G precisely if I; and
I; intersect. We may assume that a; < as < ... < a,. Without loss of generality, we
can assume that if a; < a; and I; N I; # &, then there exists an interval I, such that
a; < by < aj;; otherwise, we can change [; to the interval [a;, ;] and the intersection
graph remains the same. By a similar argument, we can also assume that if b; < b; and
I; N I; # &, then there exists an interval I, such that b; < a; < b;.

Let {a; = ay;, < az, < ... < a,} be the set of left ends. At each step i = 1,...,s,
we color all the intervals starting at a;,. We first color the intervals starting at a;, with
distinct colors in {0, ...,k — 1}. Assume we have colored all the intervals starting before
at;. Now, we color all the intervals of the set Z(t;) = {,; : a; = a4, }. First, we define the
following subsets of intervals:

e V(t;): intervals I; such that a; < a;, < b;
e U(t;): intervals I; such that a;, | < b; < ay,,
e T (t;): intervals I; of U(t;) such that there is an interval I, in V(¢;) with a; = a,.

Note that V(¢;) is the set of intervals that are already colored and intersect all the
intervals of Z(t;). Due to the connectedness of G, this set is not empty. The set U(t;)
is a subset of intervals already colored that intersect all the intervals of V(7;). It is not
empty (take any interval finishing before a;, with rightmost right end). Necessarily, all
the intervals of U(t;) have the same right end because no interval starts between a;, , and
ay,. Finally, if T (t;) # @, then let Iy be an interval of T (¢;) with leftmost left end, and
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otherwise let Iy be any interval of U(t;). Let ¢y be the color of I;. Note that any interval
of U(t;) and V(t;) intersects Iy, and thus has color ¢ in its neighborhood. We can now
color the intervals of Z(t;). We color with color ¢y + k one of the intervals having the
rightmost right end. We color the other intervals with colors in {0, ..., 2k — 1} such that
no vertex with color j is adjacent to a vertex with color j or j + k (this is always possible
since intervals of V(t;) UZ(t;) induce a clique of size at most k). This coloring c is clearly
a proper 2k-coloring and there is no vertex with color j, 0 < 7 < k — 1, adjacent to a
vertex with color j + k.

We now show that c is a lid-coloring of G. Let I; and I; be two intersecting intervals
with N[[;] # N[I;]. Assume first that a; # a;. Without loss of generality, a; < aj.
During the process, when I; is colored, an interval I, also starting at a; is colored with
a color ¢g + k such that ¢y € ¢(N[[;]). Necessarily, I; C I, since I, has the rightmost
right end among all intervals starting at a;. So ¢y + k € ¢(N[I;]) but ¢y ¢ ¢(N[I]) and
so cg ¢ c¢(N[I;]). Hence, ¢(N[I;]) # ¢(N[;]). Assume now that a; = a;. Without loss of
generality, b; < b; and so I; C I;. Let a;, be the leftmost left end such that b; < a;, < b; (it
exists because N[I;] # N[I;]). Then we have I; € V(t,) and I; € T (t;). By construction,
one of the intervals of Z(t,), say I, will receive the color ¢y + k where ¢ is the color of
an interval Iy € T (t;). Necessarily, I; C Iy and ¢y € ¢(N[L;]) € ¢(N[L;]). We also have
co+k € c¢(N[L;]) because I; is a neighbor of I. But ¢o+k ¢ c¢(N[1;]) since co+k ¢ c(N[y))
and Ij - Io. Hence, C(N[LD ?é C(N[IJ]) ]

5 Split graphs

A split graph is a graph G = (K U S, E') whose vertex set can be partitioned into a clique
K and an independent set S. In the following, we will always consider partitions K U S
with K of maximum size. A split graph is a chordal graph and its clique number and
chromatic number are equal to |K|. We prove that it is lid-colorable with 2| K| — 1 colors.

We say that a set S” C S discriminates a set K' C K if for any u,v € K’ with
Nu] # N|v], we also have N[u]NS" # N[v]NS". The following theorem is due to Bondy:

Theorem 15 ([?, ?]). If Ay, As, ..., Ay is a family of n distincts subsets of a set A with
at least n elements, then there is a subset A" of A of size n — 1 such that all the sets
A; N A’ are distinct.

Corollary 16. Let G = (K U S, E) be a split graph. For any K' C K, there is a subset
S" of S of size at most |K'| — 1 such that S" discriminates K'.

Proof. We apply Theorem 77 to the (at most) |K’| pairwise distinct sets among {N[v] N
Slve K'}. O

One can easily show that every split graph G has lid-chromatic number at most 2| K|
by giving colors 1,...,| K| to the vertices of K, colors |[K|+1,...,|K|+ k — 1, for some
k < |K]|, to the vertices of a smallest discriminating set S’ C S of K, and finally color
| K|+ k to the vertices of S\ S’
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We now prove the following stronger result:

Theorem 17. Let G = (K U S, E) be a split graph. If w(G) = 3 or if G is a star, then
Xlid(G) < QM(G) — 1.

Proof. Assume that |K| = k and denote the vertices of K by vy,...,v;. If & =1, then
G has no edges and it is clear that xua(G) < 1. If G = K, then xua(G) < 3 by
Corollary ??. So we can assume that k& > 3. If |S| < k — 1 or if S contains a set of
size at most k — 2 that discriminates K, then the result is trivial. Therefore, we assume
that |S| > k and consider a minimal set S; that discriminates K. We can assume that
the set S; has size precisely & — 1 and there is no edge wv with N[u] = N[v]. Indeed, if
N[u] = N[v] for an edge uv, then any set discriminating K \ {v} discriminates also K.
We consider two cases.

Case 1. There is a vertex x € S\ S; of degree k — 1 and a neighbor v; € K of x such
that N[v;] NS, = @. Without loss of generality, we can assume that v; = v,_; and that
K\ N(z) = {v}. Let S, = {y € S,N(y) = N(z) = K\ {vx}}. We have S, NS} = &
(recall that vg_; has no neighbor in S;) and by definition of S, for each vertex v; # vy_1,
Nlv;] N Sy # @ (S; is a discriminating set).

Let K7 = K \ {vk_1,vx}, and let Sy be a subset of Sy of size at most |K;| —1=k—3
that discriminates K;. Let ' =S\ (S1 U S,). We define a coloring ¢ as follows:

° f0r1<i<k70<vi>:i;

e assign pairwise distinct colors from k 4+ 1,...,2k — 3 to the vertices of Sy;

for u € Sy \ Sy, c(u) =2k — 2;

for u € Sy, c(u) = 2k — 1;
o for u € 5, take v; € K'\ N(u) (v; exists by maximality of K'), and set c(u) = ¢(v;).

Then c is a proper coloring of G. We show that c is a lid-coloring of G. First observe
that for each vertex v; of K, ¢(N[v;]) contains one color of {k +1,...,2k — 1}. Indeed
2k — 1 € ¢(N[vg-1]) and if v; # vg_y, then N[v;] NS, # @ and therefore ¢(N[v;]) N
{k+1,...,2k — 2} # @. This implies that for each v; € K, ¢(N[v;]) is distinet from all
c¢(Nly]), y € S. In fact, either ¢(y) € ¢(K) and then ¢(N|y]) C ¢(K), or c(y) ¢ c(K)
but then there is at least one color of ¢(K) that ¢(N[y]) does not contain. Furthermore,
¢(N[vg]) is different from all the sets ¢(N[v;]) with ¢ # k because 2k — 1 € ¢(N]v;]) and
2k —1 ¢ ¢(Nvg]). The set ¢(N[vg_1]) is different from all the sets ¢(Nv;]) with i # k —1
because ¢(N[vg_1]) contains no color of ¢(S7) whereas ¢(NN[v;]) contains at least one color
of this set. Finally, ¢(N[v;]) # c¢(N[v;]) for i,j < k — 2 because there is a vertex in S,
that separates them and its color is used only once. Hence, for each edge uv of G such
that N[u] # N[v], we have ¢(Nu]) # c¢(N[v]).

Case 2. For each vertex z of S\ S, either z has degree at most k — 2 or = has
degree k — 1 and each vertex of N(x) has a neighbor in S;. We define a coloring ¢ as
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follows: vertices of K are assigned colors 1,. .., k, and vertices of S; are assigned (pairwise
distinct) colors within k£ + 1,...,2k — 1. For any vertex x in S\ S, take a vertex v; in
K\ N(x) (such a vertex exists by the maximality of K) and set c¢(z) = c(v;). We claim
that c¢ is a lid-coloring of GG. It is clear that ¢ is a proper coloring of G. Let uv be an
edge of G with N[u] # Nv]. If u,v € K, then without loss of generality there is a vertex
w of S; such that, w € Nfu| and w ¢ N[v]. Then, ¢(w) € ¢(N[u]) and c(w) ¢ c(Nv]).
Otherwise, without loss of generality, u € K and v € S. If v € Sq, then S; does not
contain the whole set ¢(K) and so ¢(N|u]) # ¢(N[v]). Otherwise, v ¢ S;. If the degree
of v is k — 1, then u has a neighbor w in S and c¢(w) € ¢(Nul), c¢(w) ¢ ¢(N[v]). If the
degree of v is at most k — 2, then there is a color 1 < i < k such that ¢ € ¢(Nu]) and
i ¢ c¢(N[v]). In all cases, ¢(Nu]) # ¢(N[v]). Hence, ¢ is a lid-coloring of G. O

Observe that this bound is sharp: the graph obtained from a k-clique by adding a
pendant vertex to each of the vertices of the clique is a split graph and requires 2k — 1
colors in any lid-coloring.

6 Cographs

A cograph is a graph that does not contain the path P, on 4 vertices as an induced sub-
graph. Cographs are a subclass of permutation graphs, and so they are perfect (however,
they are not necessarily chordal). It is well-known that the class of cographs is closed
under disjoint union and complementation [?]. Let G U H denote the disjoint union of
G and H, and let G + H denote the complete join of G and H, i.e. the graph obtained
from G'U H by adding all possible edges between a vertex from G and a vertex from H.
A consequence of the previously mentioned facts is that any cograph G is of one of the
three following types:

(S) G is a single vertex.
(U) G= Ule G; with k > 2 and every G, is a cograph of type S or J.
(J) G= Zle G; with k > 2 and every G is a cograph of type S or U.
We will use this property to prove the following theorem:
Theorem 18. If G is a cograph, then xua(G) < 2w(G) — 1.

Proof. A universal vertex of G is a vertex adjacent to all the vertices of G. Observe that
if a cograph G has a universal vertex, then G must be of type S or J. Let xua(G) be
the least integer k such that G has a lid-coloring ¢ with colors 1,..., k such that for any
vertex v that is not universal, ¢(N[v]) # {1,...,k} (in other words, if a vertex sees all
the colors, then it is universal). Such a coloring is called a strong lid-coloring of G. We
will prove the following result by induction:

Claim. For any cograph G, xua(G) < 2w(G) — 1 and xu4a(G) < 2w(G).

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 11



If G is a single vertex, then it is universal and therefore X,q(G) = x1a(G) =1 = 2x1-1
and the assumption holds.

Assume now that G is of type J. There exist G1,...,Gy, k > 2, each of type S or U,
such that G = Zle G;. Let Gy,...,Gs (0 < s < k) be of type S and G 1, ..., Gy be of
type U. Consider a lid-coloring ¢; of G; and a strong lid-coloring ¢; of G; for 2 < i < k,
such that the sets of colors within G; and G, i # j, are disjoint. Then the coloring c of
G defined by ¢(v) = ¢;(v) for any v € G; is a lid-coloring of G. To see this, assume two
adjacent vertices u and v such that N[u] # N[v] and ¢(Nu]) = ¢(N[v]). Since every ¢; is
a lid-coloring of G; the vertices u and v must be in different G;’s, say v € G; and v € G},
i < j. But then in order to have ¢(N[u]) = ¢(N[v]), u and v must see all the colors in
¢; and cj, respectively. Since ¢; is a strong lid-coloring of G, v is universal in G;. This
means that G; (and therefore G;) is of type S. Hence, u and v are universal in G. This
contradicts the fact that N[u] # N[v]. As a consequence c is a lid-coloring of G.

If ¢; is a strong lid-coloring of G, then c is a strong lid-coloring of G: take a vertex
v € (G; that sees all the colors in ¢. Then it also sees all the colors in ¢;, so it is universal
in G; and G.

So we have x5a(G) < xua(G1) + Soby Xua(Gy) and Xa(G) < S2F Xua(Gy). Since
w(G) = Zle w(G;) we have by induction:

k
Xia(G) < 2w(G1) = 14> 2w(Gy) =2x Y w(Gi) —1=2w(G) -1

and

Xud(G) < ZZM(Gi) = 2w(@Q).

Assume now that G is of type U. There exist Gy, ..., Gy, k > 2, each of type S or J, such
that G = Ule G;. Consider a lid-coloring ¢; of G; with colors 1,..., x;ia(G;). Without
loss of generality we have xjq(G1) = max? | x1a(G;). The coloring ¢ of G defined by
c(v) = ¢;(v) for any v € G is clearly a lid-coloring of G, and so yjia(G) = max?_; xia(G;).

To obtain a strong lid-coloring, assign a new color y;q(G1) + 1 to all the vertices
colored 1 in G, and color all the other vertices of G as they were colored in ¢. The
obtained coloring ¢ is still a lid-coloring of G. Since no vertex u satisfies ¢(N[u]) =
{1,...,xua(G1) + 1} (the vertices in G; miss the color 1, while the others miss the color
xua(G1) + 1), ¢ is also a strong lid-coloring of GG. Therefore Yjq(G) < max?_; xiq(G:) + 1.

Since w(G) = max?_, w(G;) we have by induction

Xia(G) < mEX(Qw(Gi) —1) =2w(G) -1

and .
Xid(G) < mjllx(Qw(Gi) — 1)+ 1=2w(G).
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The bound of Theorem ?7? is tight. The following construction gives an example of
cographs of clique number w requiring 2w—1 colors in any lid-coloring. For any k > 1, take
a complete graph with vertex set vy, ..., v, and for each 2 < i < k add a vertex wu; such
that N(u;) = {v;, vit1,...,vx}. This graph is a cograph with clique number k, the vertices
u; form an independent set U, and every vertex v; satisfies N(v;) NU = {us,...,u;}. Let
¢ be a lid-coloring of this graph, then for any 3 < ¢ < k the vertex u; must be assigned
a color distinct from c(us), ..., c(u;—1) and ¢(vq),. .., c(vx) since otherwise we would have
¢(N[v;]) = ¢(Nvi—1]). Hence, at least k + (k — 1) = 2k — 1 distinct colors are required.

As mentionned in Section 77, for fixed ¢, the fact that a graph admits a lid-coloring
with at most ¢ colors can be expressed in monadic second-order logic. It is well known
that the class of cographs is exactly the class of graphs with clique-width at most two.
It follows from [?] and Theorem ?? that, for a fixed k, the lid-chromatic number of a
cograph of clique number at most £ can be computed in linear time.

Given the results in Sections 7?7 to 77, it seems natural to conjecture that every
perfect graph G has lid-chromatic number at most 2x(G). This is not true, however, as
the following example shows. Take three stable sets Si, Ss, S3, each of size k (k > 2), add
all possible edges between S; and S, add a perfect matching between S; and S5, and
add the complement of a perfect matching between S, and S3. The obtained graph Gy
is perfect: since the subgraph of Gy induced by S; and S, is a complete bipartite graph,
an induced subgraph of Gy is bipartite if and only if it does not have a triangle, and is
3-colorable otherwise.

Consider a lid-coloring ¢ of Gy, and a vertex xs of S;. Let x3 be the only vertex of
S3 that is not adjacent to zo, and x; be the unique neighbor of z3 in S;. Observe that
N[z1] = Nlxzs] U {x2}. Since ¢(N|x;]) # c(N[zs]), the color of x5 appears only once in
Ss. Hence, all the vertices of Sy have distinct colors and it follows that xya(Gy) = k + 2,
whereas x(Gx) = w(Gg) = 3.

7 Graphs with bounded maximum degree
Proposition 19. If a graph G has mazimum degree A, then xuqa(G) < A3 — A2+ A +1.

Proof. Let ¢ be a coloring of GG so that vertices at distance at most three in G have distinct
colors. Since every vertex has at most A% — A? + A vertices at distance at most three,
such a coloring using at most A% — A2 + A 41 colors exists. Let uv be an edge of G. Let
N, be the set of neighbors of u not in N[v] and N, be the set of neighbors of v not in
NJu). Using that vertices at distance at most two in G' have distinct colors, we obtain that
all the elements of N, (resp. N,) have distinct colors. Since vertices at distance at most
three have distinct colors, the sets of colors of N, and N, are disjoint. If N[u] # N|v],
then N, UN, # &, and ¢(N[u]) # ¢(N[v]) by the previous remark. O

We believe that this result is not optimal, and that the bound should rather be
quadratic in A:
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Question 20. Is it true that for any graph G with maximum degree A, we have yjq(G) =
O(A?)?

If true, then this result would be best possible. Take a projective plane P of order n,
for some prime power n. Let GG,,;1 be the graph obtained from the complete graph on n+1
vertices by adding, for every vertex v of the clique, a vertex v" adjacent only to v. Note
that in any lid-coloring of G,,;1, all vertices v' must receive distinct colors. For any line [
of the projective plane P, consider a copy G', 41 of G4y in which the new vertices v' are
indexed by the n + 1 points of [. For any point p of P, identify the n + 1 vertices indexed
p in the graphs G!, 41, Where p € [, into a single vertex p*. The resulting graph H,; is
(n + 1)-regular and has (n* + n + 1)(n + 2) vertices. By construction, all the vertices p*,
p € P, have distinct colors in any lid-coloring. Hence, at least n> +n+1= A% — A +1
colors are required in any lid-coloring of this A-regular graph. The 3-regular graph Hj
with xq(H3) = 7 is depicted in Figure ?7?.

Figure 2: In any lid-coloring of the 3-regular graph Hj, the seven white vertices must
receive pairwise distinct colors.

We saw that the lid-chromatic number cannot be upper-bounded by the chromatic
number. For a graph G, the square of G, denoted by G2, is the graph with the same
vertex set as (G, in which two vertices are adjacent whenever they are at distance at most
two in G. The following question is somehow related to the previous one (depending on
the possible linearity of f).

Question 21. Does there exist a function f so that for any graph G, we have x;q(G) <
fx(G)?

8 Planar and outerplanar graphs

This section is devoted to graphs embeddable in the plane. A maximal outerplanar graph
is a 2-tree and so is 6-lid colorable by Theorem ?7. However, x;q is not monotone under
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taking subgraphs and so this result does not extend to all outerplanar graphs. So we have
to use a different strategy to give an upper bound of the lid-chromatic number on the
class of outerplanar graphs.

Theorem 22. Fvery outerplanar graph is 20-lid-colorable.

Proof. Let G be a connected outerplanar graph, and let H be any maximal outerplanar
graph containing G (that is, H is obtained by adding edges to G). The graph H is 2-
connected, and has minimum degree two. Consider a drawing of H in the plane, such
that all the vertices lie on the outerface, and take the clockwise ordering 1, ..., z, of the
vertices around the outerface, starting at some vertex x; of degree two in H (and thus at
most two in ). This ordering has the following properties:

e For any four integers i,7,k,¢ € {1,...,n} with i < j < k < ¢, at most one of the
pairs {z;, z;} and {z;,x,} corresponds to an edge of G.

o Let z;, be a vertex and x;,,...,2;, be its neighbors in G such that x;,, z;,, ..., z;,
appear in clockwise order around the outerface of H. The previous property implies
that, for 1 < j <k, the neighbors of z;; distinct from z;, appear (in clockwise order
around the outerface of H) between z;,_, and z;,,, (if j # k) and between z;,_, and
x;, (if j = k). Moreover, two distinct vertices z;; and z;, have at most one common
neighbor outside N|x;,]. If such a common neighbor exists, then we have |j—¢| = 1.

For any ¢ > 0, let L; = {z;,,...,x; } be the set of vertices at distance ¢ from z; in
G, with 4; < -+ < 4y, and let L, be the last nonempty L;-set. For the sake of clarity,
we write ¢, ... ,x}'ﬂ instead of z;,,...,z; , and we say that two vertices x; and xéﬂ are

consecutive in L;. Observe the following:

e A vertex in L;,1 has at most two neighbors in L;.

Two vertices of L; have at most one common neighbor in L;,.

If two vertices of L; have a common neighbor in L;,q, they are consecutive in L;.

If two vertices of L; are adjacent, then they are consecutive in L;. This implies that
the graph induced by L; is a disjoint union of paths.

Indeed, if one of the two first facts was not true, there would be a subdivision of Kj 3
in G. The two last facts are due to the embedding of G and H and to the previous
properties. From now on, we forget about H and consider G only (the sole purpose of
H was to give a clean definition of the order zy,...,z,). With the facts above, we can
notice that in the ordering of L;,;, we find first the neighbors of ¢, then the neighbors
of x%, and so on...

We will color the vertices of G with 20 colors partitioned in four classes of colors Cjy,
C1, Cy and C5 with C; = {57,...,5j5 +4}. Vertices in L; will be colored with colors from
C; mod 4, almost as we did for bipartite graphs in Theorem ??7. We will slightly modify
this coloring by using marked vertices.
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Algorithm 1 Lid-coloring of outerplanar graphs
1: c(xy) =0
2: Mark vertex z;,
3: fori =1to sdo
for j =1to k; do
Mark, if it exists, the last neighbor of xé in L.
end for
for £k =0to 3 do
¢k < k+5 x (i mod 4)
end for
100 ¢y <4+ 5 x (i mod 4)
11: for j=1tok; do

12: c(v}) = Cj mod 4

13: if vj is marked then
14: tmp <= C(j41) mod 4
15: C(j+1) mod 4 < Co
16: Cz < C(j—1) mod 4
17: C(j—1) mod 4 < tmp
18: end if

19: end for

20: end for

21: return c

We start by coloring x; with color 0, and mark the last vertex x,lﬂ of Ly. We then
apply Algorithm 1.

Let us describe this algorithm. Sets L; are colored one after the other (line ?7). When
we color L;, we first mark some vertices in L;,1 (the last neighbors in L;,; of vertices in
L;, see lines 7?7 to 7?). Then we color vertices of L; in the order they appear. There are
four current colors of C; 044 Which are used, ¢y to ¢z and one forbidden color cg, that
are originally set to 5 x (i mod 4), 1 4+5 X (i mod 4), 2+ 5 x (i mod 4), 345 X (i mod 4),
and 4 + 5 x (i mod 4), respectively. The vertices of L; are then colored with the pattern
CoC1C2€3C0... (line ?7), but every time a marked vertex 11; is colored, we perform a cyclic
permutation on the values of ¢(j 1) mod 4, €z, and ¢(j—1) moa 4 (lines ?? to 77). This is done
in such a way that:

e The coloring is proper.
e Four consecutive vertices in L; receive four different colors.

e Two consecutive vertices of L;_; do not have the same set of colors in their neigh-
borhood in L;, when these neighborhoods differ.

Thus, this algorithm provides a proper coloring ¢ of G with 20 colors such that for
any Z.v C(L7,> g Cz mod 4-
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Let us prove that the coloring given by the algorithm is locally identifying. Let uwv
be an edge of G such that N[u| # N[v]. If uv is not an edge of a layer L;, then we can
assume that v € L; and v € L;1. If u # x1, then there is a neighbor ¢ of v in L; ; and
then c(t) ¢ ¢(Nv]). So we may assume that u = z1. If the vertex v has degree 1, then
u has degree 2 and has an other neighbor, ¢, and c(t) ¢ ¢(N[v]). Otherwise, the vertex v
has degree at least 2, so there is a neighbor ¢t # u of v. If ¢ € L, then there is another
neighbor ¢’ of v in Ly (because N[u] # N[v]). So we can assume that ¢ € Ly and then
c(t) ¢ ¢(Nu)). So in any case, ¢(Nu|) # c(N[v]).

Assume now that u, v € L; for some 7. Without loss of generality, we may assume that
u = :cé-, v = :c; 41 for some j and that there is a vertex t adjacent to exactly one vertex
among {u,v}. If t € L;, then we are done because four consecutive vertices have different
colors in L;. Ift € L;_y, and t € N(u) \ N(v), then v has at most two neighbors in
L;_;. Those neighbors (if any) are just following ¢ in the layer L;_; and so ¢(t) ¢ ¢(N[v]).
Otherwise, t € L; .1, the vertices u and v are consecutive and have distinct neighborhoods
in L;y1, so the sets of colors in their neighborhoods in L;,; are distinct. O]

We believe that this bound is far from tight.
Question 23. Is it true that every outerplanar graph G satisfies x)iq(G) < 67

We now prove that sparse enough planar graphs have low lid-chromatic number.
Theorem 24. If G is a planar graph with girth at least 36, then xua(G) < 5.

Proof. Let us call nice a lid-coloring ¢ using at most 5 colors such that every vertex v
with degree at least 2 satisfies |¢(N[v])| = 3. We show that every planar graph with girth
at least 36 admits a nice lid-coloring.

Observe first that a cycle of length n > 12 has a nice lid-coloring that consists of
subpaths of length 4 colored 1234 and subpaths of length 5 colored 12345 following the
clockwise orientation of G (the number of subpaths of length 5 is exactly n mod 4).

Suppose now that GG is a planar graph with girth at least 36 that does not admit a nice
lid-coloring and with the minimum number of vertices. Let us first show that G' does not
contain a vertex of degree at most 1. The case of a vertex of degree 0 is trivial, so suppose
that G contains a vertex u of degree 1 adjacent to another vertex v. By minimality of G,
the graph G’ = G\ u admits a nice lid-coloring ¢. We consider three cases according to
the degree of v in G’, and in all three cases, we extend ¢ to a nice lid-coloring of G in order
to obtain a contradiction. If v has degree at least 2 in G’, then we assign to u a color
in ¢(N[v]) \ {c(v)}. So ¢(N[v]) is unchanged, and ¢(N[u]) # ¢(N[v]) since |¢(N[u])| = 2
and |c(N[v])| = 3. We thus have a nice lid-coloring of G. If v has degree 1 in G’, then v
is adjacent to another vertex w in G’ and we assign to u a color that does not belong to
¢(N[w]). Such a color exists since |¢(N[w])| < 3 and the obtained coloring of G is nice:
lc(N[v])] = 3 and ¢(N[v]) # ¢(N[w]) since c¢(u) € ¢(N[v]) but c¢(u) & ¢(N[w]). If v has
degree 0 in G', then N[u] = N[v] in G, so u and v need not to be identified.
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It follows that G has minimum degree at least 2 and G is not a cycle. It is well-known
that if the girth of a planar graph is at least 5k + 1, then it contains either a vertex of
degree at most 1, or a path consisting of k£ consecutive vertices of degree 2. The graph
G thus contains a path of seven vertices of degree 2. So we can assume that G contains
a path P = x129...1x9 such that d(x;) > 3 (G is not a cycle), d(z;) = 2 for 2 < i < 8,
and d(zg9) > 2. By minimality of G, the graph G' = G \ {z2,z3,...,2s} admits a nice
lid-coloring ¢. Without loss of generality, assume that ¢(x;) = 1 and ¢(N|[z4]) = {1, 2, 3},
since the degree of 7 is at least 2 in G'. We denote a = c(xg). If the degree of xg
in G’ is at least 2, then we denote {by,bs} = c¢(N(z9)). If the degree of zg in G’ is 1,
then z9 is adjacent to a vertex xjy and we denote b; = ¢(x19) and by is any element of
{1, 2, 3, 4, 5} \ C(N[ZEH)]).

The following table gives the colors of x5, x3,...,2xg for all the possible values of
(a;b1,by). Note that c(xs) € {2,3}, c(zxs) ¢ {2,3}, clzs) # a, c(x7) ¢ {a, by, bs},
c(xg) = by, and four consecutive vertices have different colors. This implies that the
coloring ¢ can be extended to a nice lid-coloring of GG, a contradiction.

2431243 (1;2,3)

2431543 (2;1,3)

2431542 (3;1,2

2534152 (4;1,2

2435142 (5;1,2

2431254 (1;2,4

2541354 (2;1,4

2431254 (3;1,4

2431253 (4;1,3

2431243 (5;1,3

2431245 (1,2,5

2451345 (2,15

2431243 (5:2.3

2431245 (1;3,5

3412345 (2;3,5

2431245 (3;2,5

2451235 (4:2,5

2435214 (5;2,4

)
(3;1,4)
2431245 (3;1,5)
2431254 (3;2,4)
(3:2,5)
(3:4,5)

)
(4,1,3)
2451235 (41,5)
2431253 (4;2,3)
(4:2,5)
(4:3,5)

(5:1,2)
(5:1,3)
2435124 (5;1,4)
(5:2,3)
(5:2,4)
(5:3,4)

(1;2,4) (2;1,4)
(1;2,5) (2;1,5)
2431254 (1;3.4) | 3512354 (2;3,4)
(1;3,5) (2;3,5)
(1;4,5) (2;4,5)

2531425 (1:4,5) | 3521435 (2;4,5) | 2531425 (3;4,5) | 2534125 (4;3,5) | 2435124 (5;3,4

We conjecture that planar graphs have bounded lid-chromatic number.

9 Connectivity and lid-coloring

Most of the proofs we gave in this article heavily depend on the structure of the classes
of graphs we were considering. We now give a slightly more general tool, allowing us to
extend results on the 2-connected components of a graph to the whole graph:

Theorem 25. Let k be an integer and G be a graph such that every 2-connected component
of G is k-lid-colorable. Let H be the subgraph of G induced by the cut-vertices of G. Then
xud(G) <k + x(H).

Proof. In this proof, we will consider two different colorings of the vertices: the lid-coloring
of the vertices of G and the proper coloring of the graph H induced by the cut-vertices.
To avoid confusion, we call type the color of a cut-vertex in the second coloring. We prove
the following stronger result:

Claim: If t is a proper coloring of H with colors ty, ..., ty, then G admits a (k + h)-
lid-coloring ¢ such that for each mazimal 2-connected component C of G, (x) there are h
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colors not appearing in c(C), say ..., ¢, such that for every cut-vertex v of G lying

in C, if t(v) =t;, then ¢(N(v)) contains c¢{ but none of the c§, j # i.

We prove the claim by induction on the number of cut-vertices of G. We may assume
that G has a cut-vertex, otherwise the property is trivially true.

Let u be a cut-vertex of G and let (', ..., C, be the connected components of G — w.
We can choose u so that at most one of the C;’s, say C}, contains the remaining cut-
vertices. For 1 < i < s, let G; be the graph induced by the set of vertices C; U {u}. Let
C' be the maximal 2-connected component of Gy containing u. Observe that the vertex
w is not a cut-vertex in ;. By the induction, G has a (k + h)-lid-coloring ¢ such that,
without loss of generality, ¢(C) C {1,...,k} and every cut-vertex v of C' with t(v) = ¢,
has a neighbor colored k + ¢, but no neighbor colored k£ + j, 1 < j < h, j # i. We can
also assume that t(u) =t; and 1 € ¢(N(u)) (thus c¢(u) # 1).

We now extend the coloring ¢ to GG by lid-coloring each component G, ...G¢ with colors
2,3,...,k+ 1 such that £ +1 € ¢(N(u)) (these components share the vertex u but we
can assume that u always has the same color in all the lid-colorings of Ga,...,Gs). Let us
prove that the obtained coloring is a lid-coloring of G satisfying (). In order to prove
that c¢ is a lid-coloring, by the induction one just needs to check that u has no neighbor
v with ¢(Nv]) = ¢(Nlu]). For the sake of contradiction, suppose that such a vertex v
exists. Since 1 € ¢(Nu]), v has to lie in C. If v is a cut-vertex of Gy, then ¢(v) # ¢, (¢ is
a proper coloring of H) and by the induction, k + 1 & ¢(N[v]). If v is not a cut-vertex of
G, then all its neighbors lie in C' and again, k + 1 & ¢(N[v]). Since k + 1 € ¢(NJu]), we
obtain a contradiction.

It remains to prove that (%) holds for every maximal 2-connected component of G.
It clearly does for Gs,...,Gy, since u is the only cut-vertex of G they contain and 1 €
c(Nlu]) € {1,...,k + 1}, while none of these components contains color 1 or color k + i
with 2 < i < h. The component C' also satisfies (x), since u has a neighbor colored & + 1
and no neighbor colored k + i with 2 < ¢ < h. By the induction, Property (x) trivially
holds for the remaining maximal 2-connected components of G. This completes the proof
of the claim. ]

Among other things, this result can be used to prove that outerplanar graphs without
triangles can be 8-lid-colored. We omit the details; we suspect that Theorem 7?7 can be
used to prove results on much wider classes of graphs.

Remark. During the review of the paper, Question 7?7 has been answered positively,
see [?].
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