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Abstract

We study multiplication of any Schubert polynomial &,, by a Schur polynomial
sx (the Schubert polynomial of a Grassmannian permutation) and the expansion of
this product in the ring of Schubert polynomials. We derive explicit nonnegative
combinatorial expressions for the expansion coeflicients for certain special partitions
A, including hooks and the 2 x 2 box. We also prove combinatorially the existence
of such nonnegative expansion when the Young diagram of A is a hook plus a box at
the (2,2) corner. We achieve this by evaluating Schubert polynomials at the Dunkl
elements of the Fomin-Kirillov algebra and proving special cases of the nonnegativity

conjecture of Fomin and Kirillov.

This approach works in the more general setup of the (small) quantum coho-
mology ring of the complex flag manifold and the corresponding (3-point) Gromov-
Witten invariants. We provide an algebro-combinatorial proof of the nonnegativity
of the Gromov-Witten invariants in these cases, and present combinatorial expres-

sions for these coefficients.
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1 Brief Introduction

An outstanding open problem of modern Schubert Calculus is to find a combinatorial rule
for the expansion coefficients ¢ of the products of Schubert polynomials (the generalized
Littlewood-Richardson coefficients), and thus provide an algebro-combinatorial proof of
their positivity. The coefficients c;., are the intersection numbers of the Schubert varieties
in the complex flag manifold Fl,,. They play a role in algebraic geometry, representation
theory, and other areas.

We establish combinatorial rules for the coefficients ¢}/, when u are certain special
permutations. This confirms the insight of Fomin and Kirillov [FK], who introduced
a certain noncommutative quadratic algebra &, in the hopes of finding a combinatorial
rule for the generalized Littlewood-Richardson coefficients cl,. A combinatorial proof of
the nonnegativity conjecture of Fomin and Kirillov [FK, Conjecture 8.1] would directly
yield a combinatorial rule for the c’’s. We prove several special cases of this important
conjecture, thereby obtaining the desired rule for a set of the ci,’s.

One benefit of the approach via the Fomin-Kirillov algebra is that it can be easily ex-
tended and adapted to the (small) quantum cohomology ring of the flag manifold FI,, and
the corresponding (3-point) Gromov-Witten invariants. These Gromov-Witten invariants
extend the generalized Littlewood-Richardson coefficients. They count the numbers of
rational curves of a given degree that pass through given Schubert varieties, and play a
role in enumerative algebraic geometry.

Some progress on the nonnegativity conjecture [FK, Conjecture 8.1] was made in [P],
where the Fomin-Kirillov algebra was applied for giving a Pieri formula for the quantum
cohomology ring of Fl,. However the problem of finding a combinatorial rule for the
generalized Littlewood-Richardson coefficients and the Gromov-Witten invariants of Fl,,
via the Fomin-Kirillov algebra (or by any other means) still remains widely open in the
general case.

The main result of this paper is the proof of several special cases the of nonnegativity
conjecture of Fomin and Kirillov [FK, Conjecture 8.1]. It is worth noting that before our
present results, the only progress on the nonnegativity conjecture of Fomin and Kirillov
were those given in [P], over a decade ago. Until now, other means for computing these
coefficients have lead only to one of our special cases, see [S]. Other cases when two of the
permutations are restricted have been studied by Kogan in [Ko]. Our current paper is a
significant generalization of the results given in [P]. While our theorems still only address
special cases of the nonnegativity conjecture, the results we present are new and are a
compelling step forward.

The outline of this paper is as follows. In Section 2 we explain more of the background
as well as state the nonnegativity conjecture of Fomin and Kirillov [FK] and a simplified
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version of our results. In Section 3 we give an expansion of the product of any Schubert
polynomial with a Schur function indexed by a hook in terms of Schubert polynomials by
proving the corresponding case of the nonnegativity conjecture. In Section 4 we explain
what the previous implies about the multiplication of certain Schubert classes in the
quantum and p—quantum cohomology rings. Finally, Section 5 is devoted to proving the
nonnegativity of the structure constants for quantum Schubert polynomials in the case
of Schur function s, indexed by a hook plus a box, that is A\ = (b,2,1%7!), and deriving
explicit expansions of sy(6y,...,0) when A\ = (2,2),7%, (n — k)".

2 Background and definitions

We start with a brief discussion of the cohomology ring of the flag manifold, the Schubert
polynomials, the Fomin-Kirillov algebra &,, and the Fomin-Kirillov nonnegativity conjec-
ture in the classical (non-quantum) case; see [BGG, FP, Ma, Mn, FK] for more details.
Then we discuss the quantum extension, see [FGP, P] for more details. We also explain
how our results fit in this general scheme.

2.1 The Fomin-Kirillov nonnegativity conjecture

According to the classical result by Ehresmann [E|, the cohomology ring H*(Fl,) =
H*(Fl,,C) of the flag manifold FI, has the linear basis of Schubert classes o, labeled
by permutations w € S, of size n. On the other hand, Borel’s theorem [B| says that the
cohomology ring H*(F1,,) is isomorphic to the quotient of the polynomial ring

H*(Fl,) ~ Clzy,...,z,]/ {€1,...,€en),

where e; = e;(x1,...,x,) are the elementary symmetric polynomials.

Bernstein, Gelfand, and Gelfand [BGG| and Demazure [D] related these two descrip-
tions of the cohomology ring of Fl,,. Lascoux and Schiitzenberger [LS] then constructed
the Schubert polynomials &,, € Clxy,...,z,], w € S,, whose cosets modulo the ideal
(e1,...,e,) correspond to the Schubert classes o, under Borel’s isomorphism.

The generalized Littlewood-Richardson coeflicients ¢!’ are the expansion coefficients
of products of the Schubert classes in the cohomology ring H*(Fl,,):

w
Oy Oy = E Cowy O+

’u}ESn

Equivalently, they are the expansion coefficients of products of the Schubert polynomials:

GG, => % S,

The Fomin-Kirillov algebra &,, introduced in [FK], is the associative algebra over C

generated by x;;, 1 < ¢ < j < n, with the following relations:

2
1) )

Tij Tjk = Tik Tij + Tjk Tik, Tjk Tij = Tij Tik + Tik Tjk,

Tij Tl = Ty Tij for distinct 4, 5, k, [.
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It comes equipped with the Dunkl elements

j<i k>i
It is not hard to see from the relations in &, that the Dunkl elements commute pairwise
Qﬂj = (9](91 ([FK, Lemma 51])
The Fomin-Kirillov algebra &, acts on the cohomology ring H*(Fl,,) by the following
Bruhat operators:

oy L wsys if l(w s;5) = (w) + 1
Yij + 0w 0  otherwise,

where s;; € S,, denotes the transposition of ¢ and j, and ¢(w) denotes the length of a
permutation w € S,,.

The classical Monk’s formula says that the Dunkl elements #; act on the cohomology
ring H*(FI,) as the operators of multiplication by the z; (under Borel’s isomorphism),
0; : 0, — x;0,. The commutative subalgebra of &, generated by the Dunkl elements 6;
is canonically isomorphic to the cohomology ring H*(FI,).

Since the Dunkl elements #; commute pairwise, one can evaluate a Schubert polynomial
(or any other polynomial) at these elements &,,(6;,...,0,) € &,.

It follows immediately from the definitions that these evaluations act on the cohomol-
ogy ring of Fl,, as

Gu(br,...,0,) 0y — Z Co Oy
wWESH
Indeed, &, (04, ...,0,) acts on the cohomology ring H*(Fl,,) as the operator of multipli-
cation by the Schubert class o,,.

This implies that if there exists an explicit expression of the evaluation &, (61, ..., 0,)
in which every monomial in the generators z;; (i < j) has a nonnegative coefficient,
such expression immediately gives a combinatorial rule for the generalized Littlewood-
Richardson coefficients c;, for all permutations v and w.

Let &I C &, be the cone of all nonnegative linear combinations of monomials in the
generators x;;, ¢ < j, of £,. Fomin and Kirillov formulated the following Nonnegativity
Conjecture in light of the search for a combinatorial proof of the positivity of clb. .

Conjecture 1. [FK, Conjecture 8.1] For any permutation v € S,, the evaluation
Sy (04, ...,0,) belongs to the nonnegative cone &'.

2.2 New results

Our main result, in a simplified form, is a proof of some special cases of Conjecture 1
beyond the Pieri rule proven in [P]:

Theorem 2. For a Grassmannian permutation u € S,,, whose code \(u) is a hook shape
or a hook shape with a box added in position (2,2), the evaluation &,(61,...,0,) belongs
to the nonnegative cone &, .
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Moreover, we give an explicit combinatorial expansion in Theorems 8 and 15 when
A = (s,1771) is a hook, when A\ = (2,2) (Theorem 20) and A = (n — k)" or A\ = ¢tk
(Proposition 17). We also prove the existence of a nonnegative expansion when \ =
(b,2,1°71) is a hook plus a box at (2,2) in Theorem 18.

Remark. These results provide combinatorial proofs of the nonnegativity of the ex-
pansion coefficients c,,, of the product G,s,, in terms of &, and, moreover, explicit com-
binatorial rules for the coefficients c;,, for special permutations u as above and arbitrary
permutations v, w.

Our main tools come from the following connection with symmetric functions.

Schubert polynomials for Grassmannian permutations are actually Schur functions,
see e.g. [Mn] and [Ma]. Grassmannian permutations, by definition, are permutations w
with a unique descent. There is a straightforward bijection between such permutations
and partitions which fit in the k x (n — k) rectangle, where k is the position of the descent.
Given a permutation w with a unique descent at position k£ we define the corresponding
partition A(w), the code of w, as follows

In the other direction, given k and A\ of at most k parts with A\; < n — k we define a
permutation w(\, k) by

wN k) = Ney1—i+1 fori=1,... k and wgyy...w, = [n]\ {w,...,;wr}, (1)

where the last n — k elements of w(A, k) are arranged in increasing order. Clearly these
operations are inverses of each other. It is well-known that if w is a Grassmannian
permutation with descent at k, then

GW(SL’l, e ,In) = S)\(w’k)(aj‘l, Ce ,Q?k).

In [P], the problem of evaluating &,, at the Dunkl elements was solved in the case when
S, is the elementary and the complete homogenous symmetric polynomials e;(x1, ..., z)
and h;(xy,...,z) in k < n variables, i.e. when the Young diagram of X\ is a row or
column. We cite this below as Theorem 3.

2.3 Quantum cohomology

The story generalizes to the (small) quantum cohomology ring QH*(Fl,,) = QH*(FI,,C)
of the flag manifold FI, and the corresponding 3-point Gromov- Witten invariants. As a
vector space, the quantum cohomology is isomporphic to

QH*(FL,) = H*(FL,) ® Clqi. - . ., gu_]-

Thus the Schubert classes 0, w € S,,, form a linear basis of QH*(F1,,) over Clgy, . .., ¢,_1]-
However, the multiplicative structure in QH*(FI,,) is quite different from that of the usual
cohomology.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 5



A quantum analogue of Borel’s theorem was suggested by Givental and Kim [GK], and
then justified by Kim [Kim] and Ciocan-Fontanine [C1]. They showed that the quantum
cohomology ring QH*(F1,,) is canonically isomorphic to the quotient

QH*(Fln> = C[xb R Y P 7qn71] / <E17 E27 s 7En> ) (2)
where the E; € Clzy,...,2,;q1,- .., qn_1] are are certain g-deformations of the elementary
symmetric polynomials e; = e;(z1,...,2,), and they specialize to the ¢; when ¢ = --- =

n—1 = 0.

Analogs of the Schubert polynomials for the quantum cohomology, called the quantum
Schubert polynomials &%, were constructed in [FGP]. According to [FGP], the cosets of
these polynomials &% represent the Schubert classes o, in QH*(F,,) under the isomor-
phism (2). This provides an extension of results of Bernstein-Gelfand-Gelfand [BGG] to
the quantum cohomology, and reduces the geometric problem of multiplying the Schubert
classes in the quantum cohomology and calculating the 3-point Gromov-Witten invariants
to the combinatorial problem of expanding products of the quantum Schubert polynomi-
als.

A quantum deformation of the algebra &,, denoted by £4, was also constructed in
[FK], as well as the more general 2. Briefly, £ is defined similarly to &,: it is generated
by z;; and p;; with the additional (modified) relations that

x?j = pij , and [pij, put] = [pij, vw] =0, for any 4,5, k, and [,

where [,] is the commutator. Then &, is the quotient of the algebra £ modulo the ideal
generated by the p;;. Also let £ be the the quotient of £¥ modulo the ideal generated by
the p;; with |i — j| > 2. The image of p;;1; in £ is denoted g;.

These algebras also come with pairwise commuting Dunkl elements 6; (defined as in
&n). The generators of the algebra £7 act on the quantum cohomology ring QH*(F1,,) by
simple and explicit quantum Bruhat operators. It was shown in [P] that the commutative
subalgebra of £! generated by the Dunkl elements 6; is canonically isomorphic to the
quantum cohomology ring of Fl,,. Similar to the above discussion for the classical case,
a way to express the evaluation of a quantum Schubert polynomial &%(6,,...,6,) € £1
as a nonnegative expression in the generatiors of £ immediately implies a combinatorial
rule for the 3-point Gromov- Witten invariants; see [P] for more details.

The p—quantum elementary symmetric polynomials Ey(z;,, ..., z;, ; p) are defined in [P].
(Here {i1,...,%,} is a subset of [n].) These polynomials specialize to the usual elementary
symmetric polynomials eg(x;,, ..., x;,,) when all p;; = 0.

The following Pieri rule will be instrumental for the proofs in the current paper.

Theorem 3. [P, Theorem 3.1] (Quantum Pieri’s formula) Let I be a subset in {1,2,...,n},
and let J = {1,2,...,n} \ I. Then, for k > 1, the evaluation Ey(0;;p) € EF of the p-
quantum elementary symmetric polynomial at the Dunkl elements 0; is given by

Ek<91;p) = Z LaybiLag by " * * Lagby» (3)

where the sum is over all sequences of integers aq, ..., ag, by,..., by such that (i) a; € I,
bjeJ, forj=1,... k; (ii) the aq,...,a; are distinct; (iii) by < --- < by.
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Specializing p;; = 0, one obtains Ej(x;0) = ex(x;), the usual elementary symmetric
polynomial.

A completely analogous statement holds for the homogeneous symmetric functions hy,
whose p—quantum definition is as the corresponding p—quantum Schubert polynomial.
The expansion of (p—quantum) hy(60;) is obtained by interchanging the roles of the first
and second indices in the variables z;; in (3), i.e.

hk(@]) - Z l'al blxag by " xakbku (4)

where the sum is over all sequences of integers as, ..., a, by, ..., by such that (i) a; € I,
bj e J, for j=1,...,k; (ii) the by, ..., by are distinct; (iii) a; < -+ < ay.

Following the definition of quantum Schubert polynomials &% in [FGP], we define the
more general p-quantum Schubert polynomials GF | as follows. Let
Citoiny = i (T1)€i (T2, T2) -+ - €4, (T1, . Tn1),
where i; € {0,1,2,...,j}, for j € [n — 1], and ef = 1. Similarly, let
EP

D] geeylm—

1= EzllEng B = Eil(xl;p)EiQ(xlax2;p) T Ein,l(l'h e 7517n71;p)-

tn—1

One can uniquely write a Schubert polynomial &, as a linear combination of the

eilw"ﬂ'n—l:
Gw = Z iy vin—1 Cit,yin—1- (5>

The p-quantum Schubert polynomial GP is then defined as
621 = Z ail,m:in—l E’Lpl,...,l'nfl' (6)
For any A we define the p-quantum Schur polynomial as

sx(@1,. ., ak) = Gy -

Note that the p-quantum Schubert polynomial G2 specializes to the quantum Schubert
polynomial &% from [FGP] if we set p;i11 = ¢, @ = 1,2,...,n— 1, and p;; = 0, for
i— 4> 2

We can now give the quantum Nonnegativity Conjecture of Fomin and Kirillov.

Conjecture 4. [FK, Conjecture 14.1] For any w € S, the evaluation of the quantum
Schubert polynomial &% (1, ..., 2. q1,- .., qn—1) at the Dunkl elements 6;

S5,(0) = 64,(01, - Oniqus - -, Gn1) € &Y

can be written as a nonnegative linear combination of monomials in the generators w;;,
for ¢ < 7, of the Fomin-Kirillov algebra &£9.

In this paper we prove the quantum and p—quantum analogues of all our results and
show that the expansions in £F and &, coincide.
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Figure 1: Examples of diagrams. The black boxes indicate the diagrams in the two 8 x 10
rectangles. The red edges are the edges of the graph whose vertices are the black boxes
and where boxes are connected by an edge if they are in the same row or same column
and there is no box directly between them. Thus, the left hand side diagram is a forest,
whereas the right hand side diagram is not.

Theorem 5. For w € S,,, for which A(w), the code of w, is a hook shape or a hook shape
with a box added in position (2,2), the evaluation of the quantum Schubert polynomial
S (x1, .., Tn;q1, -, qn_1) at the Dunkl elements 6;

S5,(0) = 64,(01, - Oniqus -, Gn1) € &

can be written as a nonnegative linear combination of monomials in the generators x;;,
for i < 3, of the Fomin-Kirillov algebra EI.

3 The nonnegativity conjecture for s, where )\ is a
hook

This section concerns the Nonnegativity Conjecture for S, = sy(x1,...,xg), where A is a
hook shape. Note that an extension of Pieri’s formula to hook shapes was given by Sottile
[S, Theorem 8, Corollary 9] using a different approach.

We prove Conjectures 1 and 4 for Grassmannian permutations w(A, k) (see (1)), where
A = (s,1'71) is a hook, by giving an explicit expansion for &,,(6) which is in £ and then
using Lemma 13 to show that this same expansion also equals &P (6).

Consider a rectangle Ry (n—k) Whose rows are indexed by {1, ..., k} and whose columns
are indexed by {k +1,...,n}. A boz of this rectangle is specified by its row and column
index. A diagram D in this rectangle is a collection of boxes. Denote by row(D) and
col(D) the number of rows and number of columns which contain a box of D, respectively.
We say that a diagram D is a forest, if the graph, which we obtain by considering D’s
boxes as the vertices and connecting two vertices if the corresponding boxes are in the
same row or same column and there is no box directly between them, is a forest. See
Figure 1 for an example.
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Denote by Dy n—r) the set of forests which fit into Ry (n—r). A labeling of a diagram
D € Dyy(n-r) is an assignment of the numbers 1,2,...,|D| to its boxes (one number to
each box). Obviously, there are |D|! distinct labelings of D. Let Dy, denote a labeling
of D. Define the monomial zP* in the natural way: if the number & is assigned to the
box in row 7, and column j; in the labeling Dy, then o7 := Tivjy " Tiypijip)- If for two
labelings Dy, # Dy, of D we have that 2Pt = zPr in &,, and in order to get the equality
2Pt = 2P only the commutation relations of &, were used, we consider the labelings Dy,
and Dy, equivalent and write Dy, ~p Dy,. The relation ~p partitions the set of labelings
of D. We call the sets under this partition the classes of labelings.

Given a labeling Dy, of a diagram D, associate to it a poset PP on the boxes of the
diagram, which restricts to a total order of the boxes of D in the same column or same
row, as prescribed by the labeling Dy, and in which these are all of the relations. The
following lemma is a direct consequence of the definitions.

Lemma 6. Given a diagram D and two labelings Dy and Dy, of it, Dy ~p Dy if and
only if the posets PP and PL are equal.

While the next Lemma is also relatively straightforward, the idea of its proof is re-
peatedly used in this paper.

Lemma 7. Let A\ = (v+1,1"1) € Dixc(n—ky and D € Dyy(n—k) be a forest with | +v boxes
and at least | rows and v+ 1 columns. Then the following two sets are equal:
1. the classes of labelings ofD such that the class contains a labeling with:

1, ..., 0 are distinct, j1 < -+ < J1, Jiels-- -, Jiae are distinet, iy < -0 <l
2. the classes of labelings ofD such that the class contains a labelmg wzth
i1, ... ,0—1 are distinct, j1 < -+ < J1-1, Ji, - -+ Jiao are distinct, i < -0 < lgy

Note that the condition that A = (v + 1,171) € Dyx(n—k) signifies that & > [ and
n—k > v+ 1. Also, as seen from the requirement on the forests D we consider, the
number of boxes in D is the same as the number of boxes in \. We say that a forest D
can be labeled with respect to A, or that a labeling of a forest D is with respect to A, if the
number of boxes of A and D are the same, the number of rows and columns of D are at
least as many as those of A and if there is a labeling of D as prescribed by condition 1 (or
2) in Lemma 7. Moreover, a class of labelings with respect to A is a class of labelings which
contains a labeling with respect to A. We refer to a (particular) labeling that satisfies the
second line in condition 1 in Lemma 7 as a labeling of type 1, and a labeling that satisfies
the second line condition 2 in Lemma 7 as a labeling of type 2. Lemma 7 asserts that the
set of classes of labelings of D which contain a labeling of type 1 is equal to the set of
classes of labelings of D which contain a labeling of type 2.

Proof of Lemma 7. We need to show that for every monomial %, where L is a labeling
in one of the classes, there is a monomial z”2", such that L’ is a labeling from the other

class and 2Pt = 2P,
Let L be a labeling of type 1, ie. 2P% = x5 ... 25, ;,, with j1 < -+ < j; and
i1,...,4 distinct and 4,49 < --- < 44, and Jiiq, ..., Jiee distincet. Since D has at least
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Figure 2: The black boxes indicate the forests in the two 8 x 10 rectangles. The red
numbers signify the labelings of the forests. Let A = (4,1%). The left hand side labeling
L is a labeling of type 1 and is equivalent to the right hand side labeling L, which is of
type 2. L' is constructed from L as described in the proof of Lemma 7.

v + 1 columns, there is an index r < [, such that j. & {ji+1,..,Jito}. Let r < [ be the
largest such index. Then 4, # 4,41,...,% and j, # jri1,...,J1, SO Z;; commutes with
the variables at positions r+1,...,[ and can be moved to a position ' — 1 > [, such that
r’ is the smallest index greater than [ for which 4, < 4,». Then

Pr — Zivgy « Lip_yjr 1 Tipyrgpyr - - Tiggy - - Lipjp Ligjs - - -

and since j, is different from any of j;,1,..., 14, the last monomial is a labeling of type
2. For an example see Figure 2.

The case when L is a labeling of type 2 follows the same reasoning by exchanging the
roles of i and j. O]

Let E?”\, ..., LPA be all the classes of labelings of a forest D with respect to A (see
definition after Lemma 7). Let Dy, € £P, i € [m], be (arbitrary) representative labelings
from those classes. Denote by £(D,\) ={Dy,,..., Dy, } these representative labelings.

Theorem 8. Let A = (s,1'7) be a hook that fits in a k X (n — k) rectangle. Then,
Guouk) (b1, 0n) = sa(Br, .. 0) = > ey > aPh (7)

DEDkx(n—k) DLEL:(D,/\)

where (D) (D)

A row —t+co — 8

= 8

D ( col(D) — s )’ ®)
if for the forest D we have row(D) > t,col(D) > s, and otherwise ¢}, = 0.
Remark. The coefficient ¢}, in Theorem 8 is equal to the multiplicity of the Specht
module S* in the Specht module S (when D is a forest) which can be seen, as Liu [L2]
pointed out, as a consequence of [L1, Theorem 4.2]. This appears to be a coincidence,

though it would be amazing to discover a conceptual connection between the expansion
(7) and representations of the symmetric group.

Before proceeding to the proof of Theorem 8 we state a few lemmas which we use in
it.
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Lemma 9. Let A be a partition that does not fit into an a x b rectangle. Then,
8)\(91, R ,Qa) =01 5a+b-

Proof. The statement follows readily from Theorem 3 for elementary and homogeneous
symmetric functions, namely eg(6;,...,0,) = 0 and hy,(0;,...,6,) = 0in &4y for k > a
and m > b. Using the Jacobi-Trudi determinant expansion and its dual for any Schur
function,

sy = detlhy,—iyjli 1 = detlex i]i 1,
we see that if A; > b or X' = [(\) > a the top row of the first matrix or the first column
of the second, and hence the determinant, is 0. O

Corollary 10. e hy(61,...,0,) =0 in Equpp.
Proof. By the Pieri rule e,hy = S(p41,10-1) + S(p,10), and the shapes (b+1,17") and (b, 1%)
do not fit into a a x b rectangle. O]

Next we consider several induced objects in the rectangle Ry (n—r). Namely, for
{ir, .. yia} C {L,. .k}, {d1,-- .0} € {k+ 1,...,n}, with |[{i1,...,i,}| = a and

{71,y dbt| =bwecall i1, ..., i) % [j1,- ., s, which denotes the squares in the intersec-
tion of a row indexed by ¢; and j,, [ € [a], j € [b], an induced a x b rectangle. Furthermore,
it = e (... x;) is the induced elementary symmetric function and "7 =
hy(zj,, ..., x;,) is the induced homogeneous symmetric function and Eiig"’i“]x[jl’”"jb} the

induced Fomin-Kirillov algebra in the natural way, with Ql[il""’i“]x[jl""’j”}, [ € [a], being the
induced Dunkl element. With the above notation we can restate Corollary 10 as follows.

Corollary 11. We have efj"“’iah{f"”’jb(9?1"”’@'“]X[jl""’j”], . ,GEI""’i“]XUL“"jb]) —0in gﬁ»{;-via]X[jh--.,jb].

Proof of Theorem 8. We proceed by induction on the number of columns col(\) of A.
When col(\) = 1 the statement was given in Theorem 3. Assume that the statement is
true for col(A\) < v. We prove that it is also true for all hooks A with col(A\) = v + 1. To
do this we use Pieri’s rule:

eth, = S(ll)hv = S(p41,10-1) T S(p,10)- (9)

Let A = (v+1,1"7Y) and A = (v,1%). If we evaluate equation (9) at 6 and expand ¢
and h,, according to [P, Theorem 3.1] we obtain

( Z Liyjy * '$iljl)( Z Ligpajipr * '$il+ujl+u) = 5x(0) + s5(0) (10)
1,07 U1 <Ky
J1<--<gy Ji41 s Jl4o 7

and we want to prove that

( Z Liyjy * 'xizjz>( Z Lipg1jipr * .xil+vjl+v)

i1, 01 7 U1 <Ky

J1< <Gy Ji41se s Ji4v 7 (11)
= D el DY AP Y, 2.
DeDyy (n—k) DpeL(D,)\) DreL(D,)\)
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Given the properties of ¢}, ¢} and £(D,\),£(D,)) (in light of Lemma 7) we can
rewrite (11) as

E Liygr " Ligg, ( E Tipp1gipr *° 'xil+vjl+v)

----- 07 UESESEIS NS
]1 < Ji+1saJito? (12)
A b D
= E (cp +ep)( § xor),
DeDyy (n—k) DreL(D,\)UL(D,))

where for the forests D which have at least v + 1 columns and [ + 1 rows, and which
can be labeled with respect to A and A as prescribed by Lemma 7, we pick the same
representative labelings in £(D, \) and L(D, \).

Then, if forest D has exactly v columns or [ rows, but can be labeled with respect to
A or A, respectively, as prescribed by Lemma 7, we have that ¢), 4 ¢}, = 1. If on the other
hand we have a labeling Dy, € £(D,\) N £(D, ), then using (8) we obtain that

N (row(D)—lJrcol(D) 1)( ))+<I"OW(D)_(Z—|—1)+COI(D)—U) (13)

cptcp = col(D) — (v + col(D) — v
row (D) + col(D) — (I +v) ¢(D)
- ( col(D) — v ) N (col(D) — v)’ (14)

where ¢(D) denotes the number of components of D.
Thus we can rewrite (12) as

Z Liji =" Liggy ( Z Lipp1jipr 'xiz+vjz+v) = (15)

..... 0W# 41 < Sy
j1< <Ji Ji41se s Ji4v7
D
S ()0 X e x )
DeDyx (n—r) DpeL(DXN)NL(D,A) DpeL(DN)AL(DN)

We now show that the coefficient of #P£, Dy, € L(D,\) U L(D, )), is the same in (15)
and (16), and that the remainder of the terms in (15) sum to zero, thereby proving the
equality of (15) and (16).

Consider first the case that Dy € £(D,\)AL(D, ). Then the coefficient of zP- in
(16) is 1 and the forests D are such that D has exactly v columns or [ rows, but can be
labeled with respect to A or A, respectively, as prescribed by Lemma 7. It is not hard to
see then that the coefficient of 2% (considered modulo commutations) in (16) is also 1.

Consider the case that Dy € £(D,\) N L(D, ). Then the coefficient of 2% in (16) is
(Colc((DD))_v) and the forests D are such that D has at least v+ 1 columns and [+ 1 rows, and
D can be labeled with respect to A and A as prescribed by Lemma 7. In order to calculate
the coefficient of 2P (considered modulo commutations) in (15) we need to decide which
variables of 2P~ should come from e; (the first sum in (15)) and which from A, (the second
sum in (15)) in (15). Considering variables as squares in the k x (n — k) rectangle, note
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that all but one square in each component of D is a priori forced to be in ¢; or h, because
of the conditions on the i’s and j’s, and this one square can go into either one. It is then
easy to count how many squares are already assigned to ¢; (or h,) and determine that we
can pick out exactly (Colc(DD))_v) terms in (15) which are equal to z"t.

It remains to show that all the other terms on the left hand side sum to zero. This
follows as all the terms that are not of the form zP=, D, € L(D,\) U L(D, \) are part of

a sum of terms which sum to zero as a consequence of Corollary 11. O

4 Action on the quantum cohomology

Recall that s;; is the transposition of ¢ and j in S, s; = s;,41 is a Coxeter generator, and
¢ij = QiQi+1 - - qj—1, for i < j. Define the Z[g|-linear operators ¢;;, 1 < i < j < n, acting
on the quantum cohomology ring QH*(F1,,Z) by

Tws,; if Mwsi;) = AMw) +1,
tij(Ow) = @ij Ows;; 1 Mwsy) = AMw) —2(j — 1) + 1, (17)

0 otherwise.
By convention, t;; = —tj;, for ¢ > j, and t;; = 0.

The relation between the algebra £7 and quantum cohomology of Fl,, is justified by
the following lemma, which is proved by a direct verification.

Lemma 12. [FK, Proposition 12.3] The operators t;; given by (17) satisfy the relations
in the algebra E? with x;; replaced by t;;, piiv1 = ¢, and p;; =0, for |i — j| > 2,

Thus the algebra £7 acts on QH*(Fl,,Z) by Z|[g]-linear transformations
Tij 1 Oy — tij(0w) -

The following lemma follows directly from equations (5) and (6). It is the key to
showing that our nonnegative expansions of certain Schubert polynomials evaluated at
the Dunkl elements imply that the same expansions are equal to the evaluation of the cor-
responding p-quantum Schubert polynomials G (and so in particular quantum Schubert
polynomials &%) at the Dunkl elements.

Lemma 13. Suppose that the identity

fx) = F(fi(x), -, fr(x)),

holds, where f and the f;’s are Schubert polynomials and F' is a polynomial in k variables.
Suppose that there are expansions of fi(0) and fF(0) which are in EF and are equal to
each other. If the expansion we obtain for f(0) by evaluating F at the above mentioned
expansions of f;(0)’s is in EF without involving the relation x?j = 0, then there is an
identical expansion of fP(0).
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Lemma 14. Let A = (s,1'71). The coset of the polynomial sx(x1, ..., ZTm;q) in the quo-
tient ring (2) corresponds to the Schubert class oz k) under the isomorphism (2).

We can now use Lemma 13 and apply it to the steps of the proof of Theorem 8, to see
that it is also true in the p-quantum world:

Theorem 15. Let A = (s, 171 be a hook that fits in a k x (n — k) rectangle. Then,

S (O 0) =K, 0) = Yy > (18)

DeDiy (n—k) DreL(D,\)

where
row(D) —t 4 col(D) — s
b = ( col(D) — s )’ (19)

if row(D) > t,col(D) > s and D is a forest, and otherwise ¢}, = 0.
Theorem 15 and its proof together with Lemma 13 imply the following statement.

Corollary 16. For any w € S, the product of Schubert classes oyr) , where X\ =
(s, 1Y), and o, in the quantum cohomology ring QH*(Fl,,Z) is given by the formula

Ow(\k) * Oy = Z C>l\) Z tDL (Uw)a (20)

DEDkx(n—k) DLE,C(D,)\)

where
N row(D) —t+col(D) — s
0= ( col(D) — s ) (21)

if row(D) > t,col(D) > s and D is a forest, and otherwise ¢}, = 0.

5 Nonnegativity Conjecture for s, for other shapes
A

In this section we investigate the nonnegativity conjecture for Schubert polynomials of
the form sy(z1,...,xy) for other shapes A\. Throughout this section k will be fixed and
we set 8 = (01,...,0).

Consider first the shapes y = (n — k)" or v = r* which correspond via (1) to Grass-
mannian permutations w(u, k) and w(v, k). Applying Lemma 9 and the Jacobi-Trudi
identity it follows that s,(6h,...,0k) = h,—k(8)" and s,(6:,...,0;) = ex(d)". An ob-
viously nonnegative expansion is an immediate consequence of the above and Theorem

3.
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T

Proposition 17. For any k, r <k andt < n —k let p = (n — k)" and v = t* we have

the following expansions in EF (in £1):

Gw(ﬂvk) (917 s aek’) = Z Livgr * " Liggy

11 << <k;
k+1<j177]k7£
t

6w(zz,k) (917 s aek‘) = Z Lirgy " Ligjy, ) <22)

k4-1<g1 <<
k>i1,...ix#

where the first sum goes over all sequences of © and j of length k, such that the is are
weakly increasing, < k, and the js are > k+1 and all distinct; and in the second sum the
18 are distinct and the js increasing.

We now focus on s, where A is a hook plus a box at (2,2). We show that:

Theorem 18. The Schubert polynomial Sy k) (01, ..., 0,), where X = (b,2,1°71), has an
expansion in EF. Equivalently, sgo1a-1y(61,...,0k) € EF.

Proof. To prove that s¢21a-1)(01, ..., 0) € EF we use the Pieri rule:
S(p,2,10-2) = S(b,laﬂ)hl — S(b,19) — S(b+1,10-1)- (23)

Recall that hi(0) = s(1)(0) = > ;) r<; Tij- The expansion for hooks in Theorem 8 gives
us the following formulas for the three hooks in equation (23):

a—1
Sp1e—1)(0) = Z Z 2 (24)

DeDy, (n—k) DLEE(D,(b,l‘l*l))

S(,10)(0) = S eyt (25)

D€Dyy (n—ky DLeL(D,(b,1%))

a—1
S(b+1,10-1)(0) = Z Z C(DbJrL1 2P, (26)

DeDyy (n—k) DLeL(D,(b+1,1271))

We will consider the sequences of indices appearing in each monomial 2% and for I =
(i1,...,0) € [1.. k)Y, J = (j1,...,51) € [k+1...n]" we define x7; = x;;, - - 4,5, For
each of the terms on the right hand side of (24)-(26) by Lemma 7 we can choose sequences
of indices I and J such that 2Pt = z;; and [ = (I, I,), J = (J1, Jo), where I; and J; are
sequences of length a, the elements in I; and Js are distinct and the elements in J; and
I, are weakly increasing. This corresponds to choosing type 1 labelings for the expansion
of the hooks in (24) and (26) and type 2 labelings for the expansion in (25). Notice also
that the number of distinct rows in D is the same as the number of distinct elements in
(I, I5) and the number of columns is the cardinality of J as a set.
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It will be more convenient to express the coefficients ¢}, appearing in (?7)-(25) in terms
of the sequences of indices just considered. Here |S| will denote the number of distinct
elements of S. The coefficients in front of 2P = x;; are given by

(b,19—1) |[LUL|+ | U —a—0b
= 27
D ( |[1UIQ| —a ’ ( )
(b,1%) |[LUL|+| U —a—b—1
= 28
CD ( |_[1UI2|_(CL+1) ’ ( )
(b+1,10-1) |[LUL|+|JUJ]—a—b—1
= . 29
CD < |]1 U_[2| —a ( )

Notice that in the expressions of the two hooks of size a + b, the lengths of the index
sequences I; and I, are the same (a and b, correspondingly), so we can combine the
expressions as

(1) (0) + Spg1,10-1)(0) = Z Z
DG'DkX(nfk) DLEE(Dv(bJa))’
- L~pxry g T,y

|11U]2|+|J1UJ2|—CL—b—1 |]1U]2|+|J1UJ2|—CL—Z)—1 $DL
|11UIQ|—(I |11U12|—(CL+1)

. |]1UIQ|—|—|J1UJ2|—CL—b Dy,
> > ( LUL|—a @t (0

DeDkX(n—k) DLEL(D7(b71a))=
T L~pXL) g Ty Ty

where the sum goes over all diagrams (which are forests) in the k& x n — k rectangle and
Dy, goes over all labeling classes in £(D, (b,1%)) and I3, Ji, I3, Jo are sequences of indices,
such that x, j,xr,, is a representative of its class (see Lemma 6) of type 2, i.e. [, J; have
a elements and I, jo have b elements. Since all diagrams considered in this proof are in
Dy (n—k) summation over D or D' will mean summation over all diagrams in Dy (n—).

We can write a similar expression for s, 10-1)() with labelings ©P* ~p z;, 21,4, such
that I; and J; have lengths a

k n
Seaen (O (0) =D > Y
i=1 j=k+1 D’
Z (|11UI§|+|J1UJ§y—a—b

LU —a )thlﬂfnggxz'j, (31)

L'eL(D’,(b,1¢7 1)),
i

L
x NszlJlx]éJé

where the sum goes over all diagrams D’ and labeling classes L' in L(D’, (b,1471)) of type
1, i.e. such that xy, s,y 5 is a class representative and the length of the sequences I; and
Ji is a and the length of I} and J; is b — 1.

For each monomial in (30) we will compare the coefficients with the corresponding
coefficients in (31) and show that the ones in (30) are always smaller. Consider a monomial
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(in the z—variables) in (31) and consider its last variable x;;, so the monomial can be
written as xr, , T1,5, = T1,., T 1,0, %ij, Where Iy = (I5,1) and Jo = (J3,j). Clearly this term
appears exactly like this in (31). Consider the difference s¢1a-1)(0)h1(0) — 5@,10)(0) —
Sp+1,10-1)(0). The coefficient in front of x7;z;; (without involving any commutativity
relations in s¢,1a-1)(0)h1(6)) for I = (i1, I5) and J = (Jy, J3) is

|[LUL+|JyUJi|—a—0b B |[LULLu{i} +|HhUJsu{j}—a—10 (32)
LU —a \LUILU{i} —a '

Let A= |L UL —aand B =|JyUJj| —b.

There are 4 different cases depending on whether ¢ € I, U} and j € J; U J), which we
consider separately. In all these cases we show that the total coefficient of terms ~ x;;x;;
is greater in (31) than in (30), where ~ means equivalence under commutation.

First case: 1f i € I U I} and j € J; U J) then the coefficient in (32) is 0, so the total
coefficient in front of z;x;; is nonnegative.

For the other 3 cases we need to consider in how many ways a monomial xL/xij ap-
pears in S, 210-2y(0)h1(0) by applying the commutation relation to x;; and the remaining
variables in ;.

The x’s which could be moved to the end of z;; by commutation are: 1) The ones in
xp, 5, which are last in a sequence of equal is, so their index set is (1, J;), where [, is the
set of all distinct elements in I5. 2) The ones in xy, 5, which are last in a sequence of equal
Js, (Ia, Ja), such that J, is the set of distinct elements of J;. Moreover, we can pick only
these z’s, whose indices are not in 5 U Jj.

Once such an x;, ; has been moved to the end, we can move z;; by commutation
within zp, j (without x;, ;) if @ # 4., j # j,, which gives a representative labeling as in
Lemma 7 (depending where we took z; ;. from): since xp, LT,y Was a representative
labeling for the hooks from (30), we have that j ¢ J and thus Jj U {j} still has all js
distinct.

Thus the number of 2’s we can move to the end (and insert x;;) is:

15\ i} + (o Ja) \ (T2, J3) \ e, g} = max([I3 \ {40\ {5\ ol = 1), (33)
where (1o, Ja) \ (I3, J2) = {(/',j') € (la,Jo), V" & I3, 5" & J5} and so [(Le, Ja) \ (I3, J3) \

{65 = |Uas Ja) \ {5, 53 = Ha N 15| = |Ja 0 o] =[S\ {5} = [La 0 (B U{i})] = [0 5.
Second case: 1f i € Iy U I} and j ¢ J; U Jj, then the difference (32) is

A+ B
A—1)’
assuming that A > 1, since otherwise we get 0 and there is nothing more to prove.
For each of the variables x;; that we take from x;; and move to the end through
commutation and insert z;; we get a commutation equivalent monomial x yx;; such

that xp v is a valid labeling class. The coefficient ¢ of xp yx; ;v in (31), i.e., the coefficient
of py in the expansion of 5, 1a-1y(6), is at least

|WUL| -1+ |/1UJy|—(a+b)\ (A+B\B+1
LU —1-a \A-1JA+B’
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The number of variables z;; we can move to the end is given by (33) and is at least
|[I5] —1 > A — 1 and not less than 1, so the total coefficient at the commutation class
~ xryx;; is at least

A+ B max(A—l,l)(B+1)> A+ B
A-1 A+ B “\A-1)

since B > 0 and A > 1. So the total coefficient of x;;z;; (under commutation) is
nonnegative in this case as well.

Third case: Let i ¢ Iy U3, but j € J; U J;. The coefficient in front of z;;z;; (without
involving any commutation) is given in (32) as

(|11u1;|+|J1UJ;|—a—b) - (|11UI§U{Z'}|+|J1UJ§U{]'}|—a—b)

|LUIL —a |[LUubu{i}| —a
 (A+B
- \A+1)

Consider the elements in (1,, J,) and (I, JJ,) which we can move to the end by commuta-
tion. As in the second case, for each variable we move to the end (and insert z;;) we get
a coefficient coming from the expansion of s, 1a-1y(f) of at least

A+B—-1\ [(A+B\A+1
A+1 ) \A+1)A+B
The number of such variables we can move is at least, by (33), max(A4, B —1). So the
total coefficient is at least

A+B (A+1)max(B—1,A)> A+B
A+1 A+ B “\A+1

and the coefficient of x;;x;; is again nonnegative.

Fourth case: Finally, let ¢ ¢ Iy U} and j ¢ J; U J5. Then if we move any x to the end
by commutation and insert x;;, we are not decreasing the number of rows or columns in
D. In (32) we have

[LUL|+ U —a—=b\  ([LUL[+[/iUJj—a—b+2
LU —a LU —a+1 '

The number of terms that can be moved to the end by commutation is at least max(| 7|, | J;U
J5| — (b—1)) > max(A, B+ 1). The coefficient of z;;z;; (under commutation) is at least

(maX(A,B+1)+1)(A+B> _ (‘“B”) _

A A+1

(A+ B)! (A+ B4+ 1)(A+ B+2)
ASER A AB+1)+1— >
aipy max(4, B A1)+ arnBsLy 70
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whenever A > 0, B > 1. This expression is less than 0 only if B=1and A <2 or B = 0.
But in each of these cases a more careful analysis of what elements can be moved out
shows again that the coeflicient of z;z;; (under commutation) is nonnegative and this
completes the proof. O

We can now use Lemma 13 and apply it to the steps of the proof of Theorem 18, to
see that it is also true in the p-quantum world:

Theorem 19. The quantum and p-quantum Schubert polynomials &%, and &%, , where

wp?
wy = w((b,2,1%71Y), k), have expansions in E;.

While an explicit expansion for any general shape other than the hook remains elusive
so far, we can derive such an expansion for the simplest case of a hook plus a box, namely,
for A = (2,2) corresponding to S, where wy_1 = k+1,wx = k+2, wpy = k—1, wp0 =k
and w; = 7 otherwise.

Theorem 20. The Schubert polynomial &,, for w = w((2,2),k) and its quantum version
S have the following expansion in & :
Gw(eh <. ,ek) = 8(2,2)(‘917 e ,Qk) = Z CrjZxry,

Lixp~zry

where the sum runs over all classes xy, ~ xr; distinct under commutation of the variables
in xyy and the coefficients are given by:

if ] = |J] =4,
if I or J have an index of multiplicity 3 or 4,

Crj = .
if xrg ~ Lajy Thji TbjaLejos, OT T1g ™~ LipaliibLishLise)

otherwise.

= o O N

Thus in the quantum cohomology ring QH*(Fl,,7Z) we have

Opw ¥ O0p = C[JZf[J(O'ﬂ-).
(I,J)

Proof. We employ the notation from the previous proof, where for sequences of indices
I=(iy,...)and J = (j1,...), weset 17 = ;,j,Tipj, - - - - Here we determine the coefficient
of xyy, where xyss are considered up to commutation. In other words, if x;; can be
obtained from z;; only by using the commutation relation, then these terms are considered
equivalent. Let cr; be the coefficient of 7 in the expansion of s(32y. We will denote by
[z]f the coefficient of x in f and f|; the restriction of f to its summands whose first
indices are in 1.
The Jacobi-Trudi identity gives the following expressions

5(2,2) = hahy — h3hy = esey — eseq.
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Monomials with first indices ¢ coming from a given fixed set Z can be obtained by
restriction of the evaluation to the corresponding sets of indices. Every function we
consider here is expressed through the elementary and homogenous symmetric functions
whose expansions can be restricted to any sets of first or second indices. Thus when
#I =1 we have e5(6)|z = 0 and e3(0)|z = 0, 50 5(2,2)(0)|z = 0 and the coefficient ¢;; =0
in this case (|I| = 1).

By the same reasoning all monomials with index set I having only 2 elements come
from the corresponding restriction and the expansion in terms of the e’s; so e3(0)|; = 0
and $(2,9)(0)|1 = (e2(0)e2(8))|r. The monomials whose first index has 2 elements are thus
the following

Z Tiyjs TigjoTirjsLings T Z Liyji1LizjaLizjsLirja-
11742, 11742,
J1<]2 ; J3<Ja J1<2 ; §3<ja
So we must have that the multiplicity of each index in [ is 2 and if 17 ~ @4, j, Tiyjy Tiy js Tinja
under commutation for any sequence ji,...,Jjs, then ¢;; = 1. The alternative case is
exactly when x; ~ %, j, Ti, j, Tisjo Tinjs and j1, j2, j3 are not necessarily distinct, then c;; =
0.

Consider now the monomials which have at least 3 distinct indices in I. If there are
only 2 distinct indices in J then we get the mirror sum of the above expression with the
condition that the set of first indices has at least 3 distinct elements (to avoid double
counting with the case |I| = 2).

Let [/| > 3 and |J| > 3.

If |I| = 4 and |J| = 4 then all variables in z;; commute with each other. The total
coefficient is then c¢;; = 2: there are (3) = 6 ways to obtain x;; from hshs by choosing
which two variables x;; come from the first hy and there are 4 ways to obtain it from hgh;
by choosing which variable comes from h;.

If |I| = 3 and |J| = 4 then 1) = T4, j, Tiy jp Tinjs Tigjy and 2,5, and z;,j, do not commute
with each other, but all other pairs commute. The coefficient in hy(0)ho(8) is 4 since
Tiyjy Tipjp can come from the first ho() fully, the second hq(€) fully or both partially (i.e.,
xi,j, comes from the first ho(f) and z;,;, from the second he(6)). The corresponding
coefficient in h3(0)hy(6) is 3 since only w;,;, cannot come from hy (), so we get c;; = 1.

If |I| = 3 and |J| = 3 the considerations depend on how the indices are distributed with
respect to each other and a more careful analysis is needed. Suppose ¢; = 2, and j; = j,.
Then the remaining 2 variables commute with x;, ;. = x;,;,, so x5 = 2;,;,%i, ... = 0.

Let the repeating indices be ¢ € I and j € J, not both in the same variables. If
T is not in xry, then the variables w;, and z,; commute with each other. Let z;; =
TiaTipTejTa, then [xrs]ha(0)ha(f) = 1 since z;,x.; must come from the first hy(f) and
[27.7]h3(0)h1(0) = 1 since x4; must come from hy, so [z77]5(2,2)() = ¢y = 0.

Suppose now that z;; appears in 27y exactly once. There are four distinct commutation
classes: ~ TijaTpjTijTed, ~ TiaTijThjTed, ~ TijTiaTpiTed ~ ThjTijTigTed. FoOr each such
class we have the following coefficients in ho(6)he(0), hs(0)hi(6) and s(9)(), derived by
reasoning similar to the already used in the previous cases:
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Tyrg ~ LiaTpjLijTed | LialijLojLed | Tojlijlialed | LijLialbjLed
(217172 (0)h2(0) 2 1 1 2
[1’]]}8(272) (9) 1 0 1 1

Last, if |I| = 4 and |J| = 3, then [z1/]he(0)ho(0) = 2 and [z1;]hs(0)hi(0) = 1, so
Crg = 1.

Noticing that we can write ¢;; = 0 or 1 whenever z;; = 0 we can unify some of the
cases and obtain the desired statement. O

6 Final remarks

The next step of the approach presented in this paper would be to derive an explicit
nonnegative expansion for sy(6y,...,60x) when A\ = (n — k,k) is a two-row partition.
The natural approach is to represent this Schur function via the Jacobi-Trudi identity as
hghy—x — hr_1hp_r+1 and apply the known expansions for the homogeneous symmetric
functions h. The main difficulty in this case is the apparent lack of a proper analogue of
Lemma 7 which would enable the identification of monomials appearing in hgh,_; and
hig—1hn,11-. However, with the right interpretation and clever use of facts like Lemma
9, the current approach might be extendedable first to two-row partitions and then via a
generalization to all shapes.
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