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Abstract

We evaluate combinatorially certain connection coefficients of the symmetric group that
count the number of factorizations of a long cycle as a product of three permutations. Such
factorizations admit an important topological interpretation in terms of unicellular constellations
on orientable surfaces. Algebraic computation of these coefficients was first done by Jackson
using irreducible characters of the symmetric group. However, bijective computations of these
coefficients are so far limited to very special cases. Thanks to a new bijection that refines the
work of Schaeffer and Vassilieva in [17] and Vassilieva in [18], we give an explicit closed form
evaluation of the generating series for these coefficients. The main ingredient in the bijection
is a modified oriented tricolored tree tractable to enumerate. Finally, reducing this bijection
to factorizations of a long cycle into two permutations, we get the analogue formula for the
corresponding generating series.

1 Introduction

1.1 Generating series for connection coefficients

In what follows, we denote by λ = (λ1, λ2, . . . , λk) ` n an integer partition of n and `(λ) = k the
length or number of parts of λ. We also write λ = [1n1(λ), 2n2(λ), . . .] where ni(λ) is the number of
parts i in λ.

Let Sn be the symmetric group on n elements, and Cλ be the conjugacy class in Sn of per-
mutations with cycle type λ, where λ ` n. Given λ(1), λ(2), . . . , λ(r), µ ` n, let kµ

λ(1),...,λ(r)
be the

number of ordered factorizations in Sn of a fixed permutation γ ∈ Cµ as a product α1 · · ·αr of r
permutations αi ∈ Cλ(i) . These numbers are called connection coefficients of the symmetric group.
The problem of computing these coefficients has received significant attention and a good account
of its history and references can be found in [9]. We focus on the cases knλ,µ and knλ,µ,ν : i.e. when
r = 2 and 3, µ = (n) and γ is the long cycle γn = (1, 2, . . . , n).

In addition, for λ ` n we use the monomial symmetric function mλ(x) on indeterminates
x = (x1, x2, . . .) which is the sum of all different monomials obtained by permuting the variables
of xλ11 x

λ2
2 · · · , and the power symmetric function pλ(x), defined multiplicatively as pλ = pλ1pλ2 · · ·

where pn(x) = mn(x) =
∑

i x
n
i . Also, if λ = [1n1(λ), 2n2(λ), . . .], let Aut(λ) =

∏
i ni(λ)!.

Our combinatorial results can be stated as follows:

Theorem 1.1. The numbers knλ,µ,ν of factorizations of the long cycle γn into an ordered product
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of three permutations of types λ, µ, and ν respectively satisfy:

∑

λ,µ,ν`n
knλ,µ,νpλ(x)pµ(y)pν(z) =

∑

λ,µ,ν`n

n!2M
(n−1)
`(λ),`(µ),`(ν)(

n−1
`(λ)−1

)(
n−1
`(µ)−1

)(
n−1
`(ν)−1

)mλ(x)mµ(y)mν(z), (1.2)

where:

M
(n−1)
`(λ),`(µ),`(ν) =

(
n− 1

`(ν)− 1

)∑

g≥0

(
n− `(µ)

`(λ)− 1− g

)(
n− `(ν)

g

)(
n− 1− g
n− `(µ)

)
.

Corollary 1.3. [15] The numbers knλ,µ of factorizations of the long cycle γn into an ordered product
of two permutations of cycle types λ and µ respectively satisfy:

∑

λ,µ`n
knλ,µpλ(x)pµ(y) =

∑

λ,µ`n

n(n− `(λ))!(n− `(µ))!

(n+ 1− `(λ)− `(µ))!
mλ(x)mµ(y), (1.4)

We will see in Section 2 that the coefficients on the right hand sides of (1.2) and (1.4) are
non-negative integers.

Remark 1.5. Equations (1.2) and (1.4) can be obtained algebraically using the irreducible char-
acters of the symmetric group, the Murnaghan-Nakayama rule, and symmetric function identities
(see [12]). Here, we derive these equations through a bijection.

1.2 Background

In the setting of the connection coefficients kn
λ(1),··· ,λ(r) , we define the genus g(λ(1), . . . , λ(r)) of the

partitions λ(i) by the equation

`(λ(1)) + · · ·+ `(λ(r)) = (r − 1)n+ 1− 2g(λ(1), · · · , λ(r)). (1.6)

We can take g to be a non-negative integer, since otherwise it is easy to show that kn
λ(1)···λ(r) = 0.

Except for special cases there are no closed formulas for the connection coefficients kn
λ(1),...,λ(r)

.

For instance, using an inductive combinatorial argument Bédard and Goupil [1] found a formula for
knλ,µ in the case g(λ, µ) = 0. This was extended by Goulden and Jackson [6] to evaluate kn

λ(1),...,λ(r)
in

the case g(λ(1), . . . , λ(r)) = 0 via a bijection with a set of ordered rooted r-cacti on n r-gons. Later,
using characters of the symmetric group and a combinatorial development, Goupil and Schaeffer
[9] derived an expression for connection coefficients of arbitrary genus as a sum of positive terms
(see Biane [3] for a succinct algebraic derivation; Poulalhon and Schaeffer [16] and Irving [11] for
further generalizations). As a general rule, these developments are quite intricate and the formulas
obtained are rather complicated.

Interestingly, if we consider the generating series for the coefficients kn
λ(1),··· ,λ(r) as in the LHS

of (1.2), the coefficients of their expansion in the basis of monomial symmetric functions, as in
the RHS of (1.2), can be computed in closed form thanks to a result by Jackson [12] obtained
algebraically using the theory of the irreducible characters of the symmetric group. There are
direct bijections for a variant of the case of two factors (i.e. r = 2) like the celebrated Harer-
Zagier formula [10]: see Lass [14], Goulden and Nica [8], and Bernardi [2]. In this paper we follow
this approach and introduce the notion of partitioned tricolored (bicolored) 3-cacti (maps) of given
type, refining the work of Schaeffer and Vassilieva in [17] and Vassilieva in [18], and use a purely
combinatorial argument to derive the explicit generating series for knλ,µ,ν and knλ,µ in Equations
(1.2) and (1.4) respectively.
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1.3 Outline of paper

The paper is organized as follows: in Section 2 we introduce the partitioned 3-cacti and the cactus
trees (the enumeration of the latter is postponed to Section 4) and relate them via a bijection Θ
described in Section 3. Finally, in Section 5 we prove Corollary 1.3.

2 Combinatorial reformulation

2.1 Cacti and partitioned cacti

Factorizations in the symmetric group counted by knλ,µ,ν admit a direct interpretation in terms of
unicellular 3-constellations also named 3-cacti with white, black, and grey vertices of respective
degree distribution λ, µ, and ν. Within a topological point of view, 3-cacti are specific maps
which in turn are 2−cell decompositions of an oriented surface into a finite number of vertices
(0−cells), edges (1−cells) and faces (2−cells) homeomorphic to open discs (see [13] for more details
about maps and their applications). Maps are defined up to a homeomorphism of the surface that
preserves its orientation, the type of cells, and incidences in the graph. 3-cacti are maps with black
faces and one white face (thus the term unicellular) such that: (i) each edge separates a black face
and the white face and (ii) all the black faces are triangles each composed of exactly a white, a
black, and a grey vertex following each other in clockwise order. As a consequence, the degree of
the white face is a multiple of 3. Often, cacti refer to planar maps (embedded in an orientable
surface of genus 0). In this paper we assume that they can be embedded in an orientable surface of
any genus. Besides, we consider only rooted cacti, i.e. cacti with a marked black face. We assume
as well that each black triangle is labeled with an index in {1, 2, . . . , n} with the convention that
the marked triangle is labeled 1. In what follows, we define the degree of a vertex in a cacti as the
number of triangles it belongs to, and the degree distribution of the vertices of a given color is the
integer partition of n formed by the degrees of all the vertices of this color.

The next classical result (see [13]) relates rooted 3-cacti with factorizations of the long cycle
γn = (1, 2, . . . , n).

Proposition 2.1. Rooted 3-cacti with n black triangles are in bijection with 3-tuples (α1, α2, α3)
of permutations in Sn such that α1α2α3 = γn. Under this bijection the white (black and grey,
resp.) vertices correspond to cycles of π1 (π2 and π3, resp.).

A sketch of the proof of this classical result can be found in [18]. Each white, black, or grey
vertex of a given 3-cacti corresponds to a cycle of permutation α1, α2, or α3 respectively, and the
cycle is encoded by the local counter-clockwise order of the triangles around the vertex. The fact
that α1α2α2 = γn corresponds to saying that traversing the map starting on the white vertex of
the triangle labeled 1 and keeping the white face on the right we visit, in order, the white-black
edges belonging to triangles labeled 1, 2, . . . , n. A consequence of Proposition 2.1 is that for integer
partitions λ, µ, ν of n, the number of 3-cacti of degree distribution λ, µ, ν is the number knλ,µ,ν
of factorizations defined in Section 1.1. Moreover, by the Euler-characteristic, the genus of the
underlying surface of the 3-cacti of degree distribution λ, µ, ν is given by Equation 1.6. Figure 1
shows a 3-cactus embedded on the sphere (genus 0) and a 3-cactus embedded on a torus (genus 1).

Example 2.2. The cactus on the left hand side in Figure 1 can be associated to the three permu-
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Figure 1: Two examples of rooted 3-cacti embedded in a surface of genus 0 (left) and genus 1
(right)

tations:

α1 = (1)(24)(3)(5) (2.3)

α2 = (1)(23)(45) (2.4)

α3 = (15)(2)(3)(4) (2.5)

The degree distribution of this cactus is λ = [13, 21], µ = [11, 22], ν = [13, 21].
The cactus on the right hand side corresponds to the three permutations:

α1 = (1236)(4)(5) (2.6)

α2 = (153)(2)(4)(6) (2.7)

α3 = (134)(2)(5)(6) (2.8)

The degree distribution of this cactus is λ = [12, 41], µ = [13, 31], ν = [13, 31].

Partitioned 3-cacti
Cacti with a given vertex degree distribution are in general non-planar and non-recursive objects,
and no direct bijection is known to compute their cardinality. However, we provide an interpretation
of the formal power series

∑
λ,µ,ν`n k

n
λ,µ,νpλ(x)pµ(y)pν(z) as a generating function for partitioned

cacti. We are able to give an explicit formula for this generating function by introducing a new
bijective mapping for partitioned cacti. Intuitively, partitioned cacti are rooted 3-cacti where the
set of vertices of each color are partitioned into blocks. Such objects have also been widely studied,
for instance by Lass [14] and Bernardi [2] under the term of colored maps; and by Goulden and
Nica [8], Schaeffer and Vassilieva in [17], and Vassilieva in [18] as partitioned maps or cacti.

To define partitioned cacti we use π to denote a set partition of a set of n elements with blocks
{π1, . . . , πp}. The type of a set partition, type(π) ` n, is the integer partition of n obtained by
considering the cardinalities of the blocks of π. We are now ready for the definition:

Definition 2.9. (Partitioned 3-cacti) A partitioned 3-cacti is a 4-tuple (π1, π2, π3, κ) such that κ
is a rooted 3-cactus with n triangles, and π1, π2 and π3 are set partitions on the set of white, black,
and grey vertices respectively. By abuse of notation, hereinafter we view π1, π2, and π3 as set
partitions on {1, 2, . . . , n} where a block is composed of the labels of the triangles incident to the

vertices contained in the block. In what follows, the blocks of π1, π2, and π3 are denoted π
(i)
1 , π

(j)
2 ,

and π
(k)
3 with the only restriction that 1 ∈ π(`(λ))1 .
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For λ, µ, ν ` n, we let C(λ, µ, ν) be the set of partitioned cacti (π1, π2, π3, κ) where the set
partitions π1, π2, and π3 of {1, 2, . . . , n} have type λ, µ, and ν respectively. Let C(λ, µ, ν) =
|C(λ, µ, ν)|.

Remark 2.10. Following Proposition 2.1, we can interpret the cactus κ as a 3-tuple of permutations
(α1, α2, α3) where α3 = α−12 ◦ α−11 ◦ γn. As a result, partitioned cacti in C(λ, µ, ν) can be seen as
5-tuples (π1, π2, π3, α1, α2) where π1,π2, and π3 are set partitions of {1, 2, . . . , n} of types λ, µ, and
ν respectively with the property that: for k = 1, 2, 3, if an integer l of a given cycle c of αk belongs
to a given block of πk then all the integers in the cycle c also belong to this block.

Example 2.11. Take the cactus on the right hand side of Figure 1 and add partitions π1 =

{π(1)1 , π
(2)
1 }, π2 = {π(1)2 , π

(2)
2 }, π3 = {π(1)3 , π

(2)
3 , π

(3)
3 }, where π

(1)
1 = {4, 5}, π(2)1 = {1, 2, 3, 6}; π(1)2 =

{1, 3, 4, 5}, π(2)2 = {2, 6}; π
(1)
3 = {1, 3, 4, 6}, π(2)3 = {2}, π(3)3 = {5}. This gives a partitioned

cactus (π1, π2, π3, α1, α2) ∈ C([21, 41], [21, 41], [12, 41]) depicted in Figure 2. Similarly to [17], we
associate a particular shape to each of the blocks of the partitions.

blocks π1:

blocks π2:

blocks π3:

Figure 2: Illustration of the Partitioned 3-Cactus from Example 2.11.

Link between cacti and partitioned cacti
Consider the partial order on integer partitions given by refinement. That is λ � µ if and only if
the parts of µ are unions of parts of λ, and we say that µ is coarser than λ. If λ � µ let Rλ,µ
be the number of ways to coarse λ to obtain µ. For example, if λ = [12, 22] and µ = [1, 2, 3] then
Rλ,µ = 4. It is well known that pλ =

∑
µ�λAut(µ)Rλ,µmµ [19, Prop. 7.7.1].

We use this partial order on integer partitions to obtain an immediate relation between C(λ, µ, ν)
and knλ,µ,ν .

Proposition 2.12. For partitions ρ, δ, ε ` n we have :

C(ρ, δ, ε) =
∑

λ�ρ,µ�δ,ν�ε
RλρRµδRνεk

n
λ,µ,ν . (2.13)

Proof. Let (π1, π2, π3, α1, α2) ∈ C(ρ, δ, ε). If α1 ∈ Cλ, α2 ∈ Cµ, and α3 = α−12 α−11 γn ∈ Cν then by
the definition of the partitioned cacti, we have that type(π1) = ρ � λ, type(π2) = δ � µ, and
type(π3) = ε � ν. Thus, if we further refine C(ρ, δ, ε) by the cycle types of the permutations, i.e. if

Cλ,µ,ν(ρ, δ, ε) = {(π1, π2, π3, α1, α2) ∈ C(ρ, δ, ε) | (α1, α2, α
−1
2 α−11 γn) ∈ Cλ × Cµ × Cν},
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then C(ρ, δ, ε) =
⋃
λ�ρ,µ�δ,ν�ε Cλ,µ,ν(ρ, δ, ε) where the union is disjoint. Finally, if Cλ,µ,ν(ρ, δ, ε) =

|Cλ,µ,ν(ρ, δ, ε)| then it is easy to see that Cλ,µ,ν(ρ, δ, ε) = RλρRµδRνεk
n
λ,µ,ν .

Using pλ =
∑

µ�λAut(µ)Rλ,µmµ Proposition 2.12 is equivalent to:

∑

λ,µ,ν`n
knλ,µ,νpλ(x)pµ(y)pν(z) =

∑

λ,µ,ν`n
Aut(λ)Aut(µ)Aut(ν)C(λ, µ, ν)mλ(x)mµ(y)mν(z). (2.14)

In the special case when we have partitions ρ, δ and ε of n where `(ρ) + `(δ) + `(ε) = 2n + 1,
the following proposition holds:

Proposition 2.15 ([6]). For partitions ρ, δ and ε of n where `(ρ) + `(δ) + `(ε) = 2n + 1 we have
that C(ρ, δ, ε) = knρ,δ,ε = n2(`(ρ)− 1)!(`(δ)− 1)!(`(ε)− 1)!/Aut(ρ)Aut(δ)Aut(ε).

Proof. Let (π1, π2, π3, α1, α2) ∈ C(ρ, δ, ε) with `(ρ)+`(δ)+`(ε) = 2n+1, and α3 = α−12 α−11 γn. If α1 ∈
Cλ, α2 ∈ Cµ, α3 ∈ Cν , then `(λ)+`(µ)+`(ν) = 2n+1−2g(λ, µ, ν) ≤ 2n+1. But `(λ) ≥ `(ρ), `(µ) ≥
`(δ), and `(ν) ≥ `(ε) therefore ρ = λ, δ = µ, and ε = ν; and π1, π2, and π3 are the underlying set
partitions in the cycle decompositions of α1, α2, and α3 respectively. Thus C(δ, ρ, ε) = knρ,δ,ε. But, as

shown in [6, Thm. 2.2], knρ,δ,ε = n2(`(ρ)−1)!(`(δ)−1)!(`(ε)−1)!/Aut(ρ)Aut(δ)Aut(ε) since the genus

g(ρ, δ, ε) = 0. As a result, C(ρ, δ, ε) = n2(`(ρ)− 1)!(`(δ)− 1)!(`(ε)− 1)!/Aut(ρ)Aut(δ)Aut(ε)

As mentioned before, explicit computation of the right hand side of equation (2.14) is made
possible thanks to a new bijective description of partitioned cacti of given type which is a refine-
ment of a bijection in [17] and [18]. Partitioned cacti are indeed in one-to-one correspondence with
particular sets of cactus trees (and three additional simple combinatorial objects), which are recur-
sive planar objects whose number one can compute with classical methods like Lagrange inversion.
Next we define such trees, in Section 4 we compute the number of such trees.

2.2 Cactus trees

Before we state the actual definition of the tree structure used as the main ingredient in the proof
of Theorem 1.1, we give preparatory explanations. Ordered trees are non cyclic graphs usually
defined recursively as a root vertex v and an ordered sequence (possibly the empty set) of ordered
trees, called descending trees, each having its root vertex connected to v by an edge. The root of a
descending vertex is called a descending vertex. The root vertices of the descending trees of a given
vertex are considered as its children. Although it follows the same kind of recursive definition, the
tree structure we introduce has the following differences:

• vertices are of three different colors, say white, black and grey;

• the ordered sequence of children of a given vertex is not composed of vertices connected to it
through an edge. A child can be: (i) a thorn or half edge, i.e an edge, connecting this given
vertex to no other (as a result, no descending tree is attached to this kind of child), (ii) a full
edge, i.e. an edge connecting the given vertex to a descending one with the restriction that
only a black (resp. grey, white) vertex can be connected this way to a white (resp. black, grey)
one, (iii) a triangle connecting the given vertex to two descending ones with the restriction
that only a black and grey (resp. grey and white, white and black) can be connected this
way to a white (resp. black, grey) one. Triangles are made of three edges connecting the two
descending vertices to the ascending one and the two descending vertices between themselves.
The two descending vertices are the roots of two descending trees. The three kinds of children
are illustrated on Figure 3.
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Figure 3: Example of three types of possible children, the ordered sequence of children attached to
the white vertex is: edge, thorn, triangle, thorn, triangle

We are now ready to state the definition of the cactus trees:

Definition 2.16 (Cactus Tree). Let C̃T (p1, p2, p3, g, w, b) be the set of cactus trees τ̃ with p1 white
vertices, p2 black vertices, and p3 grey vertices, g triangles children of grey vertices, w triangles
children of white vertices, and b triangles children of black vertices such that:

(i) the root of τ̃ is a white vertex,

(ii) the ordered set of children of each white (resp. black, grey) vertex consists of three kinds of
objects: thorns; full edges connecting this white (resp. black, grey) vertex to a black (resp.
grey, white) one; triangles connecting this white (resp. black, grey) vertex to both a black and
a grey (resp. grey and white, white and black) one,

(iii) the edge connecting a white (resp. black, grey) vertex to the black (resp. grey, white) one in a
descending triangle comes before the one connecting it to the grey (resp. white, black) vertex
according to the ordering of the children of this white (resp. black, grey) vertex.

Within a cactus tree, the degree of a vertex v is defined by:

deg(v) = c+ ε, (2.17)

where c is the number of children (that can be either thorns, edges or triangles) and ε is 1 for a

non-root vertex, 0 otherwise. With this definition of degree, we write the set C̃T (p1, p2, p3, g, w, b)
as the disjoint union

C̃T (p1, p2, p3, g, w, b) =
⋃

`(λ)=p1,`(µ)=p2,`(ν)=p3

C̃T (λ, µ, ν, g, w, b).

where C̃T (λ, µ, ν, g, w, b) is the set of cactus trees in C̃T (p1, p2, p3, g, w, b) with degree distribution
λ, µ, ν ` n of the white, black, and grey vertices respectively.

In addition, in what follows we will denote by CT (p1, p2, p3, g, w, b) the set of cactus trees

similar to those in C̃T (p1, p2, p3, g, w, b) but without thorns. We define CT (λ, µ, ν, g, w, b) similarly.
Moreover, we will use the expression tricolored tree when only full edges are allowed in the set
of children of each vertex. Finally, we may use the integers (1, 2, . . . , p1) (resp. (1, 2, . . . , p2),
(1, 2, . . . , p3)) to label the white (resp. black, grey) vertices of a given cactus tree or tricolored tree.
The resulting object is called labeled cactus tree or labeled tricolored tree respectively.

Example 2.18. The cactus tree in Figure 4 belongs to C̃T ([12, 21, 41], [11, 31, 41], [11, 22, 31], 1, 1, 1)
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Figure 4: Example of a Cactus Tree. The white vertex in the bottom is the root of the tree. The
tree has p1 = 3 white vertices, p2 = 3 black vertices and p3 = 4 grey vertices, and three triangles
each children of white, black, and grey vertices respectively.

Proposition 2.19. The number of cactus trees is:

|C̃T (λ, µ, ν, g, w, b)| = n · (`(λ)− 1)!(`(µ)− 1)!(`(ν)− 1)!

Aut(λ)Aut(µ)Aut(ν)

(g(w − `(ν)) + `(µ)`(ν))

(n+ 1− `(λ)− `(µ) + g)
×

×
(

n− `(λ)

w, `(µ)− g − w

)(
n− `(µ)

b, `(ν)− w − b

)(
n− `(ν)

g, `(λ)− 1− g − b

)
. (2.20)

The proof of this proposition is carried out using the Lagrange inversion theorem (see e.g. [7,
1.2.13]) and it is postponed to Section 4.

2.3 Reformulation of the main theorem

Let OP(m)
r be the set of all ordered r-subsets of [m]. By definition |OP(m)

r | = (m)r = m(m −
1) · · · (m− r + 1). We have the following proposition:

Proposition 2.21. Theorem 1.1 is equivalent to:

C(λ, µ, ν) =
∑

g,w,b≥0
|C̃T (λ, µ, ν, g, w, b)| |Sn+1−`(λ)−`(ν)+b| |Sn−`(µ)−`(ν)+w| |OP(n+1−`(λ)−`(µ)+g)

`(ν)−w−b |.

(2.22)

Proof. According to Equation 2.14, Theorem 1.1 is equivalent to the equality

C(λ, µ, ν) =
n!2

Aut(λ)Aut(µ)Aut(ν)

1(
n−1
`(λ)−1

)(
n−1
`(µ)−1

)(
n−1
`(ν)−1

)M (n−1)
`(λ),`(µ),`(ν)

After basic simplifications on the binomial coefficients, a summand in the RHS of Equation (2.22)
reduces to:

(n− 1)!2(`(µ)`(ν) + g(w − `(ν)))(
n−1
`(λ)−1

)(
n−1
`(µ)−1

)(
n−1
`(ν)−1

)
Aut(λ)Aut(µ)Aut(ν)

(
n

w, g, b, `(λ)− 1− g − b, `(µ)− g − b, `(ν)− w − b

)

Then we sum over g, w, and b the terms depending on these parameters. Arranging properly
the terms depending on w and b, and simplifying sums on these two parameters thanks to the
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Vandermonde’s convolution formula, we obtain:

∑

g,w,b

(`(µ)`(ν) + g(w − `(ν)))

(
n

w, g, b, `(λ)− 1− g − b, `(µ)− g − b, `(ν)− w − b

)
=

= n2
(

n− 1

`(ν)− 1

)∑

g

(
n− `(µ)

`(λ)− 1− g

)(
n− `(ν)

g

)(
n− 1− g
n− `(µ)

)
.

Which leads directly to the desired result.

As a direct consequence of Proposition 2.21, Theorem 1.1 reduces to:

Theorem 2.23. There is an explicit bijection Θn
λ,µ,ν between partitioned 3-cacti in C(λ, µ, ν) and

tuples (τ̃ , σ1, σ2, χ) where τ̃ ∈ C̃T (λ, µ, ν, g, w, b), σ1 ∈ Sn+1−`(λ)−`(ν)+b, σ2 ∈ Sn−`(µ)−`(ν)+w, and

χ ∈ OP(n+1−`(λ)−`(µ)+g)
`(ν)−w−b for some g, w, b ≥ 0.

The next section is devoted to proving this theorem by describing the bijection Θn
λ,µ,ν .

3 Description of the bijection

3.1 Additional definitions

Before we get to the description of Θn
λ,µ,ν , we need two additional ingredients: a linear order on the

white (black and grey, resp.) vertices and their children (as defined in the beginning of Section 2.2)
which we call white reverse level traversal (RLT) (black and grey reverse level traversal, resp.), and
partial permutations.

Definition 3.1 (reverse level traversals (RLT)). For trees τ̃ ∈ C̃T (λ, µ, ν, g, w, b) (or for τ ∈
CT (λ, µ, ν, g, w, b)), we define the white Reverse Levels Traversal (RLT) as the following linear
order in τ̃ of the white vertices and their children.

We divide the white vertices of τ̃ into levels depending on their height from the root (where the
height is defined as the number of edges in the shortest path with vertex sequence white-grey-black-
white-. . . to the root). So the first level consists of the root, the second level consists of the white
vertices at height 3 from the root, etc. The white RLT is a traversal of all the white vertices and
their children (thorns, edges, triangles) from left to right, first at the level of maximum height, then
the level of second maximum height,. . . up to the root vertex. The children of each white vertex are
traversed from left to right before the vertex itself 1

The black and grey RLT are defined similarly with respect to black vertices and their children,
and grey vertices and their children. Figure 5 depicts the three RLT for the cactus tree in Example
2.18.

Definition 3.2 (Partial permutations). Given two sets X and Y and a non negative integer m, let
PP(X,Y,m) be the set of bijections from any m-subset of X to any m-subset of Y These bijections
are called partial permutations. Then |PP(X,Y,m)| =

(|X|
m

)(|Y |
m

)
m!.

1In words, the white RLT can be viewed as a reverse breadth first traversal of the white vertices and their children.
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Figure 5: Examples of (a) White, (b) black, and (c) grey reverse level traversals (RLT) on the
cactus tree of Example 2.18.

3.2 Bijective mapping Θ for 3-cacti that preserves type

We proceed with the description of Θ:

Θn
λ,µ,ν : C(λ, µ, ν)

∼→ C̃T (λ, µ, ν)×Sn+1−`(λ)−`(ν)+b ×Sn−`(µ)−`(ν)+w ×OP(n+1−`(λ)−`(µ)+g)
`(ν)−w−b .

Within the construction, we use

(p1, p2, p3) := (`(λ), `(µ), `(ν)).

3.2.1 The cactus tree τ̃

Let (π1, π2, π3, α1, α2) ∈ C(λ, µ, ν). We construct a cactus tree τ̃ ∈ C̃T (λ, µ, ν, g, w, b) following the
procedure below.
(i) Cactus tree: The first step is to construct the cactus tree τ and relabeling permutations in the

same way as in [18]. For completeness, we also include here the construction. Let m
′(j)
2 (1 ≤ j ≤ p2)

be the maximal element of α−13 α−12 (π
(j)
2 ) and m

(j)
i for i = 1, 3 (1 ≤ j ≤ pi) be the maximal element

of the block π
(j)
i .

We first construct the labeled tricolored tree T with p1 white, p2 black, and p3 grey vertices
satisfying: the root of T is the white vertex with label p1 and the incidence relations and order of
children are given in Table 1.

Lemma 3.3 ([18]). The procedure above defines a labeled 3-colored tree T .

We construct the labeled cactus tree Υ from T by forming triangles children of the different
vertices following the rules in Table 2.

Finally, we remove the labels of Υ to obtain a cactus tree τ .

Example 3.4. The construction of T , Υ, and τ for the partitioned cactus in Example 2.11 is
depicted in Figure 6.

(ii) Relabeling permutations: These permutations θ1, θ2, and θ3 are defined by considering the
reverse labeled cactus tree Υ′ resulting from the labeling of τ , based on three independent reverse-
labeling procedure for white, black, and grey vertices. We do a white RLT and label the white

10



Incidence relations Order of children

for 1≤j≤p2

i

j

if m′
(j)
2 ∈ α−13 α−12 (π

(i)
1 )

j1 j2

if α2α3(m
′(j1)
2 ) < α2α3(m

′(j2)
2 )

for 1≤k≤p3

j

k

if m
(k)
3 ∈ α−13 (π

(j)
2 )

k1 k2

if α−13 α−12 α3(m
(k1)
3 ) < α−13 α−12 α3(m

(k2)
3 )

for 1≤i≤p1−1

k

i

if m
(i)
1 ∈ π

(k)
3

i1 i2

if α−13 (m
(i1)
1 ) < α−13 (m

(i2)
1 )

Table 1: Incidence relations and order of children of the labeled tricolored tree T . Each row of
the table shows the incidence relations and order of children of the white, black and grey vertices
respectively.

vertices only (as they are traversed) with the labels 1, 2, . . . , p1. Similarly, we do a black RLT and
label the black vertices only with labels 1, 2, . . . , p2, and do a grey RLT to label the grey vertices
only with labels 1, 2, . . . , p3. Next, we reindex the blocks of π1, π2 and π3 using the new indices

from Υ′: if a white vertex is labeled i in T and i′ in Υ′, we set πi
′
1 = π

(i)
1 (and mi′

1 = m
(i)
1 ). Black

and grey blocks are reindexed in a similar fashion. Let ui, vj , wk be the strings obtained by writing
the elements of πi1, π

j
2, π

k
3 respectively in increasing order. Denote u = u1 · · ·up1 , v = v1 · · · vp2 ,

w = w1 · · ·wp3 the concatenations of the strings defined above. We define θ1 ∈ Sn by setting u as
the first line and [n] as the second line of the two-line representation of this permutation. Similarly,
we define the relabeling permutations θ2 and θ3 from v and w respectively.

Example 3.5. Following up on Example 3.4, we construct the relabeling permutations θ1, θ2, and
θ3. We have:

θ1 =

(
4 5 1 2 3 6
1 2 3 4 5 6

)
, θ2 =

(
1 3 4 5 2 6
1 2 3 4 5 6

)
, θ3 =

(
5 2 1 3 4 6
1 2 3 4 5 6

)
.

We define the multisets:

S1 =
{
θ1(m

i
1)
}p1−1
i=1

∪
{
θ1(α2α3(m

′j
2))
}p2
j=1
⊂ [n],

S2 =
{
θ2(m

′j
2)
}p2−1
j=1

∪
{
θ2(α

−1
3 α−12 α3(m

k
3))
}p3
k=1
⊂ [n− 1],

S3 =
{
θ3(m

k
3)
}p3−1
k=1

∪
{
θ3(α

−1
3 (mi

1))
}p1−1
i=1

⊂ [n− 1].

They are multisets since we allow some elements to be repeated once when there are triangles in Υ′.
Note that the sizes of the underlying sets of S1, S2, and S3 are p1 + p2− 1− g, p2 + p3− 1−w, and
p1+p3−2−b respectively. We use these multisets to label the vertices, the edges and triangles of the

11



Rules for adding triangles

for 1≤i≤p1−1, 1≤j≤p2

i

j

if α2α3(m
′(j)
2 ) = m

(i)
1

for 1≤j≤p2, 1≤k≤p3

j

k

if α−13 α−12 α3(m
(k)
3 ) = m′

(j)
2

(i.e. α3(m
(k)
3 ) = α2α3(m

′(j)
2 ))

for 1≤k≤p3, 1≤i≤p1−1

k

i

if α−13 (m
(i)
1 ) = m

(k)
3

(i.e. m
(i)
1 = α3(m

(k)
3 ))

Table 2: Rules for forming triangles children of white, black and grey vertices in the labeled
tricolored tree T in order to obtain the labeled tricolored cactus tree Υ.

blocks π1:

blocks π2:

blocks π3:

Figure 6: tricolored tree T and cactus trees Υ and τ associated to Example 2.11. The tree T is
the 3-colored labeled tree built following rules in Table 1. The labeled cactus tree Υ is obtained
from T by forming triangles following the rules in Table 2. The cactus tree τ is obtained from Υ′

by removing the labels of the vertices.

cactus tree τ with three types of labels: circle for θ1, square for θ2, and triangle for θ3 (represented
as labels i , i , and : i as illustrated in Figure 7). We assign θ1(m

i
1) to the white vertices indexed

i in Υ′, θ2(m
′j
2) to the black vertices indexed j in Υ′, and θ3(m

k
3) to the grey vertices indexed k in

Υ′. Children of a white vertex (edges and triangles) are labeled θ1(α2α3(m
′j
2)) if the black vertex

at the end of the edge or within the triangle is indexed by j in Υ′. The children of the black and
grey vertices are labeled in a similar fashion with

{
θ2(α

−1
3 α−12 α3(m

k
3))
}p3
k=1

and
{
θ3(α

−1
3 (mi

1))
}p1−1
i=1

respectively.
Let Υ′′ be the resulting cactus tree with these new additional labels.
Let Si (for i = 1, 2, 3) be the ordered multiset obtained by arranging the elements of Si in

non-decreasing order (for i = 1, 2, 3).

Lemma 3.6. Let d = (d1, d2, . . . , dp1+p2−1) (d′ = (d′1, . . . , d
′
p2+p3), and d′′ = (d′′1, . . . , d

′′
p1+p3−1)

resp.) be the ordered set of labels of the first type (second and third type resp.) obtained by traversing
Υ′′ up to, but not including the root vertex according to the white RLT (black and grey RLT resp.)
defined in Section 3. We have:

d = S1, d′ = S2, d′′ = S3.

Proof. Let θ1(m
0
1) = 0. By construction, if θ1(α2α3(m

′j
2)) in Υ′′ is the label of a child of a white

vertex with label θ1(m
i
1), 1 ≤ i ≤ p1, then α2α3(m

′j
2) ∈ πi1 and α2α3(m

′j
2) ≤ mi

1. As θ1 is increasing

12



among the blocks and within them then:

θ1(m
i−1
1 ) < θ1(α2α3(m

′j
2)) < θ1(m

i
1),

Now, if two children of the same white vertex have respective labels θ1(α2α3(m
′j1
2 )) and θ1(α2α3(m

′j2
2 ))

in Υ′′, and black vertex j1 is to the left of j2; then by construction we have α2α3(m
′j1
2 ) < α2α3(m

′j2
2 ).

Again, since θ1 is increasing within blocks of π1 then θ1(α2α3(m
′j1
2 )) < θ1(α2α3(m

′j2
2 )). Finally,

the white RLT of the circle labels in Υ′′ (up to but not including the root) yields S1. Similarly,
black and grey RLTs of the square and triangle labels in Υ′′ yield S2 and S3 respectively.

(iii) Thorns: Recall the definition of d,d′, and d′′ in Lemma 3.6. We add thorns to the white
vertices for each missing element of [n] in d, and add thorns to black and grey vertices for each
missing element of [n− 1] in d′ and d′′, respectively. More specifically, we add n+ 1− p1 − p2 + g
thorns to the white vertices, n− p2 − p3 + w thorns to the black vertices, and n+ 1− p1 − p3 + b
thorns to the grey vertices of Υ′′ in the following fashion:

1. If d1 > 1 and d1 is the label of a (white) vertex, we connect d1− 1 thorns to it. If a child of a
white vertex has label d1, we connect d1 − 1 thorns to the ascending white vertex on the left
of child d1.

2. For 1 < l < p1 + p2 − 1, if dl > dl−1 + 1 we follow one of the four following cases:
(a) dl and dl−1 are both the label of white vertices in Υ′′, white vertex dl (short for vertex
corresponding to dl) has no child and it is the white vertex following dl−1 in the white RLT
of Υ′′. If so, we connect dl − dl−1 − 1 thorns to dl.
(b) dl is the first label of a child and dl−1 is the first label of a white one, then dl is the
leftmost child of the white vertex following dl−1. If so, we connect dl− dl−1− 1 thorns to the
ascending white vertex of dl on its left
(c) dl is the first label of a white vertex and dl−1 is the first label of a child, then dl−1 is the
rightmost child of dl. If so, we connect dl − dl−1 − 1 thorns to dl on the right of dl−1
(d) Finally, if dl and dl−1 are both the first label of children, they have the same white
ascending vertex. We connect dl − dl−1 − 1 thorns to the ascending white vertex between
them.

3. If dp1+p2−1 < n, we connect n − dp1+p2−1 − 1 thorns to the root vertex on the right of its
rightmost child.

Again, we can think of this as adding a thorn to the the white vertices for each element of [n]
not included in d.

A similar construction is applied to add thorns to the black and grey vertices following the
sequence of integers d′ and d′′. Finally we remove all the labels to get the cactus tree τ̃ .

Example 3.7. Figure 7 depicts the construction of the cactus tree τ̃ corresponding to the partitioned
cactus in Example 2.11.

The next two lemmas show that τ̃ preserves the type of the partitioned cacti, and that Υ′′ can
be recovered from τ̃ via white, black, and grey RLTs.

Lemma 3.8. τ̃ as defined above belongs to C̃T (λ, µ, ν, g, w, b) where g, w, b are the number of
triangles in τ̃ rooted in grey, white, and black vertices respectively.
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Figure 7: Construction of the cactus tree τ̃ associated to Example 2.11

Proof. We check the vertex degrees of τ̃ . If we take two successive white vertices i − 1 and i
according to white RLT of Υ′′ with labels θ1(m

i−1
1 ) and θ1(m

i
1), (i < p1), a thorn is connected to i

for any missing integer of the interval [θ1(m
i−1
1 ), θ1(m

i
1)− 1] in d. This number of missing integers

is equal to θ1(m
i
1)− 1− θ1(mi−1

1 )− fi where fi is the number of children of i. As i is not the root
vertex, there is an edge between i and its ancestor so that the resulting degree deg for i (as defined
in (2.17)) is:

deg(i) = fi +
(
θ1(m

i
1)− 1− θ1(mi−1

1 )− fi
)

+ 1 = θ1(m
i
1)− θ1(mi−1

1 ), ∀i ∈ [p1 − 1], (3.9)

Furthermore, n− θ1(mp1−1
1 )− fp thorns are connected to the root vertex (since εp1 = 0) so that:

deg(p1) = n− θ1(mp1−1
1 ) (3.10)

But, according to the construction of θ,

θ1(π
1
1) = [θ1(m

1
1)] (3.11)

θ1(π
i
1) = [θ1(m

i
1)] \ [θ1(m

i−1
1 )], (2 ≤ i ≤ p1 − 1) (3.12)

θ1(π
p1
1 ) = [n] \ [θ1(m

p1−1
1 )] (3.13)

Subsequently:
deg(i) = |πi1|, ∀i ∈ [p1]. (3.14)

And λ = type(π) is the white vertex degree distribution of τ̃ . In a similar fashion, µ and ν are the
black and grey vertex degree distribution of τ̃ .

Lemma 3.15. Assign circle labels 1, 2, . . . , n to the white vertices and their children (including
thorns) in τ̃ in increasing order according to the white RLT, add two other sets of labels 1, 2, . . . , n
(square and triangle) to the black and grey vertices and their children in increasing order according
to the black and grey RLT. The labeling of the vertices and children that are not thorns is the same
as in Υ′′.

Proof. According to the construction of τ̃ , we add thorns to Υ′′ when integers are missing in its
RLTs so that the thorns would take these missing integers as labels when traversing the cactus
tree. As a result, the labels of the vertices in the RLTs of τ̃ are still d,d′, and d′′ and since they
still appear in the same order, we have the desired result.
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3.2.2 The permutations σ1 and σ2 and the ordered set χ and the

In the previous subsection we explained how to obtain the cactus tree τ̃ from the partitioned 3-cacti
in C(λ, µ, ν). We now move on to explain how to obtain the permutations σ1 in Sn+1−`(λ)−`(ν)+b

and σ2 in Sn−`(λ)−`(ν)+b, and the ordered set χ in OP(n+1−`(λ)−`(µ)+g)
`(ν)−w−b .

(i) Permutations σ1, σ2: Let E and F be the following sets:

E = [n]
∖({

θ1(m
i
1)
}p1−1
i=1

∪
{
θ1(α3(m

k
3))
}p3−1
k=1

)
,

F = [n]
∖({

θ1(α2α3(m
′j
2)
}p2
j=1
∪
{
θ1(α3(m

k
3))
}p3−1
k=1

)
.

We define partial permutations σ̃1 and σ̃2 in the following way:

σ̃1 : E → [n− 1]\S3
u 7→ θ3α

−1
3 θ−11 (u)

σ̃2 : F → [n− 1]\S2
u 7→ θ2α

−1
3 α−12 θ−11 (u).

Let σ1 ∈ Sn+1−p1−p3+b and σ2 ∈ Sn−p2−p3+w be the order isomorphic permutations corre-
sponding to σ̃1 and σ̃2 respectively.

(ii) Ordered set χ: We define the ordered set χ̃ =
{
θ1(α3(m

k
3)) | θ1(α3(m

k
3)) /∈ S1

}p3
k=1

. Then, let
ρ : [n] \ S1 ` [n− |S1|] be the indexing permutation associating to any integer i ∈ [n] \ S1 its
position in [n] \ S1 where [n] \ S1 is the ordered (increasing) set of [n] \ S1. The ordered set
χ is defined as follows:

χ = ρ(χ̃) (3.16)

As |S1| = n− (`(λ)− 1)− `(µ) + g and
∣∣{θ1(α3(m

k
3)) | θ1(α3(m

k
3)) /∈ S1

}∣∣ = `(ν)− w − b, χ
belongs to the set OP(n+1−`(λ)−`(µ)+g)

`(ν)−w−b .

Example 3.17. Getting back to Example 2.11, computing the partial permutations leads to:

σ̃1 =

(
1 3 5
4 5 3

)
, σ̃2 =

(
3 1
1 2

)
,

and

σ1 =

(
1 2 3
2 3 1

)
, σ2 =

(
1 2
2 1

)
.

For the ordered set we have: χ̃ = (4) and χ = (3).
In summary, the map Θn

λ,µ,ν applied to the cacti (π1, π2, π3, α1, α2) ∈ C([21, 41], [21, 41], [12, 41])
from Example 2.11 gives the 4-tuple (τ̃ , σ1, σ2, χ) depicted in Figure 8

3.3 Showing the map Θ is a bijection

To show that Θn
λ,µ,ν is a one-to-one correspondence we take any element (τ̃ , σ1, σ2, χ) in

C̃T (λ, µ, ν, g, w, b)×Sn+1−`(λ)−`(ν)+b ×Sn−`(µ)−`(ν)+w ×OP(n+1−`(λ)−`(µ)+g)
`(ν)−w−b

and show that there is a unique element (π1, π2, π3, α1, α2) in C(λ, µ, ν) such that
Θn
λ,µ,ν(π1, π2, π3, α1, α2) = (τ̃ , σ1, σ2, χ). Let p1 = `(λ), p2 = `(µ), and p3 = `(ν). We proceed

with a two step proof:
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Θn
λ,µ,ν :

,

(
1 2 3
2 3 1

)
,

(
1 2
2 1

)
, (3)7−→

( )

Figure 8: Summary of ouput (τ̃ , σ1, σ2, χ) of the map Θn
λ,µ,ν applied to the partitioned 3-cacti from

Example 2.11.

(i) The first step is to notice that (τ̃ , σ1, σ2, χ) defines a unique cactus tree τ belonging to
CT (p1, p2, p3, g, w, b), unique multisets {Si}1≤i≤3, as well as a unique ordered set χ̃ belonging

to OP(n+1−p1−p2+g)
p3−w−b . Labeling each vertex and children of τ with 1, 2, . . . , n in increasing

order according to the three reverse levels traversals and removing the three sets of thorns
(together with their labels) gives a labeled cactus tree Υ′′ that leads to τ̃ according to Θ.
This labeled cactus tree is the unique one that can lead to τ̃ since within Θ, τ̃ , and Υ′′ have
the same underlying cactus tree structure τ , and according to Lemma 3.15, τ̃ determines the
labels of Υ′′.
Then, using Lemma 3.6, the three series of labels (except the root’s) in Υ′′ are by construction
the three sets {Si}1≤i≤3. The knowledge of S1 and χ uniquely determines χ̃. As a result,
exactly one 7-tuple (τ, S1, S2, S3, σ1, σ2, χ̃) is associated to (τ̃ , σ1, σ2, χ) by the final steps of
the mapping Θ.

(ii) The bijection Θn,p1,p2,p3 in [18] is identical to the first steps (up to the construction of
τ, S1, S2, S3, σ1, σ2 and χ̃) of Θn

λ,µ,ν . Therefore by [18, Sec. 6] there is a unique 5-tuble
(π1, π2, π3, α1, α2) in C(p1, p2, p3, n) =

⋃
`(λ)=p1,`(µ)=p2,`(ν)=p3

C(λ, µ, ν) mapped to the 7-tuple
(τ, S1, S2, S3, σ1, σ2, χ̃) by Θn,p1,p2,p3 and equivalently by the first steps of Θn

λ,µ,ν .
According to [18], the types of π1, π2, and π3 are directly recovered from {Si}1≤i≤3 and τ .
Furthermore, using Lemma 3.8, the vertex degree distribution of τ̃ is equal to the type of
the partitions encoded by the elements in {Si}1≤i≤3 corresponding to the relabeling of the
maximum elements of the blocks. Finally, as the vertex degree distribution in τ̃ is (λ, µ, ν),
so is the type of (π1, π2, π3). Therefore, (π1, π2, π3, α1, α2) belongs to C(λ, µ, ν) as desired.

4 Proof of Proposition 2.19: computation of the number of cactus
trees

In this section we prove Proposition 2.19 where we compute the cardinality of the set C̃T (λ, µ, ν, g, w, b).
To do this, we consider its generating function F :

F =
∑

λ,µ,ν`n

∑

g,w,b≥0
|C̃T (λ, µ, ν, g, w, b)|x`(λ)1 x

`(µ)
2 x

`(ν)
3 xg4x

w
5 x

b
6t

n(λ)un(µ)vn(ν). (4.1)

That is, the white, black, and grey vertices are marked respectively by indeterminates x1, x2 and
x3. Triangles children of a grey, white, and black vertex are marked respectively by x4, x5, and
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x6. Furthermore, ti, uj , and vk mark respectively white vertices of degree i, black vertices of
degree j and grey vertices of degree k. And t = (t1, t2, . . .), u = (u1, u2, . . .), v = (v1, v2, . . .) and
n(ε) = (n1(ε), n2(ε), . . .) for ε ` n where ni(ε) is the number of i parts of ε.

The evaluation of F is performed thanks to the multivariate Lagrange inversion theorem (see
e.g. [7, 1.2.13]). We propose a recursive decomposition of the desired set of cactus trees sharing
similar ideas with [6].

In a similar fashion as in [6], we introduce W , B, and G as the generating functions of the
sets W, B, and G of non empty planted cactus trees with respectively white, black, and grey root
vertices. Construction rules for these sets of cactus trees are identical to those of C̃T (λ, µ, ν, g, w, b)
with the only exception that an additional planted edge is connected to the root vertex on the left
of the leftmost child (vertex or thorn). We take this additional edge into account in the root’s
degree. Finally, let Tg, Tw, and Tb be respectively the generating functions of triangles children of
a grey, white, and black vertices. Immediately:

Tg = x4 (4.2)

Tw = x5 (4.3)

Tb = x6 (4.4)

Any cactus tree in C̃T (λ, µ, ν, g, w, b) can be decomposed in a tuple of planted cactus trees in
W, B, and G. The rule for the decomposition is based on the nature of the leftmost child of the
white root in a given cactus tree τ of C̃T (λ, µ, ν, g, w, b):

(i) If the leftmost child is a thorn then τ is equivalent to the cactus tree in W with the planted
edge instead of this leftmost thorn.

(ii) If the leftmost child is an edge connected to black vertex v, then τ is equivalent to the pair
(τ1, τ2) in W × B where τ2 is the cactus tree descending from v with v as the root and the
edge linking v to the root of τ replaced by the planted edge. τ1 is the remaining cactus tree
descending from the root of τ with the edge linking it to v as the planted edge.

(iii) If the leftmost child is a triangle containing black vertex v1 and grey vertex v2 then τ is
equivalent to the tuple (τ1, τ2, τ3, tw) in W×B×G×TTw (TTw is the singleton set composed
of the triangle child of a white vertex) where τ2 and τ3 are the descending trees from v1 and
v2 with the edge linking τ ’s root and v1 and the edge linking v1 and v2 replaced by a planted
edge. τ1 is the remaining descending cactus tree from its root with the leftmost triangle
replaced by the planted edge.

One can check easily that the numbers of triangles, white, black, and grey vertices and their degree
distribution are stable by the bijective transformation described above. The complicated case above
is case (iii) where the edges linking v1 and v2, and the edge linking the white root of τ and v2 are
replaced by nothing in (respectively) τ2 and τ1. However in Definition 2.17 of the degree of a vertex
in τ , these edges were already not taken into account for the degree of respectively v1 and the root
vertex. As a consequence :

F = W +W ·B +W ·B ·G · Tw (4.5)

This decomposition is illustrated in Figure 9.
To determine F, we show that W,B,G, Tg, Tw, and Tb satisfy a system of functional equations.

Namely, as shown in Figure 10 any planted cactus tree in W, τ can be decomposed into:
• its white root,
• the cactus trees rooted in a black vertex descending from the root,
• a triple composed of a black rooted cactus tree, a grey rooted cactus tree, a triangle for each

triangle descending from the root,

17



Figure 9: Illustration of the decomposition into planted trees

• the positions of the triangles in the list of children.

Figure 10: Decomposition of a white rooted planted cactus tree

Let i denote the degree of the root vertex (of degree i + 1), j the number of black children not
belonging to a triangle and k the number of descending triangles. The vectors j and k give the
positions of the j black vertices and k triangles within the i children. Using the decomposition
above, we have:

W = x1
∑

i≥0
ti+1

∑

0≤j+k≤i

∑

j,k

Bj(B ·G · Tw)k (4.6)
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Then:

W = x1
∑

i≥0
ti+1

∑

0≤j+k≤i

(
i

j, k

)
Bj(B ·G · Tw)k

W = x1
∑

i≥0
ti+1 (1 +B +B ·G · Tw)i

Similarly,

B = x2
∑

i≥0
ui+1 (1 +G+G ·W · Tb)i

G = x3
∑

i≥0
vi+1 (1 +W +W ·B · Tg)i

Finally :
(W,B,G, Tg, Tw, Tb) = xΦ(W,B,G, Tg, Tw, Tb) (4.7)

where x = (x1, x2, x3, x4, x5, x6) and Φ = (Φi)1≤i≤6 with:

Φ1(W,B,G, Tg, Tw, Tb) =
∑

i≥0
ti+1 (1 +B +B ·G · Tw)i (4.8)

Φ2(W,B,G, Tg, Tw, Tb) =
∑

i≥0
ui+1 (1 +G+G ·W · Tb)i (4.9)

Φ3(W,B,G, Tg, Tw, Tb) =
∑

i≥0
vi+1 (1 +W +W ·B · Tg)i (4.10)

Φi = 1 for 4 ≤ i ≤ 6 (4.11)

Using the multivariate Lagrange inversion formula for monomials (see [7, 1.2.9]), we find :

k1k2k3k4k5k6 [xk] W r1Br2Gr3T r5w =∑

{µij}

|| δijkj − µij ||
∏

1≤i≤6
[Wµi1Bµi2Gµi3Tµi4g Tµi5w Tµi6b ]Φki

i (4.12)

where δij is the Kronecker delta function, || · || denotes the determinant, k = (k1, k2, k3, k4, k5, k6)
and the sum is over all 6× 6 integer matrices {µij} such that:

• µ11 = µ14 = µ16 = µ22 = µ24 =
µ25 = µ33 = µ35 = µ36 = 0
• µij = 0 for i ≥ 4
• µ21 + µ31 = k1 − r1
• µ12 + µ32 = k2 − r2
• µ13 + µ23 = k3 − r3
• µ34 = k4
• µ15 = k5 − r5
• µ26 = k6

i.e. µ =




0 ∗ ∗ 0 ∗ 0
∗ 0 ∗ 0 0 ∗
∗ ∗ 0 ∗ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




Looking for zero contribution terms in expression (4.12), we notice that G and Tw have neces-
sarily the same degree in the formal power series expansion of Φ1. Hence, a non zero contribution
of

[Wµ11Bµ12Gµ13Tµ141 Tµ152 Tµ163 ] Φk1
1
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implies µ13 = µ15 = k5 − r5. Similar remarks give non zero contributions only for µ21 = k6 and
µ32 = k4. As a result, only that one matrix µ yields a non zero contribution.
For this particular µ,

1

k4k5k6
|| δijkj − µij || = r1 (k2k3 − (k3 − k5)k4)

+ r2 (k6k3 + (k6 + r1 − k1)(r3 + k4 − r5 − k3))
+ r3 (k4k6 − k2(k6 + r1 − k1)) (4.13)

=
1

k4k5k6
∆(k, r). (4.14)

Let co(k) denotes the set of sequences of non negative integers of total sum k. The next step is to
notice that:

Φk1
1 =

∑

s∈co(k1)

(
k1
s

)∏

i≥0

[
ti+1 (1 +B +B ·G · Tw)i

]si

Φk1
1 =

∑

s∈co(k1)

(
k1
s

)∏

i≥0
tsii+1

∑

a1,a2

( ∑
i isi

a1 − a2, a2

)
Ba

1 (GTw)a2 . (4.15)

As a result, the coefficient in Wµ11Bµ12Gµ13Tµ14g Tµ15w Tµ16b is equal to

∑

s∈co(k1)

(
k1
s

)∏

i≥0
tsii+1

( ∑
i isi

k5 − r5, k2 − k4 − k5 − r2 + r5

)
. (4.16)

Similarly, we have:

[Wµ21Bµ22Gµ23Tµ24g Tµ25w Tµ26b ] Φk2
2 =

∑

s∈co(k2)

(
k2
s

)∏

i≥0
usii+1

( ∑
i isi

k6, k3 − k5 − k6 − r3 + r5

)
(4.17)

[
Wµ31Bµ32Gµ33Tµ34g Tµ35w Tµ36b

]
Φk3
3 =

∑

s∈co(k3)

(
k3
s

)∏

i≥0
vsii+1

( ∑
i isi

k4, k1 − k4 − k6 − r1

)
. (4.18)

Putting everything together gives:

[x
`(λ)
1 x

`(µ)
2 x

`(ν)
3 xg4x

w
5 x

b
6t

n(λ)un(µ)vn(ν)] W r1Br2Gr3T r5w =

∆(`(λ), `(µ), `(ν), g, w, b, r)

`(λ)`(µ)`(ν)

(
`(λ)

n(λ)

)( ∑
i ini+1(λ)

w − r5, `(µ)− g − w − r2 + r5

)
×

×
(
`(µ)

n(µ)

)( ∑
i ini+1(µ)

b, `(ν)− w − b− r3 + r5

)

×
(
`(ν)

n(ν)

)( ∑
i ini+1(ν)

g, `(λ)− g − b− r1

)
. (4.19)

Noticing that for ε ` n
∑

i≥0
ini+1(ε) =

∑

i≥0
(i+ 1)ni+1(ε)−

∑

i≥0
ni+1(ε) = n− `(ε). (4.20)

And summing for r ∈ {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 1)} gives the desired result.
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5 Proof of Corollary 1.3 and restriction of bijection Θ when ν = [1n]

We look more closely at the case when one of the partitions, say ν, is [1n]. We need the following
definitions:

Definition 5.1 (Partitioned bicolored map). Given partitions λ, µ ` n, let C(λ, µ) be the set
of triples (π1, π2, α) such that α ∈ Sn, π1, π2 are set partitions of [n] with type(π1) = λ and
type(π2) = µ, and each block of π1 and π2 is a union of cycles of α and β = α−1γn respectively.
The elements of C(λ, µ) are called unicellular partitioned bicolored maps of type λ and µ. Let
C(λ, µ) = |C(λ, µ)|.

Definition 5.2 (Ordered rooted bicolored thorn trees). For λ, µ ` n such that `(λ) + `(µ) ≤
n+ 1, we define B̃T (λ, µ) as the set of ordered rooted bicolored trees with `(λ) white vertices, `(µ)
black vertices, n + 1 − `(λ) − `(µ) thorns connected to the black vertices and n + 1 − `(λ) − `(µ)
thorns connected to the white vertices. The white (respectively black) vertices’ degree distribution
(accounting the thorns) is specified by λ (respectively µ). The root is a white vertex.

Again, adapting the Lagrange inversion developed in [6], we get:

|B̃T (λ, µ)| = n

Aut(λ)Aut(µ)

(n− `(λ))!(n− `(µ))!

(n+ 1− `(λ)− `(µ))! 2
.

We now prove Corollary 1.3:

Proof. We have C(λ, µ, [1n]) = C(λ, µ), the number of unicellular partitioned bicolored maps of type
λ and µ. Indeed, as the cycles of α3 refine the blocks of π3, if ν = [1n] then π3 = {{1}, {2}, . . . , {n}}
and α3 = ι, the identity permutation. Then extracting the coefficient of m1n(z) to both sides of
(2.14) we obtain

∑

λ,µ`n
Aut(λ)Aut(µ)Aut(1n)C(λ, µ)mλ(x)mµ(y) = [m1n(z)]

∑

λ,µ,ν`n
knλ,µ,νpλ(x)pµ(y)pν(z)

=
∑

ν`n,ν�1n
Aut(1n)Rν,1n

∑

λ,µ`n
knλ,µ,νpλ(x)pµ(y).

Since Rν,1n = 1 if ν = 1n and zero otherwise, we obtain

∑

λ,µ`n
Aut(λ)Aut(µ)C(λ, µ)mλ(x)mµ(y) =

∑

λ,µ`n
knλ,µ,1npλ(x)pµ(y),

where knλ,µ,1n = knλ,µ.

Next, we say what the bijection Θn
λ,µ,ν of Theorem 2.23 does in this case (ν = [1n]). This matches

the bijection in [15] which in turn matches the bijection in [6] when g(λ, µ) = 0 and is a refinement
of a bijection in [17].

Corollary 5.3. There is a bijection between partitioned bicolored maps C(λ, µ, n) and pairs (t̃, σ)

where t̃ ∈ B̃T (λ, µ) and σ ∈ Sn+1−`(λ)−`(µ).

Proof. From above we have that C(λ, µ, [1n]) = C(λ, µ). Let (τ̃ , σ1, σ2, χ) := Θn
λ,µ,[1n](π1, π2, [1

n], α1, α
−1
1 γ)

for (π1, π2, α1) ∈ C(λ, µ). We know that `(µ) = n forces α3 = ι, the identity permutation. In this

case m′
(j)
2 is the maximal element of α−12 (π

(j)
2 ). But α2 preserves the blocks of π2, thus m′

(j)
2 is just
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Table 3: Local rules for reducing cactus tree τ̃ when ν = [1n].

the maximal element of π
(j)
2 , call this m

(j)
2 . First, we show that in this case τ̃ can be reduced to a

tree t̃ ∈ B̃T (λ, µ). Then, we show that σ1, σ2 are trivial permutations and that χ can be regarded
as a permutation in Sn+1−`(λ)−`(µ).

From the incidence rules in Table 1, we see that each black vertex j has |πj2| children (one for

each element of the block). And `(λ) − 1 of the grey vertices have one child (one for each m
(i)
1 ,

1 ≤ i ≤ `(λ) − 1), the other grey vertices have none. Recall w, b, g count the number of triangles
in τ̃ children of white, black, and grey vertices respectively. From the rules in Table (2) for adding
triangles children of the different vertices, we see that w = `(µ). And if a grey vertex has a white
child, then these two vertices are part of a triangle child of a black vertex, so b = `(λ) − 1. For

triangles children of grey vertices, if α2(m
(j)
2 ) = m

(i)
1 for some i and j (1 ≤ i ≤ `(λ) − 1 and

1 ≤ j ≤ `(µ)), then m
(i)
1 ∈ π

(j)
2 and m

(i)
1 ≤ m

(j)
2 (α2 preserves blocks of π2). But α1(m

(i)
1 ) ≤ m

(i)
1

(α1 preserves blocks of π1), so γ(m
(j)
2 ) ≤ m

(j)
2 . This only happens if m

(j)
2 = n which means

1 = γ(n) ∈ π(i) and i = `(λ), a contradiction. Thus g = 0; there are no triangles children of a grey
vertex.

In terms of the thorns, the cactus τ̃ has n+ 1− `(λ)− `(µ) thorns connected to white vertices
and since n − `(µ) − `(ν) + w = 0 and n + 1 − `(λ) − `(ν) + b = 0, τ̃ has no thorns connected to
black and grey vertices.

From above we see that each grey vertex is either: (i) within a triangle child of a black vertex, (ii)
a vertex of a triangle child of a white vertex, and (iii) a leaf (note that there are n−(`(λ)−1)−`(µ)
of these). Then depending on the case we do the following reductions: (i) and (ii) triangle to the
edge linking the white and the black vertex, (iii) leaf to thorn connected to a black vertex. We
summarize this reduction graphically in Table 3:

The outcome is an ordered bicolored tree t̃ with `(λ) white vertices and `(µ) black vertices.
This tree t̃ has n+ 1− `(λ)− `(µ) thorns connected to white vertices and n+ 1− `(λ)− `(µ) thorns
connected to black vertices. Moreover, this reduction τ̃ → t̃ is reversible.

In addition, since τ̃ had no thorns connected to black and grey vertices (n+1−`(λ)−`(ν)+b = 0
and n − `(µ) − `(ν) + w = 0), then σ1 and σ2 are trivial permutations. Since `(ν) − w − b =
n + 1 − `(λ) − `(µ) = n + 1 − `(λ) − `(µ) + g, then we see that χ is just a permutation σ in
Sn+1−`(λ)−`(µ).

In summary, we have a bijection from (λ, µ, n) to the desired pair (t̃, σ).

Example 5.4. As an example, let α1 = (189 10)(25)(3467), α2 = (15427)(3)(6)(8)(9)(10), α3 = ι
(α1α2 = γ10); and π1 = {{3, 4, 6, 7}, {1, 2, 5, 8, 9, 10}}, π2 = {{1, 2, 4, 5, 7, 10}, {3, 9}, {6, 8}} , π3 =
{{1}, {2}, . . . , {10}}. Then Θn

λ,µ,[1n](π1, π2, π3, α1, α2) = (τ̃ , ∅, ∅, 251364) where τ̃ and its reduction

t̃ are depicted below:
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Figure 11: Example of reduction of a cactus tree to a bicolored thorn trees when ν = [110].
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nique, June 2009.

[5] G. Chapuy. A new combinatorial identity for unicellular maps, via a direct bijective approach,
DMTCS Proceedings (FPSAC), AK:289–300, 2009.

[6] I. P. Goulden and D. M. Jackson. The Combinatorial Relationship Between Trees, Cacti and
Certain Connection Coefficients for the Symmetric Group, European Journal of Combinatorics,
13:357–365, 1992.

[7] I. P. Goulden and D. M. Jackson. Combinatorial Enumeration, Dover, Mineola N.Y. 2004.

[8] I. P. Goulden and A. Nica A direct bijection for the Harer-Zagier formula, J. Comb. Theory
Ser. A, 111(2):224–238, 2005.

[9] A. Goupil A. and G. Schaeffer. Factoring n-cycles and counting maps of given genus, European
Journal of Combinatorics, 19:819–834(16), 1998.

[10] J. Harer and D. Zagier. The Euler characteristic of the moduli space of curves. Invent. Math.,
85(3):457–485, 1986.

[11] J. Irving. On the number of factorizations of a full cycle, J. Comb. Theory Ser. A,
113(7):1549–1554, 2006.

[12] D. M. Jackson. Some combinatorial problems associated with products of conjugacy classes
of the symmetric group, J. Comb. Theory Ser. A, 49(2):363–369, 1988.

[13] S. Lando and A.K. Zvonkin Graphs on surfaces and their applications, Springer-Verlag, 2004.

23



[14] B. Lass Démonstration combinatoire de la formule de Harer-Zagier, C.R. Acad. Sci. Paris,
333.Série I:155–160, 2001.

[15] A. H. Morales and E. Vassilieva, Bijective Enumeration of Bicolored Maps of Given Vertex
Degree Distribution, DMTCS Proceedings (FPSAC), AK:661–672, 2009.

[16] D. Poulalhon and G. Schaeffer. Factorizations of large cycles in the symmetric group, Discrete
Math., 254:433–458, 2000.

[17] G. Schaeffer and E. Vassilieva. A bijective proof of Jackson’s formula for the number of
factorizations of a cycle, J. Comb. Theory Ser. A, 115(6):903–924, 2008.

[18] E. Vassilieva Bijective Enumeration of 3-Factorizations of an N -Cycle Annals of Combina-
torics, 16(2):367–387, 2012.

[19] R. P. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, Cambridge,
1999.

Alejandro H. Morales
LaCIM, Université du Québec à Montréal
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