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Abstract

Stanley has conjectured that the h-vector of a matroid complex is a pure O-
sequence. We will prove this for cotransversal matroids by using generalized per-
mutohedra. We construct a bijection between lattice points inside an r-dimensional
convex polytope and bases of a rank r transversal matroid.

1 Introduction

Matroids, simplicial complexes and their h-vectors are all interesting objects that are
of great interest in algebraic combinatorics and combinatorial commutative algebra. An
order ideal is a finite collection X of monomials such that, whenever M ∈ X and N
divides M , then N ∈ X. If all maximal monomials of X have the same degree, then X is
pure. A pure O-sequence is the vector, h = (h0 = 1, h1, ..., ht), counting the monomials
of X in each degree. The following conjecture by Stanley has motivated a great deal of
research on h-vectors of matroid complexes:

Conjecture 1. The h-vector of a matroid is a pure O-sequence.

The above conjecture has been proven for cographic matroids by both Merino [7] and
Chari [3]. It also has been proven for lattice-path matroids by Schweig [11]. Lattice path
matroids are special cases of cotransversal matroids, and we will prove the conjecture
for cotransversal matroids. We would also like to note that there has been plenty of
interesting results related to this conjecture: [1],[2],[5],[6],[9],[13],[14].

We prove the conjecture for cotransversal matroids by associating a polytope to each
cotransversal matroid. The lattice points inside this polytope will be in bijection with
bases of the matroid, and will naturally induce a pure order ideal we are looking for.
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In section 2, we will go over the properties of transversal matroids. In section 3,
the properties of generalized permutohedra will be reviewed. In section 4, we show a
connection between transversal matroids and generalized permutohedra. In section 5, we
prove our main result.

2 Preliminaries on matroids

In this section, we will provide some notation and tools on transversal matroids that we
are going to use throughout the paper.

Definition 2 ([8]). Let E be a set and let M be a non-empty collection of subsets of
E such that the following condition is satisfied: if B1 and B2 are members of M and
x ∈ B1 \B2, then there is an element y of B2 \B1 such that (B1 \ {x})∪ {y} ∈ M. Then
M is called a matroid , and each element of M is called a base of M.

It is a well known fact that all bases of a matroid have the same cardinality, and that
number is called the rank of the matroid. The set of bases forms a collection of facets
of a pure simplicial complex, and the h-vector of a matroid is defined as the h-vector of
the complex. In the next paragraph, we review a method of computing the h-vector of a
matroid by a certain degree counting of the bases, and we will use that as the definition
of the h-vector in this paper. Throughout the paper, unless stated otherwise, a matroid
M will be a rank r matroid over the ground set [n̄] := {1̄ < · · · < n̄}.

An element i of a base B is internally active if (B \ {i})∪{j} is not a base for any
j < i. An element e 6∈ B is externally active if (B ∪ {e}) \ {j} is a not a base for all
j > e. If an element not in B is not externally active with respect to B, we say that it is
externally passive with respect to B. We denote eM(B) to count the number of such
elements.

Lemma 3 ([11],[16]). Let (h0, · · · , hr) be the h-vector of a matroid M. For 0 6 i 6 r,
hi is the number of bases of M with r − i internally active elements.

The dual matroidM∗ of a matroidM is a collection of bases which are complements
to the bases of M.

Remark 4. The way we will view hi in this paper is to count the number of bases in the
dual-matroid of M with i externally passive elements.

In this paper, we will be focusing on a particular class of matroids coming from bipar-
tite graphs, called transversal matroids. Let A be a family (A1, . . . , Ar) of subsets of
the set L = {1̄, . . . , n̄}. Then the bipartite graph G(A) associated with A has vertex set L
and R = {1, . . . , r} with edge set given by {(a, b)|a ∈ L, b ∈ R and a ∈ Ab}. Throughout
the paper, we will call the vertex set L and R of a bipartite graph as the set of left
vertices and the set of right vertices respectively.

Given a subgraph T of this graph, let lt(T ) denote the subset of vertices of L covered
by edges of T and let rt(T ) denote the subset of vertices of R covered by edges of T . Then
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collection of lt(T ) for all maximal matchings of G(A) form the set of bases of a matroid.
We denote this matroid by M(A). If M is an arbitrary matroid and M ∼= M(A) for
some family A of sets, then M a transversal matroid and A is a presentation of M.

In Figure 1, we have a presentation of a family ({1̄, 4̄, 5̄, 6̄, 7̄, 8̄}, {2̄, 3̄, 6̄, 7̄, 8̄}).
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Figure 1 – A bipartite graph

A cotransversal matroid is a matroid that is the dual matroid of some transversal
matroid. We now state the main result of this paper:

Theorem 5. The h-vector of a cotransversal matroid is a pure O-sequence. In other
words, Stanley’s conjecture is true for cotransversal matroids.

In the remaining part of the section, we go over two essential tools we need to work
with transversal matroids. The following lemma is given as an exercise in [8].

Lemma 6 ([8]). Let M be a transversal matroid that has rank r. Then there exists a
presentation of M that has exactly r members.

Given a vertex v inside a graph G, we will use N(v) to denote the set of neighbors of
v.

Theorem 7 ([8], [4]). Let I1, · · · , Ir ⊆ [r]. The following conditions are equivalent:

1. For any S ⊆ [r] we have |
⋃

i∈S Ii| > |S|.

2. There exists a bijection f from [r] to [r] such that for all t ∈ [r], f(t) ∈ It.

The first condition is called the Hall’s marriage condition, and the bijection f in the
second condition is referred to as the system of distinct representatives.

A subset H = {h1, . . . , hr} of L is a base of M(A) if and only if N(h1), . . . , N(hr)
satisfies the Hall’s Marriage condition.
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3 Generalized permutohedra

In this section, we review generalized permutohedra and study some properties of spanning
trees that we will be using in this paper. The content related to generalized permutohedra
follows that of [10].

Definition 8 ([10]). Let d be the dimension of the Minkowski sum P1 + · · ·+ Pn, where
P1, . . . , Pn are convex polytopes. A Minkowski cell in this sum is a polytopeB1+· · ·+Bn

of dimension d where Bi is the convex hull of some subset of vertices of Pi. A mixed
subdivision of the sum is the decomposition into union of Minkowski cells such that
intersection of any two cells is their common face. A mixed subdivision is fine if for all
cells B1 + · · ·+Bn, all Bi are simplices and

∑
dimBi = d.

Remark 9. All mixed subdivisions in our paper, unless otherwise stated, will be referring
to fine mixed subdivisions.

Let G ⊆ Kn,r+1 be a bipartite graph with no isolated vertices. Label the set of left
vertices using 1̄, . . . , n̄, and label the set of right vertices using 0, . . . , r. We will use
ˆ[r] to denote the set {0, 1, · · · , r}. Let us associate G with the collection IG of subsets

I1, · · · , In ⊆ ˆ[r] := {0, 1, · · · , r} such that j ∈ Ii if and only if there is an edge in G which
connects a left vertex labeled ī with a right vertex labeled j.

Definition 10. Let e0, . . . , er be the coordinate vectors of Rr+1. The generalized per-
mutohedron PG is defined as the Minkowski sum

PG = ∆I1 + · · ·+ ∆In ,

where ∆I is defined to be to be the convex hull of points ei for i ∈ I.

Remark 11 ([10]). This polytope is a special case of the family of polytopes that can be
defined by:

{(t0, . . . , tr) ∈ Rr+1|
r∑

i=0

ti = z ˆ[r],
∑
i∈I

ti > zI}.

Proposition 12 ([10]). Let I1, · · · , Ir ⊆ ˆ[r]. The following conditions are equivalent:

1. For any distinct i1, · · · , ik, we have |Ii1 ∪ · · · ∪ Iik | > k + 1.

2. For any j ∈ ˆ[r], there is a system of distinct representatives in I1, · · · , Ir that avoids
j.

The above condition is called the dragon marriage condition.

There is a nice connection between Hall’s marriage condition and the dragon marriage
condition.

Remark 13. When H1, . . . , Hn are subsets of [r], they satisfy Hall’s marriage condition if
and only if {0} ∪H1, . . . , {0} ∪Hn satisfy the dragon marriage condition.
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Definition 14 ([10]). Let us say that a sequence of nonnegative integers (a1, · · · , an) is
a G-draconian sequence if

∑
ai = r and for any subset {i1 < · · · < ik} ⊆ [n], we have

|Ii1 ∪ · · · ∪ Iik | > ai1 + · · · + aik + 1. Equivalently, if the sequence Ia11 , · · · , Iann , where Ia

means I repeated a times, satisfies the dragon marriage condition.

An important property of generalized permutohedra is that fine Minkowski cells can be
described by spanning trees of G. For a sequence of nonempty subsets J = (J1, · · · , Jn),
let GJ be the graph with edges (̄i, j) for j ∈ Ji.

Lemma 15 ([10]). Each fine mixed cell in a mixed subdivision of PG has the form ∆J1 +

· · ·∆Jn, for some sequence of nonempty subsets J = (J1, · · · , Jn) in ˆ[r] such that GJ is
a spanning tree of G.

Remark 16. As noted in [10], the above lemma implies that each fine mixed cell ∆J1 +
· · ·∆Jn is isomorphic to the direct product of simplices ∆J1 × · · ·×∆Jn . By choosing any
j inside Ji with |Ji| > 1, the product ∆J1 × · · ·∆Ji\{j} × · · ·∆Jn describes a facet of the
cell ∆J1 × · · · ×∆Jn . Moreover, any facet is of such format.

Given a spanning tree T of G, we denote
∏

T to be the corresponding Minkowski cell
∆J1 + · · ·+ ∆Jn . We can say a bit more about the lattice points in each

∏
T :

Proposition 17 ([10]). Any integer lattice point of a fine Minkowski cell
∏

GJ
in PG is

of form p1 + · · ·+ pn where pi is an integer lattice point in ∆Ji.

Given any subgraph T of G, define the left degree vector ld(T ) = (d1̄, · · · , dn̄) where
dī is the degree of the vertex ī in T minus 1. Similarly, we define the right degree vector
rd(T ) = (d0, · · · , dr) where dj is the degree of the vertex j in T minus 1. The following
proposition is stated in the proof of Theorem 11.3 in [10].

Proposition 18 ([10]). Consider a fine mixed subdivision {
∏

T1
, · · · ,

∏
Ts
} of the polytope

PG. Then the map
∏

Ti
→ ld(Ti) is a bijection between fine cells

∏
Ti

in this subdivision
and G-draconian sequences.

For two spanning trees T and T ′ of G, let U(T, T ′) be the directed graph which is
the union of edges of T and T ′ with edges of T oriented from left to right and edges
of T ′ oriented from right to left. A directed cycle is a sequence of directed edges
(i1, i2), (i2, i3), · · · , (ik−1, ik), (ik, i1) such that all i1, · · · , ik are distinct.

Lemma 19 ([10]). For two spanning trees T, T ′, the corresponding Minkowski cells can
be in the same mixed subdivision only if U(T, T ′) has no directed cycles of length > 4.

We will say that T, T ′ are compatible if it satisfies the condition of Lemma 19, and
incompatible if not.

Before we end, we will state some basic facts about spanning trees of bipartite graphs
that we will be using. Recall that we are assuming G to be a bipartite graph inside Kn,r+1.
Let us add in the extra assumption that n > r. Let T be a spanning tree of G. We use
LDT (I) to denote the sum of di’s for i ∈ I, where ld(T ) = (d1, · · · , dn). We use NT (I) to
denote the set of neighbors of vertex set I inside T .
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Lemma 20. Let T be any spanning tree of G ⊆ Kn,r+1, where n > r. Set I to be a subset
of left vertices such that |I| < n. Then |NT (I)| > LDT (I) + 1. Let J be a subset of right
vertices such that |J | < r + 1. Then LDT (NT (J)) > |J |.

Proof. The first claim follows directly from the fact that T is a spanning tree. For the
second claim, consider the induced subgraph S of T by looking at the vertices J∪NT (J)∪
NT (NT (J)) = NT (J) ∪NT (NT (J)). Let c be the number of connected components of S,
and divide J into J1, . . . , Jc such that for each i, the union NT (Ji)∪NT (NT (Ji)) is the set
of vertices of a connected component Si. For each i, we have |NT (NT (Ji))| > |Ji| since T
is a spanning tree.

In general, given a spanning tree T of Kn,r, we have LDT ([n]) = r − 1 since the
total number of edges is n + r − 1. The component Si is a spanning tree with left
vertex set NT (Ji) and right vertex set NT (NT (Ji)). Hence we get LDT (NT (Ji)) =
LDSi

(NT (Ji)) = |NT (NT (Ji))| − 1 > |Ji|. Summing the inequalities for all components
Si, we get LDT (NT (J)) > |J |.

Lemma 21. Let T and T ′ be spanning trees of G ⊆ Kn,r+1, where n > r. Denote the
left-degree vector of T as (d1, · · · , dn) and the left-degree vector of T ′ as (d′1, · · · , d′n). If
after some relabeling of the set [n],

• dn < d′n and d1 > d′1,

• di > d′i for all i 6= n,

• 0 is connected to 1̄, n̄ via an edge in T ′,

• 0 is connected to n̄ via an edge in T ,

then T and T ′ are incompatible.

Proof. Let H be a subset of right vertices of G such that n̄ 6∈ NT ′(H). Using Lemma 20,
we get |NT (NT ′(H))| > LDT (NT ′(H)) + 1. From the way that T and T ′ was con-
structed, we get LDT (NT ′(H)) > LDT ′(NT ′(H)). By applying Lemma 20 again, we
get LDT ′(NT ′(H)) > |H|, from which we can conclude that |NT (NT ′(H))| > |H|. Notice
that if NT ′(H) contains 1̄, then we have LDT (NT ′(H)) > LDT ′(NT ′(H)), and hence we
get |NT (NT ′(H))| > |H|+ 1.

Assume that T and T ′ are compatible for the sake of contradiction. We have an edge
(n̄, 0) in T and (1̄, 0) in T ′. Denote H1 to be NT (1̄) \ {0}. To prevent an alternating cycle
of length greater than 4 in U(T, T ′), we have n̄ 6∈ NT ′(H1). According to the argument
in the previous paragraph, H2 := NT (NT ′(H1)) \ {0} is strictly larger than H1. Again, to
prevent an alternating cycle of length greater than 4 in U(T, T ′), we have n̄ 6∈ NT ′(H2).
By repeating this procedure, setting Hi+1 to be NT (NT ′(Hi)) \ {0} in each step, this goes
on and on, contradicting the fact that number of vertices in G is finite.

the electronic journal of combinatorics 16 (2009), #R00 6



4 Lattice points of PM and bases of M.

In this section, given a transversal matroidM, we construct a generalized permutohedron
PM from it. Moreover, we show that any fine mixed subdivision of PM induces a bijection
between the bases ofM and lattice points of PM lying inside the region satisfying xi > 1
for all i ∈ [r].

LetM be a transversal matroid of rank r over the base set [n̄] = {1̄, . . . , n̄}. Then by
Lemma 6, there is a bipartite graph that gives a presentation ofM, and is a subgraph of
the complete bipartite graph Kn,r. As before, we label the set of left vertices by 1̄, . . . , n̄
and label the set of right vertices by 1, . . . , r. Now we add a vertex labeled 0 and connect
it to all left vertices to get a new bipartite graph G. Then we define PM to be the
generalized permutohedron PG.

As before, we use I1, . . . , In to denote N(1̄), . . . , N(n̄). One property to keep an eye on
is that 0 is contained in all of those sets. Our strategy for showing Stanley’s conjecture is to
assign a bijection between bases ofM and lattice points of PM that satisfy x1, . . . , xr > 1.

Given a generalized permutohedron P , let p be an integer lattice point of P . We say
that p is a base point of P if p+ εµ is a point inside P for a very small positive number
ε, where µ is defined to be re0 −

∑r
i=1 ei.

Lemma 22. Base points of PM are exactly the integer lattice points of PM that satisfy
x1, . . . , xr > 1.

Proof. All summands of PM are simplices which contain the vertex e0. Let p0 be the
unique vertex of PM given by the coordinate (n, 0, . . . , 0). By Remark 16, each facet
surrounding p0 is on a hyperplane xi = 0 for some i ∈ [r]. The integer lattice points of
PM that are not base points, are exactly the points on those facets.

Let
∏
J = ∆J1 × · · · ×∆Jn be some Minkowski cell inside a mixed subdivision of PM.

Definition 23. If for all i ∈ [n], we have |Ji| 6 2, we say that
∏
J is zonotopal .

Lemma 24. A Minkowski cell
∏
J inside a mixed subdivision of PM contains a base point

of
∏
J if and only if

∏
J is zonotopal.

Proof. We first show that if
∏
J is zonotopal, it contains a base point of

∏
J . We construct

a subgraph T of Kr+1 by collecting the edges (a, b) for each Ji = {a, b}. Then T is a
spanning tree since GJ is a spanning tree of Kn,r+1. Think of T as a rooted tree having 0
as the root. For each Ji = {a, b}, where b is a descendant of a, set qi to be ea and pi to be
eb. Let li denote the number of descendants of a inside T . Consider the point p =

∑
pi.

We will show that this is a base point of
∏
J . For each i ∈ [n], the point pi + liε(qi − pi)

is inside ∆Ji . Therefore, we can conclude that p+ ε
∑
li(qi− pi) = p+ εµ is a point inside∏

J .
We now show that for

∏
J to contain a base point,

∏
J has to be zonotopal. Let

p = p1 + · · ·+pn be the base point of
∏
J , where pi ∈ ∆Ji . The point p being a base point

implies that we can decrease the value of a-th coordinate from p and still stay in
∏
J for

all a ∈ [r]. In order for this to be true, for each a ∈ [r], there has to exist b ∈ [n] such
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that we can decrease the value of a-th coordinate from pb and still stay in ∆Jb . But given
any pb ∈ ∆Jb , there is exactly one coordinate a ∈ [r] where we can decrease its value and
still stay in ∆Jb if |Jb| > 2, and none otherwise. Therefore, we need at least r Ji’s having
cardinality > 2, and this implies that

∏
J is zonotopal.

Remark 25. From the above proof, it is easy to see that the coordinate of the base point
is only affected by Ji’s such that |Ji| = 1. More precisely, the coordinate of the point is
given by (n− r − x1 − · · · − xr, x1 + 1, . . . , xr + 1), where xk counts the number of times
k appears among Ji’s having cardinality 1.

Proposition 26. There is a bijection between base points of PM and bases of M.

Proof. Given a fixed fine mixed subdivision of PM, Proposition 18 and Remark 13 tells
us that there is a bijection between zonotopal cells of PM and bases of M. All we need
to show is that every base point of PM is a base point of some zonotopal cell.

The facets of possible cells of PM are of form
∑

i∈I xi = zI for some subset I of {0}∪[r].
This means that none of the facets are parallel to the vector µ, which implies that p+ εµ
is in the interior of some cell which contains p on its hull. This cell has to be zonotopal
by Lemma 24.

We have seen that each fine mixed subdivision of PM induces a bijection between
base points of PM and bases of M. In the next section, we come up with a fine mixed
subdivision such that n − r − x0 of a base point equals the externally passive degree of
the corresponding base in M.

5 Lexicographical subdivision of PM.

In this section, we want to find a fine mixed subdivision of PM such that if we use the
bijective map defined in the previous section to associate the bases to the lattice points of
PM, the externally passive degree can be read off by looking at the sum of all coordinates
except 0.

We use the fact that the fine mixed subdivision of a generalized permutohedron is
related to a triangulation of certain polytope via the Cayley trick . Let e1̄, . . . , en̄,
e0, e1, . . . , er be the standard basis of Rn+r+1. Embed the space Rr+1 where the polytopes
∆I live for I ⊆ [r̂]. As before, let Ii denote the collection of j’s such that (̄i, j) is an edge
of G. The root polytope QG is defined as the convex hull of the vertices eī + ej’s, for each
edge (̄i, j) of G.

Lemma 27 ([10]). Fine mixed subdivisions of PG are in one-to-one correspondence with
triangulations of QG. A fine mixed cell in PG given by ∆J1 × · · · ×∆Jn corresponds to a
simplex which has vertices eī + ej for each pair (̄i, j) satisfying j ∈ Ji.

Let PG be a generalized permutohedron and PG′ be PG + ∆J , where 0 ∈ J . In other
words, G′ is a bipartite graph obtained by adding a left vertex v with neighborhood J
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to the bipartite graph G. Start from a triangulation of QG. This naturally induces a
triangulation on the cone formed by ev +e0 and QG. This cone is a convex subpolytope of
QG′ , so we can extend the triangulation of the cone to a triangulation of QG′ . We say that
such triangulation of QG′ is obtained by extending the triangulation of QG in direction
0. For the corresponding mixed subdivisions, we say that the mixed subdivision of PG′

is obtained by extending the mixed subdivision of PG in direction 0. One can see that
for each cell

∏
T in the mixed subdivision of PG,

∏
T +∆{0} is a cell inside the extended

mixed subdivision of PG′ . We will use this extension method to define a lexicographical
subdivision of PG.

Start from a Minkowski sum X0 := ∆{0,1}+ · · ·+ ∆{0,r}. We use Xi to denote the sum
X0 + Pi, where Pi is the sum ∆I1 + · · · + ∆Ii . We start from a subdivision of X0, which
is unique, and repeat the process of extending the subdivision in direction 0 to obtain a
subdivision of Xi for each i ∈ [n]. We call this a lexicographical subdivision of Xi.

Lemma 28. Let
∏

T be a cell inside a lexicographical subdivision of Xi, for i > 1. Then
0 ∈ Tr+i.

Proof. We will use induction on the size of |Tr+i|. When |Tr+i| = 1, the cell
∏

T has left-
degree vector (|T1| − 1, . . . , |Tr+i−1| − 1, 0). Proposition 18 implies that there is some cell∏

T ′ that has left degree vector (|T1| − 1, . . . , |Tr+i−1| − 1) in Xi−1. From the definition of
lexicographical subdivision, there is a cell corresponding to the tree (T ′1, . . . , T

′
r+i−1, {0})

in Xi. Since this cell has the same left degree vector as
∏

T , Proposition 18 tells us that
Tr+i = {0}.

Now assume for the sake of induction that 0 ∈ Jr+i for all cells
∏
J such that |Jr+i| <

|Tr+i|. There is some q ∈ Tr+i such that by crossing the facet ∆T1 + · · · + ∆Tr+i\{q},
we reach another cell

∏
S in Xi. From Proposition 18, we have |Sr+i| < |Tr+i|. By the

induction hypothesis, we have 0 ∈ Sr+i. Since Tr+i \ {q} = Sr+i, we get 0 ∈ Tr+i.

Let
∏

T be a cell inside a lexicographical subdivision of Xi, that intersects the region
0 < xj < 1 and does not lie inside Xi−1 + ∆{0}. Writing T = (T1, . . . , Tr+i), we can see
that Tj 6= {j}, since otherwise the cell will not intersect with the region 0 < xj < 1. By
comparing this cell to the cell

∏
T ′ which is given by ∆{0,1}+· · ·+∆{0,r}+∆{0}+· · ·+∆{0},

we can see that j 6∈ Tk for k > r, since otherwise we have a length 4 alternating cycle in
U(T, T ′). But since T is a spanning tree, some Ti has to include j, which implies that
j ∈ Tj. Therefore, we can conclude that Tj = {0, j} and that the cell

∏
T is included in

the region 0 6 xj 6 1.

Remark 29. Inside a lexicographical subdivision of Xi, no cell crosses xj = 1 for each
j ∈ [r]. Each cell

∏
T of Xi inside the region xj > 1 for all j ∈ [r] has Tj = {j} for all

j ∈ [r].

Since no cell crosses xj = 1 inside a lexicographical subdivision of Xi, we can cut the
subdivision of Xi via xj > 1 for all j ∈ [r] to get a mixed subdivision of Pi. When i = n,
we call this a lexicographical subdivision of PG.

Now we wish to show that given a lexicographical subdivision of PM, and using the
bijection given via Proposition 26, the value x1 + · · · + xr − r of a base point equals
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the externally passive degree of the corresponding base in M. We will use H1, . . . , Hn

to denote NG(1̄) \ {0}, . . . , NG(n̄) \ {0}. Given a base B = {b1 < · · · < br} of M, we
call the collection of sets Hb1 , . . . , Hbr to be the type sequence of B. Given a collec-
tion Ha = {Ha1

1 , . . . , H
an
n } that satisfies Hall’s condition, we denote EPM(Ha) to denote

the collection of Hi’s such that there exists j < i for which Ha \ {Hi} ∪ {Hj} satisfies
Hall’s condition. Beware that the collection is considered as a multiset: for example,
{H2

1 , H
0
2 , H

1
3} ∪ {H1} = {H3

1 , H
0
2 , H

1
3}.

Remark 30. Let the type sequence of B ∈ M be Ha. Then the point corresponding to
B via the bijection in Proposition 26 is the base point of a cell having left degree vector
given by a.

Now we show that given a cell
∏
J with left degree vector a inside a lexicographical

subdivision of PM, there is a connection between whether 0 is in Ji or not and whether
Hi is a member of EPM(Ha) or not.

Lemma 31. Let M be a transversal matroid and PM be its corresponding generalized
permutohedron. Consider a Minkowski cell

∏
J , where we write J = {J1, . . . , Jn}, with

left degree vector a inside a lexicographical subdivision of PM. We have 0 6∈ Ji if and only
if Hi ∈ EPM(Ha).

Proof. We first show it is enough to show the claim for Xn, which was used to define
lexicographical subdivision. Let G′ be the bipartite graph corresponding to Xn. It has
left vertices 1̄, . . . , r + n, where each vertex ī for i 6 r is connected to right vertices 0 and i,
and each vertex r + i for i 6 n is connected to Ii. We setM′ to be the transversal matroid
which is represented by G′, and set K = ({1}, . . . , {r}, H1, . . . , Hn). It is easy to see that
Hi ∈ EPM(Ha) if and only if Hi = Ki+r ∈ EPM(Ka′) where a′ = (0, . . . , 0, a1, . . . , an).
Combining this with Remark 29, we can conclude that to prove the lemma, it is enough
to show for M′ and Xn instead.

We start with X0. Since the only cell is X0 itself, the claim holds. For the sake of
induction, assume that the claim holds for X0, . . . , Xq−1. This means that the claim holds
for cells of Xq with aq = 0. Again, assume for the sake of induction that the claim holds
for cells of Xq with left degree vector given by d, where dq < aq.

Set a′ to be obtained from a by negating 1 from aq. Given the collection Ha′ , use Qa

to denote the largest subset Q of [q − 1] such that there exists exactly |Q| subsets of Q
inside the collection. Such Qa is well defined due to the following reasoning: if A and B
are such sets that do not contain each other, there are at least |A \ A ∩ B| number of
subsets of A not contained in B. There are at least |A ∪B| number of subsets of A ∪B,
but this number cannot exceed |A ∪ B| since the collection Ia satisfies Hall’s marriage
condition. Hence if A and B are two sets that satisfy the condition, then A ∪ B also
satisfies the condition.

For i < q, ifHi 6⊆ Qa, the collectionHa\{Hq}∪{Hi} satisfies Hall’s marriage condition,
and hence Hi ∈ EPM(Ha). To see this, for the sake of contradiction, assume there is some
distinct i, i1, . . . , is such that |Hi ∪Hi1 ∪ · · · ∪His| = s. This implies |Hi1 ∪ · · · ∪His| = s
and Hi ⊆ Qa, which gives us a contradiction.

Therefore, we get some sequence b such that:
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• bq = aq − 1,

• bi = ai + 1,

• bj = aj for j 6= i, q,

• Hb satisfies the Hall marriage condition.

There exists a cell with left degree vector b due to Remark 13 and Proposition 18. By
induction hypothesis, the claim holds for this cell. Using Lemma 21, we get 0 6∈ Ji since
we have 0 ∈ Jq, Cq due to Lemma 28. Hence we only need to consider Hi’s contained in
Qa.

By Remark 16, we can cross one of the facets of
∏
J given by ∆J1 + · · · + ∆Jq\{i} to

get to another cell inside Xq. By crossing this facet, we reach a cell
∏
C with left degree

vector c such that cq = aq − 1. The claim holds for
∏
C due to induction hypothesis, and

for Hc to also satisfy Hall’s marriage condition, we need to have {H|H ∈ Ha, H ⊆ Qa} =
{H|H ∈ Hc, H ⊆ Qa}. This means that:

• ai = ci for all i such that Hi ⊆ Qa,

• we have Ci = Ji for all i such that Hi ⊆ Qa.

• for Hi ⊆ Qa, we have Hi ∈ EPM(Ha) if and only if Hi ∈ EPM(Hc).

Since the lemma holds for
∏
C, we have also proven the claim for

∏
J . By induction, the

claim holds for all cells inside a lexicographical subdivision of Xq. Again by induction,
we have shown that the statement is true for Xn, and from the argument in the first
paragraph, the statement holds for PM.

Let B be a base in M and p = (c0, . . . , cr) ∈ PM be the corresponding base point via
Proposition 26. Combining Remark 25 and Lemma 31, we can see that c1 + · · ·+ cr− r =
eM(B).

For each base point at (c0, c1, · · · , cr), let us construct a monomial x1
c1−1 · · ·xrcr−1.

Then we get a pure monomial order ideal of which Stanley’s conjecture is asking for.

Proposition 32. Let M be a cotransversal matroid. For each base point (c1, · · · , cr)
in PM∗, take a monomial x1

c1−1 · · ·xrcr−1 to form a collection X. Then X is a pure
monomial order ideal and its degree sequence equals the h-vector of M.

Proof. We first show that X is a monomial order ideal. Let (c0, . . . , cr) be a point in
P = PM∗ . Let G be the corresponding bipartite graph of P . Consider a subgraph we
obtain by deleting the right vertex i. This gives us a polytope, with one less dimension,
and contains (c0, . . . , 0, . . . , cr) as a point, which is obtained from (c0, . . . , cr) by setting
ci to 0. The point is also inside P , which implies that (c0, . . . , ci− 1, . . . , cr) is also inside
P . This proves that X is a monomial order ideal.
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Now let us show that X is pure. Recall that by Proposition 17, each lattice point of
P takes the form p1 + · · ·+ pn, where pi is a lattice point of ∆Ii . The point p1 + · · ·+ pn
corresponds to a maximal monomial if and only if pi 6= e0 for all i ∈ [n]. This implies
that all such points are on the hyperplane x1 + · · ·+ xr = n, from which we can conclude
that the corresponding monomials have the same degree.

This implies Stanley’s conjecture for cotransversal matroids.

1

2

1

2

3

4

5

6

7

8

0

Figure 2 – Padding of the graph given in Figure 1.

Example 33. Let M be a transversal matroid given by the bipartite graph in Figure 1.
The padded bipartite graph is given Figure 2, and we construct a generalized permuto-
hedron from it. For convenience, we will project down to x0 = 0 to draw the polytope in
the x1, x2-plane.

First let us consider the cell that lies on the southwest corner. The corresponding
summand is given by ∆{0,1}+∆{0,2}+∆{0}+ · · ·+∆{0}. The left-degree vector is given by
(1, 1, 0, 0, 0, 0, 0, 0) and our bijection assigns the base point of this cell to the base {1̄, 2̄}.

Consider the leftmost triangle. The corresponding summand is given by ∆{1}+∆{2}+
∆{2} + ∆{1} + ∆{1} + ∆{0,1,2} + ∆{0} + ∆{0}. This cell is not zonotopal, and there is no
base assigned to the cell. If we consider the cell to the top of it, the summand is given by
∆{1}+ ∆{2}+ ∆{2}+ ∆{1}+ ∆{1}+ ∆{1,2}+ ∆{0,2}+ ∆{0}. The left-degree vector is given
by (0, 0, 0, 0, 0, 1, 1, 0), and the base point of the cell is assigned to the base {6̄, 7̄}.
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B Externally passive elements
12 ∅
13 2
16 2,3
17 2,3,6
18 2,3,6,7
24 1
25 1,4
26 1,4,5
27 1,4,5,6
28 1,4,5,6,7
34 1,2
35 1,2,4
36 1,2,4,5
37 1,2,4,5,6
38 1,2,4,5,6,7
46 1,2,3
47 1,2,3,6
48 1,2,3,6,7
56 1,2,3,4
57 1,2,3,4,6
58 1,2,3,4,6,7
67 1,2,3,4,5
68 1,2,3,4,5,7
78 1,2,3,4,5,6

Figure.3 & Table.1 – A lexicographical subdivision of PM and a table of bases in M,
where the bars of the ground set {1̄, . . . , n̄} is omitted for convenience.
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[1] M. Boij, J. Migliore, R. Mirò-Roig, U. Nagel, and F. Zanello: “On the shape of a pure
O-sequence”, Memoirs of the American Mathematical Society Series 218, American
Mathematical Society (2012).

[2] M.K. Chari: Matroid inequalities, Discrete Math. 147 (1995), 283-286.

[3] M.K. Chari: Two decompositions in topological combinatorics with applications to
matroid complexes, Transactions of the American Mathematical Society. 349 (1997),
no. 10, 3925-3943.

[4] P. Hall: On Representatives of Subsets, Journal of the London Mathematical Society.
10 (1935), 26-30.

[5] T. Hausel and B. Sturmfels: Toric hyperKäler varieties, Doc. Math. 7 (2002), 495-
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