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Abstract

We derive a recursion for the genus distributions of the graphs obtained by iter-
atively attaching a claw to the dipole D3. The minimum genus of the graphs in this
sequence grows arbitrarily large. The families of graphs whose genus distributions
have been calculated previously are either planar or almost planar, or they can be
obtained by iterative single-vertex or single-edge amalgamation of small graphs. A
significant simplifying construction within this calculation achieves the effect of an
amalgamation at three vertices with a single root vertex, rather than with multiple
roots.

1 Introduction

For i = 0, 1, 2, . . ., let gi(G) be the number of distinct cellular embeddings of the graph G
in the orientable surface Si of genus i. The genus distribution of the graph G is the
sequence of numbers

gi(G) : i = 0, 1, . . .

Let the rooted graph (Y0, u0) be isomorphic to the dipole D3, and let the root u0 be
either vertex of D3. For n = 1, 2, . . ., we define the iterated claw (Yn, un) to be the
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graph obtained by subdividing each of the three edges incident on the root vertex un−1
of the iterated claw (Yn−1, un−1) and then joining the three new vertices obtained thereby
to a new root vertex un. Figure 1.1 illustrates the graph (Y3, u3).

u3
u0

z0

x0
y0 u2

x2
y2

z2
u1

z1

x1
y1

Figure 1.1: The rooted graph (Y3, u3).

The graph K1,3 is commonly called a claw graph, which accounts for the name iterated
claw. The notation Yn reflects the fact that a claw graph looks like the letter Y . We
observe that Y1 ∼= K3,3. We observe also that Aut(Yn) = Z2×D3. In this paper, we derive
a recursion for the genus distribution of the iterated claw graphs.

The embeddings in this paper are cellular and orientable. We refer to face-boundary
walks as fb-walks. For general background in topological graph theory, see [GrTu87].
For elaboration on anything mentioned here about treewidth, see [Bo98].

1.1 General context of genus distributions

The initial focus of topological graph theory was on the minimum genus of a graph,
where the crowning achievement was the Ringel-Youngs solution [RY68] of the Heawood
problem. This expanded in 1971, to include maximum genus [NSW71]. Formulating
the concept of genus distribution and genus polynomial [GF87] subsequently opened an
enumerative branch. A strategy employed since 1989 in most of the concrete calculations
of genus distributions is the partitioning of genus distributions [FGS89], which leads to
simultaneous recursions.

After proofs of log-concavity [FGS89, GRT89] were derived for several infinite families
of graphs (with rising maximum genus), it was conjectured [GRT89] that all genus dis-
tributions are log-concave. Stahl [Stah97] successfully used real-rootedness to show that
various genus distributions are log-concave. Although the present paper does not address
this issue, it has been recently proved [GMTW13b] that the genus polynomials of iterated
claws are real-rooted.

Stahl [Stah91] has characterized graph sequences that can be derived by some kinds
of repetitive topological operations as linear, and he calculated genus distributions for a
number of linear families. A recent paper [GMTW13a] proves the log-concavity of some
of Stahl’s linear families and also of many others. In recent years, genus distributions
have been calculated for cubic outerplanar graphs [Gr11b], quartic outerplanar graphs
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[PKG11], and cubic Halin graphs [Gr13], none of which are linear families. Log-concavity
has most recently been proved [GMTW13c] for Ringel ladders, the first infinite non-linear
family of rising maximum genus for which log-concavity has been established.

Stahl’s representation [Stah91] of a partitioned genus distribution by a vector of poly-
nomials (which we call a pgd-vector) and of the effect of a topological operation on the
pgd-vector by a matrix (which we call a production matrix ) is adopted in this paper. It
will be seen in a subsequent paper on iterated claws [GMTW13b] how this algebraic rep-
resentation enables us to use generating functions not only to derive an explicit formula
for the genus polynomials of iterated claws from the recursions we derive herein, but also
to prove the real-rootedness of these genus polynomials, which implies their log-concavity.

1.2 Context of the genus distribution of iterated claws

It is easy enough to demonstrate that each of the iterated claws Yn has treewidth 3, by
the direct construction of a decomposition tree. The 3-regular Halin graphs [Gr13] and
the rectangular mesh graphs of the form P32Pn [KPG12], where Pk is the k-vertex path
(and the square box 2 denotes cartesian product), are families of graphs of treewidth
3 for which genus distribution algorithms were previously derived. Since the graph Y3n
contains n disjoint copies of K3,3, it follows that the minimum genus of Y3n is at least n.
Whereas Halin graphs and rectangular mesh graphs are planar, the minimum genus of
the graphs in the sequence Y1, Y2, . . . grows arbitrarily large and is nondecreasing.

The intricacy of practical methods needed for calculating genus distributions appears
to rise steadily with rising treewidth. This descriptive complexity (i.e., in the sense of
Kolmogorov [Ko65] and Chaitin [Ch66]) is also reflected in the construction given in
[Gr12] for an algorithm for genus distribution of graphs of any fixed treewidth and fixed
maximum degree, which despite being a quadratic-time algorithm, is far from practical.
In particular, the constant factor in the time for the algorithm rises exponentially not
only with the degrees of the roots, but also with the number of roots, which in turn rises
proportionally with rising treewidth.

An innovative feature of this calculation is that although the graphs to which it is
applied are of treewidth 3, only one root is needed. Although the derivation requires con-
siderable attention to details, the genus distribution calculation method obtained thereby
involves only three productions, and it can be applied rather easily with the aid of a
spreadsheet.

2 Partials and Production Matrices

Development of partitioned genus distributions and productions began with [GKP10] and
continued in [Gr11a, PKG10, KPG10]. They are used in numerous genus distribution
calculations, for instance, of 3-regular outerplanar graphs [Gr11b], of 4-regular outerplanar
graphs [PKG11], of 3-regular Halin graphs [Gr13], and of 3-regular series-parallel graphs
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[GrKo12]. We confine the discussion here to what is needed for the genus distributions of
iterated claws.

For each iterated claw (Yn, un) we define the following three partial genus distri-
butions, also called partials.

an,i = the number of embeddings Yn → Si such that
three different fb-walks are incident on the root un;

bn,i = the number of embeddings Yn → Si such that exactly
two different fb-walks are incident on the root un;

cn,i = the number of embeddings Yn → Si such that
one fb-walk is incident three times on the root un.

We will be representing each partial genus distribution by a polynomial. We define the
generating functions

An(x) =
∞∑
i=0

an,ix
i

Bn(x) =
∞∑
i=0

bn,ix
i

Cn(x) =
∞∑
i=0

cn,ix
i

Clearly, the full genus distribution is the sum of the partials. That is, for i =
0, 1, 2, . . ., we define

gn,i = an,i + bn,i + cn,i

and the genus polynomial

Gn(x) = An(x) + Bn(x) + Cn(x)

In general, a listing of the non-zero values of all the partials for every genus i is called a
partitioned genus distribution (sometimes abbreviated pgd).

As indicated by [Gr12], the number of partials needed for a genus distribution cal-
culation tends to grow exponentially with the number of roots. In previous papers, the
number of roots used for the calculations of genus distributions of recursively specified
graph sequences has tended to be one more than the number of vertices (or edges) at
which a graph is attached to an additional graph fragment in the recursion step. Here we
need only one root, even though there are three vertices of attachment.

2.1 Pgd-vectors and production matrices

We observe, by direct construction of the embeddings from the rotation systems, that the
graph (Y0, u0) has the following partitioned genus distribution:

a0,0 = 2 c0,1 = 2 (2.1)
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In general, a pgd-vector is a vector with a component for each partial genus distribution,
whose value is the partial genus polynomial for that partial. Thus, we can represent the
pgd (2.1) by the pgd-vector

−−−−→
(Y0, u0) = [A0(x), B0(x), C0(x)] = [2, 0, 2x]

(or by its transpose). This pgd-vector for (Y0, u0) will serve as the base case for a recursion
that yields the genus distribution of every iterated claw graph Yn. To look ahead a bit,
we will derive a 3× 3 production matrix

M =

 0 2 8
12x 12x 0
4x2 2x 8x

 (2.2)

and prove Corollary 4.6 that

−−−−−→
(Yn, un)T = Mn

−−−−→
(Y0, u0)

T , (2.3)

where the superscript T indicates the transpose of a matrix. The reason for the name
production matrix becomes clear in Section 4.

Corollary 4.6 is equivalent to this system of recurrences

an,i = 2bn−1,i + 8cn−1,i

bn,i = 12an−1,i−1 + 12bn−1,i−1 (2.4)

cn,i = 4an−1,i−2 + 2bn−1,i−1 + 8cn−1,i−1

or to this system of simultaneous generating functions:

An(x) = 2Bn−1(x) + 8Cn−1(x)

Bn(x) = 12xAn−1(x) + 12xBn−1(x) (2.5)

Cn(x) = 4x2An−1(x) + 2xBn−1(x) + 8xCn−1(x)

In a recent paper [GMTW13b], an explicit formula for the genus polynomial Gn(x) is
derived from Equation (2.3) with the aid of generating functions. Moreover, it is proved
that these genus polynomials are real-rooted, which implies that they are log-concave.

3 Root-Rotation Reversal Lemmas

In Section 2, we defined the three partial genus distributions an,i, bn,i, and cn,i. We
associate to them embedding types, called ai, bi, and ci, respectively. For instance, a
type-ai embedding is an embedding of any iterated claw in the surface Si such that three
different fb-walks are incident on the root. As we shall soon see, one of the three types
splits into two subtypes.
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Accordingly, if we were to separately analyze each of the 16 possible embeddings that
can result from adding a claw to an embedding of (Yn−1, un−1), for each of the four possible
types (or subtypes) of partials at the root un−1, there would be 64 cases to consider. By
applying the three lemmas of this section, we can reduce the work needed for each of
the three types of embeddings to half as many cases. Our objective in this section and
Section 4 is to derive Equation (2.3).

Embedding a graph G in a surface partitions the oriented edges of G into fb-walks.
Changing the rotation at any vertex of an embedded graph changes the fb-walks. A
topologically intuitive perspective on a change of rotation at a vertex u is that each
fb-walk incident at u is cut at each such incidence. The resulting subwalks are called
strands. The effect on the set of fb-walks of changing the rotation is that these strands
are recombined into fb-walks and the number of corners at u is once again the degree of
u. The number of resulting fb-walks may be larger or smaller than the previous number,
depending on the particulars of the change of rotation. (In an orientable embedding, the
parity of the number of fb-walks is preserved.) The genus of the embedding surface rises,
stays the same, or falls, depending on the new number of fb-walks and its relation to the
old number.

We now observe that the type-ci embeddings of a rooted graph (G, u) with trivalent
root u can be partitioned into two subtypes, which are called subtype c′i and subtype
c′′i . Suppose that the single oriented fb-walk W incident at u is cut at each corner, so that
there are three oriented strands. The head of each of the three strands meets the tail of
some other strand. Of course, the head and tail of each strand are at the vertex u. As
illustrated in Figure 3.1 (right), in the subtype c′′i , the last oriented edge (at the head) of
each of the three strands is the reverse of the first oriented edge of that strand. Subtype
c′i is the alternative possible assembly of the strands into a single cycle.

Remark. All embedding surfaces depicted here are taken to have counter-clockwise
orientation.

ci' ci''

u u

Figure 3.1: Embedding subtypes c′i and c′′i .

Lemma 3.1. Let a rooted graph (G, u) with a 3-valent root be embedded in the surface Si

so that there are three distinct fb-walks incident on root u, that is, an embedding of type
ai. Then the result of reversing the rotation at root u is an embedding in the surface Si+1

of type c′i+1.

Proof. Lemma 3.1 follows from the face-tracing in Figure 3.2.
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ai ci+1

u u

Wb Wb

Wr Wr
Wg

Wg

Figure 3.2: Reversing the rotation at a 3-valent root of type ai.

Lemma 3.2. Let a rooted graph (G, u) with a 3-valent root be embedded in the surface Si

so that there are exactly two distinct fb-walks incident on root u, that is, an embedding of
type bi. Then the result of reversing the rotation at root u is another embedding of type bi.

Proof. Lemma 3.2 follows from the face-tracing in Figure 3.3.

bi bi 

u u
Wb

Wr

Figure 3.3: Reversing the rotation at a 3-valent root of type bi.

Lemma 3.3. Let a rooted graph (G, u) with a 3-valent root be embedded in the surface Si

so that there is only one fb-walk incident on root u. If this embedding is subtype c′i, then
the result of reversing the rotation at root u is an embedding of type ai−1. If subtype c′′i ,
then the result of reversing the rotation at root u is another embedding of type c′′i .

Proof. We observe in Lemma 3.1 that reversing the rotation of the root of a graph embed-
ding of type ai yields an embedding of subtype c′i+1. It follows that reversing the rotation
of the root of a graph embedding of subtype c′i yields an embedding of type ai−1. The
subtype c′′i -part of Lemma 3.3 follows from the face-tracing in Figure 3.4.

ci''

u

ci''

u

Figure 3.4: Reversing an embedding of subtype c′′i .
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4 Derivation of the Productions

In this section, we prove four propositions to derive the four productions that enable us
to calculate the genus distribution of any iterated claw. It turns out that the last two
productions can be combined. We then summarize these propositions by the main result
of this paper.

Although we give enough information to combinatorially verify all of our assertions
here about the types of embeddings that result from claw extensions of a given embedding,
or from reversals of rotation at a trivalent vertex, we find it much easier to follow fb-walks
in diagrams, than to represent the equivalent combinatorial face-tracing by mathematical
prose. Moreover, we find that errors are less likely to occur when assertions about fb-walks
are justified by diagrams. Furthermore, the diagrams of local configurations within an
embedding are frequently intuitively suggestive of additional properties of the embeddings
they represent.

Proposition 4.1. Let ι : (Yn−1, un−1)→ Si be an embedding of type ai of an iterated claw.
Then of the 16 possible embeddings of (Yn, un) whose rotations are consistent with those
of Yn−1, there are 12 embeddings of type bi+1 and 4 of subtype c′′i+2.

Proof. Figure 4.1 illustrates an embedding of type ai of the iterated claw (Yn−1, un−1)
and an extension to an embedding of the iterated claw (Yn, un). In this designated initial
extension, the rotations at the four new vertices are as in Table 4.1:

Table 4.1: A set of rotations for the vertices of the new claw.

un. xn−1 zn−1 yn−1
xn−1. un−1 un xn−2
yn−1. un−1 un yn−2
zn−1. un un−1 zn−2

un-1 un-1

zn-1

xn-1

yn-1
un

Figure 4.1: An initial embedding of type bi+1 obtained by adding a claw to an em-
bedding of subtype ai.

We have increased the number of vertices by four and the number of edges by six. The
number of faces is unchanged. Accordingly, the genus of the resulting embedding surface
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is i + 1. The number of fb-walks incident at the new root vertex un is two. Thus, this
particular set of rotations at the four new vertices yields an embedding of type bi+1.
According to Lemma 3.2, when we reverse the rotation at the root un, the resulting
embedding will still be of type bi+1. In what follows, we reverse the rotations at each non-
empty subsets of the vertices xn−1, yn−1, zn−1, without and with the reversal of rotation
at un, and thereby obtain the types of the other 14 embeddings of Yn that are consistent
with the given embedding of Yn−1.

In Figure 4.2, the rotations at vertex xn−1 (left) and at yn−1 (right), respectively, are
reversed. We observe in the drawing (or by combinatorial face-tracing) that the numbers
of vertices, edges, and faces are the same as the drawing after the arrow in Figure 4.1. In
both drawings, there are exactly two fb-walks incident at the root vertex un. Accordingly,
both embeddings are of type bi+1. Moreover, by Lemma 3.2, when the rotation at root
vertex un is reversed in either embedding, the resulting embedding is also of type bi+1.

un-1

zn-1

xn-1
yn-1

unun-1

zn-1

xn-1

yn-1
un

Figure 4.2: Rotation reversals at vertex xn−1 (left) and at vertex yn−1 (right) yield
embeddings of type bi+1.

Figures 4.3, 4.4, and 4.5 represent the five other extensions of the given embedding of
(Yn−1, un−1) of type ai that can be obtained by reversing rotations at the five remaining
choices of subsets of new vertices xn−1, yn−1, and zn−1 of the iterated claw (Yn, un).

un-1

zn-1

xn-1
yn-1

unun-1

zn-1

xn-1

yn-1
un

Figure 4.3: Rotation reversal at vertex zn−1 (left) yields an embedding of type c′′i+2,
and reversals at vertices xn−1 and yn−1 (right) also yield type c′′i+2.

In Figure 4.3 (left), the rotation at vertex zn−1 is reversed. The number of faces is
two fewer than in Figure 4.1, and exactly one fb-walk is incident three times at the root
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vertex un. Accordingly, the embedding is of type ci+2. By face-tracing, we see that it
is of subtype c′′i+2. By Lemma 3.3, reversing the rotation at root vertex un also yields
an embedding of subtype c′′i+2. A similar analysis applies to Figure 4.3 (right), in which
the rotations at vertices xn−1 and yn−1 have been reversed. Thus, the tally so far is six
embeddings of type bi+1 and four of subtype c′′i+2.

In Figure 4.4 (left), the rotation reversals are at vertices xn−1 and zn−1. The number
of faces is the same as in Figure 4.1, and there are two fb-walks at the root vertex un.
Accordingly, the embedding is of type bi+1. By Lemma 3.2, reversing the rotation at root
vertex un also yields an embedding of type bi+1. A similar analysis applies to Figure 4.4
(right), in which the rotations at vertices yn−1 and zn−1 have been reversed.

un-1

zn-1

xn-1

yn-1

un un-1

zn-1

xn-1
yn-1

un

Figure 4.4: Rotation reversals at vertices xn−1 and zn−1 (left) yield type bi+1, and
reversals at yn−1 and zn−1 (right) also yield embeddings of type bi+1.

In Figure 4.5, the rotations at vertices xn−1, yn−1, and zn−1 are reversed. The number
of faces is the same as in Figure 4.1, and there are two fb-walks at the root vertex un.
Accordingly, the embedding is once again of type bi+1. By Lemma 3.2, reversing the
rotation at root vertex un also yields an embedding of type bi+1.

un-1

zn-1

xn-1 yn-1

un

Figure 4.5: Rotation reversals at the three vertices xn−1, yn−1, and zn−1 yield an
embedding of type bi+1.

The production
ai −→ 12bi+1 + 4c′′i+2 (4.1)

summarizes the results we have just now derived.
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In general, a production is an algebraic expression of the effects on the partial genus
distribution of a graph topological operation according to its action on an embedding
of that graph. For instance, Production (4.1) represents the effect on the pgd of the
claw-extension operation on a type-ai embedding, so ai appears at the tail of the arrow,
and it is called the antecedent of the production. As we discussed within the proof
of Proposition 4.1, among the 16 embeddings obtainable by adding a claw to a type-a
embedding, there are 12 of type bi+1 and 4 of subtype c′′i+2. The expression 12bi+1 + 4c′′i+2

that appears at the head of the arrow is called the consequent of the production.

Proposition 4.2. Let ι : (Yn−1, un−1)→ Si be an embedding of type bi of an iterated claw.
Then of the 16 possible embeddings of (Yn, un) whose rotations are consistent with those
of Yn−1, there are 2 embeddings of type ai, 12 of type bi+1 and 2 of type c′i+1.

Proof. Figure 4.6 (left) illustrates an embedding of type bi of the iterated claw (Yn−1, un−1)
and (right) an extension to an embedding of the iterated claw (Yn, un). In the designated
initial extension of this embedding, the rotations at the four new vertices are again as in
Table 4.1.

un-1 un-1

zn-1

xn-1

yn-1
un

Figure 4.6: An initial embedding of type bi+1 obtained by adding a claw to an em-
bedding of subtype bi.

Reasoning as in the proof of Proposition 4.1, we see that this particular set of rotations
at the four new vertices yields an embedding of type bi+1. According to Lemma 3.2, when
we reverse the rotation at the root un, the resulting embedding will still be of type bi+1.

We continue as in Proposition 4.1. In Figure 4.7, the rotations at vertex xn−1 (left) and
at yn−1 (right), respectively, are reversed. In both drawings, there are exactly two fb-walks
incident at the root vertex un. Accordingly, both embeddings are of type bi+1. Moreover,
by Lemma 3.2, when the rotation at root vertex un is reversed in either embedding, the
resulting embedding is also of type bi+1.

In Figure 4.8 (left), the rotation at vertex zn−1 is reversed. Once again, the embedding
is of type bi+1. By Lemma 3.2, reversing the rotation at root vertex un yields another
embedding of type bi+1. A similar analysis applies to Figure 4.8 (right), in which the
rotations at vertices xn−1 and yn−1 have been reversed. Thus, the tally so far is ten
embeddings of type bi+1.
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un-1

zn-1

xn-1
yn-1

unun-1

zn-1

xn-1

yn-1
un

Figure 4.7: Rotation reversals at vertex xn−1 (left) and at vertex yn−1 (right) yield
embeddings of type bi+1.

un-1

zn-1

xn-1
yn-1

unun-1

zn-1

xn-1

yn-1
un

Figure 4.8: Rotation reversal at vertex zn−1 (left) yields an embedding of type bi+1,
and reversals at vertices xn−1 and yn−1 (right) also yield type bi+1.

In Figure 4.9 (left), the rotation at vertices xn−1 and zn−1 are reversed. The embedding
is of type bi+1. By Lemma 3.2, reversing the rotation at root vertex un also yields an
embedding of type bi+1. When the rotations at vertices yn−1 and zn−1 have been reversed,
as in Figure 4.9 (right), the resulting embedding is of type c′i+1. Reversing the rotation
at root vertex un now yields an embedding of type ai, by Lemma 3.3.

un-1

zn-1

xn-1

yn-1

un un-1

zn-1

xn-1
yn-1

un

Figure 4.9: Rotation reversals at vertices xn−1 and zn−1 (left) yield type bi+1, and
reversals at yn−1 and zn−1 (right) yield an embedding of type c′i+1.
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In Figure 4.10, the rotation at the three vertices xn−1, yn−1, and zn−1 are reversed.
The embedding is of type c′i+1. By Lemma 3.3, reversing the rotation at root vertex un
now yields an embedding of type ai.

un-1

zn-1

xn-1 yn-1

un

Figure 4.10: Rotation reversals at the three vertices xn−1, yn−1, and zn−1 yield an
embedding of type c′i+1.

The production
bi −→ 2ai + 12bi+1 + 2c′i+1 (4.2)

summarizes the results we have considered in this second proposition.

Proposition 4.3. Let ι : (Yn−1, un−1) → Si be an embedding of subtype c′i of an iterated
claw. Then of the 16 possible embeddings of (Yn, un) whose rotations are consistent with
those of Yn−1, there are 8 embeddings of type ai and 8 of type c′i+1.

Proof. Figure 4.11 (left) shows a subtype-c′i embedding of the iterated claw (Yn−1, un−1)
and (right) an extension to an embedding of (Yn, un). In the designated initial extension
of this embedding, the rotations at the four new vertices are yet again as in Table 4.1.

un-1 un-1

zn-1

xn-1

yn-1
un

Figure 4.11: An initial embedding of type c′i+1 obtained by adding a claw to an em-
bedding of subtype c′i.

We see that this particular set of rotations at the four new vertices yields an embedding
of type c′i+1. According to Lemma 3.3, when we reverse the rotation at the root un, the
resulting embedding will be of type ai.
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In Figure 4.12, the rotations at vertex xn−1 (left) and at yn−1 (right), respectively, are
reversed. Both embeddings are of type c′i+1. By Lemma 3.3, when the rotation at root
vertex un is reversed in either embedding, the resulting embedding is of type ai.

un-1

zn-1

xn-1
yn-1

unun-1

zn-1

xn-1

yn-1

un

Figure 4.12: Rotation reversals at vertex xn−1 (left) and at vertex yn−1 (right) yield
embeddings of type c′i+1.

In Figure 4.13 (left), the rotation at vertex zn−1 is reversed. The embedding is of type
ai. By Lemma 3.1, reversing the rotation at root vertex un yields an embedding of type
c′i+1. A similar analysis applies to Figure 4.13 (right), in which the rotations at vertices
xn−1 and yn−1 have been reversed. Thus, the tally so far is five embeddings of type ai and
five of type c′i+1.

un-1

zn-1

xn-1
yn-1

unun-1

zn-1

xn-1

yn-1
un

Figure 4.13: Rotation reversal at vertex zn−1 (left) yields an embedding of type ai,
and reversals at vertices xn−1 and yn−1 (right) also yield type ai.

In Figure 4.14 (left), the rotation at vertices xn−1 and zn−1 are reversed. The embed-
ding is of type c′i+1. By Lemma 3.3, reversing the rotation at root vertex un yields an
embedding of type ai. When the rotations at vertices yn−1 and zn−1 have been reversed,
as in Figure 4.14 (right), the resulting embedding is again of type c′i+1. By Lemma 3.3,
reversing the rotation at root vertex un again yields an embedding of type ai.
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un-1

zn-1

xn-1

yn-1

un un-1

zn-1

xn-1
yn-1

un

Figure 4.14: Rotation reversals at vertices xn−1 and zn−1 (left) yield type c′i+1, as do
reversals at yn−1 and zn−1 (right).

In Figure 4.15, the rotation at the three vertices xn−1, yn−1, and zn−1 are reversed.
The embedding is of type c′i+1. By Lemma 3.3, reversing the rotation at root vertex un
now yields an embedding of type ai.

un-1

zn-1

xn-1 yn-1

un

Figure 4.15: Rotation reversals at the three vertices xn−1, yn−1, and zn−1 yield an
embedding of type c′i+1.

The production
c′i −→ 8ai + 8c′i+1 (4.3)

summarizes the results we have considered in this third proposition.

Proposition 4.4. Let ι : (Yn−1, un−1)→ Si be a subtype c′′i -embedding of an iterated claw.
Then of the 16 possible embeddings of (Yn, un) whose rotations are consistent with those of
Yn−1 at every vertex except for the four on the newly attached claw, there are 8 embeddings
of type ai and 8 of type c′i+1.

Proof. Figure 4.16 illustrates an extension of a subtype-c′i embedding of the iterated
claw (Yn−1, un−1) to an embedding of (Yn, un). In the designated initial extension of
this embedding, the rotations at the four new vertices are, as usual, as in Table 4.1.

We see that this particular set of rotations at the four new vertices yields a type-c′i+1

embedding. By Lemma 3.3, when we reverse the rotation at the root un, the resulting
embedding will be of type ai.
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xn-1

yn-1
un

Figure 4.16: An initial embedding of subtype c′i+1 obtained by adding a claw to an
embedding of subtype c′′i .

In Figure 4.17, the rotations at vertex xn−1 (left) and at yn−1 (right), respectively, are
reversed. Both embeddings are of type c′i+1. By Lemma 3.3, when the rotation at root
vertex un is reversed in either embedding, the resulting embedding is of type ai.

un-1

zn-1

xn-1
yn-1

unun-1

zn-1

xn-1

yn-1

un

Figure 4.17: Rotation reversals at vertex xn−1 (left) and at vertex yn−1 (right) yield
embeddings of type c′i+1.

In Figure 4.18 (left), the rotation at vertex zn−1 is reversed. The embedding is of type
c′i+1. By Lemma 3.3, reversing the rotation at root vertex un yields an embedding of type
ai. A similar analysis applies to Figure 4.18 (right), in which the rotations at vertices
xn−1 and yn−1 have been reversed. Thus, the tally so far is five embeddings of type ai and
five of type c′i+1.

In Figure 4.19 (left), the rotations at vertices xn−1 and zn−1 are reversed. The em-
bedding is of type c′i+1. By Lemma 3.3, reversing the rotation at root vertex un yields an
embedding of type ai. When the rotations at vertices yn−1 and zn−1 have been reversed,
as in Figure 4.14 (right), the resulting embedding is again of type c′i+1. By Lemma 3.3,
reversing the rotation at root vertex un again yields an embedding of type ai.

In Figure 4.20, the rotation at the three vertices xn−1, yn−1, and zn−1 are reversed.
The embedding is of type c′i+1. By Lemma 3.3, reversing the rotation at root vertex un
now yields an embedding of type ai.
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Figure 4.18: Rotation reversal at vertex zn−1 (left) yields an embedding of type c′i+1,
and reversals at vertices xn−1 and yn−1 (right) also yield type c′i+1.

un-1

zn-1

xn-1

yn-1

un un-1

zn-1

xn-1
yn-1

un

Figure 4.19: Rotation reversals at vertices xn−1 and zn−1 (left) yield type c′i+1, as do
reversals at yn−1 and zn−1 (right).

The production
c′′i −→ 8ai + 8c′i+1 (4.4)

summarizes the results we have considered in this proposition.

un-1

zn-1

xn-1 yn-1

un

Figure 4.20: Rotation reversals at the three vertices xn−1, yn−1, and zn−1 yield an
embedding of type c′i+1.
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Theorem 4.5. For n > 1, the effect on the partitioned genus distribution from the opera-
tion of attaching another claw to the iterated claw (Yn−1, un−1) corresponds to the following
three productions:

ai −→ 12bi+1 + 4ci+2 (4.5)

bi −→ 2ai + 12bi+1 + 2ci+1 (4.6)

ci −→ 8ai + 8ci+1 (4.7)

Proof. This theorem summarizes the results of Propositions 4.1, 4.2, 4.3, and 4.4. Since
Productions (4.3) and (4.4) have identical consequents, we can combine them into the
single Production (4.7).

Corollary 4.6.
−−−−−→
(Yn, un)T = Mn

−−−−→
(Y0, u0)

T , where

M =

 0 2 8
12x 12x 0
4x2 2x 8x

 (4.8)

Proof. This follows from Theorem 4.5, because an increment of r in the genus of an
embedding surface corresponds to multiplication of a monomial by xr.

Corollary 4.6 is equivalent to the system (2.4) of simultaneous recurrences and to the
system (2.5) of generating functions.

Example 4.1. We now use Corollary 4.6 to calculate the pgd-vectors for the first four
iterated claws.

−−−−→
(Y1, u1) =

[
16x, 24x, 24x2

]
−−−−→
(Y2, u2) =

[
48x+ 192x2, 480x2, 48x2 + 256x3

]
−−−−→
(Y3, u3) =

[
1344x2 + 2048x3, 576x2 + 8064x3, 1536x3 + 2816x4

]
−−−−→
(Y4, u4) =

[
1152x2 + 28416x3 + 22528x4, 23040x3 + 121344x4,

1152x3 + 33792x4 + 30720x5
]

These results agree with the results of a computer-programmed execution of the Heffter-
Edmonds algorithm.

We observe that the matrix M corresponds to a transpose of a matrix formed from the
consequents (expressions at the heads of the arrows) of the productions in Theorem 4.5.
For such correspondence to a system of productions, we call it the production matrix.
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5 Conclusions

More than half of this paper is devoted to derivation of the productions. Our list of
partials at the beginning of Section 2 is very much after the fact. That is, going through
the details of such derivations, during which one learns, for instance, that type c needs to
be split into two subtypes, is how one establishes a complete set of partials. The number
of partials is quite often ten or more. It grows super-exponentially with the number of
roots and the maximum degree [Gr12]. The size of the production matrix grows according
to the number of partials. The general method for deriving a production matrix or its
equivalent is face-tracing, as exemplified here. However, once one has proved that the
number of partials required is small, as for iterated claws, it may be possible to do a
hand calculation of the pgd-vectors for a few small cases, and to then use them to solve
equations with the production matrix entries as unknowns for the values of those entries
of the matrix. We are indebted to an anonymous referee for pointing this out.

The data in Example 4.1 suggest some interesting additional investigation. It is easy
enough to recognize that the evenness of all the values is an immediate consequence of the
fact that the mirror image of every embedding is another embedding of the same partial
type in the same surface. Many of the values are divisible by 6, which is the order of
Aut(Yn, un) = D3. The relationship between the automorphism group of a graph and the
partitioned genus distribution is a topic ripe for investigation. Not even for small graphs
is it well understood.
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