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The Decomposition Algorithm of Skew-symmetrizable
Exchange Matrices
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Abstract

Some skew-symmetrizable integer exchange matrices are associated to ideal (tagged)
triangulations of marked bordered surfaces. These exchange matrices admits unfoldings
to skew-symmetric diagrams. We develop an combinatorial algorithm that determines
if a given skew-symmetrizable matrix is of such type. This algorithm generalizes the one
in [1]. As a corollary, we use this algorithm to determine if a given skew-symmetrizable
matrix has finite mutation type.

Introduction%
ot

_Lersome triangulationsfof surfaces invariant under finite group symmetries, we associate
graphs whose edges -admit positive integer weights. Such graphs are also associated with
matrices with integer entries. We call such graphs or thelr associated matrlce% 5- de(’omposable

(see exaet definition 5.) ew-

—te- 1 —2 =2 or-O-s-asseciatedtoa graph catlecqaioer: Quiver mutation is a,n—epeﬁa-t-fen-

~errvuiver defined in [2]. The collection of mutation-equivalent quivers to a given quiver G
is called the mutation class of G. We say a quiver is mutation finite or has finite mutation
type if its mutation class is finite.

A quiver or its associated skew-symmetric matrix is said to be block-decomposable if the
quiver can be obtained by combining pieces of graphs isomorphic to six types of quivers,
called elementary blocks, by a particular way of gluing (see exact definition 1). It is proved
in [3] that a quiver has finite mutation type if and only if it is either block-decomposable or is
of one of the 11 exceptional types. It is also proved ithesame article that a quiver is block-
decomposable if and only if it is the associated adjacency graph of an ideal triangulations of
a bordered surface with marked points.

An n xn integer matrix B is said to be skew-symmetrizable if there exists an n X n integer
diagona matrlx D such that BD is skew-symmetric. Mutation and mutation class are also
defined o skevw- symetrlz%blg ag‘e_ces Our goal is to establish an combinatorial algorithm
that determines if a given graph whose edges are—oriented-and are equipped with integer

thas,
weights is s-decomposable, prov1d)a§e€ tool to find if its associated skew-symmetrizable
matrix has ﬁmte mutation type Each skew- symmetrlzable exchange matrlx is aeqomated
to a one -y h
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\/s—decomposability is a generalization of block-decomposability (see Definition 5 and Table 2).
A skew-symmetrizable exchange matrix is said to be s-decomposable if it can be obtained
by gluing both elementary blocks and.mew blocks by the rules in Def. 1 and Def. 5.

In [1], we provided an algorithn&é%@%ﬂthe size of quiver (G that determines if G is block-
decomposable. As a corollary, we provedthat for any skew-symmetric integer matrix B, there—
exdsts an algorg&hrl lipear in the size of B +hat determinf4if 5 has finite mutation type. The
algorithm we est.aﬂis%(élﬁ this article is a generalization Jf the pne in [1]. Y, fati
is inspired by [2], in which the authors generalize the result J& [3] to the adjaeceney—graphs

—asseetated to-skew-symmetrizable exchange matm}cez The following results are proved in [2]:
(dizgrams).
1. There is a one-to-one correspondence betweeﬁ} s-decomposable skew-symmetrizable

graphs with fixed block decomposition and ideal tagged triangulations of marked bor-
dered surfaces with fixed tuple of conjugate pairs of edges.

2. A skew-symmetrizable n X n matrix, n > 3, that is not skew-symmetric, has finite
mutation class if and only if 4 i ¢ h is either s-decomposable or mutation-
equivalent to one of seven types. lt'afmm

3. Any s-decomposable diagram admits an unfolding to a diagram associated to ideal
tagged triangulation of a marked bordered surface.Any mutation-finite matrix with
non-decomposable diagram admits an unfolding to a mutation-finite skew-symmetric
matrix.

According to thew if G is the diagram associated to a skew-symmetrizable
exchange matrix M, and T is the ideal tagged triangulation corresponding to a particular
s-decomposition Gy of G, then an unfolding to G ge. deﬁ\rﬂl;zs ng’kew—symmetric gél%%ram ob-
tained by gluing of unfolding§of corresponding blocks. ized algorithm det
if a given graph is s-decomposable, and for each possible decomposition, findkthe associated
ideal tagged triangulation of bordered surface with marked points. : i
tetermimes = giver et TrAtTIxTras—finite i ype. Moreover, this
algorithm is linear in the size of the given matrix. Tn ordat o oﬁttrmiu,e_ ‘{. Q Given 5’%&!4/-'
syronotmacdly moekiy fas duwite wuthdion +\J\w b remacns to cluck ‘{ U sl onr
2 Definitions & Ao skessmmitne) oc 7 (4 detm-spmtriable) t:jt-g o
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. In this section, we introduce definitions xequired-to-establish our algorithm, and give a brief
disriptio . .
of the algorithm. For convenience, we denote an edge that connects nodez, y by
77 if the orientation of this edge is unknown or irrelevant, z7 if the edge is directed from z

to y, ¥y H-from y-to-. ofherunse.
amd

Definition 1. We recall that a diagram (or graph) is block-decomposable (or decomposable)
if it is obtained by gluing elementary blocks jer Table 1 by the following gluing rules:

1. Two white nodes of two different blocks can be .idenjified. As a result, the graph
becomes a union of two parts;The common node s black. A white node can
neither be identified to itself nor with another node of the same block.
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2. A black node can not be identified with any other node.

3. If an edge a = & — y with t ite nodes (x,y) is glued to another edge b =p — ¢
with two white nodes (p e following way: x is glued to p and y is glued to ¢,
then a nulti-edge is4otmed, and\he nodes z = p, y = g become black.

4. If an edge a = 2 — y with two white nodes x,y is glued to another edge b = ¢ — p,
then both edges are removed after gluing, the nodes x = p, y = ¢ become black. We

say that edges annihilate each other. — A— r,,&ms_e_ OAWM)/— acm,()hz[? _
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3 ? Definition 2. Let B(G) = (b;;) be the skew-symmetric matrix whose rows and colunns are
‘8? labeled by the vertices of (G, and whose entry b;; is equal to the number of edges going from
}t i to j minus the number of edges going from j to i. We say B(G) is the signed adjacency
vt matriz associated to G,fﬁ’ an matrix B = B(G), we say G is the oriented adjacency graph
:{' associated to B. ( 9\

&bRemark 1. By definition, the associated matrix to a @}_m.p:gﬁre graph is skew-symmetric.

odd]

Definition 3. A seed is a pair (f, B), where f = fi,..., f, form a collection of algebraically
independent rational functions of n variables xi,...,x,, and B is a Skew—Symmetrizableh‘”‘C
matrix. The part f of seed (f, B) is called cluster, elements f; are called cluster variables, 4‘4"‘
and B is called exchange matriz.

It is proved in [3] that an skew-symmetric exchange matrix has finite mutation type if it ng M/
associated to a decomposable graph or one of the 11 exceptional types. To generalize the ™
results to skew-skymmetrizable matrix, we need the following definitions: X

Definition 4. A diagram (or graph) S associated to a skew-symmetrizable integer matrix
B is an oriented graph with weighted edges obtained in the following way: Suppose B =
(bij)ij=1- Vertices of S are labeled by [1,...,n|. If b;; > 0, we join vertices i and j by an
edge directed from 7 to j and assign to this edge weight —b;;b;;.

Definition 5. If a graph G can be obtained by gluing both elementary blocks and new
blocks in Table 2 by the gluing rules in Definition 1 and the following new r :
graph is s-decomposable:




1. If the graph has multiple edges containing n parallel edges, replace the multiple edge by
an edge of weight 2n. For example, if we glue two parallel spikes of the same direction,
we get an edge of weight 4 (see Figure 1).

_I_J= Qi

Figure 1: Edge of Weight 4

2. All single edges have weight 1.

Remark 2. If (G is obtained by gluing blocks by the above rules, GG is associated to a ideal
tagged triangulation of bordered surface with marked points obtained by the gluing of the
pieces of surfaces associated to the blocks, two arcs are glued together iff the corresponding

nodes are glued together in the associated blocks. H.{LUEM-M lare .

Remark 3. According to the above rules, the weight of any edge in a decomposable graph
can only be 1,2 or 4. All edges of weight 2 can only be obtained from blocks in Table 2.
Moreover, since all edges of weight 2 contains at least one black endpoint, we can never
obtain an edge of weight 4 from_two edges of weights 2. Moreover, an edge of weight 4 can
only be obtained from I'Vor by Figure 1.

The unfolding procedure is defined as follows (see section 4 in [2]): Suppose that we have a

chosen disjoint index sets: Ey, Es, ..., E,, with |E;| = d;. Denote m = Z d;. To each matrix
i=1

B" mutation-equivalent to a given skew-symmetrizable m x m matrix B, a skew-symmetric

matrix B’ indexed by |JI_, E; is defined so that the following conditions are satisfied:

1. the sum of entries in each column of each £; x £ block of B equals to b;;;
2. if b;; > 0, then the E; x F; block of B’ has all entries non-negative.

Define a composite mutation 15; = [[;.p, #1; on B'. If C is the skew-symmetric matrix con-
structed from B satisfying the above conditions, we say C' is an unfolding if for any B’

mutation-equivalent to B, [i;(B') = u(B').

A geometric interpretation of mutations on the blocks in Table 2 is given in Lusztig’s [4].
Abusing the notation, we say the new blocks are the foldings of their corresponding un-
foldings. Each unfolding represents an ideal tagged triangulation of bordered surface with
marked points (see pictures in [2], (Table 7.1)). Each of these unfoldings except the last one
corresponds to triangulations with two edges inside a digon (or monogon), one of the edges
is tagged and the other is untagged. This pair of edges are said to be conjugate. Conjugate

4



Table 2: Blocks of Unfolding

New Blocks Unfolding Triangulation

boundary
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edges represent the same vertex in corresponding foldings. Mutationg on the foldhrg vertex

correspondgto the flipyof both edges in the conjugate pair. Composifte flip of A triangulation
corresponding to an unfolding.giagé_ar_n is defined as a collection of flips in all edges that

. wn . L . .
representy vertices whesetolding—is the same vertex. Note that flips in a composite flip
commniute, see Figure 2. Wy Yo
a
v2
L ]
. vy .
. Flip w2 Flip 1 .
(] U2
. . “1
v v2 .
Flip v1 YL Flip vy
L ] : °
v2

Figure 2: Composite Flip

In [2], the following theorem is proved:

Theorem 1. Any s-decomposable diagram admits an unfolding to a diagram arising from
ideal tagged triangulation of a marked bordered surface. Any mutation-finite matriz with
non-decomposable diagram admits an unfolding to a mutation-finite skew-symmetric matriz.

Given an s-decomposable diagram with a fixed decomposition, there is a unique tagged
triangulation of a marked bordered surfaces with chosen tuples of conjugate pairs of edges.

This surface can be obtained by gluing S a TOTS aé)f surfaces re}znese_gt <

> unfoldings of corresponding blocks in the decomposition® e ecomr%ﬁ#g'ﬁ Toahriednt white
under mutation: YMutating the diagram means performing composite flips to the original varfily
triangulations. Furthermore, the following theorems are proved in [2]:

Theorem 2. There is a one-to-one correspondence between s-decomposable skew-symmetrizable
diagrams with fixed block decomposition and ideal tagged triangulations of marked bordered
surfaces with fixed tuple of conjugate pairs of edges.

Theorem 3. A skew-symmetrizable n x n matriz, n > 3, that is not skew-symmetric,
has finite mutation class if and only if its diagram is either s-decomposable or mutation-
equivalent to one of seven types.
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By the previous theorems—f—we—sneed to check A a given skew-symmetrizable matrix has
finite mutation type, we can first check if it is mutation-equivalent to one of seven types of
diagrams. If not, we can further check if the associated adjacency graph is s-decomposable.
We develop an algorithm pext <o determinf if amy—graph is s-decomposable.

Lbo Wy a. aven drndrpem [

For convenience, we need the following definition:
Yo wumless

Definition 6. Suppose N is a subgraph of G with all its ngdés colored white or black. If Y,
there exists another quiver M with all its nodes colored white or black, such that G can be
obtained by gluing M to N by the rules in definitiongl and 5, we say N isaolored subgraph herg
of G. A neighborhood of o is a colored subgraph of G that copteins node o. We say a
colored subgraph N of G is decomposable if there exists an s-de€omposable or decomposable
graph G that contains N as a colored subgraph. A colored subgraph N ¢ is said to be
indecomposable if any graph that contains N as a colorgd subgraph is net s-decomposable

noor decomposable. We say a colored subgraph N is s-decomposable as a5 graph if N can
be obtained by gluing blocks by thfo Eﬂuﬁl@zg Sin definitiofr1 and 5, and the coloZof nodes in N

—restted by gluingeof blocksmusthecompatibte with the eriginal color of N,
C verfiees

Remark 4. Ij}s{:ﬂote that if G is obtained by gluing a colored subgraph to a neighborhood

of 0, no edge in this neighborhood can be annihilated. Seresd, for a given graph i and aﬂé
node o, the set of neighborhoods of o in G, denoted by N, forms a partially ordered set by
inclusion. We define three subsets of N, as follows: )

e T, is the set of all decomposable neighborhoods each of which contains all edges incident
to o.

e D, is the set of all decomposable neighborhoods of o each of which is decomposable as
a subgraph.

o S,={NCZ,ND, | N is minimal}. Hun | 424;‘-/7-0,‘/
Ry definiti ; idered Beée-O,Iif S, is empty, the graph containing o is not s-
decomposable. bt )

Our goal is to find a combinatorial algorithm to determingif a given graph is s-decomposable.
According to remark 3, we can determine if a graph contains’z‘l Ck§ fronéI‘able 2 by locating

edges of weight 2 and analyzing their neighborhoods. We Mhe humber of edges of
weight 2 that are incident to the considered node o. Denote this number by n. According *

to the rules of gluing, n is at most 4 for any edgre T an s-decomposable graph. If o is not %y
incident to any _Qf_ed-ge@—v:% th weight two, we sklip this node. Therefore, n = 1,2,3 or 4. '
Starting with any 1088 o v n = 4, we check if S, is non-emipty by examining the following
information that can be directly observed from the graph: degree of o, degree of the nodes

that are connected to o by one edge, and the number and directions of the edges between

node o and the nodes connected to o. If §, is emipty, the graph is not s-decomposable. If

o is contained in a neighborhood in S,, we replace the neighborhood by another one which

is consistent in the sense that the new graph is s-decomposable if and only if the original

7
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one is. We-also—want—that [the new neighborhood does not contain any edge with weight 2.
After all nodes with n = 4 are exhausted, we proceed to the nodes with n = 3,2, 1 (in theg
exact order). Finally, we get a graph that contains only edges of weight 1 and 4. The new
graph is s-decomposable= it is decomposable (see [1]). Then we apply the algorithm from
[1] to determine it the graph is decomposable. Since all replacements are consistent, we can
determine if the original graph is s-decomposable.

Lok wly')

In [1], it is proved that we can assume that the graph is connected when only blocks in Table
1 are used. If the graph is s-decomposable, it is easy to see that we can make the same
assumiption as well. In fact, except ¥ II, none of the edges can be annihilated by gluing
a block from Table 2 to any graph. If Ilis glued to an existing graph, causing ww to be
annihilated, nodes u, v are still connected via wo and ©w. Therefore, gluing new blocks will

not break connectivity. Tdon't widwpband v ha¥ Ay
[ wi ?ﬂf{

We collect all graphes obtained by gluing two blocks from Table 2, denoted by U, let: 547

—

3 Algorithm

U = U U {Ia,Ib,I1,IIIa,I1Ib,IV,V} hee

then in order to find S, of a node o, it suffices to check if node o has a neighborhood that is
isomorphic to sere graph in U. By checking all nodes in ¢, we analyze the results in Tableg
3-8. a

1 )

—For Lany of the neighborhoods in U, #=# is a disjoint connected comp(é 7 the algorith-
m If the neighborhood may not he, a disjoint connected component,*we apply suitable
replacement as suggested in the tables. Note that we need those replacements to be con-
sistent, i.e. the original graph is s-decomposable if and only if the new graph is. The
consistency of all replacements can be checked by exhausting #1e neighborhoods in ¢/ and

Lemma 1 in [1]. analys;l
31 n=4
We have the following two situations:
A B
Decomposition ‘—
Degree of o 4 1
Replacement fjortt—Cy ' ¢ (DCC) | DCC

Table 3: n =4

8



. C e
—IL‘;S,NLS IS—CITVIAL.

o

3.2 n=3
We have the following eight situations:
Al A2
2 2
X C@ 0 0 ) X
o 2 2
Decomposition
Degree of o 3 3
—J | [>—
Replacement
B1 B2
o} 0
2i§2 + 0oel—e 25 }2 + ee2—00
Decomposition
Degree of o 3 3
Replacement DCC DCC
C1 C2
0 0
AYH A NFA A
Decomposition - o 0 X 4 X 0
Degree of o 4 4
X X
Replacement I :[
D1 D2
Decomposition - -
Degree of o 5 5
Replacement DCC DCC
Table 4: n=3

In this case the degree of the considered node can only be 3,4 or 5, otherwise the graph is
not s-decomposable. For a given graph G, to determine whieh-neighborhood jo is-contained—

—in, we examine the degree of o. % Lo .
W % /s
COmered



First suppose the degree of o is 3. We only need to consider A1,A2,B1,B2. We call the
nodes connected to o by an edge boundary nodes. If one of the boundary nodes, denoted hy z,
is connected to the remaining two by edges of weight 1, o can only be contained in A1 or A2.
Note that in either cases, the degree of x is no less than 3, and the degrees of the remaining
two boundary nodes are 2. If only two of the boundary nodes are connected, o can only be
contained in B1 or B2. In both cases, the neighborhoods are disjoint connected components.
Nody-

Second, suppose the degree of o is 4. "0 can only be contained in C1,C2, otherwise the
graph is not s-decomposable. Note that in this case, one boundary node is connected to o
by an edge of weight 1. Denote this node by z. The remaining three boundary nodes are
connected to o by edges of weight 2, two of them are connected by an edge of weight 4, the
third one is connected to x by an edge of weight 2. Moreover, the degree of x is no less than
2, the remaining boundary nodes all have degree 2.

Finally, suppose the degree of o is 5. In this case, o can only be contained in D1,D2,
otherwise the graph is not s-decomposable. In either case, the neighborhood is a disjoint
connected component.

T TT——

3.3 n=2

We have the following 13 situations:

A B
0
2 2
3 2 2
Decomposition M=t )y !
Degree of o 2 >2
E o) 0
3 C%
Replacement <X y
C
0o 0 0o 0 0o 0
- - -
i Wl &
Deconiposition
Degree of o 2
Replacement DCC
| D1 D2

10




F3

y y
Lz/& 2 N2
] 2 O + [ 2 >0 + e
Decomposition | 4 o o 2 0 0 X
Degree of o 3 3
X X
Replacement I t
E1l E2
y b/
2
@) + P ) - X
W o 0 W o 0
2
Decomposition z z
Degree of o 4 4
Replacement DCC DCC
E3 E4
y y
2
o« O + . »0 + X
w o 0 W o 0
2
 Decomposition | R R
Degree of o 4 4
Replacement DCC DCC
F1 F2
+ +
X
2 2
Decomposition
Degree of o 5 5
X X O_‘< I
Replacement I o)
\ F4

11




ble,

+ S -
0 X (6] X
2 2
Deconiposition
5 5

Degree of o

i >‘_°x X'Q_‘< |
Replacement o]

Table 5: n=2

To d%erm&ipe if the considered node o is contained in any of the neighborhoods in Table 5.,‘4;
we .d;schﬁﬂ.sa,the degree of 0. Note that when n = 2, the degree of theconsidered node v
only }é 2,3,4 or 5 hy—Fabte’5, otherwise, the graph is not s-decomposable.
: T
values w d-o&aﬂm/m‘&ﬁmfi can hane oy of Eypes (e .4;7
If the degree of o is 2, oYcan—enly—be—eontatmed—in—a neighborhoods -as—in—<ases A,B,C,
otherwise the graph is not s-decomposable. Denote the other endpoints of the edges of

weight bvfby m,y.+ %M “{}L Ty These casts we
w

o If z,y are disconnected, there are two possibilities. First, o can be obtained in one of
the neighborhoods as shown in case C; second, the neighborhood can be obtained fronT
annihilating edge ¥y. To determine how the neighborhood is obtained, note that in the

the edge ¥7 can be annihilated by an edge from a spike, a triangle or the mid-edge

,\:
A w}
&wﬁﬁg %ﬁf / first case, the neighborhood is a disjoint connected component, and in the second case,
H@»‘“M

Y of a diamond. Hence if the degrees of nodes z,y are both 2, and are both directed

w&f'

W

o\ away or from node o, then the neighborhood is obtained in the way shown in the

\ second or third picture in case C. If two edges have different orientations, there are
two possible decompositions. If the degree of nodes z,y are both greater than 2, the
graph is decomposable only if the neighborhood is obtained by gluing another block
to the one shown in the case A.

e If 2,y are connected by an edge of weight 4 from y to z, there are two cases. First,
the neighborhood can be obtained from gluing an edge 7 to the graph as in case A.
In this situation, the degrees of nodes x,y are at least 2; Second, the neighborhood
can be obtained from the biedn case B. Therefore, inthis—easg, to distinguish the
above two cases, we first check the degrees of o. If o has degree greater than 2, o is
contained in a neighborhood as shown in case B. If 0 has degree 2, we check the degrees
of x,y: if the degrees of both z,y are two, the neighborhood is a disjoint connected
component and has two possible deconlpositiom; if the degrees of both x,y exceed 2, o
must be contained in a neighborhood as-shewsn—a A. In latter case, after applying the
corresponding replacement, we need—te keep edge Ty and change its weight from 4 to
1.

12



e If z, y are connected by an edge of weight one from y to x, the neighborhood can only

be obtained from the efre—in case A. 7; L #n { %“

Next suppose the degree of o is 3. In this case node o can only be Contairlﬁi in a neighbor-
hood shown in B,D1 or D2, otherwise the graph is not s-decomposable#First we check if
the nodes connected to o by an edge of weight 2 are connected by an edge of weight 4. If
so, o must be contained in B. If not, we denote the three nodes connected to o by z,y, z
where y, 2z are connected to o by edges with weight 2. Note that z must be connected to
o via an edge with weight 1, z,y must be connected via an edge 7 with weight 2, degrees
of y and z mwust be 2 otherwise the graph is not s-decomposable. Node o is contained in a
neighborhood shown as in D1 if o, z are connected via an edge 52, D2 if via Zd.

Next suppose the degree of o is 4. In this case node o can only be contained in a neighbor-
hood shown in one of B,E1-E4, otherwise the graph is non s-decomposable. By the same
argument as in this previous case, we dg,gk if 0 is contained in B. If not, we need to deter-
mine if o is contained in any of -’Ehese—ﬁeig-lcﬂgeﬁheed-s- Denote the nodes that are connected
to o by edges with weight 1 by y, 2z, the nodes that are connected to o by edges with weight
2 by z,w. Then y, z must both be connected to one of the nodes that are Connected to o.
1\5‘-,111110 iy, z are both connected to z, then Ty, Tz both hcwo \\0101

E1-E4, 5w must have \\01&[&%2 and the (|(‘0L(|‘(‘ of w is ;(’\(nnlma:'i
of the edges incident to o #6 determine M[,‘h"nel orh od o0 is contained )(

he ‘orientat 101/4

Finally, if the degree of o is 5, \fé Can‘gnlyjaé Contalned in a nel—%;hhgfe}f()d shown in one of
B,F1-F4, otherwise the graph is non s-decomposable. Similarly, we check if o is contained
in B. If not, we denote the boundary nodes of o by z, vy, 2, u, v, where x,y, z are connected to
o by edges of weight 1, u, v are connected to o by edges of weight 2. Note that if the graph is
s-decomposable, one of u, v myst,be connected to two nodes among z, y, = by edges of weight
2. Assume u is connected to y, w by edges of weight 2. Then, v must be connected to = by
another edge of weight 2, and deg(y) = deg(w) = deg(v) = 2, deg(u) = 3, deg(z) > 2

34 n=1
In this case, t ere is only one edge with weight 2 that is incident to 0. Denote th her
endpoint of edge by p. We consider the number of edges incident to p{with Welght 2
Denote this number by m. P\_/

m = 1, there are two cases, as shown Table. 6. We can only attach blocks contain-

ing no edge of weight two to the node p. In bhoth cases, degree of o is one. It is easy to
determine if o is contained in A1 or A2.

Decomposition P o &) o

27



Degree of p >1 >1 |

po—~<I P—ap
Replacement

Table 6: m =1
olar 1ot

I L . v

If m = 2, there are ten possible cases, as shown in Table 7. In cases A1,A2, we can only
attach to o blocks containing no edge of weight 2. Hence after applying the corresponding
replacement, there is no edge with weight 2 that is incident to o. In case BIAB2, we can

only attach to p blocks containing no edge of weight 2. o
Al A2
P P
2 2 2 2
Decomposition - il i i
Degree of p 2 2
Replacement 0 k ,&0
B1 B2
p P
2 2 2 2
Decomposition A X
Degree of p e - > 2
Replacement — —
C1 C2
O ]
b4 7
p p
. t 2
Decomposition Poe—=—ex Po—=—sex
Degree of p 2 2

14



| Replacement DCC I DCC |

D1 D2
X X
2 2 2 2
2 7l
[ 20 + [ 2. +
Decomposition i P i B
Degree of p 3 3
Replacement
D4
X
2 2
s g+ f—
Decomposition 'a
Degree of p 3 3
Replacement

Table 7: m =2
with ~eye of-

T: K 7 gives all possible cases whenl m = 2. To determine whith neighborhood o is contained
in, denote the node connected to o by an edge with weight 2 by p, then examine the degree
of p. According to Table 7, if the graph is s-decomposable, deg(p) > 2.

Suppose the degree of p is 2, we denote the other node that is connected to p by z. Note
that the weight of pz must be 2. If z is connected to o by an edge with weight 4, then o
must be contained in # neighborhood as shows- B1 or B2 depending on the orientation of
edges. Note that in this case, the graph is a disjoint connected component. If To has weight
1, then o is contained in A neighborhood asshowmrim A1 or A2 depending on the orientation
of edges. If x is not connected to o, then the graph must be a disjoint connected component

—asshewn—-C1 or C2.

Nex} suppose the degree of p is 3. By Table 7, there are twp edges with weight 2 that
are incident to, p, one of which is @p. Denote the othey edge ;ﬁh weight 2 by o7 witt{_the
other endpoint“z), If 2 is connected to o by an edge w;%j weight _i,jl:’hen o is égntained in_a—
neighborhood as—showmin B1 or B2. If x is not connected to o, 0 must-be—eentained in
neighborhood asshawn-in-ene-ef D1-D4. Note that in the latter case, the degree of o is 1.
If it is neither of the above two situation, the graph is not s-decomposable.
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Finally if the degree of p is greater than 3, o must be contained in /?( neighborhood as—
—shown-in B1 or B2.

If m = 3, there are fourteen cases, as shown in Table.8.

Al A2
2 2
P> o} 0 5P
Decomposition
Degree of p 3 3
| , CO OD_< |
Replacement 3 o
B1 B2
P S P Fine
T Ot T O ®
2 2 2 2
Decomposition 0 0
Degree of p 3 3
Replacement DCC DCC
B3 B4
P Pis P PED
aaller ) T Ommin®
2 2 2
Decomposition Y 0
Degree of p 3 3
Replacement DCC DCC
C1 C2
p P
2 f :2 + 2 ig 2: :2 + Zi :2
Decomposition | 0 Ps s 0
Degree of p 4 4
Replacement | |
| C3 C4 |
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p P
0 R N
Decomposition 0 Pe i D X
Degree of p 4 4
I >‘ Cx x© "< |
Replacement d O
D1 D2
Z Z
2 p 2 :
y + 2:‘ ‘_\2 y + 25 ‘_\2
2 0 2 0
Decomposition w w
Degree of p 5 5
Replacement DCC DCC
D3
z Z
p P
2 i 2 i
2 0 2 0
Decomposition w w
Degree of p 5 )
Replacement DCC DCC
Table 8: m=3

Note that the degree of node o in all pictures is 2 except jw"A1l and A2. Therefore, if
the considered node has degree larger than 2, it can only be contained in thé neighborhood

—showm—in Al or A2. In both H(é-lg-l‘ﬂ%ﬁd‘! there are two nodes de ted by x 'Y, at are
connected to o by edges weight 1, and p is connected to both H@ﬁ%y edges weight

2. Moreover, the degree of p is 3, the degrees of z,y are both 2. Suppose the—eonsidered—
—nocte 0 has degree 2. %em&er—t—he—deg__)fﬂa According to Table 8, deg(p) = 3,4 or 5.

First, suppose deg(p) = 3. o can only be contained in # neighborhood shewn-in-B1,B2,B3
or B4. Note that in all these cases, all edges incident to p has weight 2, and the graph is a

disjoint connected component.
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Thon,

Next, suppose deg(p) = 4. %) can only be contained in a neighborhoods shewmm C1,C2,C3
or C4. In all these cases, p is incident to four edges of weight 2. Also p is connected to a node
which is also connected to o by an edge with!weight 4. Among the four nodes connected to
p, three of them, including o, have degree 2, the remaining node has degree no less than 2.
We can check the orientations of all edges to determine which neighborhood o is contained in.

Finally, suppose deg(p) = 5. In this case, o can only be contained in & neighborhood shews—
~—m D1-D4, and the graph is a disjoint connected component. In all th?&?sﬂes, D ls incident

to three edges of by ight 2. Denote the other endpoints of these edgés/by A, x7y {o—is—the—
—considerednode}. p 1s also incident to two edges with weight 1. Denote the other endpoints

of these two edges by z,w. According to Table 8, z,w must both be connected to one of

x,y by edges of weight 2. Assume it is . Then o is connected to z by an edge of weight 4.

Note that in this case deg(y) = 3, deg(z) = deg(w) = deg(xz) = 2. We can determine which

neighborhood o is contained in by examining the orientations of the edges.

4 Summary

In Section 3, we exhausted all nodes that are incident to some edges with weight 2. We
also replace a neighborhood of any such node by a consistent one which does not contain
any edge with weight 2. Therefore, for any given weighted graph, we can determine if it is
s-decomposable, and simplify it into a graph containing only edges with weight 1 or 4. Then
we apply the algorithm in [1] to determine if it is block decomposable. Note that every node
is examined at most twice: once in the procedure as in 3, once in the algorithm in [1]. Hence
the algorithm is linear in the size of the given graph.

Apply the algorithm to Theorem 3, we get the following corollary:

Corollary. Given a skew-symmetrizable matriz B, there exists an algorithm linear in the
size of B to determine if B has finite mutation type.

Proof. Assume the size of B is no less than 3. First, we check if B is mutation-equivalent to

one of the seven exceptional types in Theorem 3. If S0, ﬁ is mutatipn finite. Since the sizes
: : gﬁrﬁ@ﬂ- L

of all seven types do not exceed 6, it only takes finite gtep . If none

of the seven types is mutation equivalent to B, we apply our algorithm to the associated

adjacency graph of B. By the previous argument, the number of operation it requires is

linear in the size of B. If the adjacency graph is confirmed to be s-decomposable, B has
finite mutation type. U

Remark 5. If diagram G is s-decomposable, our algorithm can recover the blocks used to
obtain G since every step of replacement is consistent. In particular, we can determine the
ideal tagged triangulation of bordered surfaces with marked points to each decomposition.

Remark 6. A connected diagram G has non-unique decomposition #G is isomorphic to one

of the two diagrams in Figure 3.
0 ‘
18 [x;taaﬂa/‘fw/f"l”)
: 1" W 2a$
wite “H# 7



Figure 3
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