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Abstract

We examine the necessary and sufficient conditions for a complete symmetric

digraph K
∗

n to admit a resolvable decomposition into directed cycles of length m.

We give a complete solution for even m, and a partial solution for odd m.

Keywords: Directed Oberwolfach Problem; complete symmetric digraph; resolv-

able directed cycle decomposition; Mendelsohn design

1 Introduction

In this paper, we consider the problem of decomposing the complete symmetric digraph
K∗

n into spanning subgraphs, each a vertex-disjoint union of directed cycles of lengthm. In
other words, we are interested in a resolvable decomposition of K∗

n into directed m-cycles.
In the design-theoretic literature, such decompositions have also been called Mendelsohn
designs [9].

This problem can be considered as the directed version of the well-known Oberwolfach
Problem with equal cycle lengths, which was completely solved in [3, 4]. The popular form
of the Oberwolfach Problem asks whether it is possible to have n conference participants
(where n is odd) sit down for dinner at circular tables, each table having space for m

participants, so that each person gets to dine next to each other person exactly once over
the course of several (that is, n−1

2
) nights. The directed version would then be asking

whether such an arrangement might be possible so that each participant gets to sit to the

right of each other participant exactly once.
It is obvious that K∗

n admits a resolvable decomposition into directed 2-cycles if and
only if n is even. In the case of cycles of length 3, the problem has been solved by
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Bermond, Germa, and Sotteau [7], and in the case of cycles of length 4, by Bennett and
Zhang [5], except for one missing case (n = 12) filled in by Adams and Bryant [1].

Theorem 1. [7] There exists a resolvable decomposition of K∗

n into directed cycles of

length 3 if and only if 3 divides n and n 6= 6.

Theorem 2. [5, 1] There exists a resolvable decomposition of K∗

n into directed cycles of

length 4 if and only if 4 divides n and n 6= 4.

In this paper, we solve the problem completely for all even cycle lengths m > 6, and
partially for odd cycle lengths m > 5, proving the following main result.

Theorem 3. Let m and n be integers with 5 6 m 6 n. Then the following hold.

1. Let m be even, or m and n be both odd. Then there exists a resolvable decomposition

of K∗

n into directed cycles of length m if and only if m divides n and (m,n) 6= (6, 6).

2. Let m be odd and n even. Then there exists a resolvable decomposition of K∗

n into

directed cycles of length m whenever n ≡ 0 (mod 4m), except possibly for n = 8m.

Furthermore, if there exists a resolvable decomposition of K∗

2m into directed cycles

of length m, then there exists a resolvable decomposition of K∗

n into directed cycles

of length m whenever m divides n.

Proof. Clearly, m|n is a necessary condition in all cases. The rest follows from Theo-
rems 17 and 20.

This paper is organized as follows. In Section 2 we introduce the terminology and
present some basic observations on resolvable cycle decompositions, while in Section 3 we
state some previous results as well as prove a few technical lemmas that serve as the big
tools in the proof of our main result. In Sections 4 and 5, respectively, we then present
the bulk of the proofs for the two large cases, m even and m odd. Finally, in Section 6
we present some related results, namely, resolvable decompositions in which all but one
of the resolution classes consist of vertex-disjoint directed m-cycles.

2 Preliminaries

In this paper, the term graph will mean a simple graph, and digraph will mean a directed
graph with no loops or multiple arcs.

Definition 4. A collection {H1, H2, . . . , Hk} of subgraphs of a graph G is called a de-

composition of G if the edge set of G is a disjoint union of the edge sets of the graphs
H1, H2, . . . , Hk. If this is the case, we write G = H1 ⊕ H2 ⊕ . . . ⊕ Hk. Furthermore, if
each of the graphs Hi is isomorphic to a graph H, then {H1, H2, . . . , Hk} is called an
H-decomposition of the graph G.
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Definition 5. Let D = {H1, H2, . . . , Hk} be an H-decomposition of the graph G. A
resolution class of D is a subset {Hi1 , Hi2 , . . . , Hit} of D with the property that the vertex
sets of the graphs Hi1 , Hi2 , . . . , Hit partition the vertex set of G.

An H-decomposition D = {H1, H2, . . . , Hk} of a graph G is called resolvable if it can
be partitioned into resolution classes of D.

Clearly, any decomposition of a graph G into spanning subgraphs is necessarily resolv-
able. Note that the above definitions naturally extend to directed graphs.

As usual, the symbols Kn, K̄n, and Km,n will denote the complete graph with n ver-
tices, the edgeless graph with n vertices, and the complete bipartite graph with bipartition
sets of cardinalities m and n, respectively. In addition, for n even, the symbol Kn− I will
denote the complete graph Kn with the edges of a 1-factor I removed. For any graph G,
the symbol G∗ will denote the (symmetric) digraph obtained from G by replacing each
edge uv by the two arcs (u, v) and (v, u). Hence K∗

n and K∗

m,n, respectively, will denote
the complete symmetric digraph with n vertices, and the complete bipartite symmetric
digraph with bipartition sets of cardinalities m and n.

By Cm and ~Cm we shall denote the cycle of length m, and the directed cycle of length
m, respectively. We shall use abbreviations RCm-D and R~Cm-D to mean resolvable Cm-
and ~Cm-decompositions, respectively.

Recall that the wreath product G ≀ H of graphs G and H is obtained from G by
replacing every vertex u of G with a copy Hu of the graph H, and for each edge uv of
G, inserting an edge between every vertex of Hu and every vertex of Hv. Similarly, if
G and H are digraphs, then the wreath product G ≀H is a digraph obtained from G by
replacing every vertex u of G with a copy Hu of the digraph H, and for each arc (u, v) of
G, inserting an arc from every vertex of Hu to every vertex of Hv.

The following four observations are straightforward, hence the proofs are omitted.
Note that the first three naturally extend to directed graphs.

Lemma 6. Let G, H, and L be three graphs. Suppose G admits a resolvable H-de-

composition, and H admits a resolvable L-decomposition. Then G admits a resolvable

L-decomposition.

Lemma 7. Let {H1, H2, . . . , Hk} be a decomposition of a graph G into spanning subgraphs.

Let L be a subgraph of G and suppose each graph Hi admits a resolvable L-decomposition.

Then G admits a resolvable L-decomposition.

Lemma 8. Let G and H be graphs, and suppose there exists a resolvable H-decomposition

of G. Then there exist a resolvable H-decomposition of K̄n ≀ G, and a resolvable H ≀ K̄n-

decomposition of G ≀ K̄n.

Lemma 9. Let G be a graph, and H a subgraph in G. If G admits a resolvable H-

decomposition, then G∗ admits a resolvable H∗-decomposition
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3 Tools

In some of our proofs in Sections 4–6 we shall be referring to the following results.

Theorem 10. [4] There exists a resolvable Cm-decomposition of Kn if and only if n is

odd and m divides n.

Theorem 11. [3, 4, 11] There exists a resolvable Cm-decomposition of Kn− I if and only

if n is even and m divides n.

Theorem 12. [2] There exists a ~Cm-decomposition of K∗

n if and only if m divides n(n−1)
and (m,n) 6∈ {(4, 4), (3, 6), (6, 6)}.

Theorem 13. [13] There exists a resolvable Cm-decomposition of Kn ≀ K̄t if and only if m

divides nt, t(n− 1) is even, m is even if n = 2, and (m,n, t) 6∈ {(3, 3, 2), (3, 3, 6), (3, 6, 2),
(6, 2, 6)}.

Our constructions in the case m even will use the following lemmas as building blocks.

Lemma 14. Let m > 4 be an even integer, and β a positive integer. Then there exists

an R ~Cm-D of the graph K∗

βm

2
,βm

2

.

Proof. First, we prove the lemma for β = 1. Let k = m
2
, and let the bipartition of V (K∗

k,k)
be {X, Y } with X = {x0, x1, . . . , xk−1} and Y = {y0, y1, . . . , yk−1}. Then

C0 = x0 y0 x1 y1 . . . xk−1 yk−1 x0

is a directed cycle in V (K∗

k,k). For i = 1, 2, . . . , k − 1, obtain a directed cycle C i from C0

by adding i (modulo k) to the subscripts of all vertices in part Y . It is not difficult to see

that {C i : i = 0, 1, . . . , k − 1} is an R~Cm-D of K∗

k,k.
Next, suppose β > 2. A 1-factorization of Kβ,β yields a resolvable K2-decomposition

of Kβ,β, and hence a resolvable K∗

2 -decomposition of K∗

β,β by Lemma 9. Consequently,
there exists a resolvable K∗

2 ≀ K̄m

2
-decomposition of K∗

β,β ≀ K̄m

2
by Lemma 8. Since K∗

2 ≀ K̄m

2

and K∗

β,β ≀ K̄m

2
are isomorphic to K∗

m

2
,m
2

and K∗

βm

2
,βm

2

, respectively, and the former digraph

admits an R~Cm-D by the first paragraph of this proof, Lemma 6 shows that so does the
latter.

Lemma 15. Let m > 4 be an even integer, and α > 3, β > 1 integers. Then there exists

an R ~Cm-D of C∗

α ≀ K̄βm.

Proof. If α is even, a 1-factorization of Cα gives a resolvable K2-decomposition of Cα,
and hence a resolvable K∗

2 -decomposition of C∗

α by Lemma 9. Lemma 8 then implies a
resolvable K∗

2 ≀ K̄βm-decomposition of C∗

α ≀ K̄βm. Since the former digraph is isomorphic to

K∗

βm,βm, which admits an R~Cm-D by Lemma 14, the latter digraph also admits R~Cm-D
by Lemma 6.
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Figure 1: A resolvable K2-decomposition of Cα ≀ K̄2 for α odd.

Next, assume α is odd. First, we show that Cα ≀ K̄2 admits a resolvable K2-de-
composition; that is, the edge set of Cα ≀ K̄2 can be partitioned into pairwise disjoint
perfect matchings. Let the vertex sets of Cα and K̄2 be {x0, x1, . . . , xα−1} and {y0, y1},
respectively. Then Cα ≀ K̄2 has vertices (xi, yj), where i = 0, 1, . . . , α − 1 and j = 0, 1.
For convenience, we shall write z

j
i for (xi, yj). Note that zji is adjacent to zts if and only

if i− s ≡ ±1 (mod α). The following four perfect matchings of Cα ≀ K̄2 give the required
decomposition (see Figure 1):

M1 = {z00z
0
1 , z

1
1z

1
2 , z

0
2z

0
3 , z

1
3z

1
4 , . . . , z

0
α−1z

1
0},

M2 = {z00z
1
1 , z

0
1z

0
2 , z

1
2z

1
3 , z

0
3z

0
4 , . . . , z

1
α−1z

1
0},

M3 = {z10z
0
1 , z

1
1z

0
2 , z

1
2z

0
3 , z

1
3z

0
4 , . . . , z

1
α−1z

0
0},

M4 = {z10z
1
1 , z

0
1z

1
2 , z

0
2z

1
3 , z

0
3z

1
4 , . . . , z

0
α−1z

0
0}.

Lemma 9 now implies that there exists a resolvable K∗

2 -decomposition of C∗

α ≀ K̄2. Hence
there exists a resolvable K∗

2 ≀ K̄βm

2
-decomposition of (C∗

α ≀ K̄2) ≀ K̄βm

2
by Lemma 8. Since

K∗

2 ≀ K̄βm

2
is isomorphic to K∗

βm

2
,βm

2

, which admits an R~Cm-D by Lemma 14, and (C∗

α ≀

K̄2) ≀ K̄βm

2
is isomorphic to C∗

α ≀ K̄βm, we have the result.

The following lemma, except for (m,α) = (6, 2), is a corollary of a special case of Liu’s
Theorem 13 [13]. Since the proof of the general result by Liu is long and involved, and
our proof of this special case is short and transparent, we include it here.

Lemma 16. Let m > 4 be an even integer, and α > 2 and β > 1 integers. Then there

exists an R ~Cm-D of K∗

α ≀ K̄βm.

Proof. First assume α is even. Hence there exists a 1-factorization (that is, a resolvable
K2-decomposition) of Kα. Consequently, there exist a resolvable K∗

2 -decomposition of
K∗

α (Lemma 9), and a resolvable K∗

2 ≀ K̄βm-decomposition of K∗

α ≀ K̄βm (Lemma 8). Since
K∗

2 ≀K̄βm is isomorphic toK∗

βm,βm, we have a resolvableK
∗

βm,βm-decomposition ofK∗

α ≀K̄βm,

and hence (by Lemmas 14 and 6) an R~Cm-D of K∗

α ≀ K̄βm.
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Next suppose α is odd. Walecki’s result [14], subsumed in Theorem 10, gives a (resolv-
able) Cα-decomposition ofKα, and Lemma 9 then implies a (resolvable) C∗

α-decomposition
of K∗

α. Lemma 8 then gives us a resolvable C∗

α ≀ K̄βm-decomposition of K∗

α ≀ K̄βm. Since

by Lemma 15 there exists an R~Cm-D of C∗

α ≀ K̄βm, the result follows.

4 Even cycle length

The main purpose of this section is to prove the following theorem.

Theorem 17. Let m > 6 be an even integer and α a positive integer. Then K∗

αm admits

an R ~Cm-D if and only if (m,α) 6= (6, 1).

Proof. In the case of α = 1, Theorem 12 assures us of the existence of an R~Cm-D of K∗

αm

for all m > 8, and of non-existence of an R~C6-D of K∗

6 . Hence assume α > 2.
First let m > 8. Decompose

K∗

αm = (K̄α ≀K∗

m)⊕ (K∗

α ≀ K̄m).

Since K∗

m admits an R~Cm-D by Theorem 12, so does K̄α ≀K
∗

m. And since K∗

α ≀ K̄m admits

an R~Cm-D by Lemma 16, we have an R~Cm-D of K∗

αm.
It remains to consider the case m = 6. The challenge here is that, by Theorems 12

and 13, respectively, there is no ~C6-decomposition of K∗

6 and no RC6-D of K6,6.

Suppose α is even. If α = 2, we use Lemma 18 to find an R~C6-D of K∗

12. For α > 4,
first decompose

K∗

6α = (K̄α

2
≀K∗

12)⊕ (K∗
α

2

≀ K̄12).

Again using Lemma 18, we find an R~C6-D of K∗

12, and hence of K̄α

2
≀K∗

12. To complete

the construction, Lemma 16 gives us an R~C6-D of K∗
α

2

≀ K̄12.

Next, suppose α > 3 is odd. Hence there exists a Hamilton cycle decomposition of Kα.
Consequently, we can decompose K∗

6α into C∗

α ≀K
∗

6 and α−3
2

copies of C∗

α ≀ K̄6. Now C∗

α ≀ K̄6

admits an R~C6-D by Lemma 15, and an R~C6-D of C∗

α ≀K∗

6 is constructed in Lemma 19.

Observe that the proof of Theorem 17 is independent of previous work (in particular, it
makes no use of Theorem 13 by Liu) except the result on existence of a directed Hamilton
cycle decomposition of K∗

m (included in Theorem 12 and first proved by Tillson [15]).

Lemma 18. There exists an R ~C6-D of K∗

12.

Proof. We label the vertices of K∗

12 by x0, x1, . . . , x5, y0, y1, . . . , y5. We shall call arcs of
the form (xi, xi+d) and (yi, yi+d) arcs of pure left and pure right difference d, respectively,
and arcs of the form (xi, yi+d) and (yi, xi+d) arcs of mixed left and mixed right difference
d, respectively. All subscripts will be evaluated modulo 6. By the mirror image of a
resolution class we shall mean the image under the permutation (x0y0)(x1y1) . . . (x5y5).
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+ mirror image

3

1

3

4

+ mirror image

02

04

01

03

03

05

+ mirror image

4

5

5

2

5

3

5

2

2

5

2

2

+ mirror image + mirror image

1

1

1

4

+ mirror image

3

4

1

4

+ mirror image

Figure 2: The first nine resolution classes in the R~C6-D of K∗

12.

The resolution classes in our decomposition are R1, . . . , R11 defined below (see Fi-
gure 2).

R1 = {x0y2x2y3x3y0x0, x1y5x5y4x4y1x1}

and R2 is its mirror image, that is,

R2 = {y0x2y2x3y3x0y0, y1x5y5x4y4x1y1}.

Observe that R3, . . . , R8 all contain a directed cycle and its mirror image:

R3 = {x0y4x3y5x2y1x0, y0x4y3x5y2x1y0},

R4 = {x0y5x1y3x2y4x0, y0x5y1x3y2x4y0},

R5 = {x0y1y2y3y4y5x0, y0x1x2x3x4x5y0},

R6 = {y0y1y3x4y2y5y0, x0x1x3y4x2x5x0},

R7 = {y0y4x5y3y2y1y0, x0x4y5x3x2x1x0},

R8 = {y0x3y1x2y5y4y0, x0y3x1y2x5x4x0},

while R9 is its own mirror image:

R9 = {x0x5x2y0y5y2x0, x1y4y3y1x4x3x1}.

The remaining two resolution classes are reversals of each other, and each consists of
two directed cycles that are mirror images of each other and include only arcs of pure
difference:

R10 = {x0x2x4x1x5x3x0, y0y2y4y1y5y3y0}
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and
R11 = {x0x3x5x1x4x2x0, y0y3y5y1y4y2y0}.

Because of the symmetry, it is sufficient to verify that each arc of pure left difference and
each arc of mixed left difference was used in exactly one directed 6-cycle. In Figure 2, the
numbers on the left keep track of the arcs of mixed left difference used by the resolution
classes R1, . . . , R9. Observe that for each vertex xi, each mixed left difference occurs
exactly once. To account for all arcs of pure left (and hence right) difference, it is helpful
to notice that in the union of the resolution classes R1, . . . , R9, each arc (u, v) occurs
together with its opposite arc (v, u). The rest of the verification is straightforward and
left to the reader.

Lemma 19. For any odd integer α > 3, there exists an R ~C6-D of C∗

α ≀K∗

6 .

Proof. Let the vertex set of C∗

α≀K
∗

6 be {x
(i)
j : j ∈ Z6, i ∈ Zα} so that each set {x

(i)
j : j ∈ Z6}

induces a copy of K∗

6 , and (x
(i)
j , x

(t)
s ) is an arc if and only if i− t ≡ ±1 (mod α). We call

an arc of the form (x
(i)
j , x

(i+1)
j+d ) a forward arc of difference d from x

(i)
j , and (x

(i)
j , x

(i−1)
j+d ) a

backward arc of difference d from x
(i)
j . Again, by the mirror image of a resolution class

we mean the image under the permutation (x0y0)(x1y1) . . . (x5y5).
We begin by defining the following directed 6-cycles, for all i ∈ Zα:

C
(i)
00 = x

(i)
0 x

(i+1)
0 x

(i)
1 x

(i+1)
1 x

(i)
2 x

(i+1)
2 x

(i)
0 ,

C
(i)
11 = x

(i)
3 x

(i+1)
3 x

(i)
4 x

(i+1)
4 x

(i)
5 x

(i+1)
5 x

(i)
3 ,

C
(i)
01 = x

(i)
0 x

(i+1)
3 x

(i)
1 x

(i+1)
4 x

(i)
2 x

(i+1)
5 x

(i)
0 .

Obtain the mirror image D
(i)
s from C

(i)
s by interchanging superscripts i and i + 1 for all

vertices (see Figure 3).
We now form the following resolution classes.

R1 = {C
(0)
00 , C

(1)
11 , C

(2)
00 , . . . , C

(α−2)
11 , C

(α−1)
01 },

R2 = {C
(0)
01 , C

(1)
00 , C

(2)
11 , . . . , C

(α−2)
00 , C

(α−1)
11 },

R3 = {C
(0)
11 , C

(1)
01 , C

(2)
01 , . . . , C

(α−2)
01 , C

(α−1)
00 }.

We obtain three more resolution classes R4, R5, R6 from the above by taking the mirror
image of each directed 6-cycle. In Figure 3, the number next to a vertex on the left (right)
indicates the forward (backward) difference of the arc from that vertex used by the given
directed cycle. Observe that for all i ∈ Zα, the following forward arcs have been used:

(x
(i)
j , x

(i+1)
j+d ) for j = 0, 1 and d = 0, 1, 3;

(x
(i)
2 , x

(i+1)
2+d ) for d = 0, 3, 4;

(x
(i)
j , x

(i+1)
j+d ) for j = 3, 4, 5 and d = 0, 1, 4.
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i i+1

3

3

3

4

4

1

i i+1 i ii+1 i+1

i i+1i i+1

0

0

0

0

0

0

1

1

4

1

1

4

3

3

3

4

4

1

0

0

0

0

0

0

1

1

4

1

1

4

Figure 3: Directed 6-cycles C
(i)
00 , C

(i)
11 , and C

(i)
01 (top row), and their mirror imagesD

(i)
00 , D

(i)
11 ,

and D
(i)
01 (bottom row), with corresponding forward (left) and backward (right) arc dif-

ferences.

Because of symmetry, backward arcs of the same differences have been used as well.
This leaves us with forward and backward arcs of differences 2, 4, 5 from x

(i)
j for j = 0, 1;

differences 1, 2, 5 from x
(i)
2 ; and differences 2, 3, 5 from x

(i)
j for j = 3, 4, 5.

To describe the next seven resolution classes, we first define the following directed
6-cycles (for all i ∈ Zα) — see Figure 4:

C
(i)
1 = x

(i)
0 x

(i+1)
2 x

(i)
4 x

(i+1)
3 x

(i)
5 x

(i+1)
1 x

(i)
0 ,

C
(i)
2 = x

(i)
0 x

(i+1)
4 x

(i)
1 x

(i+1)
5 x

(i)
2 x

(i+1)
3 x

(i)
0 ,

C
(i)
3 = x

(i)
1 x

(i+1)
0 x

(i)
2 x

(i+1)
4 x

(i)
3 x

(i+1)
5 x

(i)
1 ,

C
(i)
4 = x

(i)
3 x

(i+1)
0 x

(i)
4 x

(i+1)
1 x

(i)
5 x

(i+1)
2 x

(i)
3 ,

C
(i)
5 = x

(i)
0 x

(i+1)
5 x

(i)
4 x

(i)
1 x

(i+1)
3 x

(i)
2 x

(i)
0 ,

C
(i)
6 = x

(i)
1 x

(i)
4 x

(i+1)
0 x

(i)
5 x

(i)
3 x

(i+1)
2 x

(i)
1 ,

C
(i)
7 = x

(i)
0 x

(i)
2 x

(i+1)
1 x

(i)
3 x

(i)
5 x

(i+1)
4 x

(i)
0 .

Observe that these directed 6-cycles jointly use up all leftover forward and backward arcs
(as well as a bidirected 1-factor from each copy of K∗

6). Since for all i ∈ Zα and all
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i

i i+1 i i i

i i i

i+1 i+1 i+1

i+1 i+1 i+1

2

5

2

2

5

2

4

4

1

3

3

3

5

2

2

2

5

2

3

3

3

4

4

1

5

2

5

5

5

2

5

5

5

5

2

2

Figure 4: Directed 6-cycles C
(i)
j for j = 1, 2, . . . , 7, with corresponding forward (left) and

backward (right) arc differences.

j = 1, 2, . . . , 7, the directed 6-cycles C
(i)
j and C

(i+1)
j are vertex-disjoint, we may form

resolution classes R′

j as

R′

j = {C
(i)
j : i = 0, 1, . . . , α− 1}.

What remains is a digraph consisting of α vertex-disjoint copies of (K6 − I)∗, which

possesses an R~C6-D as a consequence of Theorem 11 and Lemma 9.

5 Odd cycle length

Our partial result in the case of odd cycle length (Theorem 20 below) heavily relies on
Theorems 10 [4] for α odd, and 13 [13] for α even.

Theorem 20. Let m > 5 be an odd integer, and α a positive integer. Then:

1. If α is odd, then K∗

αm admits an R ~Cm-D.

2. If α ≡ 0 (mod 4), except possibly for α = 8, then K∗

αm admits an R ~Cm-D.

3. If there exists an R ~Cm-D of K∗

2m, then there exists an R ~Cm-D of K∗

αm for all even

α.
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Proof. 1. Assume α is odd. By Theorem 10, there exists an RCm-D of Kαm. Directing
each cycle in this decomposition once in each possible direction yields an R~Cm-D of
K∗

αm.

2. For α = 4, decompose

K∗

4m = (K̄4 ≀K
∗

m)⊕ (K∗

4 ≀ K̄m).

By a result of [10], the digraph K∗

4 ≀ K̄m admits an R~Cm-D, and by Theorem 12, so

does K̄4 ≀K
∗

m. Hence K∗

4m admits an R~Cm-D.

For α = 4β with β > 3, first decompose

K∗

4βm = (K̄β ≀K
∗

4m)⊕ (K∗

β ≀ K̄4m).

Since K∗

β ≀ K̄4m admits an R~Cm-D as a corollary of Theorem 13 and Lemma 9, and

K̄β ≀K
∗

4m admits an R~Cm-D by the previous paragraph, we have the result.

3. Finally, let α = 2β with β > 3. Decompose

K∗

2βm = (K̄β ≀K
∗

2m)⊕ (K∗

β ≀ K̄2m).

By Theorem 13, there exists an RCm-D of Kβ ≀K̄2m, and hence Lemma 9 guarantees

the existence of an R~Cm-D of K∗

β ≀K̄2m. Therefore, if there exists an R~Cm-D of K∗

2m,

there also exists an R~Cm-D of K∗

αm for any even α > 6.

In the case of odd cycle length m > 5, it thus remains to consider the case α = 2. In
part assisted by a computer search, we have so far been able to verify the following.

Lemma 21. [8] An R ~Cm-D of K∗

2m exists for:

• all odd m such that 5 6 m 6 49 and m 6≡ 0 (mod 3), and

• all odd m such that 5 6 m 6 27 and m ≡ 0 (mod 3).

We therefore propose the following conjecture. Recall that an R~C3-D of K∗

6 does not
exist by Theorem 1 [7].

Conjecture 22. Let m be a positive odd integer. Then K∗

2m admits an R~Cm-D if and
only if m > 5.
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6 Some related results

In this section we present two resolvable directed cycle decompositions of K∗

n that are

“close” to being R~Cm-D. The following term will be convenient to use: a directed 2-factor

of a digraph D is a spanning subdigraph of D that is a vertex-disjoint union of directed
cycles. We shall write ~F (α ∗ m) to denote a directed 2-factor consisting of α pairwise

vertex-disjoint directed m-cycles. Thus an R~Cm-D is a decomposition into directed 2-
factors, each isomorphic to ~F (α ∗ m), for an appropriate integer α. The directed 2-
factorizations of K∗

n constructed below will be such that only one directed 2-factor is not

an ~F (α ∗m). The first of these factorizations is a quick corollary of Theorem 11.

Proposition 23. Let m > 2 and α > 1 be integers. Then K∗

2αm can be decomposed into

directed 2-factors of which one is an ~F (αm ∗ 2) and the rest are ~F (2α ∗m).

Proof. The result is obvious for m = 2. For m > 3, there exists an RCm-D of K2αm−I by
Theorem 11. Direct each m-cycle in this decomposition in each of the two possible ways
to obtain an R~Cm-D of (K2αm − I)∗. Finally, replace each edge in the missing 1-factor I

in (K2αm − I)∗ by a directed 2-cycle to obtain a directed 2-factor ~F (αm ∗ 2).

The following result is as close to Conjecture 22 for every odd m as we can get at
present.

Theorem 24. Let m > 3 be an odd integer.

1. If m ≡ 0 (mod 3), then K∗

2m can be decomposed into directed 2-factors of which one

is an ~F
(

3 ∗ 2m
3

)

and the rest are ~F (2 ∗m).

2. Otherwise, K∗

2m can be decomposed into directed 2-factors of which one is an ~F (1 ∗

2m) and the rest are ~F (2 ∗m).

Proof. Let m = 2k + 1, and let {X, Y } be a partition of the vertex set of K∗

2m with
X = {x0, x1, . . . , x2k} and Y = {y0, y1, . . . , y2k}. Arcs of the form (xi, xi+d) and (yi, yi+d),
for d = 1, 2, . . . , 2k, will be called of left and right, respectively, pure difference d. Arcs
of the form (xi, yi+d) and (yi, xi+d), for d = 0, 1, . . . , 2k, will be called of left and right,
respectively, mixed difference d. All subscripts are calculated modulo 2k + 1.

Define directed m-cycles C0 and C ′

0 as follows:

C0 = x0y0x1y1x2 . . . yk−1xkx0 and C ′

0 = ykxk+1yk+1xk+2 . . . y2kyk.

Observe that the only arcs of left mixed difference 0 or right mixed difference 2k not used
in these two cycles are (xk, yk) and (y2k, x0). For i = 1, 2, . . . , 2k, obtain directed m-cycles
Ci and C ′

i from C0 and C ′

0, respectively, by adding i to the subscript of each vertex in
X and adding 2i to the subscript of each vertex in Y . Thus directed m-cycles Ci and C ′

i

together use up all arcs of left mixed difference i and right mixed difference 2k+ i except
for (xk+i, yk+2i) and (y2k+2i, xi). For i = 0, 1, 2, . . . , 2k, let F (i) be the directed 2-factor in
K∗

2m defined by F (i) = {Ci, C
′

i}.

the electronic journal of combinatorics 21(1) (2014), #P1.15 12



Let {C1
X , C

2
X , . . . , C

2k
X } be an R ~Cm-D of the copy ofK∗

m induced byX, and similarly, let

{C1
Y , C

2
Y , . . . , C

2k
Y } be an R ~Cm-D of the copy of K∗

m induced by Y . Relabelling the vertices
if necessary, we may assume that C2k

X = x0x−kx−2k . . . xkx0 and C2k
Y = y0y−ky−2k . . . yky0.

For i = 1, 2, . . . , 2k − 1, let F (2k+i) be the directed 2-factor in K∗

2m defined by F (2k+i) =
{C i

X , C
i
Y }.

Observe that arcs of pure difference k+1 (corresponding to directed m-cycles C2k
X and

C2k
Y ) were used up in directed 2-factors F (0), F (1), . . . , F (2k). The only remaining arcs are

hence those of the form (xk+i, yk+2i) and (y2k+2i, xi), for i = 0, 1, 2, . . . , 2k. It is clear that
they form a directed 2-factor — call it F . We’ll show that it must be either of the form
~F (1 ∗ 2m) or ~F

(

3 ∗ 2m
3

)

.
One of the directed cycles in F is

CF = x0yk+1x k

2
+1y2xk+2yk+4 . . . xi( k

2
+1)y(i+1)(k+2) . . . x0

if k is even, and

CF = x0yk+1x 3

2
(k+1)y2xk+2yk+4 . . . xi 3

2
(k+1)y(i+1)(k+2) . . . x0

if k is odd. Note that for even k, gcd(k
2
+ 1, 2k + 1) = gcd(k + 2, 2k + 1) and for odd

k, gcd(3
2
(k + 1),2k + 1) = gcd(k + 2, 2k + 1). Since gcd(k + 2, 2k + 1) is 3 if 2k + 1 ≡ 0

(mod 3) and 1 otherwise, the directed cycle CF is of length 2m
3

if m ≡ 0 (mod 3), and of

length 2m otherwise. It follows that the directed 2-factor F is of the form ~F
(

3 ∗ 2m
3

)

in

the first case, and ~F (1 ∗ 2m) in the second.

Corollary 25. Let m > 3 be an odd integer and α 6= 2 a positive integer. Then K∗

2αm can

be decomposed into directed 2-factors of which one is an ~F
(

3α ∗ 2m
3

)

if m ≡ 0 (mod 3),

and ~F (α ∗ 2m) otherwise, and the rest are ~F (2α ∗m).

Proof. For α = 1, the statement is identical to Theorem 24. Hence assume α > 3. Now
decompose

K∗

2αm = K̄α ≀K∗

2m ⊕K∗

α ≀ K̄2m.

It follows from Theorem 13 and Lemma 9 that there exists a R~Cm-D of K∗

α ≀ K̄2m. On the
other hand, Theorem 24 shows that K̄α ≀K∗

2m can be decomposed into directed 2-factors

of which one is an ~F
(

3α ∗ 2m
3

)

if m ≡ 0 (mod 3), and ~F (α ∗ 2m) otherwise, and the rest

are ~F (2α ∗ m). Putting these two decompositions together results in a desired directed
2-factorization.
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