Generalized permutohedra, h-vectors of cotransversal
matroids and pure O-sequences

Suho Oh

Department of Mathematics
University of Michigan
Michigan, U.S.A.

suhooh@math.umich.edu

Submitted: May 1, 2013; Accepted: May 20, 2013; Published: XX
Mathematics Subject Classifications: 05A19, 52B40

Abstract

Stanley has conjectured that the h-vector of a matroid complex is a pure O-
sequence. We will prove this for cotransversal matroids by using generalized per-
mutohedra. We construct a bijection between lattice points inside an r-dimensional
convex polytope and bases of a rank r transversal matroid.

1 Introduction

Matroids, simplicial complexes and their h-vectors are all interesting objects that are
of great interest in algebraic combinatorics and combinatorial commutative algebra. An
order ideal is a finite collection X of monomials such that, whenever M € X and N
divides M, then N € X. If all maximal monomials of X have the same degree, then X is
pure. A pure O-sequence is the vector, h = (hg = 1, hy, ..., hy), counting the monomials
of X in each degree. The following conjecture by Stanley has motivated a great deal of
research on h-vectors of matroid complexes:

Conjecture 1. The h-vector of a matroid is a pure O-sequence.

The above conjecture has been proven for cographic matroids by both Merino [7] and
Chari [3]. Tt also has been proven for lattice-path matroids by Schweig [11]. Lattice path
matroids are special cases of cotransversal matroids, and we will prove the conjecture
for cotransversal matroids. We would also like to note that there has been plenty of
interesting results related to this conjecture: [1],[2],[5],[6],[9],[13],[14].

We prove the conjecture for cotransversal matroids by associating a polytope to each
cotransversal matroid. The lattice points inside this polytope will be in bijection with
bases of the matroid, and will naturally induce a pure order ideal we are looking for.
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In section 2, we will go over the properties of transversal matroids. In section 3,
the properties of generalized permutohedra will be reviewed. In section 4, we show a
connection between transversal matroids and generalized permutohedra. In section 5, we
prove our main result.

2 Preliminaries on matroids

In this section, we will provide some notation and tools on transversal matroids that we
are going to use throughout the paper.

Definition 2 ([8]). Let E be a set and let M be a non-empty collection of subsets of
E such that the following condition is satisfied: if B; and By are members of M and
x € By \ Bs, then there is an element y of By \ By such that (B \ {z})U{y} € M. Then
M is called a matroid, and each element of M is called a base of M.

It is a well known fact that all bases of a matroid have the same cardinality, and that
number is called the rank of the matroid. The set of bases forms a collection of facets
of a pure simplicial complex, and the h-vector of a matroid is defined as the h-vector of
the complex. In the next paragraph, we review a method of computing the h-vector of a
matroid by a certain degree counting of the bases, and we will use that as the definition
of the h-vector in this paper. Throughout the paper, unless stated otherwise, a matroid
M will be a rank r matroid over the ground set [n] := {1 < --- < n}.

An element ¢ of a base B is internally active if (B\ {i})U{j} is not a base for any
j <i. An element e € B is externally active if (B U {e}) \ {j} is a not a base for all
7 > e. If an element not in B is not externally active with respect to B, we say that it is
externally passive with respect to B. We denote e (B) to count the number of such
elements.

Lemma 3 ([11],[16]). Let (hg,--- ,h,) be the h-vector of a matroid M. For 0 < i <,
h; is the number of bases of M with r — i internally active elements.

The dual matroid M* of a matroid M is a collection of bases which are complements
to the bases of M.

Remark 4. The way we will view h; in this paper is to count the number of bases in the
dual-matroid of M with i externally passive elements.

In this paper, we will be focusing on a particular class of matroids coming from bipar-
tite graphs, called transversal matroids. Let A be a family (A4, ..., A,) of subsets of
the set L = {1,...,n}. Then the bipartite graph G(A) associated with A has vertex set L
and R = {1,...,r} with edge set given by {(a,b)|a € L,b € R and a € A,}. Throughout
the paper, we will call the vertex set L and R of a bipartite graph as the set of left
vertices and the set of right vertices respectively.

Given a subgraph T of this graph, let [¢(T") denote the subset of vertices of L covered
by edges of T and let rt(T") denote the subset of vertices of R covered by edges of T'. Then
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collection of {t(T") for all maximal matchings of G(A) form the set of bases of a matroid.
We denote this matroid by M(A). If M is an arbitrary matroid and M = M(A) for
some family A of sets, then M a transversal matroid and A is a presentation of M.

In Figure 1, we have a presentation of a family ({1,4,5,6,7,8},{2,3,6,7,8}).

1

A~ wl N |

o

7
8
Figure 1 — A bipartite graph

A cotransversal matroid is a matroid that is the dual matroid of some transversal
matroid. We now state the main result of this paper:

Theorem 5. The h-vector of a cotransversal matroid is a pure O-sequence. In other
words, Stanley’s conjecture is true for cotransversal matroids.

In the remaining part of the section, we go over two essential tools we need to work
with transversal matroids. The following lemma is given as an exercise in [§].

Lemma 6 ([8]). Let M be a transversal matroid that has rank r. Then there exists a
presentation of M that has exactly r members.

Given a vertex v inside a graph G, we will use N(v) to denote the set of neighbors of
v.

Theorem 7 ([8], [4]). Let I,--- , I, C [r]. The following conditions are equivalent:
1. For any S C [r] we have |J,cq Ii] = |S|.
2. There exists a bijection f from [r] to [r] such that for allt € [r], f(t) € L.

The first condition is called the Hall’s marriage condition, and the bijection f in the
second condition is referred to as the system of distinct representatives.

A subset H = {hy,...,h.} of L is a base of M(A) if and only if N(hy),..., N(h,)
satisfies the Hall’s Marriage condition.
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3 Generalized permutohedra

In this section, we review generalized permutohedra and study some properties of spanning
trees that we will be using in this paper. The content related to generalized permutohedra
follows that of [10].

Definition 8 ([10]). Let d be the dimension of the Minkowski sum P, + - - - + P,, where
Py, ..., P, are convex polytopes. A Minkowski cell in this sum is a polytope B1+- - -+ B,
of dimension d where B; is the convex hull of some subset of vertices of P;. A maixzed
subdivision of the sum is the decomposition into union of Minkowski cells such that
intersection of any two cells is their common face. A mixed subdivision is fine if for all
cells By + - -+ + By, all B; are simplices and > dimB; = d.

Remark 9. All mixed subdivisions in our paper, unless otherwise stated, will be referring
to fine mixed subdivisions.

Let G C K, ,4+1 be a bipartite graph with no isolated vertices. Label the set of left
vertices using 1,...,7n, and label the set of right vertices using 0,...,r. We will use
[r] to denote the set {0,1,--- ,7}. Let us associate G with the collection Zg of subsets

L, I, C[r]:=={0,1,--- ,r} such that j € [; if and only if there is an edge in G which
connects a left vertex labeled 7 with a right vertex labeled j.

Definition 10. Let eg,. .., e, be the coordinate vectors of R™*!. The generalized per-
mutohedron Fg is defined as the Minkowski sum

Pe=An+--+A4Ap,
where A7 is defined to be to be the convex hull of points e; for i € I.

Remark 11 ([10]). This polytope is a special case of the family of polytopes that can be
defined by:

{<t07 S 7t7‘) S RT+1| Ztl = Z[}];th P ZI}'
1=0

iel
Proposition 12 ([10]). Let I;,--- , I, C [72] The following conditions are equivalent:
1. For any distinct iy, - - i, we have |I;; U---U L, | > k+ 1.
2. Forany j € [7:], there is a system of distinct representatives in Iy, - - - , I, that avoids
J.

The above condition is called the dragon marriage condition.

There is a nice connection between Hall’'s marriage condition and the dragon marriage
condition.

Remark 13. When Hy, ..., H, are subsets of [r|, they satisfy Hall’s marriage condition if
and only if {0} U Hy,...,{0} U H,, satisfy the dragon marriage condition.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 4



Definition 14 ([10]). Let us say that a sequence of nonnegative integers (ai,- - ,a,) is
a G-draconian sequence if ) a; = r and for any subset {i; < --- < i} C [n], we have
I, U--- U1, | > a +---+a; + 1. Equivalently, if the sequence I{*,--- , I¢", where I*
means [ repeated a times, satisfies the dragon marriage condition.

An important property of generalized permutohedra is that fine Minkowski cells can be
described by spanning trees of G; For a sequence of nonempty subsets J = (J1, -+, Jp),
let G be the graph with edges (¢, 7) for j € J;.

Lemma 15 ([10]). Each fine mized cell in a mized subdivision of Pg has the form A +
-+ Ay, , for some sequence of nonempty subsets J = (Jy,---,Jy) in [r] such that Gz is
a spanning tree of G.

Remark 16. As noted in [10], the above lemma implies that each fine mixed cell Ay +
-+ Ay, is isomorphic to the direct product of simplices Ay, x ---x A . By choosing any
Jj inside J; with |J;| > 1, the product Ay x --- Ay X -+ - Ay, describes a facet of the
cell Ay, x -+ x Ay . Moreover, any facet is of such format.

Given a spanning tree 1" of G, we denote [[, to be the corresponding Minkowski cell
Ay +---+Ay,. We can say a bit more about the lattice points in each [ [,

Proposition 17 ([10]). Any integer lattice point of a fine Minkowski cell [  in Fg s
of form py + - - - + p, where p; is an integer lattice point in Ay, .

Given any subgraph T of G, define the left degree vector ld(T) = (di,- - - ,dy) where
d; is the degree of the vertex ¢ in 7’ minus 1. Similarly, we define the right degree vector
rd(T) = (dp,- - ,d,) where d; is the degree of the vertex j in 7" minus 1. The following
proposition is stated in the proof of Theorem 11.3 in [10].

Proposition 18 ([10]). Consider a fine mived subdivision {[ ., -+, 1]} of the polytope
Pg. Then the map [[;, — ld(T;) is a bijection between fine cells [, in this subdivision
and G-draconian sequences.

For two spanning trees T and T” of G, let U(T,T") be the directed graph which is
the union of edges of T" and T" with edges of T oriented from left to right and edges
of T' oriented from right to left. A directed cycle is a sequence of directed edges
(11,12), (i9,13), -, (ix_1, %), (ix, ¢1) such that all iy, --- ,i; are distinct.

Lemma 19 ([10]). For two spanning trees T,T', the corresponding Minkowski cells can
be in the same mized subdivision only if U(T,T") has no directed cycles of length > 4.

We will say that T, 7" are compatible if it satisfies the condition of Lemma 19, and
incompatible if not.

Before we end, we will state some basic facts about spanning trees of bipartite graphs
that we will be using. Recall that we are assuming G to be a bipartite graph inside K, ,41.
Let us add in the extra assumption that n > r. Let T be a spanning tree of G. We use
LDr(I) to denote the sum of d;’s for i € I, where ld(T) = (dy,--- ,d,). We use Np(I) to
denote the set of neighbors of vertex set [ inside T
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Lemma 20. Let T be any spanning tree of G C K, .41, where n > r. Set I to be a subset
of left vertices such that |I| < n. Then |[Np(I)| > LDr(I)+ 1. Let J be a subset of right
vertices such that |J| < r+ 1. Then LDp(Nr(J)) = |J|.

Proof. The first claim follows directly from the fact that T is a spanning tree. For the
second claim, consider the induced subgraph S of T" by looking at the vertices JUNp(J)U
Np(Nr(J)) = Np(J) U Np(Np(J)). Let ¢ be the number of connected components of S,
and divide J into Ji,. .., J. such that for each 7, the union Np(J;) U Nr(Np(J;)) is the set
of vertices of a connected component S;. For each i, we have |Np(Nrp(J;))| > |J;| since T
is a spanning tree.

In general, given a spanning tree T' of K,,,, we have LDy([n]) = r — 1 since the
total number of edges is n + r — 1. The component S; is a spanning tree with left
vertex set Np(J;) and right vertex set Np(Np(J;)). Hence we get LDy (Np(J;)) =
LDg,(Nr(J;)) = |Np(Nr(J;))| — 1 > |J;|. Summing the inequalities for all components
SZ‘7 we get LDT(NT(J)) 2 |J|

0

Lemma 21. Let T and T' be spanning trees of G C K, 41, where n > r. Denote the
left-degree vector of T as (dy,--- ,d,) and the left-degree vector of T" as (dy,--- ,d,). If
after some relabeling of the set [n],

o d, <d, and d; > dj,

o d; > d] for alli #n,

e 0 is connected to 1,7 via an edge in T",
e 0 is connected to n via an edge in T,
then T and T" are incompatible.

Proof. Let H be a subset of right vertices of G such that n € Np/(H). Using Lemma 20,
we get |[Np(Np(H))| = LDr(Np(H)) + 1. From the way that 7" and 7" was con-
structed, we get LDy(Np/(H)) > LDp/(Np/(H)). By applying Lemma 20 again, we
get LDp/(Np/(H)) > |H|, from which we can conclude that |Np(Ng(H))| > |H|. Notice
that if Nov(H) contains 1, then we have LD7(Np/(H)) > LD7/(N7(H)), and hence we
get [N (Np(H))| > [H|+ 1.

Assume that 7" and 7" are compatible for the sake of contradiction. We have an edge
(n,0) in T and (1,0) in 7”. Denote H; to be Ny(1)\ {0}. To prevent an alternating cycle
of length greater than 4 in U(T,T"), we have n ¢ Np(H;). According to the argument
in the previous paragraph, Hy := Np(Np/(Hp)) \ {0} is strictly larger than H;. Again, to
prevent an alternating cycle of length greater than 4 in U(T,T"), we have n ¢ Ny (H3).
By repeating this procedure, setting H;,1 to be Np(Np(H;)) \ {0} in each step, this goes
on and on, contradicting the fact that number of vertices in G is finite. O
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4 Lattice points of Py, and bases of M.

In this section, given a transversal matroid M, we construct a generalized permutohedron
Puy from it. Moreover, we show that any fine mixed subdivision of Py, induces a bijection
between the bases of M and lattice points of Py lying inside the region satisfying x; > 1
for all i € [r].

Let M be a transversal matroid of rank r over the base set [n] = {1,...,7}. Then by
Lemma 6, there is a bipartite graph that gives a presentation of M, and is a subgraph of
the complete bipartite graph K, ,. As before, we label the set of left vertices by 1,...,7n
and label the set of right vertices by 1,...,r. Now we add a vertex labeled 0 and connect
it to all left vertices to get a new bipartite graph G. Then we define Py, to be the
generalized permutohedron Fg.

As before, we use I, .. ., I, to denote N(1),..., N(71). One property to keep an eye on
is that 0 is contained in all of those sets. Our strategy for showing Stanley’s conjecture is to
assign a bijection between bases of M and lattice points of Py, that satisfy xq,...,z, > 1.

Given a generalized permutohedron P, let p be an integer lattice point of P. We say
that p is a base point of P if p+ eu is a point inside P for a very small positive number
e, where 1 is defined to be reg — > i, ;.

Lemma 22. Base points of Py are exactly the integer lattice points of Png that satisfy
.Tl,...,Q?T} 1.

Proof. All summands of Py, are simplices which contain the vertex ey. Let py be the
unique vertex of Py given by the coordinate (n,0,...,0). By Remark 16, each facet
surrounding pg is on a hyperplane z; = 0 for some i € [r]. The integer lattice points of
Py that are not base points, are exactly the points on those facets. O

Let [T, = Ay x--- x Ay, be some Minkowski cell inside a mixed subdivision of Pyy.
Definition 23. If for all i € [n], we have |J;| < 2, we say that [] ; is zonotopal.

Lemma 24. A Minkowski cell [ | ; inside a mived subdivision of Py contains a base point
of I1; if and only if [, is zonotopal.

Proof. We first show that if ] ; is zonotopal, it contains a base point of [ ] ;. We construct
a subgraph T' of K, by collecting the edges (a,b) for each J; = {a,b}. Then T is a
spanning tree since G 7 is a spanning tree of K, , 4. Think of 7" as a rooted tree having 0
as the root. For each J; = {a, b}, where b is a descendant of a, set ¢; to be e, and p; to be
ep. Let [; denote the number of descendants of a inside T. Consider the point p = > p;.
We will show that this is a base point of [] ;. For each i € [n], the point p; + l;e(q; — p;)
is inside A j,. Therefore, we can conclude that p+e€>_ 1;(¢; — p;) = p+ €p is a point inside
L.

We now show that for []; to contain a base point, J], has to be zonotopal. Let
p = p1+---+p, be the base point of [] ;, where p; € Aj,. The point p being a base point
implies that we can decrease the value of a-th coordinate from p and still stay in J], for
all @ € [r]. In order for this to be true, for each a € [r|, there has to exist b € [n] such
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that we can decrease the value of a-th coordinate from p, and still stay in A;,. But given
any p, € Ay,, there is exactly one coordinate a € [r] where we can decrease its value and
still stay in Ay, if |.J,| > 2, and none otherwise. Therefore, we need at least r J;’s having
cardinality > 2, and this implies that [ is zonotopal.

O

Remark 25. From the above proof, it is easy to see that the coordinate of the base point
is only affected by J;’s such that |J;| = 1. More precisely, the coordinate of the point is
givenby (n —r—xy — -+ —a,, 21+ 1,..., 2, + 1), where z; counts the number of times
k appears among J;’s having cardinality 1.

Proposition 26. There is a bijection between base points of Py and bases of M.

Proof. Given a fixed fine mixed subdivision of Py, Proposition 18 and Remark 13 tells
us that there is a bijection between zonotopal cells of Py, and bases of M. All we need
to show is that every base point of Py is a base point of some zonotopal cell.

The facets of possible cells of Py are of form ) ., x; = 2; for some subset I of {0}U[r].
This means that none of the facets are parallel to the vector p, which implies that p+ eu
is in the interior of some cell which contains p on its hull. This cell has to be zonotopal
by Lemma 24. O]

We have seen that each fine mixed subdivision of Py, induces a bijection between
base points of Py, and bases of M. In the next section, we come up with a fine mixed
subdivision such that n — r — xg of a base point equals the externally passive degree of
the corresponding base in M.

5 Lexicographical subdivision of Py,.

In this section, we want to find a fine mixed subdivision of Py, such that if we use the
bijective map defined in the previous section to associate the bases to the lattice points of
Py, the externally passive degree can be read off by looking at the sum of all coordinates

except 0.
We use the fact that the fine mixed subdivision of a generalized permutohedron is
related to a triangulation of certain polytope via the Cayley trick. Let eg,..., ex,

€o, €1, - - . , &, be the standard basis of R"*"*1. Embed the space R"*! where the polytopes
Ay live for I C [#]. As before, let I; denote the collection of j’s such that (i, j) is an edge

of G.. The root polytope ()¢ is defined as the convex hull of the vertices e; +e;’s, for each
edge (i,7) of G.

Lemma 27 ([10]). Fine mized subdivisions of Pg are in one-to-one correspondence with
triangulations of Q. A fine mized cell in Pg given by Ay X --- X Ay corresponds to a
simplex which has vertices e; + e; for each pair (i,7) satisfying j € J;.

Let Pg be a generalized permutohedron and Pg be Pg 4+ A, where 0 € J. In other
words, G’ is a bipartite graph obtained by adding a left vertex v with neighborhood J
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to the bipartite graph G. Start from a triangulation of ()¢. This naturally induces a
triangulation on the cone formed by e, + ey and (). This cone is a convex subpolytope of
Q¢, so we can extend the triangulation of the cone to a triangulation of Q. We say that
such triangulation of Q)¢ is obtained by extending the triangulation of ()¢ in direction
0. For the corresponding mixed subdivisions, we say that the mixed subdivision of Pg
is obtained by extending the mixed subdivision of Pg in direction 0. One can see that
for each cell [], in the mixed subdivision of Pg, [[; +Aje) is a cell inside the extended
mixed subdivision of Pg. We will use this extension method to define a lexicographical
subdivision of Pg.

Start from a Minkowski sum X := Agg 1y +-- -+ Ao,y We use X; to denote the sum
Xo + P, where P, is the sum Aj +--- 4+ Aj,. We start from a subdivision of X, which
is unique, and repeat the process of extending the subdivision in direction 0 to obtain a
subdivision of X; for each i € [n]. We call this a lexicographical subdivision of Xj.

Lemma 28. Let [[, be a cell inside a lexicographical subdivision of X;, for i > 1. Then
0€T, .

Proof. We will use induction on the size of |T,1;|. When |7}, = 1, the cell [ [, has left-
degree vector (|T7| —1,...,|T,1i—1| — 1,0). Proposition 18 implies that there is some cell
[ 1 that has left degree vector (|71 —1,...,|Tr+i—1| — 1) in X;_4. From the definition of
lexicographical subdivision, there is a cell corresponding to the tree (17,..., 7}, ;,{0})
in X;. Since this cell has the same left degree vector as [[,, Proposition 18 tells us that
T..; = {0}.

Now assume for the sake of induction that 0 € J,; for all cells ] 7 such that | Jrvi] <
|T4i]. There is some g € T,4; such that by crossing the facet Ap + -+ + Agq (g}
we reach another cell [[¢ in X;. From Proposition 18, we have |S,;| < |T,4;|. By the
induction hypothesis, we have 0 € S,.,,;. Since T,.; \ {¢} = Sy1i, we get 0 € T,.4;. O

Let [[; be a cell inside a lexicographical subdivision of X;, that intersects the region
0 < z; < 1 and does not lie inside X;_ + Agoy. Writing 7" = (T3, ...,T,4:), we can see
that T; # {j}, since otherwise the cell will not intersect with the region 0 < z; < 1. By
comparing this cell to the cell ] [, which is given by Agg13 4+ -+ A0 + Q03+ - - +Ag0y,
we can see that j &€ Ty for k > r, since otherwise we have a length 4 alternating cycle in
U(T,T'). But since T is a spanning tree, some 7T; has to include j, which implies that
j € Tj. Therefore, we can conclude that 7; = {0, 5} and that the cell [[; is included in
the region 0 < z; < 1.

Remark 29. Inside a lexicographical subdivision of X;, no cell crosses z; = 1 for each
J € [r]. Each cell [[; of X; inside the region x; > 1 for all j € [r] has T; = {j} for all
j € lrl.

Since no cell crosses z; = 1 inside a lexicographical subdivision of X;, we can cut the
subdivision of X; via x; > 1 for all j € [r] to get a mixed subdivision of P;. When i = n,
we call this a lexicographical subdivision of Pg.

Now we wish to show that given a lexicographical subdivision of Py, and using the
bijection given via Proposition 26, the value zy + --- + x, — r of a base point equals

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 9



the externally passive degree of the corresponding base in M. We will use Hy,..., H,
to denote Ng(1) \ {0},..., Ng(n) \ {0}. Given a base B = {b; < --- < b,} of M, we
call the collection of sets Hy,,..., Hp, to be the type sequence of B. Given a collec-
tion H* = {H{",..., H} that satisfies Hall’s condition, we denote EPx(H*) to denote
the collection of H,’s such that there exists j < ¢ for which H* \ {H;} U {H;} satisfies
Hall’s condition. Beware that the collection is considered as a multiset: for example,
{H127H8’H?}} U {Hl} = {H%ngaH?}}
Remark 30. Let the type sequence of B € M be H®. Then the point corresponding to
B via the bijection in Proposition 26 is the base point of a cell having left degree vector
given by a.

Now we show that given a cell [], with left degree vector a inside a lexicographical

subdivision of Py, there is a connection between whether 0 is in J; or not and whether
H; is a member of EPy(H*) or not.

Lemma 31. Let M be a transversal matroid and Py, be its corresponding generalized
permutohedron. Consider a Minkowski cell ], where we write J = {Jy, ..., Jn}, with

left degree vector a inside a lexicographical subdivision of Pyy. We have 0 & J; if and only
if H; € EPy(H).

Proof. We first show it is enough to show the claim for X,,, which was used to define
lexicographical subdivision. Let G’ be the bipartite graph corresponding to X,,. It has
left vertices 1,...,7 + n, where each vertex i for i < r is connected to right vertices 0 and 1,
and each vertex r + ¢ for ¢ < n is connected to I;. We set M’ to be the transversal matroid
which is represented by G’, and set K = ({1},...,{r}, Hi,..., H,). It is easy to see that
H; € EPy(H%) if and only if H; = K, € EPy(K®) where ¢’ = (0,...,0,a1,...,a,).
Combining this with Remark 29, we can conclude that to prove the lemma, it is enough
to show for M’ and X, instead.

We start with X,. Since the only cell is X itself, the claim holds. For the sake of
induction, assume that the claim holds for Xy, ..., X,_;. This means that the claim holds
for cells of X, with a, = 0. Again, assume for the sake of induction that the claim holds
for cells of X, with left degree vector given by d, where d, < a,.

Set a’ to be obtained from a by negating 1 from a,. Given the collection H, use Qq
to denote the largest subset @ of [¢ — 1] such that there exists exactly |@Q| subsets of @
inside the collection. Such @, is well defined due to the following reasoning: if A and B
are such sets that do not contain each other, there are at least |A \ A N B| number of
subsets of A not contained in B. There are at least |A U B| number of subsets of AU B,
but this number cannot exceed |A U B| since the collection I* satisfies Hall’'s marriage
condition. Hence if A and B are two sets that satisfy the condition, then A U B also
satisfies the condition.

Fori < q, if H; Z Q,, the collection H*\{H,}U{ H,} satisfies Hall’s marriage condition,
and hence H; € EPy(H*). To see this, for the sake of contradiction, assume there is some
distinct 7,11, ..., 1, such that |H; U H;, U---U H; | = s. This implies |H;, U---U H;,
and H; C @),, which gives us a contradiction.

Therefore, we get some sequence b such that:

=S
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o b, =a,—1,
[} bi:ai—l-l,
o bj =a;for j #1,q,

e 7’ satisfies the Hall marriage condition.

There exists a cell with left degree vector b due to Remark 13 and Proposition 18. By
induction hypothesis, the claim holds for this cell. Using Lemma 21, we get 0 ¢ J; since
we have 0 € J,, C; due to Lemma 28. Hence we only need to consider H;’s contained in
Qa'

By Remark 16, we can cross one of the facets of []; given by Ay, + -+ 4+ A\ to
get to another cell inside X,. By crossing this facet, we reach a cell [, with left degree
vector ¢ such that ¢, = a, — 1. The claim holds for []. due to induction hypothesis, and
for H° to also satisfy Hall’s marriage condition, we need to have {H|H € H*, H C Q,} =
{H|H € H,H C @), }. This means that:

e a; = ¢; for all 7 such that H; C Q,,
e we have C; = J; for all 7 such that H; C Q,.

e for H; C Q,, we have H; € EPy(H") if and only if H; € EPy(H°).

Since the lemma holds for [ ], we have also proven the claim for [] ;. By induction, the
claim holds for all cells inside a lexicographical subdivision of X,. Again by induction,
we have shown that the statement is true for X,,, and from the argument in the first
paragraph, the statement holds for Py,.

O

Let B be a base in M and p = (¢, ..., ¢.) € Py be the corresponding base point via
Proposition 26. Combining Remark 25 and Lemma 31, we can see that ¢c; +---+c¢, —r =

For each base point at (co,cp, - ,¢,), let us construct a monomial z;“~1 ...z, 1,
Then we get a pure monomial order ideal of which Stanley’s conjecture is asking for.

Proposition 32. Let M be a cotransversal matroid. For each base point (c1,--- ,¢;)
in Py, take a monomial x1“1-- 2,71 to form a collection X. Then X is a pure
monomial order ideal and its degree sequence equals the h-vector of M.

Proof. We first show that X is a monomial order ideal. Let (co,...,¢,) be a point in
P = Py~. Let G be the corresponding bipartite graph of P. Consider a subgraph we
obtain by deleting the right vertex <. This gives us a polytope, with one less dimension,
and contains (co,...,0,...,¢.) as a point, which is obtained from (co,...,c,) by setting
¢; to 0. The point is also inside P, which implies that (cq,...,c; —1,...,¢,) is also inside
P. This proves that X is a monomial order ideal.
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Now let us show that X is pure. Recall that by Proposition 17, each lattice point of

P takes the form p; + - - - + p,, where p; is a lattice point of A;,. The point p; +--- +p,

corresponds to a maximal monomial if and only if p; # ey for all ¢ € [n]. This implies

that all such points are on the hyperplane z; 4 - - - + x,, = n, from which we can conclude
that the corresponding monomials have the same degree.

O

This implies Stanley’s conjecture for cotransversal matroids.

1

al s wl N

o |
N

\‘

8
Figure 2 — Padding of the graph given in Figure 1.

Example 33. Let M be a transversal matroid given by the bipartite graph in Figure 1.
The padded bipartite graph is given Figure 2, and we construct a generalized permuto-
hedron from it. For convenience, we will project down to xy = 0 to draw the polytope in
the x1, xo-plane.

First let us consider the cell that lies on the southwest corner. The corresponding
summand is given by Agg 1) + A2y + Aoy +- - - +Agoy. The left-degree vector is given by
(1,1,0,0,0,0,0,0) and our bijection assigns the base point of this cell to the base {1,2}.

Consider the leftmost triangle. The corresponding summand is given by Ay + Ayay +
Agpy + Apy + Apy + Ago1,2) + Agoy + Agoy. This cell is not zonotopal, and there is no
base assigned to the cell. If we consider the cell to the top of it, the summand is given by
A{l} -+ A{Q} -+ A{Q} + A{l} + A{l} + A{LQ} -+ A{O’Q} + A{o}- The left—degree vector is given
by (0,0,0,0,0,1,1,0), and the base point of the cell is assigned to the base {6, 7}.
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° ° ° | . ' ° 28 1,4,5,6,7
121 24| 25| 26| 27| 28 34 12
[ ° ° ) ° ° 35 1,24
36 1,2,4,5
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Figure.3 & Table.1 — A lexicographical subdivision of Py; and a table of bases in M,
where the bars of the ground set {1,...,n} is omitted for convenience.
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