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Abstract

Let G be a graph embedded on a surface S; with Euler genus € > 0, and let P C
V(G) be a set of vertices mutually at distance at least 4 apart. Suppose all vertices
of G have H (g)-lists and the vertices of P are precolored, where H(¢) = LL V§45+1J
is the Heawood number. We show that the coloring of P extends to a list-coloring
of G and that the distance bound of 4 is best possible. Our result provides an
answer to an analogous question of Albertson about extending a precoloring of a
set of mutually distant vertices in a planar graph to a 5-list-coloring of the graph
and generalizes a result of Albertson and Hutchinson to list-coloring extensions on
surfaces.
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1 Introduction

For a graph G the distance between vertices x and y, denoted dist(x,y), is the number of
edges in a shortest z-y-path in G, and we denote by dist(P) the least distance between
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two vertices of P. In [1] M. O. Albertson asked if there is a distance d > 0 such that
every planar graph with a 5-list for each vertex and a set of precolored vertices P with
dist(P) > d has a list-coloring that is an extension of the precoloring of P. In that paper
he proved such a result for 5-coloring with d > 4, answering a question of C. Thomassen.
There have been some preliminary answers to Albertson’s question in [4, 8, 11]; initially
Tuza and Voigt [17] showed that d > 4. Kawarabayashi and Mohar [11] have shown that
when P contains k vertices, there is a function dj > 0 that suffices for such list-coloring.
Then recently Dvotdk, Lidicky, Mohar and Postle [9] have announced a complete solution,
answering Albertson’s question in the affirmative, independent of the size of P.
Let S. denote a surface of Euler genus € > 0. Its Heawood number is given by

H(s) = VJF\/FJ

and gives the best possible bound on the chromatic number of S, except for the Klein
bottle whose chromatic number is 6. (For all basic chromatic and topological graph theory
results, see [10, 13].) In many instances results for list-coloring graphs on surfaces parallel
classic results on surface colorings. Early on it was noted that the Heawood number also
gives the list-chromatic number for surfaces; see [10] for history. Also Dirac’s Theorem [7]
has been generalized to list-coloring by Bohme, Mohar and Stiebitz for most surfaces; the
missing case, ¢ = 3, was completed by Kral’ and Skrekovski. This result informs and
eases much of our work.

Theorem 1.1 ([5, 12]). If G embeds on S., € > 0, then G can be (H(e) — 1)-list-colored
unless G contains K.

Analogously to Albertson’s question on the plane, we and others (see [11]) ask related
list-coloring questions for surfaces. In this paper we ask if there is a distance d > 0 such
that every graph on S., ¢ > 0, with H(e)-lists on each vertex and a set of precolored
vertices P with dist(P) > d has a list-coloring that is an extension of the precoloring of
P. In [3] Albertson and Hutchinson proved the following result; the main result of this
paper generalizes this theorem to list-coloring.

Theorem 1.2 ([3]). For each e > 0, except possibly for e = 3, if G embeds on a surface of
FEuler genus € and if P is a set of precolored vertices with dist(P) > 6, then the precoloring
extends to an H(e)-coloring of G.

Others have studied similar extension questions with k-lists on vertices for & > 5.
For example, see [16], Thm. 4.4, for £ > 6 and [11], Thm. 6.1, for £k = 5; however,
in both results the embedded graphs must satisfy constraints depending on the Euler
genus and the number of precolored vertices. Our main result is Thm. 1.3, which shows
that there is a constant bound on the distance between precolored vertices that ensures
list-colorability for all graphs embedded on all surfaces when vertices have H(e)-lists. It
improves on Thm. 1.2 by removing the possible exception for € = 3, reducing the distance
of the precolored vertices from 6 to 4, and broadening the results to list-coloring.
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Theorem 1.3. Let G embed on S., ¢ > 0, and let P C V(G) be a set of vertices with
dist(P) > 4. Then if the vertices of P each have a 1-list and all other vertices have an
H(e)-list, G can be list-colored. The distance bound of 4 is best possible.

When G is embedded on S., let the width [2] denote the length of a shortest non-
contractible cycle of GG; this is also known as edge-width. For list-coloring we have the
following corollary of Thms. 1.1 and 1.3.

Corollary 1.4. If G embeds on S., € > 0, with width at least 4, if the vertices of
P C V(G) have 1-lists and all other vertices have H(g)-lists, then G is list-colorable
when dist(P) > 3. The distance bound of 3 is best possible.

Given that graphs embedded with very large width can be 5-list-colored as proved
in [6], it is straightforward to deduce a 6-list-coloring extension result for such graphs.
When G embeds on S., ¢ > 0, with width at least 29, if a set of vertices P with
dist(P) > 3 have 1-lists and all others have 6-lists, then after the vertices of P are deleted
and the color of each z € P is deleted from the lists of z’s neighbors, the remaining graph
has 5-lists, large width, and so is list-colorable. Thus G is list-colorable, but only when
embedded with large width whose size increases with the Euler genus of the surface.

A consequence of Thomassen’s proof of 5-list-colorability of planar graphs [15] is that
if all vertices of a graph in the plane have 5-lists except that the vertices of one face have
3-lists, then the graph can be list-colored. For surfaces, we offer as a related result another
corollary of Thm. 1.3.

Corollary 1.5. If G embeds on S., € > 0, and contains a set of faces each pair of which
is at distance at least two apart, with all vertices on these faces having (H(e) — 1)-lists
and all other vertices having H (¢)-lists, then G can be list-colored.

The paper concludes with related questions.

2 Background results on surfaces, Euler genus and
the Heawood formula

Let S. denote a surface of Euler genus € > 0. If € is odd, then S, is the nonorientable
surface with e crosscaps, but when ¢ is even, S. may be orientable or not. We let T
denote the torus, the orientable surface of Euler genus 2, and K the Klein bottle, the
nonorientable surface of Euler genus 2.

The Heawood number H (¢), defined above, gives the largest n for which K, embeds
on a surface S of Euler genus ¢, as well as the chromatic number of S., except that Kg
is the largest complete graph embedding on K and 6 is its chromatic number.

The least Euler genus € for which K,, embeds on S; is given by the inverse function

(n—3)6(n—4)]

szl(n):[
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e |H(e)| e | f | Largest | € | H(e) | e | f | Largest
Face Face
1 6 15| 10 3 13| 12 | 66 |43 6
2 7 21 | 14 3 14 12 66 | 42 9
3 7 21113 6 15| 13 | 78 | 52 3
4 8 28118 5 16| 13 | 78 | 51 6
5 9 |36]24 3 17 13 | 78 | 50 9
6 9 ]36]23 6 18| 13 | 78 |49 12
71 10 | 45130 3 19| 14 | 91 |60 5
8 10 | 45129 6 20| 14 | 91 |59 8
9 10 | 45 | 28 9 21 14 91 | 58 11
10 11 |55 36 5 221 15 [ 105 |70 3
11 11 | 55|35 8 23| 15 | 105 |69 6
12 12 |66 | 44 3 24 | 15 | 105 |68 9

Table 1: Embedding parameters for K.

Each K,, n > 5, of course, has a minimum value of € > 0 for which it embeds on S,
called the Fuler genus of K,, but for € > 2 more than one surface S. may have the same
maximum K, that embeds on it. For example, both S5 and Sg have Heawood number
9 with Ky being the largest complete graph that embeds there. Embedding patterns of
K(ey depend on the congruence class of H(e) modulo 3 for € > 1. In Table 1, which gives
values of € and H(e) for e = 1,...,24, e is the number of edges in Ky (), f =2—c—v+e
is the number of faces in a 2-cell embedding of Kp() on Se, and the final column gives
the size of the largest possible face when K. is so embedded. That largest face size is
three more than the difference 2e — 3f.

For our results we need to know when Kp() necessarily has a 2-cell embedding on
S.. When K, embeds on S,, but not on S,_;, then K,, necessarily embeds with a 2-cell
embedding. When K, embeds in addition on S.,q, ..., S.4; with ¢ > 0, then it may
not have a 2-cell embedding on the latter surfaces. For example, on surfaces S, T, Sy,
and S5, the complete graphs K¢, K7, K3 and Ky have 2-cell embeddings, respectively, but
Kg, K7 and K9 may or may not have 2-cell embeddings on K, S3 and Sg, respectively.

If f is a face of an embedded graph G, let V(f) and E(f) denote the incident vertices
and edges of f. We say that V(f) U E(f) is the boundary of f and that the closure of f
is the union of f and its boundary. Each edge of E(f) either lies on another face besides
f or it might lie just on f. For example, Fig. 1 shows two graphs embedded on the torus,
T. In the first graph, edges 2-3 and 4-7 each border two faces, but edges 3-6 and 8-9 each
border only one face. The size s of a face f is determined by counting, with multiplicity,
the number of edges on its boundary, and we then call f an s-region. In other words,
when s; edges of E(f) lie on another face of G besides f and sy edges lie only on f, then
we call f an s-region where s = s1 + 2s5. When f is a 2-cell, E(f) forms a single facial
walk W5, and the size of the face equals the length of the facial walk, counting multiplicity
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of repeated edges. Since an s-region f may have repeated edges and repeated vertices,
we indicate |V (f)| =t by calling f also a t-vertex-region where ¢t < s. Hence the shaded
region in the first graph in Fig. 1 is a 13-region and a 9-vertex-region, since two edges
and four vertices are repeated; the shaded region in the second graph, with no repeated
vertices or edges, is a 13-region and a 13-vertex-region.

Figure 1: A 2-cell region in a graph embedded on the torus, 7, before and after vertex-
and edge-duplication

Here in summary are statistics on 2-cell embeddings of Ky (). The patterns presented
are visible from Table 1 and are easily derived from Euler’s formula and the function I(n),
given above.

Lemma 2.1. Let € > 1 and suppose Ky has a 2-cell embedding on S. (but S; # K).

Seti = L%J so that H(¢) = 3i+3,3i + 4 or 3i +5 with i > 1.

1. If H(e) = 3i+3, then e = (3i2 —4)/2,(3i* — i + 2)/2,..., or (32 + i — 2)/2. The

number of faces of the embedding is given by f = 3i®> +5i + 2,312+ 5i+1,..., or
3i2 +4i+3, respectively, and the largest possible face is an s-region with s = 3,6, .. .,
or 3i, resp.

2. If H(e) = 3i+4, then e = (3i*+14)/2, (31> +i+2)/2, ..., or (3i*+3i) /2. The number
of faces of the embedding is given by f = 31> +7i+4,31>+7i+3, ..., or 3i* +6i+4,
respectively, and the largest possible face is an s-region with s = 3,6, ..., or 3i + 3,
resp.

3. If H(g) = 3i+5, thene = (3> +3i+2)/2, (31> +3i+4)/2,..., or (31> +5i)/2. The
number of faces of the embedding is given by f = 3i®> +9i + 6,312 + 91 +5,..., or
3i2 4+ 8i+7, respectively, and the largest possible face is an s-region with s = 5,8, ...,
or 31 + 2, resp.

From the point of view of the genus, given ¢ > 0, we can determine directly whether
or not Kp( necessarily has a 2-cell embedding on S.. Kp() necessarily has a 2-cell
embedding if and only if ¢ = (3i> —4)/2 or (3i* 4+ i)/2 or (3i> + 3i + 2)/2 for some
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value of ¢ > 0. Thus given ¢ > 0, we compute H(e) and set i = [H(g)/3| — 1 so that
H(e) =3i+3,3i +4, or 3i + 5. Then Ky, necessarily embeds with a 2-cell embedding
if I(H(e)) = €; that is, S. is the genus surface for Ky ).

In the results of Table 1 we do not claim that every 2-cell embedding of Ky (. achieves
the maximum face size when that size is greater than three. For example when Ky )
has a largest face being a 5- or 6-region, it might embed as a near-triangulation with one
5- or 6-region, respectively, or it might be a triangulation except for two 4-regions or a
triangulation except for a 4- and a 5-region, resp. (An embedding is a near-triangulation
if at most one region is not 3-sided.)

We note from Table 1 and Lemma 2.1 that there are some instances of ¢ when Ky,
embeds possibly with an (H(g) — 1)-region which might allow for the embedding of two
different (not disjoint, but distinct) copies of Ky () on Se, as explained in the next lemma.

Lemma 2.2. Let Ky have a 2-cell embedding on S., € > 0.

1. The largest possible face in the embedding is an (H(e) — 1)-region. If there is an
(H () — 1)-region, there is just one, and the embedding is a near-triangulation.

2. If every face of the embedding is at most an (H(g) — 2)-region, then no additional
copy of Kg(e) can simultaneously embed on S..

3. When Ky can embed with an (H(c) — 1)-region that is also an (H () — 1)-vertex-
region, then two different copies of Ky () can embed, by adding a vertex adjacent to
all vertices of that region, and then the two complete graphs share a copy of Kg(e)-1-
Such an embedding is possible only if H(¢) = 3i + 4 and € = (3i*> + 3i)/2, and the
resulting embedding is a triangulation.

We call the latter graph DKp.y; it is also Kp(o)41 \ {e} for some edge e.

Proof. Suppose that Kp() has a 2-cell embedding with at least one s-region where
s > H(e) — 1. Then Euler’s formula plus a count of edges on faces with multiplici-
ties leads to a contradiction to Lemma 2.1 in all cases except when there is precisely one
(H(e) — 1)-region, H(e) = 3i + 4, e = (3i* + 3i)/2, and all other faces are 3-regions.

Suppose Kp () embeds on S. with every face having at most H(e) — 2 sides. No two
additional vertices in different faces of Ky () can be adjacent. For 2 < k < 4, k mutually
adjacent, additional vertices cannot form Ky together with H(e) — k vertices on the
boundary of a face.

Proofs of remaining parts follow easily from Fuler’s Formula and Lemma 2.1. ]

If V' C V(G), we denote by G[V'] the induced subgraph on the vertices in V’; for
E' C E(G), we denote by G[E’| the induced subgraph on the edge set £E'. When f is a
face of an embedded G, we may also call the subgraph G[E(f)] the boundary of f; that
is, it may be convenient at times to think of the boundary of a face f as a set V(f)UE(f)
and at other times as the subgraph G[E(f)].

We restate two very useful corollaries of Thm. 6 in [5]. The first involves a case
that is not covered in that theorem, but which follows easily from their proof. If f is the
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infinite face of a connected plane graph, we call the boundary of f the outer boundary of
G, and when G[E(f)] is a cycle, we call it the outer cycle. Without loss of generality we
may suppose that for a connected plane graph the outer boundary is a cycle.

Corollary 2.3. ([5]) Let G be a connected plane graph with outer cycle C that is a k-
cycle with k < 6. If every vertex of G has a list of size at least 6, then a precoloring of C'
extends to all of G unless k = 6, there is a vertex in V(G) \ V(C) that is adjacent to all
vertices of V(C'), and its list consists of siz colors that appear on the precolored C.

Then the results of Thm. 6 in [5] together with Cor. 2.3 give the next corollary.

Corollary 2.4 ([5]). Let G be a connected plane graph with outer cycle C that is a
k-cycle with 3 < k < 6. If every vertex of G has a list of size at least maz(5,k + 1), then
a precoloring of C extends to all of G.

The next lemma is used repeatedly in the proof of Thms. 3.3 and 4.3. It is an extension
of the similar result for 5-list-colorings in [5]. The parameters are motivated by the
“Largest Face” and H (¢)-list sizes from Table 1.

Lemma 2.5. Let H be a connected graph with a 2-cell embedding on S., € > 0, and let f
be a 2-cell k-region of H, k > 3. Let G be a plane graph embedded within f and let G be
a simple, connected graph that consists of G, H[E(f)], and edges joining V(G) and V(f)
so that Gy is embedded in the closure of f. Let P = {vy,...,v;} be a subset of V(Gy)
satisfying dist(P) > 3. Then if every vertex of Gy has an (-list except that the vertices
of P each have a 1-list, every proper precoloring of H[E(f)] extends to a list-coloring of
Gy provided that no vertex of P is adjacent to a vertex of V(f) with the same color as its
1-list, and

1. k=3 and { > 6,
2. k>4 and >k + 2, or

3. k=6o0rk>9 0=Fk+1, and there is no verter x adjacent to k + 1 vertices of
V(f)U{v;}, for somei=1,...,j, with x’s list consisting of £ = k + 1 colors that
all appear on V() U {v;}.

Proof. Note that G¢[E(f)] = H[E(f)]. Also note that the condition dist(P) > 3 guaran-
tees that no vertex of Gy is adjacent to more than one v;. For v; € P\ V(f), we say that
we excise v; if we delete it and delete its color from the list of colors for each neighbor that
is not precolored. The proof has three cases that together prove parts 1-3 of the lemma.

Case A. Assume k=3 and ¢/ > 6,4 <k<6andl{>k+2,ork=6and ¢ =7. In
these cases first we excise the vertices of P\ V(f) so that every remaining vertex of G
has a list of size at least 5 for k = 3, of size at least k + 1 for £ = 4, 5,6, or else of size at
least 6 when k = 6.

In the following we may need to do some surgery, perhaps repeatedly, on the face f
and its boundary, so that we can apply Cor. 2.4. First, more easily, when f is a 2-cell
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k-region on which lies no repeated vertex, then G is a plane graph with outer cycle a
k-cycle, k < 6. By Cor. 2.4 a precoloring of G¢[E(f)] extends to G\ P and this coloring
extends to all of Gy unless there is a vertex x with a 6-list, adjacent to six vertices of
V(f) with the six colors of z’s list. If a’s list was decreased to a 6-list, x was adjacent to
some vertex v;, but this situation is disallowed by hypothesis in part 3.

Otherwise in a traversal of Wy we visit a vertex more than once and may travel along
an edge twice. In the former case, each time we revisit a vertex x, we can split that
vertex in two, into x; and x5, and similarly divide the edges incident with x so that the
face f is expanded to become the new face f’, still a k-region, and the graph Gy becomes
Gy» which is naturally embedded in the closure of f’ and contains the same adjacencies.
Now there is one more vertex in V(f’) and the same set of edges E(f') = E(f) on the
boundary and in the boundary subgraph Gy [E(f’)]. A precoloring of Gf[E(f)] gives a
precoloring of G [E(f')] in which vertices x; and x5 receive the same color; we call this
procedure vertex-duplication. In the latter case, when we revisit an edge e = (y,y’), we
may visit both of its endpoints twice or one endpoint twice and the other just once. We
similarly duplicate the edge e = (y,%’) by duplicating one or both of its endpoints and
splitting e into two new edges e; and e;. Then we divide the other edges incident with
e so that Gy becomes G which is naturally embedded in the closure of the new face f’,
still a k-region, but now with one or two more vertices in V(f’), the same number of edges
in E(f') and in Gp[E(f')], and with one less duplicated edge in Wy . A precoloring of
Gf[E(f)] gives a precoloring of G/ [E(f)] in which duplicated vertices receive the same
color; we call this procedure edge-duplication. We note that in both duplications there
cannot be a vertex « that is adjacent to both copies of a duplicated vertex (since Gy is a
simple graph). As an example, the first graph in Fig. 1 shows a 2-cell face that is a 13-
region, in which vertices 3, 6, 7, and 8, are repeated, and edges 3-6 and 8-9 are repeated.
Vertex- and edge-duplication produces the second graph, which has a new face that is a
13-region and whose facial walk is a cycle given by 1-8-9-8'-7-2-3-6-5-7'-4-6"-3'-1.

In all cases after vertex- and edge-duplication, the 2-cell k-region f becomes a 2-cell k-
region f* with no repeated vertex or edge on the outer boundary. G; has been transformed
into a plane graph Gy with outer cycle, G +[E(f*)], of length & < 6. The precoloring of
G[E(f)] has become a precoloring of G« [E(f*)] with duplicated vertices receiving the
same color. Then by Cor. 2.4, the precoloring of G+[E(f*)] extends to G+ \ P and so
the precoloring of G¢[E(f)] extends to G\ P and to all of Gy since the exceptional case
of part 3 cannot occur. (Since f* is at most a 6-region and has a duplicated vertex, it is
a t-vertex-region for some ¢t < 6, and there cannot be a vertex adjacent to six vertices of
V(f).)

Case B. Suppose k > 7 and ¢ > k + 2 so that in all cases £ > 9. For v € V(G),
let Ef(v) denote the set of edges joining v with a vertex of V(f). Suppose there is a
vertex = of V(G) that is adjacent to at least k — 3 vertices of V(f). If z = v; for some
i,1 < i < g, then Gf[E(f) U E¢(v;)] can be properly colored by assumption. If z # v,
for any 7,1 < ¢ < 7, then x is adjacent to either one or no vertex v;, and since x has an
(-list, ¢ > k + 2, the coloring of G¢[E(f) U Ef(v;)] (respectively, G¢[E(f)]) extends to z.
In all cases G¢[E(f) U E¢(x)] divides f into regions of size at most 6, and the coloring
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of G¢[E(f) U E¢(x)] extends to the interior of each s-region, 3 < s < 6, by Case A since
interior vertices, other than the v;, have 9-lists.

Otherwise every vertex x in G is adjacent to at most k — 4 vertices of V(f). For each
such vertex x we delete from its list the colors of V'(f) to which it is adjacent. This may
reduce the list for  to one of size six or more. Next we excise the vertices of P in G\ V(f),
resulting in the planar graph G \ P with every vertex having a list of size at least five,
which can be list-colored by [15]. This list-coloring is compatible with the precoloring of
Gf[E(f)] and extends to P and so to all of Gy.

Case C. The case of k = 6,/ = 7 was covered in Case A. Suppose that £ > 9 and
¢ =k+ 1> 10. Suppose there is a vertex = of V(G) that is adjacent to at least k — 4
vertices of V(f). As before, if x = v; for some i,1 < i < j, then G¢[E(f) U Ef(v;)] can
be properly colored by assumption. If x # v; for any 7,1 < ¢ < j, then z is adjacent
to one or no vertex v;, and the coloring of G¢[E(f) U Ef(v;)] (resp., G¢[E(f)]) extends
to x in all cases unless (since ¢ = k + 1) z is adjacent to all vertices of V(f) U {v;} for
some 4,1 < i < j, and 2’s list consists of ¢ colors all appearing on V(f) U {v;}. We have
disallowed this case. Now G/[E(f) U E(z)] forms a graph that consists of triangles and
s-regions with s < 7. The coloring of Gf[E(f) U E¢(x)] extends to the interior of each
region by the previous cases, since ¢ > 10.

Otherwise every vertex z of G is adjacent to at most k — 5 vertices of V(f), and we
proceed as in the proof of Case B by decreasing the lists of vertices adjacent to V(f)
and excising all the v; to create a planar graph with every vertex having at least a 5-list.
The resulting graph is list-colorable with a coloring compatible with that of G¢[E(f)] and
extending to Gy. O

3 Results on K, genus surfaces

Most parts of the proof of the next lemma are clear; these results are used repeatedly in
the proof of the main results.

Lemma 3.1. 1. Suppose at most one vertex of K,, has a 1-list, at least one vertex has
an n-list, and the remaining vertices have (n — 1)-lists or n-lists. Then K, can be
list-colored.

2. If one vertex of DK,, has a 1-list and all other vertices have n-lists, then DK, can
be list-colored.

3. If at most siz vertices of DK,, n > 7, have lists of size n — 1 and all others have
n-lists, then DK, can be list-colored.

Proof. We include the proof of part 3. Suppose that one of the two vertices of degree
n—1, say z, has an n-list. Then K,, = DK, \ {z} has at most six vertices with (n—1)-lists
and can be list-colored since n > 7. This coloring extends to z which has an n-list and is
adjacent to n — 1 vertices of the colored K,. Otherwise both vertices of degree n — 1, say
x and y, have (n — 1)-lists, L(x) and L(y) respectively. Suppose there is a common color
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¢ in L(z) and L(y). Then coloring = with ¢ extends to a coloring of K, = DK, \ {y}
after which y can also be colored with c¢. Otherwise L(x) and L(y) are disjoint. Suppose
that when DK, \ {y} is list-colored, the colors on K,,_; = DK, \ {z,y} are precisely the
n—1 colors of L(y) so that the coloring does not extend. If there is some vertex z of K,,_;
with an n-list that contains a color not in L(y) and different from the color ¢, used on z,
we use ¢, on z, freeing up the previous color of z for y. Otherwise, for every z with an
n-list, that list equals L(y) U{c,}. Besides these vertices of K,,_; with prescribed n-lists,
there are at most four others in K,,_; which have n — 1 lists. These four vertices might
be colored with colors from L(x), but that still leaves at least one color ¢, # ¢, in L(x)
that has not been used. We change the color of z to ¢/, and the color of one of the n-list
vertices of K,,_1 to c,, thus freeing up that vertex’s previous color to be used on y. Il

Theorem 3.2. Suppose G embeds on S, € > 0, and does not contain K. Then when
every vertex of G has an H(e)-list except that the j vertices of P = {vy,...,v;}, 7 = 0,
have 1-lists and dist(P) > 3, then G is list-colorable.

Proof. Let G embed on S., € > 0, and suppose G does not contain K (). We excise the
vertices of P = {vy,...,v;}, if present, leaving a graph with all vertices having at least
(H(g) — 1)-lists since dist(P) > 3. By [5, 12], the smaller graph can be list-colored, and
that list-coloring extends to G. O

In particular this result holds for all graphs on the Klein bottle since K7 does not
embed there. The first value not covered by the next theorem is ¢ = 3 with H(e) = 7.

Theorem 3.3. Suppose G has a 2-cell embedding on S, € > 0, and contains K. Then
when every vertex of G has an H(c)-list except that the j vertices of P = {v1,...,v;},
j = 0, have I-lists, G is list-colorable provided that € is of the form ¢ = (3i* —1)/2,
(3i% +14)/2, or (3i* + 31 + 2)/2, for some i > 1, and dist(P) > 4.

Proof. We know that Kp(.) necessarily has a 2-cell embedding on S, for ¢ = 1,4 as
does K7 on T. (Kg and K7 may or may not have 2-cell embeddings on K and on Sj,
respectively.)

The values € = (31> —i)/2, (3i> +1)/2, or (3i® + 3i + 2)/2 for some 7 > 1 are those
for which K (.) necessarily has a 2-cell embedding on S.; they give the value of the genus
surface of Ky () for each of the modulo 3 classes of H(e). Since dist(P) > 4, at most one
vertex v, € P is in or is adjacent to a vertex of Ky (but not both), and in the latter
case vy, is adjacent to at most H(e) — 1 vertices of the complete graph since Kp(-)41 does
not embed on S.. Thus in all cases Ky () U P can be list-colored by Lemma 3.1.1. When
e =1, H(e) = 6, and Kg embeds as a triangulation on S;. When e > 1, if e = (3i*—14)/2 or
(3i*41)/2, Kp(-) embeds as a triangulation, and if ¢ = (3i*+3i+2)/2, Ky () embeds with
the largest face size at most five, and in all cases H(e) > 7. Hence we apply Lemma 2.5
for € > 1 to see that the list-coloring of Ky extends to the interior of each of its faces
and so G is list-colorable. O

A similar proof would show that when the orientable surface S. with € even is the
orientable genus surface for Ky (i.e., when ¢ is even and gives the least Euler genus
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such that K.y embeds on orientable S.), then for every G with a 2-cell embedding on
orientable S. and containing K. the same list-coloring result holds. The first corollary
of Section 1 also follows easily.

Proof of Cor. 1.4. Suppose H(e) = 3i + 3,7 > 1. If ¢ = (3i* —4)/2, then Ky, embeds
with f = (i + 1)(37 + 2) faces by Lemma 2.1.1. Ky contains (3i + 3)(3¢ + 2)(3i + 1)/6
3-cycles, more than the number of faces so that Kp() embeds with a noncontractible
3-cycle. Thus in this case G' cannot contain Kp) and by Thm. 3.2, G' can be list-
colored. If e = (3i* —i+2)/2, ..., or (3i* +i —2)/2, then Ky (. embeds with fewer than
f = (i+1)(3i + 2) faces and so the same result holds.

When H(e) = 3i+4 or 3i+5,i > 1, an analogous proof shows that G cannot contains
Ky ) and so is list-colorable.

To see that distance at least 3 is best possible for the precolored vertices, take a vertex
x with a k-list L(x) and attach k pendant edges to vertices, precolored with each of the
colors of L(z). O

4 All surfaces

First we explore some topology of surfaces and non-2-cell faces of embedded graphs. Cycles
on surfaces (i.e., simple closed curves on the surface), for both orientable and nonorientable
surfaces, are of three types: contractible and surface-separating, noncontractible and
surface-separating, and noncontractible and surface-nonseparating. (When the meaning
is clear, we suppress the prefix “surface.”) A non-2-cell face of an embedded graph must
contain a noncontractible surface cycle within its interior. For example, in the second
graph in Fig. 1, the shaded region is a 2-cell face, and the unshaded region is a non-2-
cell face that contains a noncontractible and nonseparating cycle. (For a more detailed
discussion see Chapters 3 and 4 of [13].)

Suppose f is a non-2-cell face of Kp() embedded on S.. We repeatedly “cut” along
simple noncontractible surface cycles that lie wholly within the face f until the “derived”
face or faces become 2-cells. Each “cut” is replaced with one or two disks, creating a new
surface, and with each “cut” Ky ) stays embedded on a surface S, with ¢’ < . Below we
explain this surface surgery and count the number of newly created faces, called derived
faces in the surgery.

Lemma 4.1. Suppose Ky () embeds on S., € > 0. Then the largest possible 2-cell face in
the embedding is an (H(g) — 1)-region.

Proof. Suppose the embedded Ky ) has a non-2-cell k-region f; initially there are no de-
rived faces. In f we can find a simple noncontractible cycle C, disjoint from its boundary,
V(f)U E(f). If C is surface-separating, it is necessarily 2-sided. We replace C' by two
copies of itself, C' and C’, and insert in each copy a disk, producing surfaces S(1) and
S'(1), each with Euler genus that is positive and less than €. Since Ky, is connected, it
is embedded on one of these surfaces, say S(1). The face f of K. on S. becomes the de-
rived face fi of K. on S(1) and retains the same set of boundary vertices V(f1) = V(f)
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and edges F(f1) = E(f) so that f; is also a k-region. Initially f is not a derived face,
f1 becomes a derived face and the Euler genus decreases by at least 1. If, later on in the
process, f is a derived face, then f; is also a derived face, the number of derived faces
does not increase, and the Euler genus decreases by at least 1.

If C' is not surface-separating and is 2-sided, we duplicate it and sew in two disks, as
above, to create one new surface S(1) of lower and positive Euler genus on which Ky
is embedded. If C' was not separating within the face f, then the derived face f; keeps
the same set of boundary vertices and edges as f and remains a k-region. As above, the
number of derived faces increases by at most 1 and the Euler genus decreases by at least 2.
If C' was separating within the face f, then f splits into two derived faces f; and f{. Each
vertex of V(f) and each edge of E(f) appears on one of these derived faces or possibly
two when it was a repeat on f. More precisely, if f; is a kj-region and f] is a kj-region,
then necessarily k1 + k] = k. In this case the Euler genus decreases by 2 and number of
derived faces increases by at most 2, increasing by 2 only when the face being cut was
an original face of Kp(.. If C is not surface-separating and is 1-sided, we replace C' by a
cycle DC of twice the length of C' and insert a disk within DC', producing a surface S(1)
with Euler genus that is less than €. Kp(.) remains embedded on S(1), necessarily with
positive Euler genus, and the derived face f; keeps the same boundary vertices and edges
as f, remaining a k-region. Thus the number of derived faces increases by at most 1 and
the Euler genus decreases by at least 1.

Now we prove the lemma by induction on the number of non-2-cell faces of the embed-
ded Kp(e). We know the conclusion holds when there are no non-2-cell faces by Lemma 2.2.
Otherwise let f be a non-2-cell k-region. We repeatedly cut along simple noncontractible
cycles within f and its derived faces, creating surfaces S(1), S(2), ...on which Ky
remains embedded. We continue until every derived face of f is a 2-cell. Then Kp.) is
embedded on, say, S. with ¢’ < e and has fewer non-2-cell faces. By induction each 2-cell
face has size at most H(e) — 1 and thus every original 2-cell face, which has not been
affected by the surgery, also has size at most H(e) — 1. O

We have purposefully proved more within the previous proof.

Corollary 4.2. Suppose Ky () has a non-2-cell embedding on S., and suppose that after
cutting along noncontractible cycles in non-2-cell faces, Ky has a 2-cell embedding on
S.r, € < e. Then the number of faces in the latter embedding that are derived from faces
in the original embedding is at most € — €'.

Proof. In the previous proof we saw that with some cuts the number of derived faces
is increased by at most 1 and the Euler genus is decreased by at least 1; let ¢y denote
the number of cuts in which there is no increase in the number of derived faces and ¢;
the number of cuts in which there is an increase of 1 in the number of derived faces. If
the increase is always at most 1, then the result follows. The number of derived faces
is increased by 2 precisely when the cutting cycle C' within a face f’ is 2-sided, is not
surface-separating, is separating within f’, and f’ is an original face of the embedding. In
that case the Euler genus is decreased by 2 also; let ¢, denote the number of such cuts.
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Then the decrease in the Euler genus, € — &’ is at least ¢y + ¢1 + 2¢o > ¢; + 2¢9, which
equals the number of derived faces. O

Theorem 4.3. Given ¢ > 0 and G a graph on n vertices that has a 2-cell embedding
on S., suppose that G contains Kgy. If P C V(G) satisfies dist(P) > 4, then if the
vertices of P each have a 1-list and every other vertex of G has an H(e)-list, then G can
be list-colored.

Proof. The proof is by induction on ¢ and on n. We know the theorem holds for G
with a 2-cell embedding on S. for 1 < e < 2 by Thm. 3.3. Consider graphs with 2-cell
embeddings on S.- for €* > 3. For each such embedded graph, the subgraph Kp.
inherits an embedding on S.«, and H(g*) > 7.

Since dist(P) > 4 we know that at most one vertex of P lies in or is adjacent to
a vertex of Kp«. If there is one, call it v; and if not, ignore reference to v; in the
following. By Lemma 3.1.1 we know that G[V (K ~)) U {v}}]| can be list-colored since v;
is adjacent to at most H(e*) — 1 vertices of Ky~ (because Kp+)4+1 does not embed on
Se+). If G contains a vertex x in neither V(K py(+)) nor P, then G[V (Kg()) U {z}] can
be list-colored by first coloring Kp(~) and then coloring z, which has an H(e*)-list and
is adjacent to at most H(e*) — 1 vertices of Kp(c+).

Thus on surface S.+ we know the result holds for every graph on n vertices with
n < H(e*) + 1. Let G have n* vertices, n* > H(¢*) + 1, and have a 2-cell embedding on
S...

Let f be a k-region in the inherited embedding of Kp(~) with incident vertices
V(f) and edges E(f), and let G; denote the subgraph of G lying in the closure of f,
fUV(f)UE(f). Suppose f is a 2-cell face of Ky~ in whose interior lie vertices of
V(G)\ {V(f) U{v}}}; call these interior vertices Uy. Then after deleting the vertices of
Us, G\ Uy has a 2-cell embedding on S.- with fewer than n* vertices, contains Ky,
and contains vertices of P’ C P with dist(P’) > 4. By induction G \ Uy is list-colorable.
By Lemma 4.1 k < H(e*) — 1. We claim that the resulting list-coloring of G[V (f) U {v}}]
extends to Gy.

If £ < H(e*) — 2, then the coloring extends by Lemma 2.5.1 and 2.5.2. Otherwise
k = H(e*) —1 and the coloring then extends by Lemma 2.5.3, unless there is a vertex x of
Gy that has an H (¢*)-list, is adjacent to v}, not in V'(f), and to all vertices of V'(f), and its
H (e*)-list consists of H(e*) colors that appear on its neighbors. Then G[V (K .+)) U{z}]
forms D K-y, which triangulates S.- and does not contain another vertex of P since
dist(P) > 4. Since v} is adjacent to at most three vertices of DK .+ (the vertices of a
3-region), G[V (DK y~))U{v; }] can be list-colored by Lemma 3.1.3. Then the list-coloring
extends to the graph in the interior of each 3-region by Lemma 2.5.1 since H(e*) > 7.

Thus we can assume that every vertex of V/(G)\ {V (Kp(+))U{v;}} lies in a non-2-cell
region of the embedding of K~y on S.-. We claim there are two vertices of Kp.~) that
lie only on its 2-cell faces; we prove that below. One of these might lie in P or be adjacent
to v}, but the other, say z*, has an H(e*)-list and is adjacent only to vertices of K.+,
precisely H(e*) — 1 of these.
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In that case we consider G \ {z*}. If G \ {2*} does not contain Kp~), it can be
list-colored by Thm. 3.2. Otherwise G \ {#*} does contain Kp+. G \ {#*} might have
a 2-cell embedding on S.+ or it might not. In the former case, by induction on n it can
be list-colored. Suppose that G'\ {z*} does not have a 2-cell embedding on S.-. Then
the face f* that was formed by deleting z* is the one and only non-2-cell face of that
embedding since no other face of G has been changed by the deletion of z*. Then we
cut along noncontractible cycles within f*, as described in Lemma 4.1, until every face,
derived from f*, is a 2-cell in G \ {z*} now embedded on S, with ¢’ < ¢*. We have
H(e') = H(e*) since G\ {z*} contains Kp(-y. Thus G \ {z*} can be list-colored by
induction on the Euler genus, and in all cases that coloring extends to G since z* has a
list of size H(e*) which is larger than its degree.

We return to the claim that there are two vertices of Kp(.~) that lie only on 2-cell
faces of its embedding on S.-, given that every vertex of V(G) \ {V (Kg(-)) U {v;}} lies
in a non-2-cell face of the embedded Ky (). Since the number of vertices of G, n*, is
greater than H(e*) + 1, there are some non-2-cell faces containing other vertices of G.
We count the maximum number of vertices of Kp.~) that lie on these non-2-cells to show
that number is at most H(¢*) — 2.

As in Lemma 4.1 we repeatedly cut each non-2-cell face of the embedded K (.+) until all
remaining faces, the original and the derived, are 2-cells; suppose K (.~) is then embedded
on S with € < e*. We know that every vertex originally on a non-2-cell face of Ky
is represented on at least one derived face and we show below that the total number of
vertices on derived faces is at most H(e*) — 2. We also know that ¢/ > I(H(e*)). Let
ny =& —I(H(e")), which is nonnegative, and ny = * —¢’, which is positive. The variable
ny will determine the face sizes in the 2-cell embedding of Ky .~) on S. (see Table 1),
and ny will determine the maximum number of derived faces that have been created.

We consider the modulo 3 class of H(e*), and we begin with the case of H(e*) = 3i+4,
i > 1. We know that e* € {(3i* +14)/2,...,(3i* + 31)/2} = {I(3i +4),..., (31 +4) + i}
so that ny + ny < ¢ by Lemma 2.1. By Cor. 4.2 the number of derived faces is at most
ny. We can determine the possible face sizes of a 2-cell embedding of Kpe~) on S, with
e = 1(3i+4) +ni. A 2-cell embedding on Sp(zi44) is necessarily a triangulation. A
2-cell embedding on Sp(siy+4)+1 consists of triangles except possibly for one 6-region, or
triangles plus two faces whose sizes sum to 9, or triangles plus three faces whose sizes
sum to 12 (necessarily three 4-regions). More generally when ¢ = [(3i + 4) + ny, then
the embedding might consist of triangles plus one (3n; + 3)-region, or triangles plus two
faces whose sizes sum to 3n; + 6, or triangles plus three faces whose sizes sum to 3n; + 9,
etc. And if we choose ny faces, all the derived faces, the sum of their sizes can be at most
3n;+3ny <31 <3i+2=H(e*) — 2.

For i > 1, the same calculation holds when H(¢*) = 3i + 3, and when H(¢*) = 3i + 5,
a similar count will work. In the latter case we have n; + no < i — 1, though the face
sizes may be slightly larger. A 2-cell embedding of Kp(.~) on Sp(si4s) may have triangles
plus a 5-region or triangles plus two 4-regions. In general a 2-cell embedding of Kp(.+)
on S(3i4+5)+n; Might have triangles plus one (3n; + 5)-region or triangles plus two regions
whose sizes sum to 3n; + 8, etc. With ny faces, all the derived faces, their sum of sizes
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can be at most 3n; +3ns +2<3i—1<3i+3=H(e") —2. O
We now complete the proof our main result, Thm. 1.3.

Proof of Thm. 1.5. If G has a non-2-cell embedding on S. that contains Kp(.), we can
perform surgery on the non-2-cell faces, as we did in the proof of Lemma 4.1 and Thm. 4.3,
to obtain a 2-cell embedding of G on a surface of Euler genus & < ¢ that still contains
Kr(e), and hence H(¢') = H(e). We can thus apply Thm. 4.3 to G on S... This shows
that the result holds for every embedding, 2-cell or non-2-cell, and Thm. 1.3 follows. [

The distance bound of 4 in Thms. 1.3 and 4.3 is best possible, for consider Ky () with
a pendant edge attaching a degree-1 vertex to each vertex of Kp (). Give each degree-1
vertex the list {1} and place that vertex in the set P. When every other vertex has an
identical H (¢)-list that contains 1, the graph is not list-colorable and dist(P) = 3.

The second corollary of Section 1 now follows easily.

Proof of Cor. 1.5. Let fi,..., f; be the faces with vertices with smaller lists. Add a vertex
x; to f; and make it adjacent to all vertices of V(f;). Give each x; a 1-list {a} where «
appears in no list of a vertex of GG, and add « to the list of each vertex of V(f;), now
the neighbors of z;. Then G U {zy,...,z;} can be list-colored by Thm. 1.3 since with
P ={zy,...,2;}, dist(P) > 4, and this coloring is a list-coloring of G. O

5 Concluding Questions

1. Skrekovski [14] has shown the extension of Dirac’s theorem that if G is embedded
on Se, € =25, ¢ # 6,9, and does not contain Kg()—1 or Kpg)—s + Cs, then G can
be (H(e) — 2)-colored. Is the same true for list-coloring?

2. If G embeds on S, and does not contain one of the two graphs of Question 1, if the
vertices of one face have at least (H(g) — 2)-lists, and if all other vertices have at
least H (g)-lists, can G be list-colored?
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