
Geometric constructions for 3-configurations with
non-trivial geometric symmetry

Leah Wrenn Berman
Department of Mathematics & Statistics

University of Alaska Fairbanks
Fairbanks, Alaska, USA

lwberman@alaska.edu

Submitted: xx; Accepted: xx; Published: XX

Mathematics Subject Classifications: 51E30, 05B30

Abstract

A geometric 3-configuration is a collection of points and straight lines, typically
in the Euclidean plane, in which every point has 3 lines passing through it and every
line has 3 points lying on it; that is, it is an (n3) configuration for some number n of
points and lines. We will say that such configuration is symmetric if there are non-
trivial isometries of the plane that map the configuration to itself. Many symmetric
3-configurations may be easily constructed with computer algebra systems using
algebraic techniques: e.g., constructing a number of symmetry classes of points and
lines, by various means, and then determining the position of a final class of points
or lines by solving some polynomial equation. In contrast, this paper presents a
number of ruler-and-compass-type constructions for exactly constructing various
types of symmetric 3-configurations, as long as the vertices of an initial regular m-
gon are explicitly provided. In addition, it provides methods for constructing chirally
symmetric 3-configurations given an underlying unlabelled reduced Levi graph, for
extending these constructions to produce dihedrally symmetric 3-configurations, and
for constructing 3-configurations corresponding to all 3-orbit and 4-orbit reduced
Levi graphs that contain a pair of parallel arcs. Notably, most of the configurations
described are movable: that is, they have at least one continuous parameter.

1 Introduction

A geometric (q, k)-configuration is a collection of points and straight lines, typically in
the Euclidean or projective plane, in which k points lie on every line and q lines pass
through every point. If there are p points and n lines, the configuration is called an
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(pq, nk) configuration; if q = k and consequently p = n, then we refer to a (nk) con-
figuration or a k-configuration; the case where q = k = 3 is the first non-trivial case.
3-configurations have been studied extensively since the mid-1800s, and there are many
results, both existential and enumerative, classifying various types of 3-configurations.
Initial investigations focused primarily on classification of combinatorial configurations.
We say that a combinatorial configuration is geometrically realizable if there exists at least
one realization of the combinatorial configuration using points and straight lines. Note
that it is possible for there to be two realizations of the same combinatorial configuration
that are not even affinely congruent.

We will say that a geometric (nk) configuration is symmetric if it has non-trivial geometric
symmetry; that is, under the group of isometries of the plane that map the configuration
to itself, the configuration has fewer than n transitivity classes of points and n transitivity
classes of lines. This usage of the word “symmetric” follows Branko Grünbaum [7, p. 16]
in reserving the word “symmetric” to refer to geometric properties of configurations. In
other places in the literature (e.g. [2] and in works connecting the study of configurations
to design theory), the word symmetric has been used to refer to (nk) configurations, which
are ‘symmetric’ in the numbers of points and lines; however, following Grünbaum, we shall
call general (nk) configurations balanced, and restrict ‘symmetric’ to refer to geometric
properties of a particular embedding.

Given a geometric configuration with symmetry group S, which consists of all isometries
of the plane that map the configuration to itself, we say that the configuration has chiral
symmetry if S is isomorphic to a cyclic group and dihedral symmetry if S is isomorphic
to a dihedral group. The action of the symmetry group on the points of the configuration
partitions the points into orbits, called the symmetry classes of the points, and likewise
partitions the lines into symmetry classes of lines; we also can refer to the symmetry classes
induced by the rotation subgroup of S, if S is isomorphic to a dihedral group. Typically,
symmetric configurations have only a small number of symmetry classes of points and
lines, relative to the total number of points and lines of the configuration. Note that
the definition of a symmetric configuration given above is slightly broader than that of
polycyclic configurations [3], which requires that every symmetry class of points and of
lines determined by the rotation subgroup of the symmetry group must have the same
number of elements. Figure 1 shows several embeddings of the (93) Pappus configuration,
illustrating chirally and dihedrally symmetric non-polycyclic and polycyclic embeddings.
All the configurations constructed in this paper are polycyclic.

Given a (q, k)-configuration, and following Grünbaum [7, Section 1.5], we say that the
configuration is (h1, h2)-astral if it has h1 symmetry classes of lines and h2 symmetry
classes of points; if h1 = h2 = h, we call the configuration h-astral. If h1 = b q+1

2
c and

h2 = bk+1
2
c, then we say the configuration is astral [5, 7]. For example, a 3-configuration

is astral if it has 2 symmetry classes of points and lines. Figure 3 shows two symmetric
3-configurations; the configuration shown in Figure 3a is astral, while the configuration
shown in Figure 3b is 3-astral.
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(a) (b) (c) (d)

Figure 1: Four embeddings of the Pappus Configuration, illustrating various kinds of
symmetric embeddings. In each figure, symmetry classes of points and of lines are dis-
tinguished by color. (a) A chirally symmetric, but not polycyclic, embedding; note that
the symmetry class of blue points contains 2 elements, while the symmetry class of black
points contains only one. (b) A dihedrally symmetric, but not polycyclic, embedding;
the symmetry class of green points contains four elements, but the symmetry class of
red points contains only 2. (c) A polycyclic chiral embedding. (d) A polycyclic dihedral
embedding; while the black symmetry class of lines (shown with solid and dashed lines)
contains six lines under the dihedral symmetry group, under the rotation subgroup, the
symmetry class is partitioned into two sets (solid and dashed) that each contain three
lines.

In [7, Section 2.7], Grünbaum presented an exact, ruler-and-compass method of con-
structing chiral astral 3-configurations (possibly beginning with the vertices of a regular
convex m-gon, if such an m-gon is not constructible). His construction method relies on
a result discussed very briefly in that text, which is reformulated here as the Configura-
tion Construction Lemma. In this paper, we extend this construction method to develop
a purely ruler-and-compass technique (given a starting m-gon) to produce a number of
different classes of chirally and dihedrally symmetric 3-configurations. Although these
configurations could be constructed purely algebraically, using linear algebra, say, to de-
termine numerical constraints to force the last three points of a particular construction
sequence to lie on a single line, developing a geometric construction process turns out to
be quite useful, experimentally, in finding new construction methods to produce new and
interesting examples, such as developing infinite classes of more highly incident configura-
tions that have symmetric 3-configurations as building blocks, where the linear-algebraic
techniques might fail, e.g., due to the inability to force more than three points at a time
to be collinear. For example, the single known (204) configuration, which was found by
Grünbaum in 2008 [6], may be analyzed as being formed from two copies (shown in red
and black in Figure 2) of an astral 3-configuration (shown in Figure 3a) whose construc-
tion is discussed in section 3.1; the construction may be further generalized (with quite a
lot of work) to produce an infinite family of ((2k−2 ·m)k) configurations [1].
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Figure 2: A (204) configuration, formed from two nested copies of the symmetric 3-
configuration shown in Figure 3a.

2 Double-arcs and reduced Levi graphs

The configurations whose construction is described in this paper typically have the prop-
erty that there are at least two symmetry classes of points, say u and w, and two symmetry
classes of lines, say L and N , with the property that two points labelled u lie on a line
labelled L, and two points from w lie on a line labelled N ; we say that such a configuration
has the double-arc property. An example of a small configuration with this property, an
astral (103) configuration, is shown in Figure 3a; the configuration in Figure 4 also has
this property. Note that there are symmetric geometric configurations which do not have
this property. For example, the version of the (93) Pappus configuration shown in Figure
3b has the property that each point contains one line from each of three symmetry classes
of points, and similarly, each line contains one point from each of three symmetry classes
of lines.

Given a configuration, it is possible to construct an associated bipartite graph called a Levi
graph, which has a black node for each vertex of the configuration and a white node for
each line of the configuration, and two nodes are connected with an arc in the Levi graph
if and only if the corresponding vertex and line are incident in the configuration. In their
article Polycyclic Configurations [3], Marko Boben and Tomaž Pisanski presented a way of
analyzing the (rotational) symmetry of configurations via a graph-theoretic object called
a voltage graph (for a general discussion of voltage graphs, see [4]). In their presentation,
the voltage graph is a bipartite quotient, with respect to a cyclic group, of the Levi graph
of a combinatorial configuration, and they asked whether it is possible to determine a
geometric rotational realization of the configuration.

In this article, we modify their presentation of a voltage graph to emphasize the connection
between the Levi graph and the voltage graph, to help develop new infinite families of
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(a) A (103) configuation with the “double-arc”
property.

(b) A chiral representation of the Pappus con-
figuration, which has no double-arcs

Figure 3: (a) A (103) configuration with two symmetry classes of points and lines, with
two points from one symmetry class and one point from a second symmetry class on
lines labelled L and M , and two lines from each of two symmetry classes of lines passing
through points labelled u and w. (b) A (93) configuration with three symmetry classes
of points and lines, with one point from each of three symmetry classes of points on each
line, and one line from each of three symmetry classes of lines through each point. In
both figures, symmetry classes are indicated by color.
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configurations: that is, we consider construction techniques to produce infinite families of
configurations for which the underlying unlabelled reduced Levi graph is the same. We use
the labeling conventions from the notion of a reduced Levi graph introduced in Grünbaum’s
monograph [7, Section 1.6] (note that his object is different from the “reduced Levi graph”
discussed by Artzy; see [7, p. 150, exercise 6]) and the use of a directed multigraph from
the definition of a voltage graph [3] to produce a modified reduced Levi graph (henceforth,
simply reduced Levi graph) which encapsulates significant structural properties of classes
of symmetric configurations.

In what follows, we use the terms nodes and arcs to refer to graph-theoretic objects, and
we reserve the words points and lines for elements of a configuration.

Beginning with a particular polycyclic geometric configuration with Zm cyclic symmetry
(which may or may not be the full symmetry group of the configuration), the construction
and interpretation of the reduced Levi graph is as follows.

Suppose the configuration has h1 symmetry classes of lines and h2 symmetry classes of
points under the rotational symmetries. We denote the classes of lines as L0, L1, . . . , Lh1−1
and the classes of points as v0, v1, . . . , vh2−1, and we assume each symmetry class contains
m elements. Within a symmetry class, say within class v0, the elements of the symmetry
class are labelled cyclically, so that point class v0 contains points (v0)0, (v0)1, . . . , (v0)m−1
which form the vertices of a regular convex m-gon. (Note that if the number of symmetry
classes is small, the symmetry classes may be labelled so as to avoid the double-indexing;
for example, in Example 1 below, the symmetry classes of vertices are labelled as u, v, w
and the symmetry classes of lines are labelled L, M , N .)

We define the corresponding reduced Levi graph to be an edge-labelled bipartite multi-
graph (we are allowing doubled edges), with h1 large nodes, each corresponding to a
symmetry class of lines, and h2 small nodes, each corresponding to a symmetry class of
points.

We define incidence between nodes according to the incidence between the points and
lines in the configuration. In particular, we construct a directed arc from node Lk to node
vj with label a precisely when line (Lk)0 passes through vertex (vj)a, or alternately, when
the line labelled (Lk)−a intersects the node (vj)0. Note that this labeling convention is
opposite to the labeling scheme described for voltage graphs in [3]. In many cases, we
will need the label of 0, meaning that vertex (vj)0 lies on line (Lj)0; to lessen the clutter
of the diagram we will suppress the 0 label and draw such lines thick, unlabeled,
and without arrows.

If two lines P and Q intersect, we sometimes will refer to the intersection point as P ∧Q,
and if two points v and w are connected by a line, then we may call the line v ∨ w. A

double-arc

uL
a in a reduced Levi graph connecting line class L and vertex class

u with labels 0 and a corresponds to the situation where line Li is incident with vertex ui
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and ui+a; that is, Li = ui∨ui+a (or conversely, ui = Li∧Li−a) and the lines Li are said to
be of span a. (More generally, a double-arc is any pair of parallel arcs in a reduced Levi
graph, but it is convenient to work with double-arcs in which one label is 0.)
Example 1. Constructing a reduced Levi graph.

We illustrate the construction of a reduced Levi graph using the (93) configuration shown
in Figure 4a. It has 3-fold rotational symmetry, three classes of lines, called L, M and
N , and three classes of points u, v, w; in the figures the 0-th element of each symmetry
class is shown larger. Incidences between the points and lines are shown in Table 1; in
the table, all indices are taken modulo 3.

Table 1: Incidences between points and lines of the (93) configuration shown in Figure 2.

Point incident to Line incident to
ui Li Li+2 Ni+1 Li ui ui+1 vi
vi Li Mi Ni Mi vi wi wi+1

wi Mi Mi+2 Ni+1 Ni ui+2 vi wi+2

L0

L1

L2

M0

M1

M2

N2

N0

N1

w0

w2

w1

v2

v1

u2

u1

u0

v0

(a) A (93) configuration

u

v

w

L

M

N

1

2
2

1

Z3

(b) The corresponding reduced
Levi graph

Figure 4: A 3-configuration and its corresponding reduced Levi graph. Note that the
thick lines indicate that the labelling on the arc is 0, and nodes corresponding to lines
are shown larger. For example, since point vi lies on line Li, the arc between node v and
node L is drawn thick, but is unlabelled. On the other hand, since point wi+2 lies on line
Ni, the arc between nodes w and N is labelled with a 2.

A useful fact is that given a (labelled) reduced Levi graph, by “rotating labels” about
consecutive nodes appropriately, it is possible to zero-out labels along any given spanning
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tree of the graph. To see this, consider the underlying multigraph for the reduced Levi
graph shown in Figure 4b. In Figure 5, we have chosen and highlighted a particularly
desirable spanning tree for the graph, namely, a Hamiltonian path that begins and ends
at a double-arc.

u

v

w

L

M

N

Figure 5: A nice spanning tree, indicated on an unlabeled underlying reduced Levi graph.

How can we change the labelling on the original configuration so that in the reduced Levi
graph, we have a spanning tree (in this case, a spanning path) of zero-labelled edges? We
already have the path u−L− v−N all labelled with 0, so we need to continue the path
by making the arc from N to w be labelled 0. To do this, we add −2 to every arc incident
with w, with addition done modulo 3 since the symmetry group of the configuration is Z3.
This is equivalent to subtracting 2 from every index of the vertex labels associated with w
in the labelling of the configuration (that is, rotating the labels assigned to the elements
of the symmetry class w by two steps backwards). Next, we want to make one of the
arcs between w and M have label 0, so we add 2 to every label incident with M (both on
the node, and for the labels of the lines in the configuration). We now have achieved the
desired 0-labelled spanning path; the sequence of operations is shown in Figure 6.

A useful feature of the reduced Levi graph is that since every arc in the graph corresponds
to a point-line incidence in the configuration, the degree of the vertex-nodes and the
line-nodes of the reduced Levi graph is equal to the type of configuration the graph
corresponds to. For instance, in the example shown in Figure 4, every node in the graph
is of degree 3, and the configuration is a 3-configuration. In general, a (q, k)-configuration
corresponds to a reduced Levi graph with q-valent line-nodes and k-valent vertex-nodes.
A (q, k)-configuration where q = k is said to be balanced ; if q 6= k the configuration is
unbalanced. (In the literature (e.g., [2]), balanced combinatorial configurations have often
been called symmetric, but that terminology clashes with our desire to use symmetric
to refer to a geometric property of a configuration. In this language—as in so much
else—we follow Grünbaum; see [7, p. 16] for his discussion of the issue.) An unbalanced
(3,4)-configuration and its corresponding reduced Levi graph is shown in Figure 7. Note
that under the cyclic symmetry group Z7, it has three symmetry classes of lines and
four symmetry classes of points (indicated by color); each of the vertex-nodes is 3-valent,
while each of the line-nodes is 4-valent. (On the other hand, if the configuration is viewed
as having dihedral symmetry, it has two symmetry classes of points and two symmetry
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Figure 6: Achieving a desired spanning tree. Initial graph: the original reduced Levi
graph. The middle graph is obtained by “rotating about w” by addiing −2 to each label
for arcs incident with w in the original graph. The right-hand graph is obtained from the
middle graph by “rotating about M” by adding 2 to each label for arcs incident with M .
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classes of lines.)

(a)

12

2 1

3
2

Z7

(b)

Figure 7: (a) An unbalanced (3, 4)-configuration; (b) the corresponding reduced Levi
graph. In the reduced Levi graph, the large nodes correspond to the lines and the smaller
nodes to the vertices of the configuration; symmetry classes are coded by color. In the
configuration, the 0-th element of each symmetry class is shown larger, and subsequent
elements are labelled cyclically, counterclockwise.

3 The Configuration Construction Lemma

The configuration construction lemma is very easy to state and prove, but it provides
a broadly useful method for a purely geometric construction for a number of symmetric
configurations. In particular, it lets us precisely construct geometric 3-configurations
whose reduced Levi graphs contain two non-adjacent pairs of double-arcs.

A variant of this lemma was presented by Grünbaum in [7, Section 2.7] in the context of
constructing a single, highly restricted class of 3-configurations, the astral 3-configurations
with cyclic symmetry.
Lemma 1 (Configuration Construction Lemma). Let v0, v1, . . . , vm−1 form the vertices of
a regular m-gon with center O. Let C be the circle passing through the points O, vd, vd−c,
and let ∠vdOvd−c = 2πc

m
. Let w0 be any point on C, and define wi to be the rotation of w0

by 2πi
m

about O. Then w0, wc, vd are all collinear.

the electronic journal of combinatorics 16 (2009), #R00 10



wc

vd-c

vd

w0

(a) Lemma statement

N-c

X

vd-c

vd
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w0

(b) proving the lemma

Figure 8: Illustrating the configuration construction lemma.

Proof. Construct a point X on the line vd−cw0 so that the oriented angle ∠w0OX = −α.
(See Figure 8b.) Note that both ∠Ovdvd−c and ∠Ow0vd−c are subtended by chord Ovd−c
of circle C, so they are equal. Moreover, since X lies on vd−cw0, ∠Ow0X = ∠Ovdvd−c.
Therefore, triangles 4w0OX and 4vdOvd−c, which have two pairs of equal angles, are
similar, so because 4vdOvd−c is isosceles by construction, it follows that 4w0OX is also
isosceles. That is, X and w0 lie on the same circle centered atO. Because ∠w0OX = −2πc

m
,

it follows that X = w−c, by the definition of the wi.

If we define N−c to be the line passing through w0 and vd−c, we have just shown that
the point X = w−c also lies on N−c. Defining Ni−c to be the rotation of N−c through
2πi
m

, it follows that Ni−c contains the points w0+i and vd−c+i, and w−c+i. That is, the line
N0 = Nc−c contains the points wc, vd, and w0, as was to be shown.

If we consider the effect of the configuration construction lemma on corresponding nodes
and arcs of a partial reduced Levi graph under the action of the group Zm, then we
arrive at the following “gadget” in the reduced Levi graph, shown in the left-hand side of
Figure 9, where the dashing between N and v indicates that the collinearity is forced. If
in addition w0 is the intersection of C with some other line L0 which is an element of a
symmetry class L — which is the case in all of the subsequent constructions — then we
have in the reduced Levi graph the gadget shown in the right-hand side of Figure 9.
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N w

v

cd

(a) w0 is on C...

N w

v L

cd

(b) ...and also on L0

Figure 9: “Gadgets” in reduced Levi graphs found as a consequence of using the con-
struction in the configuration construction lemma. (a) The point w0 lies on the circle C
passing through O, vd, vd−c, and N0 is a line of span c through w0; (b) In addition, w0 also
lies on some line L0.

3.1 Chiral astral 3-configurations

We first apply the Configuration Construction Lemma to construct a chiral astral 3-
configuration, which has two symmetry classes of points and lines, and whose reduced
Levi graph is shown in Figure 10; since there are three discrete parameters in the reduced
Levi graph, this type of configuration has been represented by the symbol m#(a, b; d)
(for example, in Section 2.7 of [7] as m#(b, c; d)). The smallest example of such a con-
figuration is shown in Figure 3a, with symmetry group Z5. The method presented here
for constructing chiral astral 3-configurations is a variant of the method described in [7,
Section 2.7] but is significantly more straightforward.

L

vN

w

a
b

d

Zm

Figure 10: The reduced Levi graph for a cyclic astral 3-configuration

The existence of two pairs of double-arcs in the reduced Levi graph shown in Figure 10
mean that we need a class of lines L of span a with respect to some points v and a class
of lines N of span b with respect to some points w. The 0-labelled line between L and

w indicates that point w0 must lie somewhere on line L0. Finally, the
vN

d

arc
indicates that line N0 must also contain vd (as well as w0 and wb, since N0 is span b with
respect to the wi). A simple application of the configuration construction lemma allows
us to construct such a configuration. First, we construct the points vi as the vertices of
a regular convex m-gon, and next we construct the lines Li as the lines of span a with
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respect to the vi. We then define w0 to be an intersection of line L0 with the circle C
passing through O, vd and vb−d; the notation d′ in the symbol m#(a, b; d′) indicates we
should choose the leftmost intersection, while m#(a, b; d) indicates we should choose the
rightmost intersection. Finally, the configuration construction lemma lets us conclude
that the points w0, wb, vd are collinear, so we label the line through those three points as
N0, and define Ni to pass through wi, wi+b, vi+d. Note that with the exception, possibly,
of constructing the original vertices of a regular m-gon, the entire construction is achieved
using only a straightedge and compass.

As an example, consider the construction of 7#(3, 2; 1′), shown in Figure 11.
Example 2. Constructing an astral 3-configuration 7#(3, 2; 1′)

1. Construct the points vi =
(
cos

(
2πi
7

)
, sin

(
2πi
7

))
.

2. Construct lines Li = vi ∧ vi+3.

3. Construct the circle C passing through O, v1 and v1−2 = v−1.

4. Let w0 be an intersection of line L0 with C. In this case, we choose the leftmost
intersection, because of the 1′ (instead of 1) in the symbol description.

5. Construct the lines Mi connecting wi and wi+2 and note that by the configuration
construction lemma, Mi also passes through vi+1.

w-2

w0

v1 - 2 = v-1

v1

Figure 11: Constructing an astral configuration 7#(3, 2; 1′). The 0th element of each
symmetry class is shown larger, and elements are cyclically labelled counterclockwise; the
leftmost intersection of C with L0 is chosen to define w0.

In general, the circumcircle C intersects line L0 in two places. In particular, suppose the
line L0 is parametrized as (1−t)v0+t(va) and C intersects L0 at two points with parameter
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values t = γ and t = γ′, where γ 6 γ′. By writing m#(a, b; d) we mean that we choose the
intersection point with t = γ, that is, the rightmost intersection, and m#(a, b; d′) means
that we choose the intersection with t = γ′, or the leftmost intersection. Figure 12 shows
the two configurations 9#(4, 1; 3) and 9#(4, 1; 3′).

(a) The configuration 9#(4, 1; 3); w0 uses the
rightmost intersection of C with L0.

(b) The configuration 9#(4, 1; 3′): w0 uses the
leftmost intersection.

Figure 12: Two chiral astral 3-configurations with m = 9, a = 4, b = 3, t = 2. In both
configurations, the points vi and lines Li are black and the points wi and lines Ni are red.

4 Construction of infinite classes of symmetric 3-

configurations

Other infinite classes of symmetric 3-configurations may be constructed geometrically
using the configuration construction lemma.

4.1 Multilateral 3-configurations

These configurations have a reduced Levi graph which alternates double-arcs and single
arcs, shown in Figure 13; the configuration itself consists of mutually inscribed and cir-
cumscribed (possibly star) m-gons, where the inscribed m-gons need not be the same
type. For example, Figure 14 shows two multilateral 4-astral 3-configurations with m = 5
and h = 4, along with the associated reduced Levi graphs; one uses only convex 5-gons,
and the other uses a mixture of pentagrams and convex pentagons.
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v2

L2

a2

v3

L3
a3 vh−1

Lh−1

ah−1

t

Zm

Figure 13: The reduced Levi graph for a multilateral h-astral 3-configuration

Multilateral 3-configurations were investigated carefully from an algebraic viewpoint (al-
though not using that name) in Boben and Pisanski’s article Polycyclic Configurations
[3], where they were referred to as C3(k, (p0, p1, . . . , pn), t), where n is the number of sym-
metry classes of points and lines and the symmetry group of the configuration is Zk. They
are also discussed in [7, Section 5.2].

The construction for h-astral multilateral 3-configurations with symmetry group Zm is as
follows.

1. Begin with an arbitrary set of vertices v0 forming the vertices of a regular m-gon.
Typically,

(v0)i =

(
cos

(
2πi

m

)
, sin

(
2πi

m

))
.

2. The first double-arc indicates that the first set of lines (L0)i should be of span a0
with respect to the points v0. That is, construct (L0)i = (v0)i ∧ (v0)i+a0 .

3. The next, zero-labelled single arc means that we can place (v1)i arbitrarily on line
(L0)i. That is, we choose a value for a continuous parameter λ1 (with λ1 6= 0, 1 to
prevent degeneracy) so that

(v1)i = (1− λ1)(v0)i + λ1(v0)i+a0 .

4. This process continues iteratively: for 1 6 j 6 h− 2,

(vj)i = (1− λj)(vj−1)i + λj(vj−1)i+aj−1

and
(Lj)i = (vj)i ∧ (vj)i+aj
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Figure 14: Two multilateral 3-configurations, with m = 5. In both configurations, the
first vertex class v0 is colored black, and the last vertex class v3 is colored orange; the first
line class L0 is black and the last line class L3 is red. Top: λ0 = λ1 = λ2 = .4; Bottom:
λ0 = .4, λ1 = λ2 = .3.
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5. Finally, to construct the h-th orbit of points and lines (that is, the lines Lh−1 and
the points vh−1), note that in the reduced Levi graph we have a double-arc between
Lh−1 and vh−1, labelled ah−1 and 0, and a single arc labelled t between Lh−1 and v0.
This labelling indicates that the lines Lh−1 should be of span ah−1 with respect to
the vertices vh−1, and moreover, line (Lh−1)0 must pass through point (v0)t. We use
the configuration construction lemma and the lines Lh−1 to construct the required
points vh−1: point (vh−1)0 is an intersection of the line (Lh−1)0 with the circumcircle
C passing through O, (v0)t and (v0)t−ah−1

. The rest of the points (vh−1)i are the
rotated images, and (Lh−1)i := (vh−1)i ∧ (vh−1)i+ah−1

.

Note that for a given multilateral h-astral 3-configuration, if h > 2 then there are h − 2
continuous parameters λ1, . . . , λh−2: non-astral multilateral configurations are movable!
Also, if h = 2 then the construction produces the chiral astral 3-configurations already
described.

4.2 Caterpillar 3-configurations

These have the reduced Levi graphs of the form shown in Figure 15. Note that there is a
“wiggle” of zero-labels along the center of the configuration.

v0

L0

L1

v1

v2

L2

L3

v3 Lh−2

vh−2 Lh−1

vh−1

a1

a2

a3

t

a0
ah−1

Zm

Figure 15: A reduced Levi graph for a caterpillar 3-configuration

To construct a caterpillar configuration:

1. Construct vertices (v0)i as the vertices of a regular convex m-gon. Construct lines
(L0)i as lines of span a0; that is, construct (L0)i := (v0)i ∨ (v0)i+a0 .

2. For each i = 1, 2, . . . , h − 2, place vertex (vj)0 arbitrarily on line (Lj−1)0, and
construct the rest of the vertices (vj)i as the image under rotation by 2πi

m
of vertex

(vj)0. Then construct lines (Lj)i as (Lj)i := (vj)i ∨ (vj−1)i+aj . Note that these
lines (Lj)i for j > 1 connect vertices from two consecutive symmetry classes! More
precisely, there are continuous parameters λ1, . . . , λh−2 so that (v1)0 = (1−λ1)(v0)0+
λ1(v0)a0 , while if j = 2, . . . , h− 2, (vj)i = (1− λj)(vj−1)i + λj(vj−2)i+aj .

3. To complete the configuration, we need to construct a class of vertices (vh−1)i and a
class of lines (Lh−1)i so that (vh−1)i lies on (Lh−2)i, (Lh−1)i = (vh−2)i ∨ (vh−2)i+ah−1

,
and (Lh−1)i passes through vertex (vh−2)t. To do so, we apply the configuration con-
struction lemma. Construct the circumcircle passing through (vh−2)t, (vh−2)t−ah−1

,
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and the center of the configuration. Define (vh−1)0 to be one of the two intersections
of this circle with line (Lh−2)0. The configuration construction lemma says that if
we now construct line (Lh−1)0 := (vh−1)0 ∨ (vh−1)ah−1

, then this line passes through
(vh)t; by symmetry, if line (Lh)i is the image under rotation by 2πi

m
, then each line

(Lh)i passes through (vh)i, (vh)i+ah−1
, and (vh−1)t, as desired.

An interesting example of a caterpillar configuration is shown in Figure 16; it is a geometric
realization of a famous (153) configuration known as the Cremona-Richmond configuration
(compare with the drawing in [7, p. 2]).

Note that an h-astral caterpillar configuration has h discrete parameters, corresponding to
the labels a0, a1, . . . , ah−1, t in the reduced Levi graph, and h− 2 continuous parameters,
corresponding to the arbitrary placement of vertex (vj)0 on line (Lj−1)0 for j = 1, 2, . . . , h−
2 in the construction of the configuration. If h = 2, the caterpillar construction produces
again a chiral astral 3-configuration, which has no continuous parameters.

w4

w3

w2

w1

w0

v4

v3

v2

v1

u4

u3

u2

u1

u0 v0

u

L

M

v N

w

12

1

3

Z5

Figure 16: The Cremona-Richmond configuration analyzed as a caterpillar configuration,
along with the corresponding reduced Levi graph.

5 Other symmetric 3-configurations

There is a single underlying reduced Levi graph that corresponds to chiral 3-configurations
with two orbits of points and lines, which we discussed in Section 3, shown in Figure 10.
In Polycyclic Configurations [3, Figures 8 and 9], Boben and Pisanski present all possi-
ble (unlabelled) 3-valent multigraphs which might be the underlying graph for a reduced
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Fig. 8. Underlying graphs for the voltage graphs for polycyclic (v3) configurations with three orbits.

(3) The smallest triangle-free configuration is called the Cremona–Richmond
configuration. Its Levi graph is the Tutte 8-cage. Fig. 7 shows its rotational
realization together with the corresponding quotient graph. Even though the
configuration is highly symmetric, its quotient is not vertex transitive for any
automorphism.

Any cubic bipartite connected graph on 2n vertices can serve as the underlying graph of
a voltage graph of a polycyclic (v3) configuration. We will call it realizable if there exists
at least one voltage graph whose configuration is rotationally realizable.
The construction procedure for these graphs is relatively simple. The graphs with given

n consist of all simple connected bipartite graphs with 2n vertices and all connected
bipartite graphs with 2n − 2 vertices in which a digon is inserted at every possible edge.
If we restrict our attention to the vertex-transitive case there is a unique non-simple

family of graphs that is very useful for constructing polycyclic configurations.
LetΘ1 denote the graph consisting of two vertices and three parallel edges joining them.

In general, let Θn consist of vertices 0, 1, . . . , 2n − 1 and edges (2i, 2i + 1) and double
edges at (2i − 1, 2i) (addition is mod 2n); see Fig. 10.

Proposition 7. A connected bipartite cubic vertex-transitive graph is either simple or
isomorphic to some Θn, n ≥ 1.

Proof. All three possibilities for the local structure around a vertex of a cubic graph are
shown in Fig. 6. For a connected vertex-transitive graph G this structure must be the same
for each vertex. Case (c) in Fig. 6 implies that graph G is simple, case (b) implies that G
is isomorphic to some Θi , i ≥ 2, and case (a) shows Θ1. !

Case (n = 1). For n = 1 the only graph is the Θ1 graph. The derived configurations are
cyclic configurations; none of them is rotationally realizable overΘ1.

Case (n = 2). The case n = 2 consists of a single graph Θ2. It is obtained from Θ1 by
insertion of a digon at some edge. For a rotational realization; see Fig. 11.

Case (n = 3). There are three graphs available. From Θ2 we obtain Θ3 by inserting a
digon in a single edge and we get a graph of Fig. 7, the underlying graph of a Cremona–
Richmond configuration. Finally, K3,3 is the smallest simple bipartite graph having 6
vertices. It is the underlying graph of the Pappus configuration. See Fig. 8.

Figure 17: The possible reduced Levi graphs corresponding to 3-configurations with three
orbits of points and of lines (image taken from [3]). Note that the middle graph cor-
responds to 3-astral multilateral configurations and the rightmost graph corresponds to
3-astral caterpillar configurations.

442 M. Boben, T. Pisanski / European Journal of Combinatorics 24 (2003) 431–457

Fig. 9. All possible underlying graphs for the voltage graphs for polycyclic (v3) configurations with four orbits.

Case (n = 4). There are 6 graphs in this group. The cube Q3 is the only simple cubic
graph on six vertices. The other five graphs are obtained from the 3 graphs of case
n = 3 via the indicated procedure. All six of them are depicted in Fig. 9. They are all
realizable.

Conjecture 8. Every connected trivalent bipartite graph except for Θ1 is realizable.

5. Configurations C3(k, p, t)

Now, let us focus on the transitive case where all vertices are of type (b) according to
the Fig. 6, that is, G/≈ is an even cycle with alternating single and double edges.
We can assume that the voltages on double edges are 0 and pi , 0 < pi < k/2,

i = 1, 2, . . . , n, and 0 on all single edges but one which we denote by t , see Fig. 10.
This is true since we can add the same element from Zk to the voltages on all edges which
are incident with the same vertex—this means that we only change the numbering of the
vertices in the same vertex-fiber. We will refer to this procedure by “rotating voltages
around a vertex”. It follows that a configuration given by such graph can be described
by

a p11 a p22 . . . a pn−1n−1 a pnn
a01 a02 . . . a0n−1 a0n
a02 a03 . . . a0n at1,

(4)

where n = v/k. Therefore we can denote these k-cyclic (v3) configurations by C3(k, p, t)
where p = (p1, p2, . . . , pn). In case p1 = p2 = · · · = pn =: p0 we shall write
C3(k, pn0 , t).

Figure 18: The possible reduced Levi graphs corresponding to 3-configurations with four
orbits of points and of lines (image taken from [3]), i.e., 4-astral 3-configurations. The
graph in the (1,1)-entry corresponds to a multilateral configuration and the (2,2)-entry
to a caterpillar configuration. Configurations corresponding to the graphs in the (1, 3)-,
(2, 1)-, and (2, 3)-entries may be constructed using variants of the construction techniques
described in this article, with examples shown in Figures 20a,b and Figure 21 respectively.
The construction methods used to produce these configurations are discussed in Examples
3 and 4.
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Levi graph of 3-configurations with 3 and 4 orbits of points and lines; their figures are
reproduced in Figures 17 and 18. Of these, seven have at least one double-arc, and
using variants of the techniques discussed previously, it is possible to develop geomet-
ric constructions to produce configurations with these as their underlying reduced Levi
graphs. The single reduced Levi graph with 3 orbits which has no double-arcs corresponds
to “pappus-like” configurations (Figure 19b); the Pappus configuration has a realization
with 3-fold rotational symmetry with such a graph as its underlying reduced Levi graph,
shown in Figure 19a. Similar h-astral configurations for odd h (which Boben and Pisanski
mentioned briefly [3] as configurations which had realizations over odd Möbius graphs) are
straightforward to construct using algebraic techniques but no purely geometric construc-
tion technique is yet known. It is also possible using algebraic techniques to construct
h-astral 3-configurations for even h in which the corresponding reduced Levi graphs have
no double-arcs and are even prism graphs instead of odd Möbius graphs (since the re-
duced Levi graphs must be bipartite). Figure 19d shows a configuration whose reduced
Levi graph is the cubical (4-prism) graph, i.e., the (1,2)-entry in Figure 18, but again, no
purely geometric construction is known.
Example 3. Constructing unusual 4-astral 3-configurations with two double-arcs in the
reduced Levi graph.

To construct configurations whose underlying reduced Levi graph has two double-arcs,
first identify a spanning path in the reduced Levi graph that begins at one double-arc and
ends at the other. Assign labels to edges that don’t participate in the spanning path, and
use the path to determine the construction order. (Of course, in general finding Hamilto-
nian paths in graphs is a hard problem. However, for small graphs, it is straightforward.)
Figure 20 shows two examples, whose construction is described below.

As an example, consider the spanning path shown in the reduced Levi graph in Figure
20a, with m = 5 and (a0, a1, a2, a3, t) = (2, 1, 1, 2, 1). To construct the corresponding
configuration:

1. Construct the vertices (v0)i as the vertices of a regular convex 5-gon.

2. Following the thick path, we encounter a double-arc, so we construct lines (L0)i of
span a0 = 2 with respect to the (v0)i.

3. We encounter (v1) in the reduced Levi graph, so we place (v1)0 arbitrarily on line
(L0)0, and construct the rest of the (v1)i by cyclically rotating (v1)0 (we “spin the
points around”).

4. We construct line (L1)0 arbitrarily (that is, at an arbitrary angle) through point
(v1)0, and construct the rest of the symmetry class by spinning the lines around.

5. Next, we encounter a double-arc, so we need to construct point (v2)0 to lie on
the intersection of lines (L1)0 and (L1)a1 = (L1)1: that is, (v2)0 = (L1)0 ∧ (L1)a1 .
Construct the rest of the (v2)i by spinning.

6. Since L2 in the reduced Levi graph is adjacent to both v0 (with a label of a2) and
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(a) A chiral realization of the Pappus con-
figuration

(b) A “pappus-like” configuration, with
m = 6

(c) A configuration whose unlabelled re-
duced Levi graph is the 5-Möbius graph,
over Z5

(d) A configuration whose unlabelled re-
duced Levi graph is the cubical graph, over
Z4

Figure 19: Various small 3-configurations whose associated reduced Levi graphs contain
no double-arcs.
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(L3)0 (v3)0
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L1

L3

v0

v2

v3

L2
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a1

a3

a2

t

Z5

(a) m = 5 and (a0, a1, a2, a3, t) = (2, 1, 1, 2, 1). Important vertices and lines are labelled.

v0 L0

v1L1

v2

L2 v3

L3

a0
a1

a3a2

t

Z4

(b) Here, (a0, a1, a2, a3, t) = (1, 2, 1, 1, 1) and m = 4. The 0th element of each symmetry
class is shown larger; colors between the configuration and the reduced Levi graph
correspond.

Figure 20: Two unusual 4-astral 3-configurations, and the corresponding general reduced
Levi graphs.
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v2 (with a label of a1), we construct (L2)0 = (v2)a1 ∧ (v0)a2 .

7. Finally, we are close to our final double-arc. We need to construct the (v3)i and
the (L3)i so that (v3)0 lies on (L2)0 and also so that a line through (v3)0 and (v3)a3
passes through (v1)t. To do so, we apply the configuration construction lemma and
define (v3)0 to be an intersection of the circumcircle through (v1)t, (v1)t−a3 and O
with line (L2)0. In the example in Figure 20a we constructed a circumcircle passing
through (v1)1, O, and (v1)1−2 = (v1)−1 and chose the farther intersection with (L2)0
as the point (v3)0. Construct the rest of the (v3)i as usual, and construct lines (L3)i
to be of span a3 with respect to these (v3)i.

The construction technique for the second type of configuration (shown in Figure 20b) is
slightly simpler. Construct the (v0)i as the vertices of a regular convex m-gon. Following
the thick path in the reduced Levi graph, construct the lines (L0)i as lines of span a0.
Construct the point (v1)0 arbitrarily on line (L0)0 and construct the rest of the (v1)i
as rotated images. Construct (L1)0 = (v1)0 ∨ (v0)a1 and the rest of the (L1)i as rotated
images. Construct (v2)0 arbitrarily on (L1)0, and the (L2)i of span a2. Finally, we need the
lines (L3)i to be span a3 with respect to the (v3)i and pass through (v1)t, so we construct
the circumcircle through (v1)t, (v1)t−a3 and the center, and choose an intersection with
(L2)0 to construct (v3)0; the configuration construction lemma says if we construct the
(v3)i in this way, then the lines (L3)i constructed to be span a3 with respect to the (v3)i
pass through (v1)i+t.
Example 4. Constructing a 3-configuration whose reduced Levi graph has only a single
double-arc.

While it is easier to construct configurations with a pair of non-adjacent double-arcs,
in fact, it is possible to construct configurations with only a single double-arc in the
reduced Levi graph, by choosing a 0-labelled path in the reduced Levi graph that ends
at the double-arc. An example of the construction technique for the configuration shown
in Figure 21 follows, with m = 4 and (a0, a1, a2, a3, t) = (1, 2, 3, 1, 0). This is the final
configuration whose underlying reduced Levi graph is listed in Figure 18 and contains a
double-arc.

1. Begin by constructing the vertices (v0)i as the vertices of a regular convex m-gon.
Construct line (L0)0 arbitrarily through vertex (v0)0 and construct the rest of the
(L0)i.

2. Construct (v1)0 arbitrarily on line (L0)0, and construct the rest of the (v1)i.

3. Next, construct (L1)i = (v1)i ∨ (v0)i+a0 .

4. Then, construct the points (v2)i as the intersection (L1)i ∧ (L0)i+a1 .

5. Construct (L2)i = (v2)i ∨ (v1)i+a2 .

6. Finally, we use the circumcircle construction lemma to construct (v3)i and (L3)i so
that (L3)i are lines of span a3 with respect to the points (v3) that pass through the
points (v0)i+t, by constructing the circumcircle through the center of the m-gon,
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Figure 21: A 4-astral 3-configuration with a single double-arc in the reduced Levi graph.
Here, m = 4 and (a0, a1, a2, a3, t) = (1, 2, 3, 1, 0). The 0-th element of each symmetry
class is shown larger, and colors indicate correspondence between the configuration and
the reduced Levi graph.

(v0)t, and (v0)t−a3 and taking the intersection of the circumcircle and line (L2)0 to
be point (v3)0.

Note each of the classes of configurations described in Examples 3 and 4, as well as the
4-astral multilateral and caterpillar 3-configurations, have two continuous parameters,
corresponding to arbitrary placement of certain points and/or lines.

6 Dihedrally symmetric 3-configurations

Any of the reduced Levi graphs used to construct configurations with chiral symmetry
discussed in the previous sections may also be used to construct configurations with di-
hedral symmetry, by a simple modification of the construction technique; we say that we
“dihedralize” the original configuration. Suppose you have a chirally symmetric config-
uration whose reduced Levi graph contains a double-arc at the end of a 0-labelled path
whose nodes, say w and N , are attached by single arcs to two other nodes in the reduced
Levi graph, say L and v respectively. Delete w and N and the attached arcs from the
reduced Levi graph, and duplicate the remaining subgraph, attaching superscripts of + to
all the node labels in one copy and − to all the node labels in the other copy (see Figure
22).
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We reflect this labeling in the reduced Levi graph within the original configuration by
first constructing a subconfiguration consisting of the vertices and lines corresponding to
the + superscripted sub-reduced-Levi graph, and consider the labels of the vertices and
lines to be superscripted with + in the obvious way. Next, choose an arbitrary mirror
M passing through the center of the subconfiguration. Finally, reflect the vertices and
lines over M, and superscript the reflected images with − (see Figures 24a and 26a for
examples).

Now construct new nodes w+ and N+ and new arcs in the reduced Levi graph, by using
the configuration construction lemma in the configuration, by defining w+

0 to be the
intersection of the circumcircle through v+d , O and v+d−c with line L−0 , and then define N+

0

to be the line through w+
0 , w

+
c , and v+d ; construct the other vertices w+

i and the lines N+
i

in the configuration in the appropriate way. Finally, reflect all the lines N+ and points w+

over M to construct N− and w−; this mirroring is indicated by green dashing in Figure
22. By construction, line N−0 contains points w−0 , w−c and v−d , and point w−0 lies on lines
L+
0 , N−0 , and N−c .

L

v

w

N
d

c

reduced

Levi

subgraph

+

reduced

Levi

subgraph −

L+

v+

L−

v−
N+

w+

c

d
N−

w−

c

d

Figure 22: Beginning with a reduced Levi graph for a chirally symmetric 3-configuration
that includes a double-arc, it is possible to convert the reduced Levi graph to a reduced
Levi graph for a dihedrally symmetric configuration.The final mirroring is indicated by
green dashing in the reduced Levi graph.

As indicated by the reduced Levi graphs, if the chirally symmetric 3-configurations have
h symmetry classes of points and lines, then the dihedralized versions have 2h symmetry
classes of points and lines under the symmetry group Zm. However, by construction,
the elements w+ and w− lie in the same symmetry class under the symmetry group Dm,
since by construction w+

0 reflects to w−0 , etc. As explicit examples, we dihedralize a chiral
astral 3-configuration, to produce a dihedrally symmetric astral 3-configuration, which
gives a new geometric construction for the dihedral astral DD configurations discussed in
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[7, Section 2.8] that does not rely on solving some quadratic equation. We also dihedralize
the Cremona-Richmond configuration shown in Figure 16.
Example 5. Constructing a dihedral astral 3-configuration

The dihedralized chiral astral 3-configuration has the reduced Levi graph shown in Figure
23. Figure 24 shows four steps in the construction of the corresponding configuration, in

L+

v+

a

L−

v−

a

N+

w+

b

d
N−

w−

b

d Z3

Figure 23: The reduced Levi graph corresponding to the dihedralized chiral astral 3-
configuration whose reduced Levi graph is shown in Figure 10. The node colors correspond
to the colors of the points and lines in the configuration shown in Figure 24 (in which
m = 3, a = b = d = 1).

the case where m = 3 and a = b = t = 1. Begin by constructing vertices v+i and their
mirror images v−i and the span a lines L+

i and L−i . Next, construct the circle O through
v+t , v+t−b and O, and intersect that with line L−0 to form the point w+

0 ; construct the rest
of the points w+

i as rotated images. The lines N+
i are constructed as span b lines with

respect to the wi. Finally, reflect the elements w+
i and N+

i over the mirror to form w−i
and N−i finish the construction.

Unlike the chiral astral 3-configurations, these dihedral astral 3-configurations are mov-
able: they have a continuous parameter corresponding to the angle between Ov0 andM,
as well as three discrete parameters.
Example 6. Constructing a dihedral version of a caterpillar configuration.

Here, we will construct a dihedralized version of the Cremona-Richmond configuration,
which was shown previously in Figure 16. The reduced Levi graph is shown in Figure
25, and the various steps of the construction are shown in Figure 26. We begin by
constructing the subconfiguration corresponding to vertex nodes u and v and line nodes
L and M , shown in black and blue, and reflect them over the mirror M shown in green;
the reflected subconfiguration is shown in Figure 26a in lighter colors (gray and cyan,
respectively). Next, we need to construct new nodes w+, which should be 0-adjacent to
L−, and N+ in the reduced Levi graph so that N+ is of span 1 with respect to the w+

i and
adjacent to v+ with a label of 3. To do so, we apply the configuration construction lemma,
which says that if we construct w+

0 to be the intersection of the circumcircle C through
v+3 , O, and v+(3−1) = v+2 with line M−

0 (note that you may need to vary the placement of

the mirror so that this intersection point exists), then the points w+
0 , w

+
1 and v+3 will all be
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(a) The signed subconfigurations, which
consist of vertices v+ and v− and lines L+

and L−
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(b) The point w+
0 is the intersection of L−0

and C.
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(c) Constructing the rest of the w+
i and the

lines N+
i
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w0-

w1-
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v1-

v0-
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(d) Mirroring to construct the w−i and N−i

Figure 24: Constructing a dihedrally symmetric astral (123) configuration. The green
dashed line is the mirror M. The initial subconfiguration in black is the + and the one
in gray is the −; the new points w+ and new lines N+ are red, and their reflected images
are in magenta.

the electronic journal of combinatorics 16 (2009), #R00 27



collinear (and we call that line N+
0 ), while w+

0 will lie on M−
0 . Finally, after constructing

all the points w+
i and lines N+

i , we construct the reflected images w−i and N−i to complete
the configuration.

L+

u+

2

v+

M+

L−

u−

2

v−

M−

N+

w+

13 N−

w−

1 3

1 1

Z5

Figure 25: The reduced Levi graph for the dihedralized Cremona-Richmond configuration.

7 Constraints on labels; expansion of the construc-

tions

In the previous sections, the constructions have all been based on the notion that we are
working with a reduced Levi graph that has valid labels; that is, following the construction
techniques using the given labels, a geometric configuration is produced. However, we
have been silent on what allowable labels are. Because the reduced Levi graphs must
correspond to geometric configurations, there are some immediate constraints on allowable
labels. For example, if a and 0 are labels on a double-arc in a reduced Levi graph over Zm,
then 0 < a < m

2
, since we do not allow lines of span a to be diameters of a configuration

(and because the Levi graph of the configuration (which the reduced Levi graph covers)
can contain no 4-cycles), and by convention we assume that we take the smallest possible
span measurement.

However, in general, fully describing allowable labels for these construction methods for
3-configurations is beyond the scope of this paper and will be discussed in a subsequent
work.

In addition to possible choices of labels that would lead to reduced Levi graphs that
do not correspond to actual constructable configurations (perhaps the circumcircle does
not intersect the necessary line, for example), it is also possible for the construction
methods to fail because they produce too many incidences. For example, Figure 27
shows a configuration corresponding to 12#(4, 4; 1), a chiral astral 3-configuration with
m = 12, a = 4, b = 4, d = 1 which is a 4-configuration rather than a 3-configuration. A
complete classification of when and why these unintended incidences occur in the case of
chiral astral 3-configurations will also be addressed in a subsequent work.
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(b) Constructing w0 as the intersection of C with
M−0 (thick and gray), and N0.
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(c) Constructing the rest of the wi and Ni
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(d) Mirroring constructs the w−i and N−i

Figure 26: Constructing a (303) configuration as a dihedralized version of the Cremona-
Richmond configuration.
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Figure 27: The reduced Levi graph for 12#(4, 4; 1) and the corresponding configuration,
which has too many incidences to be a 3-configuration.

It is also possible to use the configuration construction lemma to produce geometric
constructions for more highly incident configurations. For example, it is possible to repeat
the construction of astral chiral 3-configurations multiple times with the same initial
polygon to construct k-configurations for arbitrary k. This construction is discussed in
more detail in [1].

8 Open Questions

Question 1. What are allowable labels for the caterpillar graphs? Are there classifications
of labels that generate configurations with too many incidences?
Question 2. Are there other interesting infinite families of 3-configurations, similar to
the multilateral and caterpillar 3-configurations?
Question 3. It is possible to use the construction of chiral astral 3-configurations multiple
times, with an iterative process, to produce more highly incident configurations (e.g., 4-,
5- and 6-configurations); this construction is discussed in [1]. Can other 3-configurations
be used to construct highly incident configurations?
Question 4. Given two chirally symmetric 3-configurations and their associated reduced
Levi graph, is it possible to connect the reduced Levi graphs together to produce a new chiral
configuration, similar to how the dihedralization technique produced a new configuration
beginning with two copies of a single reduced Levi graph?
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Question 5. Is there a purely geometric construction method for Pappus-like configura-
tions or configurations whose reduced Levi graphs are the even prism graphs or the odd
Möbius graphs?

Acknowledgements
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