Direct bijective computation of the generating series for 2 and
3-connection coefficients of the symmetric group

Alejandro H. Morales and Ekaterina A. Vassilieva
March 21, 2013

Abstract

We evaluate combinatorially certain connection coefficients of the symmetric group that
count the number of factorizations of a long cycle as a product of three permutations. Such
factorizations admit an important topological interpretation in terms of unicellular constellations
on orientable surfaces. Algebraic computation of these coefficients was first done by Jackson
using irreducible characters of the symmetric group. However, bijective computations of these
coefficients are so far limited to very special cases. Thanks to a new bijection that refines the
work of Schaeffer and Vassilieva in [I7] and Vassilieva in [I8], we give an explicit closed form
evaluation of the generating series for these coefficients. The main ingredient in the bijection
is a modified oriented tricolored tree tractable to enumerate. Finally, reducing this bijection
to factorizations of a long cycle into two permutations, we get the analogue formula for the
corresponding generating series.

1 Introduction

1.1 Generating series for connection coefficients

In what follows, we denote by A = (A1, A2, ..., Ax) F n an integer partition of n and ¢(A) = k the
length or number of parts of A. We also write A = [1"N) 272(N) ] where n;()\) is the number of
parts ¢ in .

Let &,, be the symmetric group on n elements, and Cy be the conjugacy class in &,, of per-
mutations with cycle type A, where A F n. Given XM, \@) . .,)\(’"),,u F n, let kf\L(l) A be the
number of ordered factorizations in &,, of a fixed permutation v € C, as a product Oq ~eeqy of r
permutations o; € Cy¢;). These numbers are called connection coefficients of the symmetric group.
The problem of computing these coefficients has received significant attention and a good account
of its history and references can be found in [9]. We focus on the cases ky, and kY ie. when
r=2and 3, p = (n) and ~ is the long cycle v, = (1,2,...,n).

In addition, for A\ - n we use the monomial symmetric function my(x) on indeterminates
x = (w1, x2,...) which is the sum of all different monomials obtained by permuting the variables
of :1:1\13:5‘2 .-+, and the power symmetric function py(x), defined multiplicatively as px = px,px, - -
where py,(x) = mp(x) = >, #. Also, if A = [1MW) 272 1] et Aut(N) = [, mi(M)!.

Our combinatorial results can be stated as follows:

Theorem 1.1. The numbers kﬁ\“‘# of factorizations of the long cycle v, into an ordered product
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of three permutations of types \, i, and v respectively satisfy:

n2MY
E kX 1oPA(X)pu(y)pu(2) = — (nl’l‘”)’ (:)_1 mx(x)m(y)my(z), (1.2)
A\ u,vbn PWTRY ) (Z(A)—l) (é(,u)—l) (Z(V)—l)

where:
Mgt = (1) (v 12 ) () ()

Corollary 1.3. [15] The numbers kgf,u of factorizations of the long cycle v, into an ordered product
of two permutations of cycle types A and u respectively satisfy:

Y _ n(n —£A)!(n — £(p))!
)\%F:n B Gpuly) = A%I—:n (n+1—£(X) = €(p)! mA()mu(y), (1.4)

We will see in Section [2] that the coefficients on the right hand sides of (1.2) and (1.4) are

non-negative integers.

Remark 1.5. Equations (1.2) and (1.4]) can be obtained algebraically using the irreducible char-
acters of the symmetric group, the Murnaghan-Nakayama rule, and symmetric function identities
(see [12]). Here, we derive these equations through a bijection.

1.2 Background

n

Y1) ...\ we define the genus gO\®, . X)) of the

In the setting of the connection coefficients k

partitions A(?) by the equation
M) o A = (= Dn+ 1 —2g(AD - A0, (1.6)

We can take g to be a non-negative integer, since otherwise it is easy to show that kY, ., =0.
Except for special cases there are no closed formulas for the connection coefficients k;‘(l) oL

For instance, using an inductive combinatorial argument Bédard and Goupil [1] found a formula for

kY, in the case g(A, 1) = 0. This was extended by Goulden and Jackson [6] to evaluate kf\Lu),,,,, NE

the case g()\(l), ceey )\(”)) = 0 via a bijection with a set of ordered rooted r-cacti on n r-gons. Later,
using characters of the symmetric group and a combinatorial development, Goupil and Schaeffer
[9] derived an expression for connection coefficients of arbitrary genus as a sum of positive terms
(see Biane [3] for a succinct algebraic derivation; Poulalhon and Schaeffer [16] and Irving [11] for
further generalizations). As a general rule, these developments are quite intricate and the formulas
obtained are rather complicated.

Interestingly, if we consider the generating series for the coefficients k;u)’... A @S in the LHS
of , the coefficients of their expansion in the basis of monomial symmetric functions, as in
the RHS of , can be computed in closed form thanks to a result by Jackson [12] obtained
algebraically using the theory of the irreducible characters of the symmetric group. There are
direct bijections for a variant of the case of two factors (i.e. r = 2) like the celebrated Harer-
Zagier formula [10]: see Lass [14], Goulden and Nica [§], and Bernardi [2]. In this paper we follow
this approach and introduce the notion of partitioned tricolored (bicolored) 3-cacti (maps) of given
type, refining the work of Schaeffer and Vassilieva in [I17] and Vassilieva in [I§], and use a purely
combinatorial argument to derive the explicit generating series for kY and k;L,u in Equations

LWINYZ
(1.2) and (1.4)) respectively.
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1.3 Outline of paper

The paper is organized as follows: in Section [2] we introduce the partitioned 3-cacti and the cactus
trees (the enumeration of the latter is postponed to Section {4)) and relate them via a bijection ©
described in Section 3] Finally, in Section [5| we prove Corollary

2 Combinatorial reformulation

2.1 Cacti and partitioned cacti

Factorizations in the symmetric group counted by kY o admit a direct interpretation in terms of
unicellular 3-constellations also named 3-cacti with white, black, and grey vertices of respective
degree distribution A, p, and v. Within a topological point of view, 3-cacti are specific maps
which in turn are 2—cell decompositions of an oriented surface into a finite number of vertices
(0—cells), edges (1—cells) and faces (2—cells) homeomorphic to open discs (see [13] for more details
about maps and their applications). Maps are defined up to a homeomorphism of the surface that
preserves its orientation, the type of cells, and incidences in the graph. 3-cacti are maps with black
faces and one white face (thus the term wunicellular) such that: (i) each edge separates a black face
and the white face and (ii) all the black faces are triangles each composed of exactly a white, a
black, and a grey vertex following each other in clockwise order. As a consequence, the degree of
the white face is a multiple of 3. Often, cacti refer to planar maps (embedded in an orientable
surface of genus 0). In this paper we assume that they can be embedded in an orientable surface of
any genus. Besides, we consider only rooted cacti, i.e. cacti with a marked black face. We assume
as well that each black triangle is labeled with an index in {1,2,...,n} with the convention that
the marked triangle is labeled 1. In what follows, we define the degree of a vertex in a cacti as the
number of triangles it belongs to, and the degree distribution of the vertices of a given color is the
integer partition of n formed by the degrees of all the vertices of this color.

The next classical result (see [13]) relates rooted 3-cacti with factorizations of the long cycle

Y= (1,2,...,n).

Proposition 2.1. Rooted 3-cacti with n black triangles are in bijection with 3-tuples (a1, ag, as)
of permutations in &, such that ayasag = ~y,. Under this bijection the white (black and grey,
resp.) wvertices correspond to cycles of w1 (me and w3, resp.).

A sketch of the proof of this classical result can be found in [I§]. Each white, black, or grey
vertex of a given 3-cacti corresponds to a cycle of permutation ai, ag, or as respectively, and the
cycle is encoded by the local counter-clockwise order of the triangles around the vertex. The fact
that ajagas = 7, corresponds to saying that traversing the map starting on the white vertex of
the triangle labeled 1 and keeping the white face on the right we visit, in order, the white-black
edges belonging to triangles labeled 1,2,...,n. A consequence of Proposition is that for integer
partitions A, i, v of n, the number of 3-cacti of degree distribution A, u, v is the number k‘f\l,ﬂ,y
of factorizations defined in Section Moreover, by the Euler-characteristic, the genus of the
underlying surface of the 3-cacti of degree distribution A, u, v is given by Equation [1.6] Figure 1

shows a 3-cactus embedded on the sphere (genus 0) and a 3-cactus embedded on a torus (genus 1).

Example 2.2. The cactus on the left hand side in Figure 1 can be associated to the three permu-
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Figure 1: Two examples of rooted 3-cacti embedded in a surface of genus 0 (left) and genus 1
(right)

tations:
ar = (1)(24)(3)(5) 3)
ay = (1)(23)(45) 4)
az = (15)(2)(3)(4) (2.5)

The degree distribution of this cactus is A = [13,21], u = [11,22], v = [13,21].
The cactus on the right hand side corresponds to the three permutations:

ar = (1236)(4)(5) (2.6)
as = (153)(2)(4) 2.
ag = (134)(2)(5)(6) (2.8)

The degree distribution of this cactus is A = [12,4'], p = [13,3'], v = [13,31].

Partitioned 3-cacti
Cacti with a given vertex degree distribution are in general non-planar and non-recursive objects,
and no direct bijection is known to compute their cardinality. However, we provide an interpretation
of the formal power series > Apuhn kf’#’yp,\(x)py(y)p,,(z) as a generating function for partitioned
cacti. We are able to give an explicit formula for this generating function by introducing a new
bijective mapping for partitioned cacti. Intuitively, partitioned cacti are rooted 3-cacti where the
set of vertices of each color are partitioned into blocks. Such objects have also been widely studied,
for instance by Lass [14] and Bernardi [2] under the term of colored maps; and by Goulden and
Nica [8], Schaeffer and Vassilieva in [17], and Vassilieva in [18] as partitioned maps or cacti.

To define partitioned cacti we use w to denote a set partition of a set of n elements with blocks
{ml ..., 7P}. The type of a set partition, type(m) - n, is the integer partition of n obtained by
considering the cardinalities of the blocks of 7. We are now ready for the definition:

Definition 2.9. (Partitioned 3-cacti) A partitioned 3-cacti is a 4-tuple (w1, 72,73, Kk) such that K
1s a rooted 3-cactus with n triangles, and 71, wo and w3 are set partitions on the set of white, black,
and grey vertices respectively. By abuse of motation, hereinafter we view w1, me, and w3 as set
partitions on {1,2,...,n} where a block is composed of the labels of the triangles incident to the

vertices contained in the block. In what follows, the blocks of 71,7, and w3 are denoted W%i),wéj),

and ng) with the only restriction that 1 € ﬂgé(A)).



For \,p,v = n, we let C(\,u,v) be the set of partitioned cacti (w1, 72,3, k) where the set
partitions w1, m, and w3 of {1,2,...,n} have type A\, p, and v respectively. Let C(\,pu,v) =
ICA s v)]-

Remark 2.10. Following Proposition|2.1], we can interpret the cactus k as a 3-tuple of permutations
(a1, a9, 3) where az = a2_1 ) 041_1 ©Yn. As a result, partitioned cacti in C(\, p,v) can be seen as
5-tuples (w1, w2, T3, 1, aa) where w1,ma, and w3 are set partitions of {1,2,...,n} of types \, u, and
v respectively with the property that: for k =1,2,3, if an integer I of a given cycle ¢ of oy, belongs
to a given block of m then all the integers in the cycle ¢ also belong to this block.

Example 2.11. Toke the cactus on the right hand side of Figure 1 and add partitions m =

{r 7P}, m = {2l 7P}, my = (D, 2 1), where 7V = {45}, «® = {1,2,3,6}; =}V =

1,3,4,5), 7% = (2,6} 7V = 11,3,4,6}, 72 = {2V, 7P = [5). This gives a partitioned
2 3 3 3

cactus (my, T2, T3, a1, an) € C([24,4Y],[21,41],[12,4']) depicted in Figure @ Similarly to [17], we
associate a particular shape to each of the blocks of the partitions.

blocks m: < A\

blocks my: (@) @
blocks 73: [@1 @ <C>

Figure 2: Illustration of the Partitioned 3-Cactus from Example

Link between cacti and partitioned cacti
Consider the partial order on integer partitions given by refinement. That is A =< p if and only if
the parts of p are unions of parts of A\, and we say that u is coarser than A\. If A < u let RML
be the number of ways to coarse A to obtain u. For example, if A = [12,2%] and u = [1,2,3] then
Ry, = 4. It is well known that p) = PO Aut(p)Ry ,my, [19, Prop. 7.7.1].

We use this partial order on integer partitions to obtain an immediate relation between C'(\, u, V)

n
and k/\%y.

Proposition 2.12. For partitions p,d, € - n we have :
C(p,6,)= > RyRusRuck},,. (2.13)
AZp,u=d,v=e

Proof. Let (w1, 72,73, 01,a2) € C(p,d,€). If a1 € Cy, g € Cy, and a3 = a;lal_lfyn € C, then by
the definition of the partitioned cacti, we have that type(m) = p = A, type(me) = 6 = p, and
type(ms) = € = v. Thus, if we further refine C(p, d, €) by the cycle types of the permutations, i.e. if

C/\,M,V(pv 67 E) = {(71-1771-2’7[-3704170[2) € C(pv 57 6) | (a17a27a51a;17n) € Cy % C,u X CV}?



then C(p,d,€) = U<, u<s.0<c Crpv(p, 9, €) where the union is disjoint. Finally, if C .. (p, 6, €) =
|Cx, v (P, 0, €)| then it is easy to see that Cy ;. (p,d,€) = E,\pﬁwﬁyekﬁ,#,y. O

Using py = ZMEA Aut(p) Ry ;;my, Proposition is equivalent to:

Y K YIp(2) = Y Aut(N) Aut(u) Aut(v) C\, g, v) ma(x)my(y)my (2). (2.14)
A, p,vkEn A p,vkEn

In the special case when we have partitions p,d and e of n where £(p) + £(0) + (€) = 2n + 1,
the following proposition holds:

Proposition 2.15 ([6]). For partitions p,é and € of n where £(p) 4+ £(0) + (€) = 2n + 1 we have
that C(p,d,€) =k 5. = n2(L(p) — D1LS) — 1)!(L(e) — 1)/ Aut(p) Aut(5) Aut(e).

Proof. Let (my, 72,73, a1, ) € C(p, 8, €) with £(p)4+-£(8)+£(e) = 2n+1, and a3z = oy 'a; y,. Ifa; €
Cx, ag € Cy, oz € Cy, then £L(N) +4(p) +4(v) = 2n+1-2g(\, p,v) < 2n+1. But £(\) > (p), £(p) >
0(6), and £(v) > £(€) therefore p = A\, § = p, and € = v; and 71, 7o, and 73 are the underlying set
partitions in the cycle decompositions of oy, g, and aig respectively. Thus C'(9, p,€) = k:}y se But, as
shown in [6, Thm. 2.2], k7 ; = n2(0(p)—1)!1(L(8)—1)!(£(e)—1)!/ Aut(p) Aut(5) Aut(e€) since the genus
g(p,6,¢) =0. As a result, C(p,d,€) = n2(€(p) — DI(L(5) — 1)!(l(e) — 1)!/ Aut(p) Aut(5) Aut(e) O

As mentioned before, explicit computation of the right hand side of equation is made
possible thanks to a new bijective description of partitioned cacti of given type which is a refine-
ment of a bijection in [I7] and [I8]. Partitioned cacti are indeed in one-to-one correspondence with
particular sets of cactus trees (and three additional simple combinatorial objects), which are recur-
sive planar objects whose number one can compute with classical methods like Lagrange inversion.
Next we define such trees, in Section [4] we compute the number of such trees.

2.2 Cactus trees

Before we state the actual definition of the tree structure used as the main ingredient in the proof
of Theorem we give preparatory explanations. Ordered trees are non cyclic graphs usually
defined recursively as a root vertex v and an ordered sequence (possibly the empty set) of ordered
trees, called descending trees, each having its root vertex connected to v by an edge. The root of a
descending vertex is called a descending vertex. The root vertices of the descending trees of a given
vertex are considered as its children. Although it follows the same kind of recursive definition, the
tree structure we introduce has the following differences:

e vertices are of three different colors, say white, black and grey;

e the ordered sequence of children of a given vertex is not composed of vertices connected to it
through an edge. A child can be: (i) a thorn or half edge, i.e an edge, connecting this given
vertex to no other (as a result, no descending tree is attached to this kind of child), (ii) a full
edge, i.e. an edge connecting the given vertex to a descending one with the restriction that
only a black (resp. grey, white) vertex can be connected this way to a white (resp. black, grey)
one, (iii) a triangle connecting the given vertex to two descending ones with the restriction
that only a black and grey (resp. grey and white, white and black) can be connected this
way to a white (resp. black, grey) one. Triangles are made of three edges connecting the two
descending vertices to the ascending one and the two descending vertices between themselves.
The two descending vertices are the roots of two descending trees. The three kinds of children
are illustrated on Figure



Figure 3: Example of three types of possible children, the ordered sequence of children attached to
the white vertex is: edge, thorn, triangle, thorn, triangle

We are now ready to state the definition of the cactus trees:

Definition 2.16 (Cactus Tree). Let C,7'(p1,p2,p3,g, w,b) be the set of cactus trees T with p; white
vertices, ps black vertices, and ps grey vertices, g triangles children of grey vertices, w triangles
children of white vertices, and b triangles children of black vertices such that:

(i) the root of T is a white vertex,

(ii) the ordered set of children of each white (resp. black, grey) vertex consists of three kinds of
objects: thorns; full edges connecting this white (resp. black, grey) vertex to a black (resp.
grey, white) one; triangles connecting this white (resp. black, grey) vertex to both a black and
a grey (resp. grey and white, white and black) one,

(iii) the edge connecting a white (resp. black, grey) vertex to the black (resp. grey, white) one in a
descending triangle comes before the one connecting it to the grey (resp. white, black) vertex
according to the ordering of the children of this white (resp. black, grey) vertex.

Within a cactus tree, the degree of a vertex v is defined by:
deg(v) =c+e¢, (2.17)

where ¢ is the number of children (that can be either thorns, edges or triangles) and ¢ is 1 for a

non-root vertex, 0 otherwise. With this definition of degree, we write the set CT (p1, p2, p3, g, w,b)
as the disjoint union

CT (p1,p2, D3, g, w,b) = U CT(\ v, g, w,b).
L(N)=p1,L(p)=p2,L(v)=p3

where C/\’f'()\, W, v, g,w,b) is the set of cactus trees in ﬁ(pl,pz,pg,g, w, b) with degree distribution
A, i, v F n of the white, black, and grey vertices respectively.

In addition, in what follows we will denote by CT (p1,p2,ps3,9,w,b) the set of cactus trees
similar to those in ﬁ'(pl,pg,pg, g, w,b) but without thorns. We define CT (A, i, v, g, w, b) similarly.
Moreover, we will use the expression tricolored tree when only full edges are allowed in the set
of children of each vertex. Finally, we may use the integers (1,2,...,p1) (resp. (1,2,...,p2),
(1,2,...,p3)) to label the white (resp. black, grey) vertices of a given cactus tree or tricolored tree.
The resulting object is called labeled cactus tree or labeled tricolored tree respectively.

Example 2.18. The cactus tree in Figure belongs to 67'([12, 21 41 11,3t 41 11,2234, 1,1,1)



Figure 4: Example of a Cactus Tree. The white vertex in the bottom is the root of the tree. The
tree has p; = 3 white vertices, ps = 3 black vertices and p3 = 4 grey vertices, and three triangles
each children of white, black, and grey vertices respectively.

Proposition 2.19. The number of cactus trees is:

() = D) = D) — D! (g(w — () + Lp)tr))
Aut(N) Aut () Aut(v) (n+1—200\)—£(p) +g)

Lt o) (et ) (g 1 g ) @20

The proof of this proposition is carried out using the Lagrange inversion theorem (see e.g. [7,
1.2.13]) and it is postponed to Section

ICT (A, v, g, w, b)| =

2.3 Reformulation of the main theorem

Let OP™ be the set of all ordered r-subsets of [m]. By definition |(’)73 | = (m)r = m(m —
1)---(m —r+1). We have the following proposition:

Proposition 2.21. Theorem[1.1] is equivalent to:

T nt1—£(N)—¢
COu )= D 1CT O v, 9, w,0)] 1S 41— o3 —e(0)+b] 1S n—t()—e0)+0] IOPZ(VHw(b) W)t9)).
g,w,b>0
(2.22)

Proof. According to Equation Theorem is equivalent to the equality

n!? 1 2D

Aut(X) Aut(p) Aut(v) (Z(T;\;il) (Z(Z;il) (Z(?/;El) E(N),E(p) (V)

C()U/% V) =

After basic simplifications on the binomial coefficients, a summand in the RHS of Equation ([2.22))
reduces to:

(n = DEEp)l(v) + g(w — £(v))) ( n )
(i) (el 1) (oo 21 Aut(V) Aut () Aut(v) \w, 9,0, LX) =1 = g = b, () — g = b, £(v) —w — b

Then we sum over g, w, and b the terms depending on these parameters. Arranging properly
the terms depending on w and b, and simplifying sums on these two parameters thanks to the



Vandermonde’s convolution formula, we obtain:

> () + g(w — £(v))) (w’% b (N —1—g—b,0() — g — b, 0(v) —w— b> —

- <€(7j/)_—1 1> Zg: <€(7;)_—£§M—) g) (” _gg(y)> <7j1_—1€(_ujq>

Which leads directly to the desired result. O

g,w,b

As a direct consequence of Proposition Theorem reduces to:

Theorem 2.23. There is an explicit bijection @S\L%y between partitioned 3-cacti in C(\, u,v) and
tuples (T,01,09,x) where T € CT (A, p, v, g,w,b), 01 € Gy 1_p(2\)—t()+b> 72 € Sp_p()—t(v)+w, and

X € Opé?j)l_;zg)%(“Hg) for some g,w,b > 0.

The next section is devoted to proving this theorem by describing the bijection 6)5{7 v

3 Description of the bijection

3.1 Additional definitions

Before we get to the description of @7)\‘, o W need two additional ingredients: a linear order on the
white (black and grey, resp.) vertices and their children (as defined in the beginning of Section
which we call white reverse level traversal (RLT) (black and grey reverse level traversal, resp.), and
partial permutations.

Definition 3.1 (reverse level traversals (RLT)). For trees 7 € ﬁ()\,ﬂ, v,g,w,b) (or for 7 €
CT(\ p,v,g,w,b)), we define the white Reverse Levels Traversal (RLT) as the following linear
order in T of the white vertices and their children.

We divide the white vertices of T into levels depending on their height from the root (where the
height is defined as the number of edges in the shortest path with vertex sequence white-grey-black-
white-. . . to the root). So the first level consists of the root, the second level consists of the white
vertices at height 3 from the root, etc. The white RLT is a traversal of all the white vertices and
their children (thorns, edges, triangles) from left to right, first at the level of maximum height, then
the level of second maximum height,. .. up to the root vertex. The children of each white vertex are
traversed from left to right before the vertex itselflﬂ

The black and grey RLT are defined similarly with respect to black vertices and their children,
and grey vertices and their children. Figure [5|depicts the three RLT for the cactus tree in Example

218

Definition 3.2 (Partial permutations). Given two sets X and Y and a non negative integer m, let
PP(X,Y,m) be the set of bijections from any m-subset of X to any m-subset of Y These bijections
are called partial permutations. Then |PP(X,Y,m)| = (lﬁ) (':@l)m!.

n words, the white RLT can be viewed as a reverse breadth first traversal of the white vertices and their children.



(c)

Figure 5: Examples of (a) White, (b) black, and (c) grey reverse level traversals (RLT) on the
cactus tree of Example

3.2 Bijective mapping O for 3-cacti that preserves type
We proceed with the description of ©:

n ~ T n+1—4(\)—¢
PR C()‘u Ky V) - CT(Av H, V) X 6n+1—£()\)—2(1/)+b X Gn—f(u)—é(l/)—i-w X OP§($£ME2) (;U«)Jrg).

Within the construction, we use
(p17p2)p3) = (E()\)7€(/,L),E(V))

3.2.1 The cactus tree 7

Let (my,ma, w3, a1, a2) € C(A, i, v). We construct a cactus tree 7 € C/\’/f()\, W, v, g, w,b) following the

procedure below.

(i) Cactus tree: The first step is to construct the cactus tree 7 and relabeling permutations in the

same way as in [I8]. For completeness, we also include here the construction. Let m/Q(j ) (1<j<p9)

() ()
)

be the maximal element of a3 a; ' (my’) and m;” for i = 1,3 (1 < j < p;) be the maximal element

of the block 772(]).

We first construct the labeled tricolored tree T" with p; white, po black, and p3 grey vertices
satisfying: the root of T is the white vertex with label p; and the incidence relations and order of
children are given in Table

Lemma 3.3 ([I8]). The procedure above defines a labeled 3-colored tree T'.

We construct the labeled cactus tree T from T by forming triangles children of the different
vertices following the rules in Table
Finally, we remove the labels of T to obtain a cactus tree 7.

Example 3.4. The construction of T, T, and T for the partitioned cactus in Erample 18
depicted in Figure [0

(ii) Relabeling permutations: These permutations 61,62, and 63 are defined by considering the
reverse labeled cactus tree Y’ resulting from the labeling of 7, based on three independent reverse-
labeling procedure for white, black, and grey vertices. We do a white RLT and label the white

10



Incidence relations Order of children

for 1<j<p2
J X} J2

i v
if m g 7 ¢ oz tay &Z)) if azas(m'; 5 ) < azaz(m /(32))
for 1<k<p3
k \ ko

; V
if m(k) €azl(r ;J)) if agtay ag(mé 1)) < azlaytaz(m (kz))
for 1<i<p;—1
i i1 i

AN
it m® ¢ 7 if oy ' (m{™)) < az ' (m{®)

Table 1: Incidence relations and order of children of the labeled tricolored tree 7. Each row of
the table shows the incidence relations and order of children of the white, black and grey vertices
respectively.

vertices only (as they are traversed) with the labels 1,2,...,p;. Similarly, we do a black RLT and
label the black vertices only with labels 1,2,...,ps, and do a grey RLT to label the grey wvertices
only with labels 1,2,...,p3. Next, we reindex the blocks of 71,7 and 73 using the new indices
from Y’: if a white vertex is labeled i in T and ¢’ in Y, we set 7} = ﬂ'gi) (and m} = mgl)) Black
and grey blocks are reindexed in a similar fashion. Let u?, v/, w* be the strings obtained by writing

the elements of ﬂﬁ,ﬂ%,ﬂg respectively in increasing order. Denote u = u'---uPl, v = vl ... vP2,

w = w' - -wP3 the concatenations of the strings defined above. We define §; € &,, by setting u as
the first line and [n] as the second line of the two-line representation of this permutation. Similarly,

we define the relabeling permutations #; and 63 from v and w respectively.

Example 3.5. Following up on Example we construct the relabeling permutations 61,65, and

03. We have:
9_451236 9_134526 9_521346
1"\ 1 2/3456)" 7 \1234|56) 2 12345 %6)"
We define the multisets:
. i p1—1 15 p2
S = {91(7”1)}2.:1 U{Hl(OéwS(mz))}j:lC[n],

sp = {0a00D}” 0 {0a(05" 0z s} -1,

55 = {osb)}” o {ostag o} -1,

i=1

They are multisets since we allow some elements to be repeated once when there are triangles in Y.
Note that the sizes of the underlying sets of S1, S2, and Ss are p1 +p2 —1—g¢, po +p3 —1 —w, and
p1+p3—2—>b respectively. We use these multisets to label the vertices, the edges and triangles of the

11



Rules for adding triangles
for 1<i<p1—1, 1<j<p2 for 1<j<p2, 1<k<ps for 1<k<ps, 1<i<p1—1
j k i
? J k
: , o L , B . X
if agag(m’g)) = mgz) if agtas, ;ag(mé ) = m/éj) if ag 1(m§z)) = mé )
(i.e. az(mg’) = agag(m'é]))) (i.e. mgz) = ag(mg )))

Table 2: Rules for forming triangles children of white, black and grey vertices in the labeled
tricolored tree T in order to obtain the labeled tricolored cactus tree Y.

blocks m: <& JoN

blocks y: @ @
blocks m3: (@] @ ©

Figure 6: tricolored tree T' and cactus trees T and 7 associated to Example The tree T is
the 3-colored labeled tree built following rules in Table The labeled cactus tree T is obtained
from T by forming triangles following the rules in Table [2l The cactus tree 7 is obtained from Y’
by removing the labels of the vertices.

cactus tree 7 with three types of labels: circle for 61, square for 0, and triangle for 5 (represented
as labels @, , and : /\ as illustrated in Figure|7). We assign 6 (m?) to the white vertices indexed
iin Y', 62(m'}) to the black vertices indexed j in Y', and 3(m4%) to the grey vertices indexed k in
Y'. Children of a white vertex (edges and triangles) are labeled 6; (agas(m'})) if the black vertex
at the end of the edge or within the triangle is indexed by j in T’. The children of the black and
grey vertices are labeled in a similar fashion with {6 (aztaytag(mb)) 23’:1 and {63 (azt(m})) f;;l
respectively.

Let T” be the resulting cactus tree with these new additional labels.

Let S; (for i = 1,2,3) be the ordered multiset obtained by arranging the elements of S; in
non-decreasing order (for i = 1,2, 3).
Lemma 3.6. Let d = (di,da,...,dp +p,—1) (d' = (d,...,d}, ), and d" = (df,...,d} .. 1)
resp.) be the ordered set of labels of the first type (second and third type resp.) obtained by traversing
Y up to, but not including the root vertex according to the white RLT (black and grey RLT resp.)
defined in Section 3. We have:

d=5;, d'=5, d'=S5;.

Proof. Let 01(m?) = 0. By construction, if 6; (agqg(m’%)) in T is the label of a child of a white
vertex with label 1 (m}), 1 < i < py, then asaz(m’y) € i and asas(m’y) < mt. As 6 is increasing

12



among the blocks and within them then:

01(mi") < fi(azas(m'h)) < 61(md),
Now, if two children of the same white vertex have respective labels 6 (a3 (m'3))) and 6; (agaz(m'3?))
in Y”, and black vertex j; is to the left of jo; then by construction we have 042(13(m,‘%1) < g3 (m’g").
Again, since ) is increasing within blocks of mr; then 6)(asaz(m/3!)) < 61 (aas(m'}?)). Finally,
the white RLT of the circle labels in Y (up to but not including the root) yields S;. Similarly,
black and grey RLTs of the square and triangle labels in Y” yield S, and Ss respectively. ]

(iii) Thorns: Recall the definition of d,d’, and d” in Lemma We add thorns to the white
vertices for each missing element of [n] in d, and add thorns to black and grey vertices for each
missing element of [n — 1] in d” and d”, respectively. More specifically, we add n+1—p; —p2 + ¢
thorns to the white vertices, n — ps — p3 + w thorns to the black vertices, and n+1—p; —p3+ b
thorns to the grey vertices of Y in the following fashion:

1. If d; > 1 and d; is the label of a (white) vertex, we connect dj — 1 thorns to it. If a child of a

white vertex has label dy, we connect d; — 1 thorns to the ascending white vertex on the left
of child d;.

2. For 1 <l <pi+p2—1,if d > d;_1 + 1 we follow one of the four following cases:
(a) d; and d;_; are both the label of white vertices in Y”, white vertex d; (short for vertex
corresponding to d;) has no child and it is the white vertex following d;_; in the white RLT
of Y”. If so, we connect d; — d;_1 — 1 thorns to dj.
(b) d; is the first label of a child and d;_; is the first label of a white one, then d; is the
leftmost child of the white vertex following d;_1. If so, we connect d; — d;_1 — 1 thorns to the
ascending white vertex of d; on its left
(c) d; is the first label of a white vertex and d;_; is the first label of a child, then d;_; is the
rightmost child of d;. If so, we connect d; — d;_1 — 1 thorns to d; on the right of d;_4
(d) Finally, if d; and d;_; are both the first label of children, they have the same white
ascending vertex. We connect d; — d;—1 — 1 thorns to the ascending white vertex between
them.

3. If dy,4p,—1 < n, we connect n — dp, 4p,—1 — 1 thorns to the root vertex on the right of its
rightmost child.

Again, we can think of this as adding a thorn to the the white vertices for each element of [n]
not included in d.

A similar construction is applied to add thorns to the black and grey vertices following the
sequence of integers d’ and d”. Finally we remove all the labels to get the cactus tree 7.

Example 3.7. Figure[7 depicts the construction of the cactus tree T corresponding to the partitioned
cactus in Example|2.11).

The next two lemmas show that 7 preserves the type of the partitioned cacti, and that T can
be recovered from 7 via white, black, and grey RLTs.

Lemma 3.8. 7 as defined above belongs to ﬁ(A,p, v,g,w,b) where g,w,b are the number of
triangles in T rooted in grey, white, and black vertices respectively.

13



blocks m1: <@ O\

blocks 7o: @ @
blocks m3: [@ © @

Figure 7: Construction of the cactus tree 7 associated to Example

Proof. We check the vertex degrees of 7. If we take two successive white vertices ¢ — 1 and 1
according to white RLT of T" with labels 1(m’™') and 61(m}), (i < p1), a thorn is connected to i
for any missing integer of the interval [0; (m’™),0;(m}) — 1] in d. This number of missing integers
is equal to f1(mi) — 1 — 01 (mi™) — f; where f; is the number of children of 4. As i is not the root
vertex, there is an edge between i and its ancestor so that the resulting degree deg for i (as defined

in (2.17)) is:
deg(i) = f; + (01(ml) — 1 — 0y (mi™Y) — fi) + 1 =601(ml) — 0 (mi7Y), Vie[p -1,  (3.9)

Furthermore, n — 6 (m]fl*l) — fp thorns are connected to the root vertex (since e, = 0) so that:

deg(p1) = n — 01 (mP 1) (3.10)

But, according to the construction of 6,

Ql(wi) = [91(m%)] | (3.11)
Oi(r)) = [Br(m)]\[1(mi)), 2<i<pi—1) (3.12)
(7)) = [\ (B2 (mi* )] (3.13)

Subsequently: 4
deg(i) = |nt|, Vi € [p1]. (3.14)
And X\ = type(m) is the white vertex degree distribution of 7. In a similar fashion, p and v are the
black and grey vertex degree distribution of 7. O
Lemma 3.15. Assign circle labels 1,2,...,n to the white vertices and their children (including
thorns) in T in increasing order according to the white RLT, add two other sets of labels 1,2,...,n

(square and triangle) to the black and grey vertices and their children in increasing order according
to the black and grey RLT. The labeling of the vertices and children that are not thorns is the same
as i Y.

Proof. According to the construction of 7, we add thorns to T” when integers are missing in its
RLTs so that the thorns would take these missing integers as labels when traversing the cactus
tree. As a result, the labels of the vertices in the RLTs of 7 are still d,d’, and d” and since they
still appear in the same order, we have the desired result. ]
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3.2.2 The permutations 07 and 02 and the ordered set x and the

In the previous subsection we explained how to obtain the cactus tree 7 from the partitioned 3-cacti

in C(\, 1, v). We now move on to explain how to obtain the permutations o1 in &, 11_¢x\)—r(w)+b

and o2 in &,,_y(\)—¢()4b, and the ordered set x in (’)P%jgl_jg)_g(”)Jrg).

(i) Permutations o1,09: Let E and F' be the following sets:
B =)\ ({o:(mi)})" u{91 (as(mE) 1)
)\ ({01 (azas(mD) 12, U {01 (as(mb)) 1))

We define partial permutations ¢; and g2 in the following way:

F

or: E — [n —1]\S3

u O305 107 (u)
gy F — [n —1]\\S2

u v Ohaztay 07 (u).

Let 01 € Gpq1—p1—ps+b and o2 € &y_p,_ps+w be the order isomorphic permutations corre-
sponding to g1 and gy respectively.

(ii) Ordered set x: We define the ordered set Y = {61(as(m5)) | 61(as(mb)) ¢ Sl . Then, let
p:[n]\ S [n—[S1]] be the indexing permutation associating to any integer Z 6 [n] \ S7 its
p081t10n in [n] \ S1 where [n]\ S is the ordered (increasing) set of [n]\ S1. The ordered set

x is defined as follows:

X = p(X) (3.16)
As [Si| =n — (€(A\) = 1) — () + g and |{61(as(mh)) | 61(as(mb)) ¢ S1}| =L(v) —w—b, x

belongs to the set (’)Pé?:;l wé( b) Un)+9)

Example 3.17. Getting back to Example[2.11], computing the partial permutations leads to:

(135 . (31
TM=\453) 271 2)
3 (12
1) 272 1)

For the ordered set we have: x = (4) and x = (3).
In summary, the map ©F ,, applied to the cacti (71,72, 3, a1, ) € C([21,41],[21, 41],[12,41])
from Example|2.11| gives the 4-tuple (T, 01,02, X) depicted in Figure @

and

2
Il
/N
(O
JCIN

3.3 Showing the map O is a bijection
To show that ©F v 18 & one-to-one correspondence we take any element (7,071,072, X) in

— n+1—0(N)—€(u)+
CT()‘Mua v,9,w, b) X 6n+1—€(>\)—€(u)+b X 6n—£(u)—€(u)+w X OP((V) w(b) () +9)

and show that there is a unique element (71,79, 73, a1, 2) in C(\ p,v) such that
@7}\7“’”(771,772,%3,@1,042) = (T,01,02,%). Let p1 = £(N\), pa = £(n), and ps = ¢(v). We proceed
with a two step proof:
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n .
@A,u,v :

Figure 8: Summary of ouput (7,01, 02, x) of the map ©F  applied to the partitioned 3-cacti from

Example 2.11]

LWINZ

(i) The first step is to notice that (7,01,09,) defines a unique cactus tree 7 belonging to

CT (p1,p2,p3,9,w,b), unique multisets {S;}1<i<3, as well as a unique ordered set x belonging
to Opgj;il_p 2+9) Labeling each vertex and children of 7 with 1,2,...,n in increasing
order according to the three reverse levels traversals and removing the three sets of thorns
(together with their labels) gives a labeled cactus tree Y” that leads to 7 according to ©.
This labeled cactus tree is the unique one that can lead to 7 since within ©, 7, and Y” have
the same underlying cactus tree structure 7, and according to Lemma T determines the
labels of Y”.
Then, using Lemma 3.6] the three series of labels (except the root’s) in Y” are by construction
the three sets {S;}1<i<3. The knowledge of S; and x uniquely determines x. As a result,
exactly one 7-tuple (7,51, Se,S3,01,09,X) is associated to (T, 01,09, x) by the final steps of
the mapping ©.

(ii) The bijection Oy, p, pyps in [I8] is identical to the first steps (up to the construction of
7,51, 52,83,01,02 and X) of G)MW Therefore by [I8, Sec. 6] there is a unique 5-tuble
(1,9, T3, 1, ) in C(p1, p2,p3,n) = Ue V=p1,£()=pa, () =p , C(A, p, v) mapped to the 7-tuple
(1,51,52,53,01,02,X) by Op p, po.ps and equlvalently by the first steps of @”M
According to [18], the types of 71, w2, and 73 are directly recovered from {S;}1<i<3 and 7.
Furthermore, using Lemma [3.8] the vertex degree distribution of 7 is equal to the type of
the partitions encoded by the elements in {S;}i1<;<3 corresponding to the relabeling of the
maximum elements of the blocks. Finally, as the vertex degree distribution in 7 is (A, u, v),
so is the type of (71, w2, m3). Therefore, (71, w2, 73, 1, ) belongs to C(A, p, v) as desired.

4 Proof of Proposition 2.19; computation of the number of cactus
trees

In this section we prove Proposition where we compute the cardinality of the set cT (A, g, vy g, w, b).
To do this, we consider its generating function F":

F= 3 > 10T wrgwb)layVay oy afapagerOuneve) @)
A p,vEn g,aw,b>0

That is, the white, black, and grey vertices are marked respectively by indeterminates x1,z2 and
x3. Triangles children of a grey, white, and black vertex are marked respectively by x4, x5, and
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ze. Furthermore, ¢;,u;, and v, mark respectively white vertices of degree 7, black vertices of
degree j and grey vertices of degree k. And t = (t1,t2,...), u = (uy,u2,...), v.= (v1,v2,...) and
n(e) = (ni(e),n2(e),...) for € - n where n;(e) is the number of ¢ parts of e.

The evaluation of F' is performed thanks to the multivariate Lagrange inversion theorem (see
e.g. [7, 1.2.13]). We propose a recursive decomposition of the desired set of cactus trees sharing
similar ideas with [6].

In a similar fashion as in [6], we introduce W, B, and G as the generating functions of the
sets W, B, and G of non empty planted cactus trees with respectively white, black, and grey root
vertices. Construction rules for these sets of cactus trees are identical to those of CT (A, u, v, g, w,b)
with the only exception that an additional planted edge is connected to the root vertex on the left
of the leftmost child (vertex or thorn). We take this additional edge into account in the root’s
degree. Finally, let T,, Ty, and T} be respectively the generating functions of triangles children of
a grey, white, and black vertices. Immediately:

Tg = T4 (4'2)
Tw = T5 (43)
Ty, = x¢ (4.4)

Any cactus tree in CT (A, p, v, g,w,b) can be decomposed in a tuple of planted cactus trees in
W, B, and G. The rule for the decomposition is based on the nature of the leftmost child of the
white root in a given cactus tree 7 of CT (A, p, v, g, w, b):

(i) If the leftmost child is a thorn then 7 is equivalent to the cactus tree in WV with the planted
edge instead of this leftmost thorn.

(ii) If the leftmost child is an edge connected to black vertex v, then 7 is equivalent to the pair
(11,72) in W x B where 75 is the cactus tree descending from v with v as the root and the
edge linking v to the root of 7 replaced by the planted edge. 71 is the remaining cactus tree
descending from the root of 7 with the edge linking it to v as the planted edge.

(iii) If the leftmost child is a triangle containing black vertex v; and grey vertex ve then 7 is
equivalent to the tuple (71, 72, 73, ty) in W X Bx GxXTT,, (T'T,, is the singleton set composed
of the triangle child of a white vertex) where 75 and 73 are the descending trees from v; and
v9 with the edge linking 7’s root and v; and the edge linking v; and ve replaced by a planted
edge. 71 is the remaining descending cactus tree from its root with the leftmost triangle
replaced by the planted edge.

One can check easily that the numbers of triangles, white, black, and grey vertices and their degree
distribution are stable by the bijective transformation described above. The complicated case above
is case (iii) where the edges linking v; and vg, and the edge linking the white root of 7 and v9 are
replaced by nothing in (respectively) 72 and 71. However in Definition of the degree of a vertex
in 7, these edges were already not taken into account for the degree of respectively v; and the root
vertex. As a consequence :

F=W+W-B+W-B-G-T, (4.5)

This decomposition is illustrated in Figure [9]
To determine F, we show that W, B, G,T,,T,,, and T}, satisfy a system of functional equations.
Namely, as shown in Figure [10] any planted cactus tree in W, 7 can be decomposed into:
e its white root,
e the cactus trees rooted in a black vertex descending from the root,
e a triple composed of a black rooted cactus tree, a grey rooted cactus tree, a triangle for each
triangle descending from the root,
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Figure 9: Illustration of the decomposition into planted trees

3

e the positions of the triangles in the list of children.

Pl

Figure 10: Decomposition of a white rooted planted cactus tree

Let i denote the degree of the root vertex (of degree i + 1), j the number of black children not
belonging to a triangle and k the number of descending triangles. The vectors j and k give the
positions of the j black vertices and k triangles within the ¢ children. Using the decomposition

above, we have:
W= tis1 > > BI(B-G-T,)F (4.6)

>0 0<j+h<i jk
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Then:

W= oYt Y (,ik>Bj(B-G-Tw)k

i>0 0<j+k<i J>
W = xlzti+1(1+B+B-G-Tw)i

i>0
Similarly,
B = I‘QZ’LLZ'Jrl(l—I—G—I-G'W'Tb)i
i>0
G = $3Zvi+1(1+W+W'B'Tg)i
i>0
Finally :
(W,B,G, Ty, Ty, Tp) =x®(W,B,G, Ty, Ty, Tp) (4.7)

where x = (:Cl,:cg,xg,x4,w5,x6) and ® = ((bi)lgz‘gﬁ with:

O,(W,B,G, Ty, T, Ty) =Y tiy1(1+B+B-G-Tp)' (4.8)
>0

Oy(W,B, G, Ty, Ty, Ty) = Y uip1 1+ G+ G- W - Tp)’ (4.9)
>0

O3(W, B,G, Ty, T, Ty) = > i1 (L+ W +W-B-T,) (4.10)

O, =1ford<i<6 - (4.11)

Using the multivariate Lagrange inversion formula for monomials (see [7, 1.2.9]), we find :

kykokskskske [xX] W B™2GTST! =

> Nl Gijky — pig 1| [ [WHe Br2Gras T Ths 70 (4.12)
{wis} 1<i<6
where §;; is the Kronecker delta function, || - || denotes the determinant, k = (ki, k2, k3, k4, ks, k)

and the sum is over all 6 x 6 integer matrices {/;;} such that:
® [11 = H14 = p16 = M2 = f24 =
p2s = p33 = p3s = p136 = 0 - -

Omj:OforiZZl 0 x * 0 % 0
® fio1 + p31 = k1 — 11 * 0% 00
® 12+ pi32 = k2 — 12 ie u= g ; 8 3 8 8
® j113 + pog3 = k3 — 3 00000 0
* Has =Ky 000000
o 5 =ks —15 - -
® L6 = kg

Looking for zero contribution terms in expression (4.12), we notice that G and T, have neces-

sarily the same degree in the formal power series expansion of ®;. Hence, a non zero contribution
of
H11 RH12 (Y13 M1 16 ki
(W Rz GISTIATHS TR0 O
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implies @13 = @15 = ks — r5. Similar remarks give non zero contributions only for ue; = kg and
32 = k4. As a result, only that one matrix p yields a non zero contribution.
For this particular u,

1

+ 1 (k6k3+(k6+7“1 —kl)(T3+k4—T5—k3))
+ 13 (kake — ko(ke + 11 — k1)) (4.13)
1
= Ak, r). 4.14
Al (4.14)

Let co(k) denotes the set of sequences of non negative integers of total sum k. The next step is to
notice that:

o = 2 ()[mosnencn]

seco(ki)
kl z’LSZ a a
o = ) < )Htm (Ea a>Bl(GTw) g (4.15)
s€co(k1) i>0 ai,a2 1 2,2

As a result, the coefficient in WH1 BH12 G“IST;MTqﬁwTé‘l@ s equal to
> 2 ; | -
seco(k) ( 20 ks —rs,ka —ka — ks —r2+75
Similarly, we have:
[W'quBu22G#23T;24T525T;26] @’262 _

ko ) Zzsz
E I | o ¢ 4.17
<S>i>0ul+l(7€6>k3—k5—7%—7“3-!—7"5) (4.17)

se€co(ka)
[Wu:n B“32G“33T534T1‘535Té‘36] ¢,l§3 _
k3> P < Z 18; )
v v . 4.18
seg(k?)) <S g) U\ bt — Ky — ke — 11 ( )

Putting everything together gives:
[xﬁ(’\)x; )xg(y)x4x :Ubtn( ) n(“)vn(”)] W™ B"GRT,> =
(A)> < 2o i1 (A) ) y
(A) — 75, l(p) —g—w —r2+75
< (N))( > i i1 (p) >
n(p) v)—w—b—rg+r;
(

(i) oty 75 500) (4.19)
Noticing that for € - n

Z ini+1(e) = Z(z + Dngya(e Z nir1(€) =n — l(e). (4.20)

1>0 1>0 >0

And summing for r € {(1,0,0,0),(1,1,0,0),(1,1,1,1)} gives the desired result.

AL, £p), £(v), g, w, b, x )(
EN)E(p)(v)

>~ B

R
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5 Proof of Corollary and restriction of bijection © when v = [1”]

We look more closely at the case when one of the partitions, say v, is [1"]. We need the following
definitions:

Definition 5.1 (Partitioned bicolored map). Given partitions \,u = n, let C(\,u) be the set
of triples (m,m2, ) such that a € &, m,me are set partitions of [n] with type(m) = X and
type(ma) = u, and each block of ™1 and 2 is a union of cycles of a and 3 = a7, respectively.
The elements of C(\,u) are called unicellular partitioned bicolored maps of type X\ and p. Let
CO\ ) = ICO o).

Definition 5.2 (Ordered rooted bicolored thorn trees). For \,u b n such that ¢(A) + £(u) <
n+1, we define E’f()\,u) as the set of ordered rooted bicolored trees with ¢(\) white vertices, (i)
black vertices, n + 1 — £(X) — €(u) thorns connected to the black vertices and n+ 1 — £(X) — £(u)
thorns connected to the white vertices. The white (respectively black) vertices’ degree distribution
(accounting the thorns) is specified by A (respectively ). The root is a white vertex.

Again, adapting the Lagrange inversion developed in [6], we get:

n (= )0 — )
BT O] = o) et 1 — ) — )™

We now prove Corollary

Proof. We have C(\, p, [1™]) = C(A, p), the number of unicellular partitioned bicolored maps of type
A and p. Indeed, as the cycles of as refine the blocks of 73, if v = [1"] then m3 = {{1},{2},...,{n}}
and as = ¢, the identity permutation. Then extracting the coefficient of min(z) to both sides of
(2.14) we obtain

Z Aut Aut )Aut(l”)C(/\,u)mA(X)mu(Y) = [mln(z)] Z /fﬁ’u,,,p,\(X)Pu(Y)Pu(Z)
N A, vkn
= Z Aut 1/1" Z k)\“u,7yp)\ ( )
vhEn,v<1m Apbn

Since E,,Jn =1 if v = 1" and zero otherwise, we obtain

Z Aut(N) Aut(p)C' (A, p)my(x) Z kX anPA(X)Pu (),
A pkn A pukn
where kY i = k:f\"ﬂ. ]

Next, we say what the bijection ©% , , of Theorem [2.23 does in this case (v = [1"]). This matches
the bijection in [I5] which in turn matches the leeCthD in [6] when g(\, 1) = 0 and is a refinement
of a bijection in [17].

Corollary 5.3. There is a bijection between partitioned bicolored maps C(\, p,n) and pairs (t, o)
where t € BT(\, 1) and o € S 1—e(N)—£(u) -

Proof. From above we have that C(A, 1, [1"]) = C(A, u). Let (7, 01,02, x) == O , [1n](7r1’ T, [17], a1, a7 ')

for (m1,m2,01) € C(A\, ). We know that ¢(p) = n forces asz = ¢, the identity permutation. In this
)

1(3)

case m g 7) is the maximal element of oy t(m éj ). But ay preserves the blocks of mg, thus m’s’ is just
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Table 3: Local rules for reducing cactus tree 7 when v = [1"].

the maximal element of 7T§j ), call this mgj ), First, we show that in this case 7 can be reduced to a
tree t € 3\71(/\, w). Then, we show that o1, 09 are trivial permutations and that x can be regarded
as a permutation in &, 11 p(x)—g(n)-

From the incidence rules in Table |1} we see that each black vertex j has |7T%| children (one for
each element of the block). And ¢(A) — 1 of the grey vertices have one child (one for each mgz),
1 < i < (M) —1), the other grey vertices have none. Recall w,b, g count the number of triangles
in 7 children of white, black, and grey vertices respectively. From the rules in Table for adding
triangles children of the different vertices, we see that w = ¢(u). And if a grey vertex has a white
child, then these two vertices are part of a triangle child of a black vertex, so b = ¢(\) — 1. For

triangles children of grey vertices, if ag(mgj)) = mgi) for some ¢ and 7 (1 < i < ¢(\) — 1 and

1 <j<4(u)), then mgz) € Wé]) and mgz) < mgj) (cvo preserves blocks of 7). But al(mgz)) < mgz)
(a1 preserves blocks of 1), so ’y(mgj)) < m(Qj ). This only happens if mgj ) — 5 which means
1 =~(n) € 7 and i = £()\), a contradiction. Thus g = 0; there are no triangles children of a grey
vertex.

In terms of the thorns, the cactus 7 has n 4+ 1 — ¢(\) — £(¢) thorns connected to white vertices
and since n — l(pu) — (v) + w =0 and n+ 1 — ¢(\) — £(v) + b = 0, T has no thorns connected to
black and grey vertices.

From above we see that each grey vertex is either: (i) within a triangle child of a black vertex, (ii)
a vertex of a triangle child of a white vertex, and (iii) a leaf (note that there are n— (¢(A) —1) —£(u)
of these). Then depending on the case we do the following reductions: (i) and (ii) triangle to the
edge linking the white and the black vertex, (iii) leaf to thorn connected to a black vertex. We
summarize this reduction graphically in Table [3}

The outcome is an ordered bicolored tree ¢ with ¢(\) white vertices and ¢(u) black vertices.
This tree ¢ has n+1—£()\) — £(u) thorns connected to white vertices and n + 1 — £(\) — £(u) thorns
connected to black vertices. Moreover, this reduction 7 — ¢ is reversible.

In addition, since 7 had no thorns connected to black and grey vertices (n+1—£¢(X)—£4(v)+b =0
and n — ¢(u) — £(v) + w = 0), then o7 and o9 are trivial permutations. Since ¢(v) —w — b =
n+1—0A) —Lp) =n+1—L0N) —L(p) + g, then we see that x is just a permutation o in
St 10 —()- i

In summary, we have a bijection from (\, y,n) to the desired pair (¢,0). O

Example 5.4. As an example, let oy = (18910)(25)(3467), ae = (15427)(3)(6)(8)(9)(10), 3 = ¢
(ciag = vy10); and m = {{3,4,6,7},{1,2,5,8,9,10}}, mo = {{1,2,4,5,7,10},{3,9},{6,8}},m3 =
{{1},{2},...,{10}}. Then oy, [17] (71,72, T3, 01, ) = (T, 0,0,251364) where T and its reduction

t are depicted below:
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Figure 11: Example of reduction of a cactus tree to a bicolored thorn trees when v = [110].
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