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Abstract

The number of regions of the type C, Shi arrangement in R™ is (2n + 1)".
Strikingly, no bijective proof of this fact has been given thus far. The aim of this
paper is to provide such a bijection and use it to prove more refined results. We
construct a bijection between the regions of the type C,, Shi arrangement in R and
sequences aas . . . G, where a; € {—n,—n+1,...,-1,0,1,...,n—1,n},i € [n]. Our
bijection naturally restrict to bijections between special regions of the arrangement
and sequences with a given number of distinct elements.

Keywords: type C, Shi arrangements, sequences, posets, nonnesting partitions.

1 Introduction

A hyperplane arrangement A is a finite set of affine hyperplanes in R". The regions of
A are the connected components of the space R"\Ugec 4 H. In this paper we study the type
C, Shi arrangement, which is an affine hyperplane arrangement whose hyperplanes are
parallel to reflecting hyperplanes of the type C,, Coxeter group. The closely related type
A,,—1 Shi arrangement has been much studied before.  Shi [7] proved the beautiful
result that the number of regions of the type A,_; Shi arrangement is (n + 1)"~!. This
statement is clearly deserving of a combinatorial proof; two different bijections proving
this result were provided by Stanley and Pak [9, 10] and Athanasiadis and Linusson
[4]. Our type C,, results can be considered a generalization of the Athanasiadis-Linusson
bijection. In their work on parking spaces [2], Armstrong, Reiner and Rhoades provide
another generalization of the Athanasiadis-Linusson bijection.
We now review the definitions necessary to state our results.

*The author is partially supported by a National Science Foundation Postdoctoral Research Fellowship
(DMS 1103933).
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The C, Coxeter arrangement Cox®(n) in R" is defined as follows.
Cox®(n) = {r; —2; =0,2; +2; = 0,27, =0 | 1 <i < j <n,k € [n]}.

The regions of the arrangements Cox“(n) naturally correspond to type C, permu-
tations w € &Y. Recall that &¢ is the group of all bijections w of the set [£n] =

{-n,—n+1,...,—1,1,...,n — 1,n} onto itself such that
w(—i) = —w(i),
for all ¢ € [£n] and composition as group operation. The notation w = [ay, ..., a,] means

w(i) = a;, for ¢ € [n], and is called the window of w. In line notation this same
W= —Aa, —Qp—-1...— a1 A1...0pn_1 Ap.

Let C¢ C R"™ be our distinguished cone of Cox®(n) corresponding to the type C,
identity permutation:

CO={XER" | 2y > —Tp_1 > > —Tyg>—T] >x] > Ty > > Tp_1 > Tp}.

Let

wC® = {x € R™"[Zop(—n) > Tup(—ng1) > 50 > Tup(=1) > Tp(1) > Twp(2) > = > Tup(n) |
where {x1,...,z,} are the standard coordinate functions on R™ and x_; = —x; for ¢ < 0.

It follows that the number of regions of Cox®(n) is |&¢| = 2"n!.

The type C, Shi arrangement S¢ [7] is:

S =Cox’(m)U{w; —aj =12, +2; =120, = 1|1 <i < j<nken}

We construct a bijection between the regions of the type C, Shi arrangement S¢ in
R™ and sequences in the set

A%(n) = {(ay,as,...,a,)|a; € {—n,—n+1,...,—1,0,1,...,n— 1,n},i € [n]}.

Theorem 1. The map ¢, which is defined in Section 3, is a bijection between the regions
of 8¢ and sequences in the set A°(n).

Athanasiadis and Linusson [4, Section 4, Question 3] were the first to ask for the con-
struction of such bijection in their paper dealing with the type A,,_; case. The properties
of our bijection yield Theorem 2. To state it we need a little more terminology. A hy-
perplane H is a wall of a region R if it is the affine span of a codimension-1 face of R.
A wall H is called a floor if H does not contain the origin and R and the origin lie in
opposite half-spaces defined by H. Denote by f(R) the number of floors of R. A wall H
is called a ceiling if H does not contain the origin and R and the origin lie in the same
half-spaces defined by H. Denote by ¢(R) the number of ceilings of R. Denote by R(H)
the set of regions of the hyperplane arrangement H.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 2



Theorem 2.
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where d°(a) is the number of distinct absolute values of the nonzero numbers appearing
moa.

The outline of the paper is as follows. In Section 2 we explain the connection between
the regions of the type C,, Shi arrangements and the poset of nonnesting C,,-partitions.
In Section 3 we build on this connection to prove Theorems 1 and 2. Section 4 reiterates
the basic thoughts of the paper on the level of posets and sequences.

2 Posets and the regions of S¢

In this section we explain how to label a region R of S¢ by the set of its ceilings and
the permutation w € &¢, if R is in the cone wC®. We will see that the set of ceilings
can be encoded as certain antichains of a special poset. Such an approach is inspired
by a correspondence developed by Stanley in [9, Section 5] between the antichains of a
family of posets and regions of the type A,_; Shi arrangement. Our bijection between the
regions of 8¢ and sequences (as presented in Section 3) will grow out from an extension
of Stanley’s correspondence to the type C, Shi arrangement. For basic definitions about
posets see [11, Chapter 3.

Pick a region R of 8¢ in the cone wC® of Cox®(n), w € &Y. The set of hyperplanes
of 8¢ that intersect wC© is

HE = HTUH,
where
Hoy = {wi — 2w =111 <5,0 <w(i) <w(j)}
and
Mo = {2wi) — Twg)y =11 < J,w(y) <0 <w(i)}.
Taking into consideration that ;) — Tw(j) = Tw(—j) — Tw(—s) since w(i) = —w(—i) and

x_; = —x; for all ¢ € [+n], it follows that

= {Tw) = Tw() = Tuw(—j) — Tuw(—) = 1] < 4,0 <w(i) < Jw(j)]}-

Partial order on the hyperplanes. If z,,) — Ty@) = 1, a < b, and Ty @) — Tww) = 1,
a’ < ¥, belongs to HS and R is on the same side of the hyperplane Tw(a) — Twp) = 1
as the origin and o’ < a < b < U/, then R is also on the same side of the hyperplane
Tw(a) — Twy) = 1 as the origin, since Ty(w) — Twr) < Tw() — Twr) < 1. Considering all
such implications among the hyperplanes of H,, we arrive to a partial order (there are
two choices of partial order, pick one) on the hyperplanes. Note that if z,q) — Zwe) = 1
is a ceiling of R, then x,(,) — Zw@e) = 1 cannot be its wall, so cannot be its ceiling either.
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We will make the convention that the hyperplane x,,) — z,@p) = 1 is bigger than the
hyperplane ) — Tw@y = 1 in some poset of hyperplanes, which we formalize below.
By the above observations two ceilings are always incomparable in this order.

A poset based on the partial order on the hyperplanes. The following poset
could be defined on the set of hyperplanes directly, but for ease of representation we do it
otherwise. Define the poset Q¢ containing both (i, j) and (—j, —i) subject to constraints
below:

Q% = {(6,5), (=4, =) 4,5 € [#n],i < 3,0 < w(i) < [w(j)[} (1)
with the partial ordering inherited from the hyperplanes:

(i,7) < (r,s)ifr <i<j<s. (2)

See Figure 1 for an example.

(=2, -1)(-1,1) (1,2)

Figure 1: Poset Q¢ for w = [-2, —1].

Note that when (i,j) € QF, then (—j, —i) € QY, and these two elements are incom-
parable unless © = —j. In our informal thinking, these two elements stand for the same
hyperplane: ) — Tw(j) = Tw(—j) — Tw(—i) = 1. The reason we include both of these
elements in Q¢ as opposed to just one of them, is that we do not want to miss any impli-
cation among the hyperplanes as explained in the above paragraph “Partial order on the
hyperplanes.” For example, if w(1) = 1,w(4) = 5,w(2) = —3,w(3) = —2, then both (1,4)
and (2,3) are in QY, (2,3) < (1,4), while if we only included one of (i, ;) and (—j, —i)
then we could have missed this relation.

The antichains of Q¢ with the property that if the element (i, ) is in the antichain,
then so is (—j,—1), i,j € [£n], correspond to nonnesting C,,-partitions if we think of
(k,1) € Q¢ as an arc in a partition of [4n]. In the rest of the paper we call the property
that if the element (7,7) is in an antichain, then so is (—j,—1), i,j € [£n], property
P. Recall that a nonnesting C,-partition of [+n]| can be thought of as a nonnesting
diagram of arcs, which are drawn over the ground set —n,—n+1,...,—2,—-1,1,2,...,n—
1,n (in this order) such that if there is an arc between ¢ and j, for i, j € [£n], then there is
also an arc between —j and —i (there are no multiple arcs). See Figure 3 for an example.

The antichains of Q¢ with the property P are of interest to us, since they encode
the sets of the ceilings of the regions. We can think of mapping a region of &¢ to the
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set of its ceilings (or its floors) (more precisely, when talking of a ceiling @) — Tw(;) =
Tup(—j) — Tw(—i) = 1, we are talking of the elements (¢,7) and (—j, —4) in Q%) to obtain
antichains with property P, see Figure 2 and its caption. Whether we consider the set of
ceilings or floors, Theorem 3 follows. For a related bijection between the positive chambers
of the Shi arrangement and order ideals of the root poset of corresponding type see |1,
Theorem 5.1.13] and [5].

z; =0 2z; =1 T — Xo

-
‘— ~ o

Ty +ay=1

1+ 220

Figure 2: We label each region of the type C, Shi arrangement S¢ by a nonnesting C,,-
partition and a type C), permutation w. The permutation w is specified by the cone.
Consider the set of ceilings of the regions of S¢. Draw the arcs (i,j) and (—j, —i) for
the ceilings T (i) — Tw(j) = Tw(—j) — Tw(—i) = 1 obtaining a nonnesting C),-partition for
each region. We drew in these partitions for the cone defined by z; > x5 > —x5 > —xq,
corresponding to the permutation w =12 — 2 — 1. Note that these partitions exactly
correspond to the antichains of Q[C_z’_l] (see Figure 1) possessing property P.

Theorem 3. The regions of S¢ contained in wC® are in bijection with the antichains of
QY possessing property P. In particular,

RS =Y ir(Q0),

wesg
where jp(QS) denotes the number of antichains of the poset QS possessing property P.

Proof. Tt is clear from the above that there is an injective map from the regions of S¢
to the multiset of the antichains of the posets Q¢ possessing property P, w € &Y. Since
it is known that |[R(SS)| = (2n+1)" [8] and Y, cec 7P(QS) = (2n + 1)™ can be proved
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without reference to S¢ (see Corollary 13 in Section 4) the map also has to be surjective
and Theorem 3 follows. O

Labeling the regions of S¢. Reiterating from above, we label each region of the
type C,, Shi arrangement S¢ by a nonnesting C,-partition and a type C, permutation w.
The permutation w is specified by the cone wC® in which the region lies. The nonnesting
C,-partition is obtained in the following way. Consider the set of all ceilings of a region
of 8¢. Draw the arcs (i,7) and (—j, —i) for the ceilings Tw(i) = Tw(j) = Tw(—j) = Tw(—i) = 1
obtaining a nonnesting C,-partition for each region. These partitions exactly correspond
to the antichains of QY possessing property P. See Figure 2.

3 Sequences and Shi arrangements in type C,

In this section we construct a bijection between the regions of S¢ and the set of sequences
A%(n) ={ay...anla; € [£n] U {0},i € [n]}. Our proof yields enumeration of regions by
the ceiling and floor statistic, which we express in a generating function form.

The type of a C),-partition 7 is the integer partition A whose parts are the sizes of the
nonzero blocks of 7, including one part for each pair of blocks {B, —B}. The zero block
is a block B such that B = —B. Figure 3 shows a nonnesting Cs-partition with blocks
{2}, {—2},{-1,-4},{1,4},{-5, -3, 3,5}. The last block is a zero block, and so the type
of this partition is (2, 1).

Ll T

-5 -4 -3 -2-1 1 2 3 4 5

Figure 3: A type (2, 1) nonnesting Cj-partition.

Recall from Section 2 that we label each region of S¢ by the nonnesting C,,-partition
corresponding to an antichain of Q¥, w € &Y, possessing property P, and a permutation
w € &Y. While we generally think of 7 as on the vertices —n, —n+1,...,—1,1,2,... . n—
1, n, in this order, the C,-partition 7 also has w-labels w(—n), w(—n+1),... , w(—=1),w(1),
...,w(n — 1),w(n). Given a block B = {vy,...,vx} of 7 the set of w-labels of B is

{w(vl), ce ,w(vk)}.

Lemma 4. Given a nonnesting Cy,-partition m, let Sg be a set of size |B| for each block
B of m such that the sets Sg’s are disjoint, their union is [£n] and Sp = —S_p, where
—S_p={—a|ae€ S_g}. Then there exists a unique w such that © is an antichain in
QY possessing property P and the set of w-labels of each block B are equal to Sp.

Proof. Recall that

Q% ={(i,9), (=4, —i) | i,j € [£n],i < 4,0 <w(i) < |w(j)[}
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with the partial ordering:
(1,7) < (r,s)ifr<i<j<s.

Suppose that nonnesting C,-partition 7 is an antichain in Q¢ possessing property P.
Then, for a block B = {vy,va,...,v;} of 7 with v; < vy < -+ < vy, it must be that for
all [ € [k — 1] either

(0 <w(v) < Jw(via)]) or (w(vi) < 0 and fw(v)] < fw(w)]). (3)

This follows since by the definition of QS either (v, v;11) satisfies 0 < w(v;) < |w(vig1)|
or (—vj11, —v;) satisfies 0 < w(—v;41) < |w(—v;)|. Note that (3) implies that the w-labels
of B are such that all the positive w-labels come first followed by all the negative w-labels
and the absolute values of the w-values read from left to right form a unimodal sequence.
Since there is a unique way to arrange a set of numbers in this manner, and when arranged
so m is an antichain in QY possessing property P, it follows that w is unique. See Figure
4 for an example. O]

w = 2 4-13 5-5-31-4-2

CV N o O o TN
5-4-3-2-11 2 3 4 5

Figure 4: The blocks of the nonnesting C,-partition 7 presented above are By = {—1, 1},
By = {-2}, By = {-3,-4,—-5}. For sets Sg, = {—5,5}, Sp, = {3} and Sp, =
{—1,2,4}, as described in Lemma 4, the unique w for which 7 is an antichain of Q¢
is w = [=5,—3,1,—4, —2] as shown on the figure in line notation (and its construction
explained in the proof of Lemma 4).

Lemma 5. In the labeling described in Section 2 the number of regions of SS labeled by
the nonnesting C,-partition m of type X (and some permutation) is equal to

d
n

2N 4

()\1,...,)\51,77/—’)\‘)111 ()

Proof. In this proof we count the number of signed permutations w € &¢ such that 7
is an antichain in the poset Q¢ possessing property P, since the latter is equal to the
number of regions of S labeled by the nonnesting C,-partition 7. By Lemma 4 if we
have a collection of sets Sp of size |B| for each block B of m such that the sets Sp’s are
disjoint, their union is [£n] and S = —S_p, where —S_p = {—a | a € S_g}, then there
is a unique w for which 7 is an antichain in Q¢ possessing property P and the set of
w-labels of each block B are equal to Sg. Moreover, note that for any w for which 7
is an antichain in the poset Q¥ possessing property P the sets of w-labels of the blocks
have to satisfy the above criteria for the Sg’s. Thus, number of regions of S¢ containing
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the nonnesting C),-partition 7 of type A is equal to the number of collections of sets Sp’s

satisfying the above criteria. There are ( - AZ | /\‘) ways of choosing the absolute values

of the elements of the sets Sp’s and there are H?Zl 2*i ways of choosing the signs for the
sets corresponding to the nonzero blocks of . Thus, the total number of collections of
sets Sp’s satisfying the above criteria is (/\17__.7/\7;771_'/\‘) Hle 2N, ]
The following theorem is based on a bijection of Fink and Iriarte [6] between noncross-
ing and nonnesting C,,-partitions which preserves type and a bijection of Athanasiadis [3]
between noncrossing C,,-partitions and pairs (5, g), where S is a set and ¢ is a function
subject to the conditions stated below. We invite the interested reader to learn about
these bijections from the original papers themselves, as their description would take up
considerable amount of space in the current paper and as such it is omitted.

Theorem 6. There is a bijection between the set of type A = (A1, ..., A\g) nonnesting C,,-
partitions and pairs (S, g), where S is a d-subset of [n] and the map g : S — {\1,..., A}
is such that |7 ()| = #{j | \; = 14,5 € [d]}, 0 < i.

Proof. [6, Theorem 2.4] establishes a type-preserving bijection b; between nonnesting
and noncrossing C,,-partitions, and the proof of [3, Theorem 2.3] provides a bijection by
between the set of type A = (A1, ..., Ag) noncrossing C,,-partitions and pairs (5, g), where
S is a d-subset of [n] and the map g : S — {\1,..., A\g} is such that [¢g71(i)] = #{j | \; =
i,7 €[d]}, 0 <. ]

Given a type A = (Aq, ..., A\g) nonnesting C,,-partition 7, denote by S, the set and g,
the function from Theorem 6. Let M, be the multiset consisting of n — |A| 0’s, and ),
copies of each element of g-*()\;), for each part in the set (not multiset!) {\y,..., \s}. A
marked permutation of M, is a permutation of the elements of the multiset M, such
that each nonzero entry has a =+ sign in addition. For example the marked permutations
of the multiset {{0,1,1}} are 011,101,110,0—1—1,—10—1,—1—10,01—1,10—1,1—
10,0 — 11, —101, —110 (we omitted the + signs).

Given two blocks B; and B, in a partition, block Bj is smaller than Bs in the order o
if the smallest vertex that B; contains is smaller than the smallest vertex that B contains.
By convention, if for a block B # — B, we consider block B smaller than block — B in the
order o.

Theorem 7. There is a bijective map ¢ between the regions of S labeled by the nonnesting
Cy-partition w of type X\ and marked permutations of the multiset M.

Proof. There are multiple ways to set up the map ¢. We present one of these ways here,
and based on it the interested reader can device several others (though one will of course
suffice for all we need it).

Given the nonnesting C,-partition m of type A = (A1,..., ;) first we define a map f
from the pairs of blocks ({ B, —B}) of 7 to the set underlying M,. If 7 has a zero block
B = —B, then let f(B) = 0. Let {By,—Bi, By, —Bs, ..., Bg, — By} be all the nonzero
blocks of m, where |B;| = \A;, i € [d], such that if \; = A\;4; for some j € [d — 1], then B,
is smaller than B, in the order o.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 8



Order the nonzero numbers in the multiset M so that the numbers with bigger multi-
plicites come first. Among the numbers with the same multiplicity order them according
to the natural order on integers. Note that by construction the sequence we get as a result
has the form a}'as? .. a(’j\d, where a denotes the sequence of \; a;’s. Let f(B;) = a; for
i€ [d].

Recall that given a region R of S¢ it is labeled by the nonnesting C,,-partition 7 of type
A and a signed permutation w for which 7 is an antichain in Q¢ possessing property P. For
such a region R construct the marked permutation ¢(R) = ¢; ... ¢, of the multiset M, by
the following rule: if vertex v is in block By, k € {0} U[d], then ¢y ) = sign(w(v)) f(B),
where sign(a) = —1if a < 0 and sign(a) =1if a > 0.

To show that ¢ is bijective, we exhibit its inverse. Given a marked permutation
c1...c, of the multiset M,, we trivially obtain the underlying multiset and from that
we can obtain the set-function pair (S, ¢g,) from which the multiset was constructed.
From these, by Theorem 6 we can recover the (unique) C,-partition 7 associated to the
region(s). Now, knowing the blocks of 7 and the multiset M., we can reconstruct the
function f. Once we know f, the marked permutation ¢; ... ¢, specifies the set of w-labels
on each block of m and by Lemma 4 that uniquely specifies w. Thus, there is a unique
region - namely the one labeled by 7 and w - which maps to ¢; ... ¢, under ¢. O

Extend the map ¢ defined in the proof of Theorem 7 to a map between all regions of
SY and the set of sequences A°(n) = {a;...a,|a; € [£n] U {0},i € [n]}, to obtain the
following corollaries.

Theorem 8. The map ¢ : R(SS) — A%(n) is a bijection.
Corollary 9.

d
n! ( n > N
_ 2% = (2n 4+ 1)",
;m)\(n—d)! ALy e Ady 1 — | A 211
where my = [, ri!, if r; denotes the number of parts of X equal to 1.

Proof. Athanasiadis [3] proved that the number of nonnesting C,,-partitions of type \ is

n!
my(n —d)!’
which together with Lemma 5 and Theorem 8 imply the above equality. O]

Theorem 2 is a corollary of the proofs of Theorems 6, 7 and 8. For further details see
Section 4, and in particular Theorem 10.

SNV SR D)

RER(SS) RER(SY) acAC (n)

Theorem 2.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 9



4 Posets and sequences in type C),

In this section we revisit the type C, world of posets Q¥, w € &¢, and sequences in

A€ (n) and state their relation explicitly.
Recall that

Qu = {(6,), (=4, =1) [ 4, € [£n],i < 4,0 < w(i) < lw(j)[}
is partially ordered by
(1,7) < (r,s)ifr<i<j<s.

We will prove refinements of the equation

S Q) = (2n+ 1), (5)

wesY

without reference to arrangements. Here jp(QY) denotes the number of antichains of Q¢
possessing property P.

Partition A“(n) according to the number of nonzero absolute values in the set {ay, as, . . ., a, },
denoted by d“(a) for a = (a1, as,...,a,). Let AY(n) = {(a1,as,...,a,) € A%(n) :
d(a) = k}. Then

A%(n) = AL (n).

Let MY (n) be the multiset of antichains of Q¢ possessing property P, w € &¢.
Given an antichain x € MY (n) it naturally corresponds to a nonnesting C,,-partition 7y
obtained by simply drawing an arc (a, b) for each (a,b) € x. Partition the multiset M (n)
according to the number of pairs of nonzero blocks in the corresponding nonnesting C,,-
partition. Denote by b(x) the number of pairs of nonzero blocks in 7y, x € M%(n). Let
MFE (n) = {{x € M%(n)|b(x) = k}}. Then

MC(n) =) M7 (n).
k=0
Theorem 10.
A} (n)] = [M (n)], k € {0} U[n].

We prove Theorem 10 by providing a bijection between the sets AS(n) and M (n),
k € {0} U [n]. Before proceeding to the proof of Theorem 10 we partition the sets A{ (n)
and M (n), k € {0} U [n], further.

Partition A (n), k € {0} U [n], according to the k distinct nonzero absolute values of
the numbers appearing in the sequence and the number of times they appear. If

{laal,]az], -, ]an| \{0} = {1 <o <+ < e}
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and ¢; appears o; times in (|a1|, |as], ..., |a,|), i € [k], let

AZ°(n) = {(ar,as, ... a,) € AL {{lar]. Jaal. ... |aa Y} = UE, U, (e JUZE 2 ({01} 3,

where ¢ = (¢; < ... <¢), 0= (01,...,0k), 0; > 0, for ¢ € [k], and Zle 0; < n.
For an antichain x € M (n), let (Sq,, gr,) be the pair of k-set and function corre-
sponding to m, under the bijection described in Theorem 6. Let

See = {1 < ... <} and 0; = gr,(ci),7 € [K].

Denote ¢(x) = (¢; < ... < ¢;) and o(x) = (01,...,0k).
Partition the multiset M (n), k € {0} U [n], according to ¢ = (¢ < ... < ¢),
o= (01,...,0k), 0; >0, for i € [k], and Zle 0; < n, as described above. Let

Mg " (n) = {{x € M{(n)|c(x) = c,0(x) = 0}},
where ¢ = (¢; < ... < c), 0= (01,...,01), 0; > 0, for i € [k], and 3% 0; < n.

Lemma 11. The vectors ¢(x) = ¢ and o(x) = o, where ¢ = (¢; < ... < ¢), 0 =
(01,-..,01), k € {0} U[n], o; > 0, for i € [k], S5, 0i < n, uniquely determine the
antichain X.

Proof. Lemma 11 follows readily since Theorem 6 establishes a bijection. O
Theorem 12.

ACc,O n —= MCC,O n —= ( n )225_1 017

ALl = = (s,

where k € {0} U [n], c = (e < ... < ), 0 = (01,...,0k), 0; > 0, fori € [k], and
Z?:l 0; < N.

Proof. A bijective proof of the first equality can be given using Theorem 6 and the ideas
of Theorem 7. The enumeration is in Lemma 5. Note that arrangements do not enter any
of the proofs. O

Proof of Theorem 10. Straightforward corollary of Theorem 12, since
AR (n) =Y AT (n) = > M (n) = M{ (n),

where ¢ = (¢1 < ... < ¢),0=(01,...,0k), k € [n], 0; > 0, for i € [k], Zleoign. ]

Corollary 13.
> ir(Q7) = 2n+1)"

wesY
Proof. Theorems 12 and 10 extend to a bijection between
MC(”) = Ui=0 Yc,o Mkzcc’o(n) and Ac(n) = Up—0 Uc,o Akcc’o(”)v

the cardinalities of which are Y _sc jp(QS) and (2n + 1)", respectively.
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