The Decomposition Algorithm for
Skew-symmetrizable Exchange Matrices

Weiwen Gu

Abstract

Some skew-symmetrizable integer exchange matrices are associated to ideal (tagged)
triangulations of marked bordered surfaces. These exchange matrices admit un-
foldings to skew-symmetric matrices. We develop a combinatorial algorithm that
determines if a given skew-symmetrizable matrix is of such type. This algorithm
generalizes the one in [1]. As a corollary, we use this algorithm to determine if a
given skew-symmetrizable matrix has finite mutation type.

1 Introduction

With some triangulations of surfaces invariant under finite group symmetries, we associate
finite oriented multi-graph without loops and 2-cycles. Such graphs are called quivers.
Positive integer weights are assigned to the edges of quivers. Such graphs are also associ-
ated with matrices with integer entries. We call such graphs or their associated matrices
s-decomposable (see Definition 7.) Quiver mutation is defined in [2]. The collection of
mutation-equivalent quivers to a given quiver G is called the mutation class of G. We say
a quiver is mutation finite or has finite mutation type if its mutation class is finite.

A quiver or its associated skew-symmetric matrix is said to be block-decomposable
if the quiver can be obtained by combining pieces of graphs isomorphic to six types of
quivers, called elementary blocks, by a particular way of gluing (see Definition 1). Tt
is proved in [3] that a quiver has finite mutation type if and only if it is either block-
decomposable or is of one of the 11 exceptional types. It is also proved in [4] that a
quiver is block-decomposable if and only if it is the associated adjacency graph of an ideal
triangulations of a bordered surface with marked points.

An n x n integer matrix B is said to be skew-symmetrizable if there exists an n X n
integer diagonal matrix D such that BD is skew-symmetric. Mutation and mutation
class are also defined for skew-symetrizable matrices. Our goal is to establish a combi-
natorial algorithm that determines if a given oriented graph whose edges are equipped
with integer weights is s-decomposable, thus providing a tool to find if its associated
skew-symmetrizable matrix has finite mutation type. Each skew-symmetrizable exchange
matrix is associated to a diagram with oriented edges equipped with positive integer
weights. The notion of s-decomposability is a generalization of block-decomposability for
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diagrams (see Definition 7 and Table 2). A skew-symmetrizable exchange matrix is said to
be s-decomposable if it can be obtained by gluing both elementary blocks and 7 additional
blocks by the rules in Def. 1 and Def. 7.

In [1], we provided an algorithm linear in the size of quiver G that determines if G is
block-decomposable. As a corollary, we obtained for any skew-symmetric integer matrix
B, an algorithm linear in the size of B determining if B has finite mutation type. The
algorithm we describe in this article is a generalization of the one in [1]. This paper is
inspired by [2], in which the authors generalize the result of [3] to skew-symmetrizable
exchange matrices. The following results are proved in [2]:

1. There is a one-to-one correspondence between s-decomposable skew-symmetrizable
graphs with fixed block decomposition and ideal tagged triangulations of marked
bordered surfaces with fixed tuple of conjugate pairs of edges. Conjugate edges
are two edges inside a digon (or monogon) with one of them tagged and the other
untagged.

2. A skew-symmetrizable n X n matrix, n > 3, that is not skew-symmetric, has finite
mutation class if and only if diagram is either s-decomposable or mutation-equivalent
to one of seven exceptional types.

3. Any s-decomposable diagram admits an unfolding (see Definition 6) to a diagram as-
sociated to ideal tagged triangulation of a marked bordered surface. Any mutation-
finite matrix with non-decomposable diagram admits an unfolding to a mutation-
finite skew-symmetric matrix.

According to the theorems above, if GG is the diagram associated to a skew-symmetrizable
exchange matrix M, and 7' is the ideal tagged triangulation corresponding to a particular
s-decomposition Gy, of G, then an unfolding to G4 defines a skew-symmetric diagram
obtained by gluing of unfoldings of corresponding blocks. We design an algorithm that
determines if a given graph is s-decomposable, and for each possible decomposition, finds
the associated ideal tagged triangulation of bordered surface with marked points. In order
to determine if a given skew-symmetrizable matrix has finite mutation type, it remains
to check if it is of one of the 11 (for skew-symmetric) or 7 (for skew-symmetrizable)
types. Since this requires a bounded number of operations, we obtain a linear algorithm.
Moreover, this algorithm is linear in the size of the given matrix.

2 Definitions

In this section, we introduce definitions and a brief description of the algorithm. For
convenience, we denote an edge that connects nodes z,y by 7Ty if the orientation of this
edge is unknown or irrelevant, x?/ if the edge is directed from x to y, and fy otherwise.

Definition 1. We recall that a diagram (or graph) is block-decomposable (or decompos-
able) if it is obtained by gluing elementary blocks of Table 1 by the following gluing
rules:
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1. Two white nodes of two different blocks can be identified. As a result, the graph
becomes a union of two parts; the common node is colored black. A white node can
neither be identified with itself nor with another node of the same block.

2. A black node can not be identified with any other node.

3. If two white nodes , y of one block (endpoints of edge ¥y) are identified with
two white nodes p, ¢ of another block (endpoints of edge ﬁ), x with p, y with ¢
correspondingly, then two parallel edges of the same direction are formed, and nodes
r = p, y = q are black.

4. If two white nodes x, y of one block (endpoints of edge Yy) are identified with
two white nodes p, ¢ of another block (endpoints of edge ﬁ), x with ¢, y with p
correspondingly, then both edges are removed after gluing, and nodes x = ¢, y = p

LSO

Spike Triangle Infork Outfork Diamond Square

Table 1: Elementary Blocks

Definition 2. Let B(G) = (b;;) be the skew-symmetric matrix whose rows and columns
are labeled by the vertices of GG, and whose entry b;; is equal to the number of edges going
from i to j minus the number of edges going from j to i. We say B(G) is the adjacency
matriz associated to G, if a matrix B = B(G), we say G is the oriented adjacency graph
associated to B.

Remark 1. By definition, the associated matrix to a oriented graph is skew-symmetric.
One of the applications of our algorithm involves mutations of a cluster algebra, which

requires the following definitions (see [5]):

Definition 3. A seed is a pair (f, B), where f = fi,..., f, form a collection of al-
gebraically independent rational functions of n variables zq,...,z,, and B is a skew-
symmetrizable matrix. The part f of seed (f, B) is called cluster, elements f; are called
cluster variables, and B is called exchange matriz.

Definition 4. A quiver is a finite oriented multi-graph without loops and 2-cycles. As-
sume B = (b;;) is the skew-symmetric matrix associated to a quiver G. We say that an
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Figure 1: Mutation of diagrams

B = (by) is obtained from B by matriz mutation in direction k, and write B = u(B), if
the entries of B are given by
- by, iti=Fkorj=k,
" bij -+ %(‘bzk|bk] + bzk’bk]D; otherwise.

Two matrices are called mutation-equivalent if they can be transformed into each other
by a sequence of mutations.

Definition 5. A diagram (or graph) S associated to a skew-symmetrizable integer matrix
B is an oriented graph with weighted edges obtained in the following way: Suppose
B = (by)}j=;. Vertices of S are labeled by [L,...,n]. If b; > 0, we join vertices i and j
by an edge directed from 7 to j and assign to this edge weight —b;;b;;.

It is shown in [6] that mutations of exchange matrices induce mutations of diagram.
If S and S’ are diagrams associated to B and B’ respectively, B’ = S is a mutation of
B in direction k, and we say S’ is a mutation of S in direction of k. The change of the
weights is described in Figure 1.

Here 4+/¢ £ v/d = v/ab. The coefficient of /¢ (resp. v/d) is 1 if the three edges form
an oriented triangle and —1 otherwise. If ab = 0, then neither value of ¢ nor orientation of
the corresponding edges changes. Mutation class of an exchange matrix can be extended
to mutation class of the associated diagram. Although orders of them may not be the
same, it can be shown that mutation class of a matrix is finite if and only if a mutation
class of the corresponding diagram is finite.

It is proved in [3] that a skew-symmetric exchange matrix has finite mutation type if
it is associated to a decomposable graph or one of the 11 exceptional types. To generalize
the results to skew-skymmetrizable matrix, we need the following definitions:

Definition 6. The unfolding procedure is defined as follows (see section 4 in [2]): Suppose
that we have chosen disjoint index sets: Ei, Es, ..., E,, with |E;| = d;. Denote m =
>, di. To each matrix B’ mutation-equivalent to a given skew-symmetrizable m x m
matrix B, a skew-symmetric matrix B’ indexed by U;_, Ei is defined so that the following
conditions are satisfied:

1. the sum of entries in each column of each E; x E; block of B’ equals to bij;

2. if b;; = 0, then the F; x E; block of B’ has all entries non-negative.
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Define a composite mutation j; = Hje B, Hj on B'. If C is the skew-symmetric matrix
constructed from B satisfying the above conditions, we say C' is an unfolding if for any

—

B’ mutation-equivalent to B, ﬁl(é’) = u(B).
Definition 7. If a graph G can be obtained by gluing both elementary blocks and new

blocks in Table 2 by the gluing rules in Definition 1 and the following new rules, we say
the graph is s-decomposable:

1. If the graph has a multi-edge containing n parallel edges, replace the multi-edge
by an edge of weight 2n. For example, if we glue two parallel spikes of the same
direction, we get an edge of weight 4 (see Figure 2).

OO 4
+ = o0
OO

Figure 2: Edge of Weight 4

2. All single edges have weight 1.

Remark 2. Suppose G is associated to a skew-symmetric matrix. If G is obtained by gluing
blocks by the above rules, G is associated to a ideal tagged triangulation of bordered
surface with marked points obtained by the gluing of the pieces of surfaces associated to
the blocks, two arcs are glued together iff the corresponding nodes are glued together in
the associated blocks (see [4]). Suppose G is associated to a skew-symmetrizable matrix. If
(G is s-decomposable, it is associated with triangulation of bordered surfaces with orbifold
points. (see [3])

Remark 3. According to the above rules, the weight of any edge in a decomposable graph
can only be 1,2 or 4. All edges of weight 2 can only be obtained from blocks in Table 2.
Moreover, since all edges of weight 2 contain at least one black endpoint, we can never
obtain an edge of weight 4 from edges of weights 2. Moreover, an edge of weight 4 can
only be obtained from IVor by Figure 2.

A geometric interpretation of mutations on the blocks in Table 2 can be found [7].
Abusing the notation, we say the new blocks are the foldings of their corresponding
unfoldings. Each unfolding represents an ideal tagged triangulation of bordered surface
with marked points (see pictures in [2], (Table 7.1)). Each of these unfoldings except
the last one corresponds to triangulations with two conjugate edges inside a digon (or
monogon). Conjugate edges represent the same vertex in the foldings. Mutation of the
folded vertex corresponds to the flips of both edges in the conjugate pair. Composite
flip of the triangulation corresponding to an unfolding diagram is defined as a collection
of flips in all edges that represent vertices in the set E;. Note that any two flips in a
composite flip commute, see Figure 3.

In [2], the following theorem is proved:
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Table 2: Blocks of Unfolding

New Blocks Unfolding Triangulation
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Figure 3: Composite Flip

Theorem 1. Any s-decomposable diagram admits an unfolding to a diagram arising from
ideal tagged triangulation of a marked bordered surface. Any mutation-finite matriz with
non-decomposable diagram admits an unfolding to a mutation-finite skew-symmetric ma-
triz.

Given an s-decomposable diagram with a fixed decomposition, there is a unique tagged
triangulation of a marked bordered surfaces with chosen tuples of conjugate pairs of
edges. This surface can be obtained by gluing pieces of surfaces representing unfoldings
of corresponding blocks in the decomposition along edges corresponding to glued white
vertices. The construction is invariant under mutation: mutating the diagram means
performing composite flips to the original triangulations. Furthermore, the following
theorems are proved in [2]:

Theorem 2. There is a one-to-one correspondence between s-decomposable skew-symmetrizable
diagrams with fixed block decomposition and ideal tagged triangulations of marked bordered
surfaces with fixed tuple of conjugate pairs of edges.

Theorem 3. A skew-symmetrizable n X n matriz, n > 3, that is not skew-symmetric,
has finite mutation class if and only if its diagram is either s-decomposable or mutation-
equivalent to one of seven types.

By the previous theorems, to check that a given skew-symmetrizable non skew-symmetric
matrix has finite mutation type, first it only takes finitely many operations to check if it
is mutation-equivalent to one of the seven exceptional types of diagrams. If not, we can
further check if the associated adjacency graph G is s-decomposable. In the following
sections, we develop an algorithm linear in size of G that determines if a given diagram
is s-decomposable.

For convenience, we need the following definition:
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Definition 8. Suppose N is a subgraph of G with all its nodes colored white or black. If
there exists another quiver M with all its nodes colored white or black, such that G' can
be obtained by gluing M to N by the rules in Definition 1 and 7, we say N is a colored
subgraph of G. A neighborhood of o is a colored subgraph of G' that contains node o. We
say a colored subgraph N of G is decomposable if there exists an s-decomposable or block-
decomposable graph G that contains IV as a colored subgraph. A colored subgraph N of G
is said to be indecomposable if any graph that contains N as a colored subgraph is neither
s-decomposable nor decomposable. We say a colored subgraph N is s-decomposable as a
subgraph if N can be obtained by gluing blocks by the rules in Definition 1 and 7, and
the resulting color of nodes in N coincides with the original color of vertices in N.

Remark 4. Note that if for a vertex o of graph GG, the whole graph G is obtained by gluing
a colored subgraph to a neighborhood N of 0, no edge in N can be annihilated by gluing
procedure. For a given graph GG and a selected node o, the set of neighborhoods of o in
G, denoted by N, is a partially ordered set by inclusion. We define three subsets of N,
as follows:

e 7, is the set of all decomposable neighborhoods each of which contains all edges
incident to o.

e D, is the set of all decomposable neighborhoods of o each of which is decomposable
as a subgraph.

e S, ={NCZ,ND, | N is minimal}.
If S, is empty, then by definition, the graph containing o is not s-decomposable.

Our goal is to find a combinatorial algorithm which determines if a given graph is s-
decomposable. According to remark 3, we can determine if a graph contains blocks from
Table 2 by locating edges of weight 2 and analyzing their neighborhoods. We differ cases
by the number of edges of weight 2 that are incident to the considered node o. Denote
this number by n. According to the rules of gluing and Table 2, n is at most 4 for any
node in an s-decomposable graph. If none of the edges incident to node o has weight
two, o can not be contained in a block from Table 2 and we skip node o. Therefore,
n = 1,2,3 or 4. Starting with any node o with n = 4, we check if &, is non-empty
by examining the following information that can be directly observed from the graph:
degree of o, degree of the nodes that are connected to o by one edge, and the number
and directions of the edges between node o and the nodes connected to o. If S, is empty,
the graph is not s-decomposable. If o is contained in a decomposable neighborhood in
S,, we replace the neighborhood by another one which is consistent in the sense that the
new graph is s-decomposable if and only if the original one is. The new neighborhood
does not contain any edge of weight 2. After all nodes with n = 4 are exhausted, we
proceed to the nodes with n = 3,2, 1 (in decreasing order). Finally, we get a graph that
contains only edges of weight 1 and 4. The new graph is s-decomposable if and only if it
is decomposable (see [1]). Then we apply the algorithm from [1] to determine it the graph
is decomposable. Since all replacements are consistent, we can determine if the original
graph is s-decomposable.
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3 Algorithm

In [1], it is proved that we can assume that the graph is connected when only blocks in
Table 1 are used. If the graph is s-decomposable, it is easy to see that we can make the
same assumption as well. In fact, except II, none of the edges can be annihilated by
gluing a block from Table 2 to any graph. If ITis glued to an existing graph, causing uw
to be annihilated, nodes u,v are still connected via uv and vw. Therefore, gluing new
blocks will not break connectivity.

Let U be the collection of both old and new blocks. In order to find S, of a node o, it
suffices to check if node o has a neighborhood that is isomorphic to some graph in U or
obtained by gluing two blocks from ¢/. By checking all nodes in i/, we analyze the results
in Table 3-8.

If any of the neighborhoods in U is a disjoint connected component, the algorithm
stops. If the neighborhood may not be a disjoint connected component (DCC), we apply
suitable replacement as suggested in the tables below. Note that we need those replace-
ments to be consistent, i.e. the original graph is s-decomposable if and only if the new
graph is. The consistency of all replacements can be checked by exhausting analysis of
all neighborhoods in ¢/ and Lemma 1 in [1].

3.1 n=4
We have the following two situations:
A B
: . TN
2 2 N 2 2 4 2
Decomposition 4 a
Degree of o 4 4
Replacement DCC DCC
Table 3: n =14

3.2 n=3

We have the following eight situations:

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 9



Al A2
2 2
X (0] (0} X
Decomposition 2 2
Degree of o 3 3
X@—xq D‘—@X
Replacement
B1 B2
o (0]
A + 0oc2—e ﬁ + e<2—0
Decomposition
Degree of o 3 3
Replacement DCC DCC
C1 C2
0] 0]
Decomposition 9 X 4 X o
Degree of o 4 4
l >‘ OX X O ;< i
Replacement
D1 D2
2 0] 2 0]
., 2 2
Decomposition
Degree of o 5 5)
Replacement DCC DCC
Table 4: n=3

In this case the degree of the considered node can only be 3,4 or 5, otherwise the graph
is not s-decomposable. For a given graph G, to determine in what type of neighborhood
the node o is contained, we examine the degree of o.

First suppose the degree of o is 3. We only need to consider A1,A2,B1,B2. We
call the nodes connected to o by an edge boundary nodes. If one of the boundary nodes,
denoted by x, is connected to the remaining two by edges of weight 1, o can only be
contained in A1 or A2. Note that in either case, the degree of = is no less than 3, and the
degrees of the remaining two boundary nodes are 2. If only two of the boundary nodes
are connected, o can only be contained in B1 or B2. In both cases, the neighborhoods
are disjoint connected components.
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Second, suppose the degree of 0 is 4. Node o can only be contained in C1,C2, otherwise
the graph is not s-decomposable. Note that in this case, one boundary node is connected
to o by an edge of weight 1. Denote this node by x. The remaining three boundary nodes
are connected to o by edges of weight 2, two of them are connected by an edge of weight
4, the third one is connected to x by an edge of weight 2. Moreover, the degree of z is no
less than 2, the remaining boundary nodes all have degree 2.

Finally, suppose the degree of o is 5. In this case, o can only be contained in D1,D2,
otherwise the graph is not s-decomposable. In either case, the neighborhood is a disjoint
connected component.

3.3 n=2

We have the following 13 situations:

A B
o)

X = = Y A
2
I x y "
C

O O O O O O
+ + +
VNN TN
Decomposition

Degree of o 2
Replacement DCC

Decomposition
Degree of o

Replacement
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D1 D2
y y
2 2
3 O + (e O +
Decomposition 4 0 0 X z 0 0 X
Degree of o 3 3
- D
Replacement
E1 E2
y y
2 2
o< O+ X ® >0 + X
w O O W (0]
2 2
Decomposition
Degree of o 4 4
Replacement DCC DCC
E3 E4
y y
2
o< O+ X ® >0 + X
w 0] w 0]
2
Decomposition
Degree of o 4 4
Replacement DCC DCC
F1 F2
2 2 2 2
+fe +
2 2
Decomposition
Degree of o 5 5
X X
Replacement t j
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F3 F4
2 2 2 2
+fe +
2 2
Decomposition
Degree of o 5 5
X X
Replacement t j
Table 5: n=2

To determine if the considered node o is contained in any of the neighborhoods in
Table 5, we consider the degree of 0. Note that when n = 2, the degree of node o in Table
5 takes only 2, 3,4 or 5, otherwise, the graph is not s-decomposable.

If the degree of 0 is 2, 0 in s-decomposable graph can have only neighborhoods of type
A,B,C, (see Table 5.) In this case we denote the other endpoints of the edges of weight
2 by z,y.

e If x,y are not connected by an edge, the graph is s-decomposable in two cases.
First, the neighborhood can be obtained by gluing {Ia Ib}, or two Ia, or two Ib,
as shown in case C; second, the neighborhood can be obtained from annihilating
edge @ in IT, as shown in case A. To determine how the neighborhood is obtained,
note that in the first case, the neighborhood is a disjoint connected component,
and in the second case, the edge Yy can be annihilated by an edge from a spike,
a triangle or the mid-edge of a diamond. Suppose the degrees of nodes z,y are
both 1. If edge o and yo are both directed away from or towards node o, then the
neighborhood is obtained in the way shown in the second or third picture in case
C, otherwise the graph is not s-decomposable. Suppose two edges have different
orientations, there are only two cases when the graph is s-decompositions. If the
degree of nodes z,y are both greater than 1, the graph is decomposable only if the
neighborhood is obtained by gluing another block to II. Then we can apply the
corresponding replacement as shown in case A. If the degree of nodes x,y are both
1, the neighborhood is a DCC and can be obtained either by annihilating zy in IT
by gluing a spike, or by gluing {Ia,Ib}.

e If x,y are connected by an edge of weight 4 from y to x, there are two cases. First,
the neighborhood can be obtained from gluing an edge gﬁ to the graph as in case A.
In this situation, the degrees of nodes x,y are at least 2; Second, the neighborhood
can be obtained from case B. Therefore, to distinguish the above two cases, we
first check the degrees of o. If o has degree greater than 2, o is contained in a
neighborhood as shown in case B. If 0 has degree 2, we check the degrees of x,y: if
the degrees of both x, y are two, the neighborhood is a disjoint connected component
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and has two possible decompositions; if the degrees of both x,y exceed 2, 0 must be
contained in a neighborhood in A. In latter case, after applying the corresponding
replacement, we keep edge Ty and change its weight from 4 to 1.

e If z,y are connected by an edge of weight one from y to x, the neighborhood can
only be obtained from case A.

Next suppose the degree of o is 3. In this case node o can only be contained in a
neighborhood shown in B,D1 or D2, otherwise the graph is not s-decomposable. To
distinguish these cases, first we check if the nodes connected to o by an edge of weight 2
are connected by an edge of weight 4. If so, o must be contained in B. If not, we denote
the three nodes connected to o by z,y, z, where y, 2z are connected to o by edges with
weight 2. Note that x must be connected to o via an edge with weight 1, z,y must be
connected via an edge gﬁ with weight 2, degrees of y and z must be 2 otherwise the graph
is not s-decomposable. Node o is contained in a neighborhood shown as in D1 if o, z are
connected via an edge 0?, and is contained in D2 if o, z ar connected via Za.

Next suppose the degree of o is 4. In this case node o can only be contained in a
neighborhood shown in one of B, E1-E4, otherwise the graph is non s-decomposable. By
the same argument as in this previous case, we check if o is contained in B. If not, we need
to determine if o is contained in any of E1-E4. Denote the nodes that are connected to
o by edges with weight 1 by y, z, the nodes that are connected to o by edges with weight
2 by z,w. Then y, z must both be connected to one of the nodes that are connected to o.
Assume vy, z are both connected to z, then Ty, Tz both have weight 2. By picture E1-E4,
ow must have weight 2, and the degree of w is 2. By examination of the orientation of
the edges incident to o we determine in with type of neighborhood o is contained.

Finally, if the degree of o is 5, it can be only contained in a neighborhood shown in
one of B, F1-F4, otherwise the graph is non s-decomposable. As above, we check if o is
contained in B. If not, we denote the boundary nodes of o by x, vy, z, u, v, where x,y, z are
connected to o by edges of weight 1, u,v are connected to o by edges of weight 2. Note
that if the graph is s-decomposable, one of u,v must be connected to two nodes among
x,1, z by edges of weight 2. Assume u is connected to y and w by edges of weight 2. Then,
v must be connected to z by another edge of weight 2, and deg(y) = deg(w) = deg(v) = 2,
deg(u) = 3, deg(x) > 2.

34 n=1

In this case, there is only one edge with weight 2 that is incident to o. Denote the other
endpoint of this edge by p. We consider the number of edges with weight 2 incident to p.
Denote this number by m.

If m = 1, there are two cases, as shown Table. 6. We can only attach blocks containing
no edge of weight two to the node p. In both cases, degree of o is one. It is easy to
determine if o is contained in A1 or A2.
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Al A2
2 o —2 >0
Decomposition p o p o
Degree of p >1 > 1
P "< | | >"_Op
Replacement
Table 6: m =1

If m = 2, there are ten possible cases, as shown in Table 7. In either of the cases
A1,A2; we can only attach to o blocks containing no edge of weight 2. Hence after
applying the corresponding replacement, there is no edge with weight 2 that is incident
to 0. In case B1 or B2, we can only attach to p blocks containing no edge of weight 2.

Al A2
Y Y
2 2 2 2
Decomposition Y T X S
Degree of p 2 2
Replacement o X X o]
B1 B2
P P
2{ :2 2: EZ
Decomposition
Degree of p > 2 > 2
p p
Replacement
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C1 C2
0] 0]
7
P P
+ 2 + 2
Decomposition Poe—=—ex Po—=>ex
Degree of p 2 2
Replacement DCC DCC
D1 D2
X X
2 2 2 2
2 2
3 + Qe - +
Decomposition 8 B 8 a
Degree of p 3 3
Replacement
D3 D4
X X
2 2 2 2
2 2
> + > + >
Decomposition 8 P 8 P
Degree of p 3 3
Replacement
Table 7: m =2

Table 7 gives all possible cases with m = 2. To determine the type of neighborhood o
is contained in, let us denote the node connected to o by an edge of weight 2 by p, then
examine the degree of p. According to Table 7, if the graph is s-decomposable, deg(p) > 2.

Suppose the degree of p is 2, we denote the other node that is connected to p by =x.
Note that the weight of px must be 2. If x is connected to o by an edge with weight
4, then o must be contained in neighborhood B1 or B2 depending on the orientation of
edges. Note that in this case, the graph is a disjoint connected component. If To has
weight 1, then o is contained in neighborhood A1 or A2 depending on the orientation of
edges. If z is not connected to o, then the graph must be a disjoint connected component
C1 or C2.

Next, suppose the degree of p is 3. By Table 7, there are two edges with weight 2
that are incident to p, one of which is op. Denote the other edge of weight 2 by ox (the
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other endpoint is z). If x is connected to o by an edge of weight 4, then o is contained in
neighborhood B1 or B2. If z is not connected to o, then o lies in neighborhood D1-D4.
Note that in the latter case, the degree of 0 is 1. If it is neither of the above two situation,
the graph is not s-decomposable.

Finally if the degree of p is greater than 3, o must be contained in neighborhood B1

or B2.
If m = 3, there are fourteen cases, as shown in Table.8.
Al A2
2 2
. P2 ° ° 2P
Decomposition
Degree of p 3 3
0 o
Replacement t j
B1 B2
P P s P P
+ Ce—o + =0
2 2 2 2
Decomposition 0 0
Degree of p 3 3
Replacement DCC DCC
B3 B4
P Ps P P
+ Cce—e + O————>0
2 2 2 2
Decomposition 0 0
Degree of p 3 3
Replacement DCC DCC
C1 C2
p p
21; iz + 2é2 2{ :2 + 2{' ‘_\2
Decomposition P X 0 X
Degree of p 4 4
X X
Replacement t j
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C3 C4
p 9
Decomposition oP X o X
Degree of p 4 4
X X
Replacement ]E j[
D1 D2
Z Y4
2 " 2 °
y + 25 22 y + 25 22
2 o) 2 0
Decomposition w w
Degree of p 5 5
Replacement DCC DCC
D3 D4
Z Z
2 p 2 p
y + 2i EZ y + 21 iZ
2 0 2 o]
Decomposition w w
Degree of p 5 5
Replacement DCC DCC
Table 8: m=3

Note that the degree of node o in all pictures is 2 except A1 and A2. Therefore, if
the considered node has degree larger than 2, it can only be contained in neighborhood
A1l or A2. In both cases, there are two nodes, denoted by x,y, that are connected to
o by edges of weight 1, and p is connected to both nodes x and y by edges of weight 2.
Moreover, the degree of p is 3, the degrees of z,y are both 2. Suppose o has degree 2,
according to Table 8, deg(p) = 3,4 or 5.

First, suppose deg(p) = 3. o can only be contained in a neighborhood shown in
B1,B2,B3 or B4. Note that in all these cases, all edges incident to p has weight 2, and
the graph is a disjoint connected component.

Next, suppose deg(p) = 4. Then o can only be contained in neighborhoods of type
C1,C2,C3 or C4. In all these cases, p is incident to four edges of weight 2. Also p is
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connected to a node which is also connected to o by an edge of weight 4. Among the
four nodes connected to p, three of them, including o, have degree 2, the remaining node
has degree no less than 2. We can check the orientations of all edges to determine which
neighborhood o is contained in.

Finally, suppose deg(p) = 5. In this case, o can only be contained in neighborhood
D1-D4, and the graph is a disjoint connected component. In all these cases, p is incident
to three edges of weight 2. Denote the other endpoints of these edges besides o by z,y.
Node p is also incident to two edges of weight 1. Denote the other endpoints of these
two edges by z,w. According to Table 8, z,w must both be connected to one of x,y by
edges of weight 2. Assume it is y. Then o is connected to x by an edge of weight 4. Note
that in this case deg(y) = 3, deg(z) = deg(w) = deg(z) = 2. We can determine which
neighborhood o is contained in by examining the orientations of the edges.

4 Summary

In Section 3, we exhausted all nodes that are incident to some edges with weight 2. We
also replace a neighborhood of any such node by a consistent one which does not contain
any edge with weight 2. Therefore, for any given weighted graph, we can determine if it
is s-decomposable, and simplify it into a graph containing only edges with weight 1 or 4.
Then we apply the algorithm in [1] to determine if it is block decomposable. Note that
every node is examined at most twice: once in the procedure as in Section 3, once in the
algorithm in [1]. Hence the algorithm is linear in the size of the given graph.
Applying the algorithm to Theorem 3, we get the following corollary:

Corollary. Given a skew-symmetrizable matriz B, there exists an algorithm linear in the
size of B to determine if B has finite mutation type.

Proof. Assume the size of B is no less than 3. First, we check if B is mutation-equivalent
to one of the seven exceptional types in Theorem 3. If so, B is mutation finite. Since the
sizes of all seven types do not exceed 6, it only takes finite number of operation. If none
of the seven types is mutation equivalent to B, we apply our algorithm to the associated
adjacency graph of B. By the previous argument, the number of operation it requires is
linear in the size of B. If the adjacency graph is confirmed to be s-decomposable, B has
finite mutation type. O

Remark 5. If diagram G is s-decomposable, our algorithm can recover the blocks used to
obtain G since every step of replacement is consistent. In particular, we can determine the
ideal tagged triangulation of bordered surfaces with marked points to each decomposition.

Remark 6. A connected diagram G has non-unique decomposition if and only if G is
isomorphic to one of the two diagrams in Figure 4.
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