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Abstract

The total chromatic number of a graph G, denoted by χ′′(G), is the minimum
number of colors needed to color the vertices and edges of G such that no two
adjacent or incident elements get the same color. It is known that if a planar graph
G has maximum degree ∆ > 9, then χ′′(G) = ∆ + 1. The join K1 ∨ Pn of K1 and
Pn is called a fan graph Fn. In this paper, we prove that if G is an F5-free planar
graph with maximum degree 8, then χ′′(G) = 9.
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1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow [2] for the
terminology and notation not defined here. For a graph G, we denote its vertex set, edge
set and maximum degree by V (G), E(G) and ∆(G) (or simply V , E and ∆), respectively.
For a face f of G, the degree d(f) is the number of edges incident with it, where each
cut-edge is counted twice. The join K1 ∨ Pn of K1 and Pn is called a fan graph Fn. We
say that a graph G is Fn-free if G contains no Fn as a subgraph. A k-cycle is a cycle of
length k. We say that two cycles are adjacent if they share at least one edge.

A total k-coloring of G is a coloring of V ∪E using k colors such that no two adjacent
or incident elements receive the same color. The total chromatic number χ′′(G) is the
smallest integer k such that G has a total k-coloring. Clearly, χ′′(G) > ∆+1. Behzad [1]
and Vizing [16] independently posed the following famous conjecture, which is known as
the total coloring conjecture (TCC).

Conjecture A. For any graph G, χ′′(G) 6 ∆+ 2.

This conjecture was confirmed for general graphs with ∆ 6 5. In recent years, the
study of total colorings for the class of planar graphs has attracted considerable attention.
For planar graphs the only open case is ∆ = 6 ([8, 13]), and for planar graphs with large
maximum degree, there is a stronger result. It is shown that χ′′(G) = ∆ + 1 if G is a
planar graph with ∆ > 9 ([9]). This stronger result does not hold for planar graphs of
maximum degree at most 3. For 4 6 ∆ 6 8, it is unknown that χ′′(G) = ∆ + 1 if G is a
planar graph with maximum degree ∆. For ∆ = 8, the following four results have been
recently proved.

Theorem A. ([7]) Let G be a planar graph with ∆ = 8. If G contains no adjacent
3-cycles, then χ′′(G) = ∆ + 1.

Theorem B. ([15]) Let G be a planar graph with ∆ > 8. If G contains no adjacent
4-cycles, then χ′′(G) = ∆ + 1.

Theorem C. ([14]) Let G be a planar graph with ∆ > 8. If G contains no 5- or 6-cycles
with chords, then χ′′(G) = ∆ + 1.

Theorem D. ([5]) Let G be a planar graph with ∆ > 8. If G contain no 5-cycles with
two chords, then χ′′(G) = ∆ + 1.

Here, we generalize these results and get the following result.

Theorem 1. If G be an F5-free planar graph with ∆ > 8, then χ′′(G) = ∆ + 1.

Recently, neighbor sum distinguishing total colorings have received much attention
([10]). In [11, 12] neighbor sum distinguishing total colorings of planar graphs have been
studied.

Now, we introduce some more notations and definitions. Let G be a planar graph with
a plane drawing, denote by F the face set of G. For a vertex v of G, let N(v) denote the
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set of vertices adjacent to v, and let d(v) = |N(v)| denote the degree of v. A k-vertex,
a k−-vertex or a k+-vertex is a vertex of degree k, at most k or at least k, respectively.
Similarly, we can define a k-face, a k−-face and a k+-face. We use (v1, v2, · · · , vk) to denote
a cycle (or a face) whose boundary vertices are v1, v2, · · · , vk in the clockwise order in G.
Denote by nd(v) the number of d-vertices adjacent to v, by fd(v) the number of d-faces
incident with v.

2 Proof of Theorem 1

According to [9], planar graphs with ∆ > 9 have a total (∆ + 1)-coloring, so to prove
Theorem 1, in the following we assume that ∆ = 8. Let G = (V,E, F ) be a minimal
counterexample to Theorem 1, such that |V | + |E| is minimum. Then every proper
subgraph of G has a total 9-coloring. Let L be the color set {1, 2, · · · , 9} for simplicity.
It is easy to prove that G is 2-connected and hence the boundary of each face f is exactly
a cycle. We first show some known properties on G.
(a) G contains no edge uv with min{d(u), d(v)} 6 4 and d(u) + d(v) 6 9 (see [3]).
(b) G contains no even cycle (v1, v2, · · · , v2t) such that d(v1) = d(v3) = · · · = d(v2t−1) = 2
(see [3]).

It follows from (a) that, the two neighbors of a 2-vertex are all 8-vertices, and any two
4−-vertices are not adjacent. Note that in all figures of the paper, vertices marked • have
no edges of G incident with them other than those shown.

Lemma 2. ([5], [6]) G has no configurations depicted in Fig. 1(1)− (6).

Lemma 3. ([4]) Suppose that v is an 8-vertex and v1, v2, · · · , vk are consecutive neighbors
of v with d(v1) = d(vk) = 2 and d(vi) > 3 for 2 6 i 6 k − 1, where k ∈ {3, 4, 5, 6, 7}. If
the face incident with v, vi, vi+1 is a 4-face for all 1 6 i 6 k − 1, then at least one vertex
in {v2, v3, · · · , vk−1} is a 4+-vertex.

Lemma 4. ([17]) Suppose that v is an 8-vertex and u, v1, v2, · · · , vk are consecutive neigh-
bors of v with d(u) = d(v1) = 2 and d(vi) > 3 for 2 6 i 6 k, where k ∈ {3, 4, 5, 6, 7}. If
the face incident with v, vi, vi+1 is a 4-face for all 1 6 i 6 k − 2, and the face incident
with v, vk−1, vk is a 3-face, then at least one vertex in {v2, v3, · · · , vk−1} is a 4+-vertex.

Lemma 5. ([5]) Suppose that v is an 8-vertex and u, v1, v2, · · · , vk are consecutive neigh-
bors of v with d(u) = 2 and d(vi) > 3 for 1 6 i 6 k, where k ∈ {4, 5, 6, 7}. If the
face incident with v, vi, vi+1 is a 4-face for all 2 6 i 6 k − 2, and the face incident with
v, vj, vj+1 is a 3-face for all j ∈ {1, k − 1}, then at least one vertex in {v2, v3, · · · , vk−1}
is a 4+-vertex.

Let φ be a (partial) total 9-coloring of G. For a vertex v of G, we denote by C(v)
the set of colors of edges incident with v. Call φ is nice if only some 4−-vertices are not
colored. Note that every nice coloring can be greedily extended to a total 9-coloring of G,
since each 4−-vertex is adjacent to at most four vertices and incident with at most four
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Fig. 1. Reducible Configurations in G: d(v) = 7 in (1)

edges. Therefore, in the rest of this paper, we shall always suppose that such vertices are
colored at the very end.

By Euler’s formula |V | − |E|+ |F | = 2, we have∑
v∈V

(2d(v)− 6) +
∑
f∈F

(d(f)− 6) = −12 < 0.

We define ch to be the initial charge. Let ch(v) = 2d(v) − 6 for each v ∈ V and
ch(f) = d(f) − 6 for each f ∈ F . So

∑
x∈V ∪F ch(x) = −12 < 0. In the following,

we will reassign a new charge denoted by ch
′
(x) to each x ∈ V ∪ F according to the

discharging rules. Since our rules only move charges around, and do not affect the sum,
we have

∑
x∈V ∪F ch

′
(x) =

∑
x∈V ∪F ch(x) = −12. If we can show that ch

′
(x) > 0 for each

x ∈ V ∪F , then we get an obvious contradiction to 0 6
∑

x∈V ∪F ch
′
(x) =

∑
x∈V ∪F ch(x) =

−12. which completes our proof.
For f = (v1, v2, · · · , vk) ∈ F , we use (d(v1), d(v2), · · · , d(vk)) → (c1, c2, · · · , ck) to

denote that the vertex vi sends f the amount of charge ci for i = 1, 2, · · · , k. Now we
define the discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. For a 3-face (v1, v2, v3), let
(3−, 7+, 7+) →

(
0, 3

2
, 3
2

)
,

(4, 6+, 6+) →
(
1
2
, 5
4
, 5
4

)
,

(5+, 5+, 5+) →
(
1, 1, 1

)
.
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R3. For a 4-face (v1, v2, v3, v4), let
(3−, 7+, 3−, 7+) →

(
0, 1, 0, 1

)
,

(3−, 7+, 4+, 7+) →
(
0, 3

4
, 1
2
, 3
4

)
,

(4+, 4+, 4+, 4+) →
(
1
2
, 1
2
, 1
2
, 1
2

)
.

R4. For a 5-face (v1, v2, v3, v4, v5), let
(3−, 7+, 3−, 7+, 7+) →

(
0, 1

3
, 0, 1

3
, 1
3

)
,

(3−, 7+, 4+, 4+, 7+) →
(
0, 1

4
, 1
4
, 1
4
, 1
4

)
,

(4+, 4+, 4+, 4+, 4+) →
(
1
5
, 1
5
, 1
5
, 1
5
, 1
5

)
.

Next we show that ch
′
(x) > 0 for each x ∈ V ∪ F . Since our discharging rules are

designed such that ch
′
(f) > 0 for all f ∈ F and ch

′
(v) > 0 for all 2-vertices v ∈ V , it

suffices to check that ch
′
(v) > 0 for all 3+-vertices in G. Let v ∈ V . Suppose d(v) = 3.

Then ch
′
(v) = ch(v) = 0. Suppose d(v) = 4. Then v sends at most 1

2
to each of its incident

faces and ch
′
(v) > ch(v)− 1

2
× 4 = 0. Suppose d(v) = 5. Then f3(v) 6 3, and v sends at

most 1 to each of its incident 3-faces by R2, at most 1
2
to each of its incident 4+-faces by R3

and R4. So ch
′
(v) > ch(v)−f3(v)×1−(5−f3(v))× 1

2
= 3

2
− 1

2
f3(v) > 0. Suppose d(v) = 6.

Then f3(v) 6 4, and v sends at most 5
4
to each of its incident 3-faces, at most 1

2
to each

of its incident 4+-faces. So ch
′
(v) > ch(v)− f3(v)× 5

4
− (6− f3(v))× 1

2
= 3− 3

4
f3(v) > 0.

Call a 3-face is bad if it has a 3−-vertex, a 4-face is bad if it has two 3−-vertices, good
otherwise.

Suppose d(v) = 7. Note that f3(v) 6 5. If f3(v) 6 2, then ch
′
(v) > ch(v) −

f3(v) × 3
2
− (7 − f3(v)) × 1 = 1 − 1

2
f3(v) > 0. Suppose 3 6 f3(v) 6 5, then v is

incident with at most two bad 3-faces by Fig. 1(1). If 3 6 f3(v) 6 4, then ch
′
(v) >

ch(v)−max{2× 3
2
+(f3(v)− 2)× 5

4
+(7− f3(v))× 1

2
, 3
2
+(f3(v)− 1)× 5

4
+ 3

4
+(7− f3(v)−

1)× 1
2
, f3(v)× 5

4
+ 2× 1 + (7− f3(v)− 2)× 3

4
} = 9

4
− 1

2
f3(v) > 1

4
> 0. If f3(v) = 5, then

ch
′
(v) > ch(v)−max{2× 3

2
+ 3× 5

4
+ 2× 1

2
, 3
2
+ 4× 5

4
+ 3

4
+ 1

2
} = 1

4
> 0.

Suppose d(v) = 8. Let v1, v2, · · · , v8 be neighbors of v and f1, f2, · · · , f8 be faces inci-
dent with v in an clockwise order, where fi is incident with vi, vi+1, and i ∈ {1, 2, · · · , 8}.
Note that all the subscripts in the paper are taken modulo 8. First, we prove some
lemmas.

Lemma 6. Suppose that v is an 8-vertex and v1, v2, · · · , vk, vk+1, vs, vs+1 are consecutive
neighbors of v with d(v1) = 2 and d(vi) = 3 for 2 6 i 6 k, where 3 6 k + 1 6 s and
s ∈ {3, 5, · · · , 7}. If v is incident with 3-faces (v, vk, vk+1) and (v, vs, vs+1), and incident
with 4-faces (v, vj, xj, vj+1) for all 1 6 j 6 k − 1, then min{d(vs), d(vs+1)} > 4.

Proof. By Fig. 1(2), we have min{d(vs), d(vs+1)} > 3. Assume to be contradictory
that d(vs) = 3 or d(vs+1) = 3. Without loss of generality, suppose that d(vs+1) = 3,
and N(vs+1) = {v, vs, xs+1} (see Fig. 2). Consider a nice coloring φ of G′ = G − vv1. If
φ(v1x1) ∈ C(v), then the forbidden colors for vv1 number at most 8, so vv1 can be properly
colored. Then we can suppose φ(v1x1) ̸∈ C(v). Without loss of generality, suppose that
φ(v) = 9, φ(v1x1) = 1, and φ(vvj) = j for j ∈ {2, · · · , k, k + 1, s, s + 1}. It is easy to
see that 1 ∈ C(vj) for j ∈ {2, · · · , k, s + 1}, since otherwise, we can recolor vvj with
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Fig. 2. Reducible Configuration in G

1, color vv1 with j, a contradiction. So φ(v2x2) = · · · = φ(vk−1xk−1) = φ(vkvk+1) = 1
and 1 ∈ {φ(vsvs+1), φ(vs+1xs+1)}. Note that φ(vkxk−1) = k + 1, since otherwise, we
may get a contradiction by exchange the colors on vvk+1 and vkvk+1, color vv1 with
k + 1. Thus φ(vk−1xk−2) = k + 1, since otherwise, we exchange the colors on vvk+1

and vkvk+1, vkxk−1 and vk−1xk−1, color vv1 with k + 1, also a contradiction. Similarly,
φ(vk−2xk−3) = · · · = φ(v2x1) = k + 1.

If k + 1 = s, then φ(vs+1xs+1) = 1. We exchange the colors on vvk+1 and vkvk+1,
vkxk−1 and vk−1xk−1, · · · , v1x1 and v2x1, recolor vvs+1 with k + 1, color vv1 with s + 1,
a contradiction. So we can suppose k + 1 < s. Then k + 1 ∈ {φ(vsvs+1), φ(vs+1xs+1)},
since otherwise, we can exchange the colors on vvk+1 and vkvk+1, vkxk−1 and vk−1xk−1,
· · · , v1x1 and v2x1, recolor vvs+1 with k+1, color vv1 with s+1, a contradiction. We first
exchange the colors on vvs and vsvs+1. If φ(vsvs+1) = k+1, we additionally exchange the
colors on vvk+1 and vkvk+1, vkxk−1 and vk−1xk−1, · · · , v1x1 and v2x1. Then we color vv1
with s, also a contradiction.

Lemma 7. Suppose that v is an 8-vertex and N(v) = {vi|i = 1, 2, · · · , 8} with d(v2) = 3.
If vv2 is incident with two 3-faces (v, v1, v2) and (v, v2, v3), then there exists at most one
3-vertex vj(j ̸= 2) such that vvj is incident with a 3-face.

Proof. By Property (a), we have min{d(v1), d(v3)} > 7. Suppose, to be contradictory,
that there are two 3-vertices vj and vk (4 6 j < k 6 8), such that vvj is incident with a
3-face and vvk is incident with another 3-face. Consider a nice coloring φ of G

′
= G−vv2.

Without loss of generality, suppose that φ(v) = 2 and φ(vvi) = i for i ∈ {1, 3, 4, 5, 6, 7, 8}.
If 9 ̸∈ C(v2), then we can obtain a nice coloring ofG by coloring vv2 with 9, a contradiction.
So 9 ∈ C(v2), that is, φ(v1v2) = 9 or φ(v2v3) = 9. Without loss of generality, suppose
that φ(v1v2) = 9. At the same time, we have the following results:

(1) For some i ∈ {j, k}, if φ(v2v3) ̸= i then 9 ∈ C(vi);
(2) For some i ∈ {j, k}, if φ(v2v3) ̸∈ {1, i}, then C(vi) = {1, i, 9};
(3) For some i ∈ {j, k}, if φ(v2v3) = 1, then C(vi) = {3, i, 9}.
For (1), if 9 ̸∈ C(vi), then we can recolor vvi with 9, and color vv2 with i to obtain

a nice coloring of G, a contradiction. For (2), if {1, i, 9} ⊂ C(vi), then we exchange the
colors on vv1 and v1v2, recolor vvi with 1, and color vv2 with i, a contradiction again.
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For (3), if {3, i, 9} ⊂ C(vi), then we exchange the colors on vv1 and v1v2, vv3 and v2v3,
recolor vvi with 3, and color vv2 with i, a contradiction.
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Fig. 3. Reducible Configurations in G

Case 1. v1vk ̸∈ E(G) and v3vj ̸∈ E(G).
Without loss of generality, suppose thatN(vj) = {v, vj+1, xj} andN(vk) = {v, vk−1, xk}

(see Fig. 3(1)). It is obvious that vj+1 ̸= vk. Suppose φ(v2v3) = 1. Then C(vj) = {3, j, 9}
by (3). We exchange the colors on vvj+1 and vjvj+1, color vv2 with j+1. If φ(vjvj+1) = 3,
then we additionally exchange the colors on vv1 and v1v2, vv3 and v2v3. Thus we obtain a
nice coloring of G, a contradiction. Suppose φ(v2v3) = j + 1. Then C(vj) = {1, j, 9} and
C(vk) = {1, k, 9} by (2). We exchange the colors on vvj+1 and vjvj+1, recolor vvk with
j+1, and color vv2 with k. If φ(vjvj+1) = 1, then we additionally exchange the colors on
vv1 and v1v2. Thus we also obtain a nice coloring of G, a contradiction, too. So we have
φ(v2v3) ̸∈ {1, j + 1}. Since φ(v2v3) is different from either j or k, we may assume that
φ(v2v3) ̸= j. Then C(vj) = {1, j, 9} by (2). We exchange the colors on vvj+1 and vjvj+1,
color vv2 with j + 1. If φ(vjvj+1) = 1, then we additionally exchange the colors on vv1
and v1v2. Thus we obtain a nice coloring of G, a contradiction.

Case 2. v1vk ∈ E(G).
Without loss of generality, suppose that N(vj) = {v, vj−1, xj} and N(vk) = {v, v1, xk}

(see Fig. 3(2)). If φ(v2v3) ̸∈ {1, k}, then C(vk) = {1, k, 9} by (2), so φ(v1vk) = 1
or φ(v1vk) = 9, a contradiction. Suppose φ(v2v3) = 1. Then C(vj) = {3, j, 9} and
C(vk) = {3, k, 9} by (3). If v3 = vj−1, then φ(v3vj) = 9 and φ(v1vk) = 3. We exchange
the colors on vv1 and v1v2, v2v3 and v3vj, recolor vvk with 1, and color vv2 with k, a
contradiction. So we can suppose v3 ̸= vj−1. We exchange the colors on vvj−1 and vj−1vj,
and color vv2 with j − 1. If φ(vj−1vj) = 3, then we additionally exchange the colors on
vv1 and v1v2, vv3 and v2v3. Thus we obtain a nice coloring of G, a contradiction. Suppose
φ(v2v3) = k. Then C(vj) = {1, j, 9} by (2). We exchange the colors on vvj−1 and vj−1vj,
color vv2 with j − 1. If φ(vj−1vj) = 1, then we additionally exchange the colors on vv1
and v1v2. Thus we also obtain a nice coloring of G, a contradiction, too.

Case 3. v3vj ∈ E(G), but v1vk ̸∈ E(G).
Without loss of generality, suppose that N(vj) = {v, v3, xj} and N(vk) = {v, vk−1, xk}
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(see Fig. 3(3)). It is obvious that vj ̸= vk−1. Suppose φ(v2v3) = 1. Then C(vj) = {3, j, 9}
and C(vk) = {3, k, 9} by (3). We exchange the colors on vv1 and v1v2, v2v3 and v3vj,
recolor vvk with 1, and color vv2 with k. a contradiction. Suppose φ(v2v3) = j. Then
C(vk) = {1, k, 9} by (2). We exchange the colors on vvk−1 and vk−1vk, color vv2 with
k − 1. If φ(vk−1vk) = 1, then we additionally exchange the colors on vv1 and v1v2. Thus
we also obtain a nice coloring of G, a contradiction. So we have φ(v2v3) ̸∈ {1, j}. Then
C(vj) = {1, j, 9} by (2). We exchange the colors on vv3 and v3vj, color vv2 with 3. If
φ(v3vj) = 1, then we additionally exchange the colors on vv1 and v1v2. Thus we also
obtain a nice coloring of G, a contradiction, too.

Lemma 8. Suppose that d(vi) = d(vk) = 2 and d(vj) > 3 for all j = i+1, · · · , k−1, where
k > i + 2. If min{d(fi), d(fi+1), · · · , d(fk−1)} > 4, then v sends at most 3

2
+ (k − i − 2)

(in total) to fi, fi+1, · · · , fk−1.

Proof. By Lemma 3, max{d(vi+1), · · · , d(vk−1)} > 4 or max{d(fi), · · · , d(fk−1)} > 5. If
max{d(vi+1), · · · , d(vk−1)} > 4, then v sends at most 2 × 3

4
+ (k − i − 2) (in total) to

fi, · · · , fk−1 by R3. If max{d(fi), · · · , d(fk−1)} > 5, then or v sends at most 1
3
+(k− i−1)

(in total) to fi, · · · , fk−1 by R3 and R4. Since 2× 3
4
> 1+ 1

3
, v sends at most 3

2
+(k− i−2)

(in total) to fi, fi+1, · · · , fk−1.

Lemma 9. Suppose that d(vi) = d(vi+4) = 2 and d(vj) > 3 for all j = i + 1, i + 2, i + 3.
If min{d(fi), d(fi+2), d(fi+3)} > 4 and d(fi+1) = 3, then v sends at most 15

4
(in total) to

fi, fi+1, fi+2 and fi+3.

Proof. If d(vi+1) = 3, then d(vi+2) > 7, and d(fi) > 5 by Lemma 4, so v sends at most
1
3
+ 3

2
+ 3

4
+ 1 = 43

12
to fi, fi+1, fi+2 and fi+3. If d(vi+2) = 3, then d(vi+1) > 7, and

d(vi+3) > 4 or there is at least one 5+-face in {fi+2, fi+3} by Lemma 4, so v sends at most
3
4
+ 3

2
+ max{2 × 3

4
, 1 + 1

3
} = 15

4
to fi, fi+1, fi+2 and fi+3. If min{d(vi+1), d(vi+2)} > 4,

then v sends at most 3
4
+ 5

4
+ 3

4
+ 1 = 15

4
to fi, fi+1, fi+2 and fi+3. Since

43
12

< 15
4
, v sends

at most 15
4
(in total) to fi, fi+1, fi+2 and fi+3.

Lemma 10. Suppose that d(vi) = d(vk) = 2 and d(vj) > 3 for all j = i + 1, · · · , k − 1,
where k > i+3. If min{d(fi), d(fk−1)} > 4 and d(fi+1) = · · · = d(fk−2) = 3, then v sends
at most 11

4
+ (k − i− 3)× 5

4
(in total) to fi, fi+1, · · · , fk−1.

Proof. We note that if k > i + 4, then min{d(vi+2), · · · , d(vk−2)} > 4 by Fig. 1(5).
If d(fi) = d(fk−1) = 4, then min{d(vi+1), d(vk−1)} > 4 by Lemma 4, so v sends at
most 2 × 3

4
+ (k − i − 2) × 5

4
= 11

4
+ (k − i − 3) × 5

4
(in total) to fi, fi+1, · · · , fk−1.

If one of fi and fk−1 is 4−face, then v sends at most 3
4
+ 1

3
+ 3

2
+ (k − i − 3) × 5

4
=

31
12

+ (k − i − 3) × 5
4
(in total) to fi, fi+1, · · · , fk−1. If min{d(fi), d(fk−1)} > 5, then v

sends at most 2 × 1
3
+ 2 × 3

2
+ (k − i − 4) × 5

4
= 29

12
+ (k − i − 3) × 5

4
(in total) to

fi, fi+1, · · · , fk−1. Since max{11
4
, 31
12
, 29
12
} = 11

4
, v sends at most 11

4
+ (k − i − 3) × 5

4
(in

total) to fi, fi+1, · · · , fk−1.

Now, we come back to check the new charge of 8-vertex v and consider nine cases in
the following.
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Case 1. n2(v) = 8. Note that f6+(v) = 8 by Fig. 1(3) and (4). Then, no charge is
discharged from v to its incident faces. So ch

′
(v) = ch(v)− 8× 1 = 10− 8 = 2 > 0 by R1.

Case 2. n2(v) = 7. Then f6+(v) > 6 and f3(v) = 0 by Fig. 1(4). So ch
′
(v) >

ch(v)− 7× 1− 2× 1 = 10− 9 = 1 > 0.

Case 3. n2(v) = 6. Then there are four possibilities in which 2-vertices are located.
They are shown as configurations in Fig. 4. For Fig. 4(1), f6+(v) > 5 and f3(v) 6 1. So
ch

′
(v) > ch(v)− 6× 1− 3

2
− 2× 1 = 1

2
> 0. For Fig. 4(2)–(4), f6+(v) > 4 and f3(v) = 0.

So ch
′
(v) > ch(v)− 6× 1− 4× 1 = 0.

)
1
(
 )
4
(
)
3
(
)
2
(


Fig. 4. n2(v) = 6

Case 4. n2(v) = 5. Then there are five possibilities in which 2-vertices are located. They
are shown as configurations in Fig. 5.

)
1
(
 )
4
(
)
3
(
)
2
(
 )
5
(


Fig. 5. n2(v) = 5

For Fig. 5(1), f6+(v) > 4 and f3(v) 6 2. So ch
′
(v) > ch(v)−5×1−2× 3

2
−2×1 = 0. For

Fig. 5(2) and (3), f6+(v) > 3 and f3(v) 6 1. So ch
′
(v) > ch(v)−5×1− 3

2
−max{11

4
, 3
2
+1} =

3
4
> 0 by Lemma 8 and Lemma 10. For Fig. 5(4) and (5), f6+(v) > 2 and f3(v) = 0. So

ch
′
(v) > ch(v)− 5× 1− 3× 3

2
= 1

2
> 0.

Case 5. n2(v) = 4. Then there are eight possibilities in which 2-vertices are located.
They are shown as configurations in Fig. 6.

For Fig. 6(1), f6+(v) > 3 and f3(v) 6 3. If f3(v) = 3, then ch
′
(v) > ch(v) − 4 × 1 −

(11
4
+ 2× 5

4
) = 3

4
> 0. Otherwise, ch

′
(v) > ch(v)− 4× 1− f3(v)× 3

2
− (5− f3(v))× 1 =

1 − 1
2
f3(v) > 0. For Fig. 6(2) and (4), f6+(v) > 2 and f3(v) 6 2. If f3(v) = 2, then

ch
′
(v) > ch(v) − 4 × 1 − 3

2
− (11

4
+ 5

4
) = 1

2
> 0 by Lemma 8 and Lemma 10. Otherwise,

ch
′
(v) > ch(v)−4×1− 3

2
−f3(v)× 3

2
−(4−f3(v))×1 = 1

2
− 1

2
f3(v) > 0. For Fig. 6(3) and (7),
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)
1
(
 )
4
(
)
3
(
)
2
(


)
6
(
 )
8
(
)
7
(
)
5
(


Fig. 6. n2(v) = 4

f6+(v) > 2 and f3(v) 6 2. So ch
′
(v) > ch(v)− 4× 1− f3(v)× 11

4
− (2− f3(v))× (3

2
+1) =

1 − 1
4
f3(v) > 0 by Lemma 8 and Lemma 10. For Fig. 6(5) and (6), f6+(v) > 1 and

f3(v) 6 1. So ch
′
(v) > ch(v)−4×1−2× 3

2
−f3(v)× 11

4
−(1−f3(v))×(3

2
+1) = 1

2
− 1

4
f3(v) > 0.

For Fig. 6(8), f3(v) = 0. So ch
′
(v) > ch(v)− 4× 1− 4× 3

2
= 0.

Case 6. n2(v) = 3. Then there are five possibilities in which 2-vertices are located. They
are shown as configurations in Fig. 7.

)
1
(
 )
4
(
)
3
(
)
2
(
 )
5
(


8
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f
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1
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f


4
f

3
f
2
f


1
f


7
f

8
f


6
f

5
f


4
f

3
f
2
f


1
f


7
f

8
f


6
f

5
f


4
f

3
f
2
f


1
f


7
f

8
f


6
f

5
f


4
f

3
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f
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Fig. 7. n2(v) = 3

For Fig. 7(1), note that min{d(f1), d(f2)} > 6, min{d(f3), d(f8)} > 4, and f3(v) 6 3.
If f3(v) 6 2, then ch

′
(v) > ch(v)− 3× 1− f3(v)× 3

2
− (6− f3(v))× 1 = 1− 1

2
f3(v) > 0.

Suppose f3(v) = 3, Then min{d(f4), d(f7)} = 3. Without loss of generality, suppose
that d(f4) = 3, then v sends at most 3

4
to f3 by Lemma 4. If d(f7) = 3, then ch

′
(v) >

ch(v) − 3 × 1 − 1 − 2 × 3
4
− 3 × 3

2
= 0. Otherwise, d(f4) = d(f5) = d(f6) = 3, then f5 is

good by Fig. 1(5). So ch
′
(v) > ch(v)− 3× 1− 2× 1− 3

4
− 5

4
− 2× 3

2
= 0.

For Fig. 7(2), d(f1) > 6, min{d(f2), d(f3), d(f4), d(f8)} > 4, and f3(v) 6 3. If f3(v) 6
1, then ch

′
(v) > ch(v)−3×1− 3

2
−f3(v)× 3

2
−(5−f3(v))×1 = 1

2
− 1

2
f3(v) > 0 by Lemma 8.

If f3(v) = 3, then d(f5) = d(f6) = d(f7) = 3, so ch
′
(v) > ch(v)−3×1− 3

2
− (11

4
+2× 5

4
) =

1
4
> 0 by Lemma 8 and Lemma 10. Suppose f3(v) = 2. If max{d(f4), d(f8)} > 5, then
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ch
′
(v) > ch(v) − 3 × 1 − 3

2
− 2 × 3

2
− 1

3
− 2 × 1 = 1

6
> 0. Otherwise, without loss of

generality, suppose that d(f5) = 3. If d(f6) = 3, then f4 and f5 are good by Fig. 1(5) and
Lemma 4. So ch

′
(v) > ch(v) − 3 × 1 − 3

2
− 3

4
− 5

4
− 3

2
− 2 × 1 = 0. If d(f7) = 3, then f4

and f8 are good. So ch
′
(v) > ch(v)− 3× 1− 3

2
− 2× 3

4
− 2× 3

2
− 1 = 0.

For Fig. 7(3), d(f1) > 6, min{d(f2), d(f4), d(f5), d(f8)} > 4, and f3(v) 6 3. If
f3(v) = 3, then ch

′
(v) > ch(v)− 3× 1− (11

4
+ 5

4
)− 11

4
= 1

4
> 0 by Lemma 10. Otherwise,

f3(v) 6 2. If d(f3) = 3, then ch
′
(v) > ch(v) − 3 × 1 − 11

4
− max{15

4
, 4 × 1} = 1

4
> 0. If

d(f3) > 4, then ch
′
(v) > ch(v)− 3× 1− (3

2
+ 1)−max{11

4
+ 5

4
, 15

4
, 4× 1} = 1

2
> 0.

For Fig. 7(4), f3(v) 6 2. So ch
′
(v) > ch(v)−3×1−2× 3

2
−max{11

4
+ 5

4
, 15

4
, 4×1} = 0.

For Fig. 7(5), f3(v) 6 2. So ch
′
(v) > ch(v)−3×1− 3

2
−f3(v)× 11

4
−(2−f3(v))×(3

2
+1) =

1
2
− 1

4
f3(v) > 0.

Case 7. n2(v) = 2. Then there are four possibilities in which 2-vertices are located.
They are shown as configurations in Fig. 8.
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Fig. 8. n2(v) = 2

For Fig. 8(1), note that d(f1) > 5 and f3(v) 6 4. Suppose f3(v) = 4. Then without
loss of generality, let d(f3) = d(f4) = d(f7) = d(fi) = 3 (i ∈ {5, 6}). Then d(v4) > 4 by
Fig. 1(5), and v sends at most max{1

3
+ 3

2
, 3
4
+ 5

4
} = 2 (in total) to f2 and f3. If d(f8) > 5,

then ch
′
(v) > ch(v) − 2 × 1 − 1

3
− 2 − 3 × 3

2
− 3

4
− 1

3
= 1

12
> 0 by Lemma 5. Otherwise,

d(f8) = 4, then d(v8) > 4 by Lemma 4, it follows that f4 (if i = 5) or f7 (if i = 6) is good,
and v sends at most max{3

2
+ 3

2
+ 1

3
, 3
2
+ 5

4
+ 3

4
} = 7

2
(in total) to f5, f6 and f7 (or f4). So

ch
′
(v) > ch(v)− 2× 1− 1

3
− 2− 5

4
− 7

2
− 3

4
= 1

6
> 0.

Suppose f3(v) = 3. If f5+(v) > 3, then ch
′
(v) > ch(v) − 2 × 1 − f5+(v) × 1

3
− 3 ×

3
2
− (5 − f5+(v)) × 1 = 2

3
f5+(v) − 3

2
> 0. If f5+(v) = 2, then except f1, there is one

5+-face incident with v, and there is at least one good 4-face which incident with v. So
ch

′
(v) > ch(v)− 2× 1− 2× 1

3
− 3× 3

2
− 3

4
− 2× 1 = 1

12
> 0. If f5+(v) = 1, then d(fi) 6 4

for all 2 6 i 6 8. By symmetry, we need to consider the following cases in which 3-faces
are located.

First, suppose d(f3) = d(f4) = d(f5) = 3. Then min{d(v3), d(v4), d(v5)} > 4 and
max{d(v6), d(v7), d(v8)} > 4 by Fig. 1(5) and Lemma 4. So ch

′
(v) > ch(v)− 2× 1− 1

3
−

2 × 5
4
− 3

2
− 2 × 3

4
− 2 × 1 = 1

6
> 0. Second, suppose d(f4) = d(f5) = d(f6) = 3. Then

min{d(v5), d(v6)} > 4 by Fig. 1(5), max{d(v3), d(v4)} > 4 and max{d(v7), d(v8)} > 4 by
Lemma 4. So ch

′
(v) > ch(v)−2×1− 1

3
−max{5

4
+2× 3

2
+3× 3

4
+1, 2× 5

4
+ 3

2
+2× 3

4
+2×1} =

1
6
> 0. Third, suppose d(f3) = d(f4) = d(f6) = 3. Then d(v4) > 4 by Fig. 1(5),
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d(v3) > 4 and max{d(v7), d(v8)} > 4 by Lemma 4, max{d(v5), d(v6)} > 4 by Lemma
5. So ch

′
(v) > ch(v) − 2 × 1 − 1

3
− 2 × 3

2
− 5

4
− 3 × 3

4
− 1 = 1

6
> 0. Fourth, suppose

d(f3) = d(f4) = d(f7) = 3. Then min{d(v3), d(v4), d(v8)} > 4 by Fig. 1(5) and Lemma
4, max{d(v5), d(v6), d(v7)} > 4 by Lemma 5. So ch

′
(v) > ch(v) − 2 × 1 − 1

3
− 2 × 3

2
−

5
4
− 3 × 3

4
− 1 = 1

6
> 0. Fifth, suppose d(f4) = d(f5) = d(f7) = 3. Then d(v5) > 4 by

Fig. 1(5), d(v8) > 4 and max{d(v3), d(v4)} > 4 by Lemma 4, max{d(v6), d(v7)} > 4 by
Lemma 5. So ch

′
(v) > ch(v)− 2× 1− 1

3
− 2× 3

2
− 5

4
− 3× 3

4
− 1 = 1

6
> 0. Sixth, suppose

d(f3) = d(f5) = d(f7) = 3. Then f2, f4, f6 and f8 are good by Lemma 4 and Lemma 5,
so ch

′
(v) > ch(v)− 2× 1− 1

3
− 3× 3

2
− 4× 3

4
= 1

6
> 0.

Suppose f3(v) = 2. Then without loss of generality, let d(fi) = d(fj) = 3 (3 6 i < j 6
7). If f5+(v) > 2, then ch

′
(v) > ch(v)− 2× 1− f5+(v)× 1

3
− 2× 3

2
− (6− f5+(v))× 1 =

2
3
f5+(v)−1 > 0. Otherwise, d(ft) 6 4 for all 2 6 t 6 8. If there is at least one good 3-face

in {fi, fj}, then each face adjacent to good 3-face is good. So ch
′
(v) > ch(v)−2×1− 1

3
− 5

4
−

3
4
− 3

2
−4×1 = 1

6
> 0. Now we suppose both fi and fj are bad. If j = i+1, then i ∈ {4, 5}

by Fig. 1(5) and Lemma 4, it follows that there are at least two good 4-faces in {f2, f3, f4},
so ch

′
(v) > ch(v)− 2× 1− 1

3
− 2× 3

2
− 3× 1− 2× 3

4
= 1

6
> 0. Otherwise, there are two

7+-vertices in {vi, vi+1, vj, vj+1}. So ch
′
(v) > ch(v)−2×1− 1

3
−2× 3

2
−2× 3

4
−3×1 = 1

6
> 0.

Suppose f3(v) 6 1. Then ch
′
(v) > ch(v)− 2× 1− 1

3
− f3(v)× 3

2
− (7− f3(v))× 1 =

2
3
− 1

2
f3(v) > 0.

For Fig. 8(2), note that f3(v) 6 3, and v sends at most 3
2
(in total) to f1 and f2 by

Lemma 8. Suppose f3(v) = 3, without loss of generality, let d(f4) = d(f5) = d(fi) = 3
(i ∈ {6, 7}). Then v sends at most max{3

2
+ 1

2
, 5
4
+ 3

4
} = 2 (in total) to f3 and f4, and v

sends at most max{3
2
+ 3

2
+1+ 1

3
, 5
4
+ 3

2
+2× 3

4
, 5
4
+ 5

4
+ 3

4
+1} = 13

3
(in total) to f5, f6, f7 and

f8 by Fig. 1(5), Lemma 4 and Lemma 5. So ch
′
(v) > ch(v)− 2× 1− 3

2
− 2− 13

3
= 1

6
> 0.

Suppose f3(v) = 2. Then without loss of generality, let d(fi) = d(fj) = 3 (4 6 i <
j 6 7). If there is at least one 5+-face in {ft|3 6 t 6 8}, then ch

′
(v) > ch(v) − 2 ×

1 − 3
2
− 2 × 3

2
− 1

3
− 3 × 1 = 1

6
> 0. Otherwise, d(ft) 6 4 for all 3 6 t 6 8. If there is

at least one good 3-face in {fi, fj}, then each 4-face adjacent to good 3-face is good. So
ch

′
(v) > ch(v)− 2× 1− 3

2
− 3

2
− 5

4
− 3

4
− 3× 1 = 0. Now we suppose both fi and fj are

bad. If j = i + 1, then i = 5, f3, f4, f7, and f8 are good by Fig. 1(5) and Lemma 4. So
ch

′
(v) > ch(v)− 2× 1− 3

2
− 4× 3

4
− 2× 3

2
= 1

2
> 0. Otherwise, there are two 7+-vertices

in {vi, vi+1, vj, vj+1}. So ch
′
(v) > ch(v)− 2× 1− 3

2
− 2× 3

2
− 1

2
− 3× 1 = 0.

Suppose f3(v) 6 1. Then ch
′
(v) > ch(v)− 2× 1− 3

2
− f3(v)× 3

2
− (6− f3(v))× 1 =

1
2
− 1

2
f3(v) > 0.

For Fig. 8(3), note that f3(v) 6 4. If f3(v) = 4, then d(f2) = d(f5) = d(f6) = d(f7) =
3, so ch

′
(v) > ch(v)− 2× 1− 11

4
− (11

4
+ 2× 5

4
) = 0 by Lemma 10.

Suppose f3(v) = 3. If d(f2) > 4, then d(f5) = d(f6) = d(f7) = 3, so ch
′
(v) >

ch(v) − 2 × 1 − (1 + 3
2
) − (11

4
+ 2 × 5

4
) = 1

4
> 0. If d(f2) = 3, then v sends at most 11

4

(in total) to f1, f2 and f3 by Lemma 10. Without loss of generality, let d(f5) = 3. If
d(f6) = 3, then v sends at most 2 (in total) to f4 and f5, v sends at most 3

4
to f7. So

ch
′
(v) > ch(v)− 2× 1− 11

4
− 2− 3

2
− 3

4
− 1 = 0. If d(f7) = 3, then v sends at most 3

4
to

f4, f6 and f8, respectively. So ch
′
(v) > ch(v)− 2× 1− 11

4
− 2× 3

2
− 3× 3

4
= 0.
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Suppose f3(v) = 2. Then without loss of generality, let d(fi) = d(fj) = 3 (i < j). If
i = 2, then v sends at most 11

4
(in total) to f1, f2 and f3, v sends at most 3

4
to fj−1 or fj+1.

So ch
′
(v) > ch(v)− 2× 1− 11

4
− 3

2
− 3

4
− 3× 1 = 0. Otherwise, v sends at most 5

2
(in total)

to f1, f2 and f3 by Lemma 8, without loss of generality, let i = 5. If j = 6, then v sends at
most 2 (in total) to f4 and f5. So ch

′
(v) > ch(v)−2×1− 5

2
−2− 3

2
−2×1 = 0. If j = 7, then v

sends at most 3
4
to f4 and f8, respectively. So ch

′
(v) > ch(v)−2×1− 5

2
−2× 3

4
−2× 3

2
−1 = 0.

Suppose f3(v) 6 1. If d(f2) = 3, then ch
′
(v) > ch(v) − 2 × 1 − 11

4
− 5 × 1 = 1

4
> 0.

Otherwise, ch
′
(v) > ch(v)− 2× 1− 5

2
− 3

2
− 4× 1 = 0.

For Fig. 8(4), note that f3(v) 6 4. Suppose f3(v) = 4. Then d(f2) = d(f3) = d(f6) =
d(f7) = 3 and ch

′
(v) > ch(v)− 2× 1− 2× (11

4
+ 5

4
) = 0 by Lemma 10. Suppose f3(v) = 3.

Then ch
′
(v) > ch(v)− 2× 1− (11

4
+ 5

4
)− 15

4
= 1

4
> 0 by Lemma 9. Suppose f3(v) = 2. If

two 3-faces incident with v are adjacent, then ch
′
(v) > ch(v)−2×1− (11

4
+ 5

4
)−4×1 = 0.

Otherwise, ch
′
(v) > ch(v) − 2 × 1 − 2 × 15

4
= 1

2
> 0. Suppose f3(v) 6 1. Then ch

′
(v) >

ch(v)− 2× 1− f3(v)× 15
4
− (2− f3(v))× (4× 1) = 1

4
f3(v) > 0.

Case 8. n2(v) = 1. Without loss of generality, let v1 be the unique 2-vertex adjacent to
v. First, we consider the case that v1 is not incident with any 3-face. Note that f3(v) 6 5.

Suppose f3(v) = 5. Then d(f2) = d(f3) = d(fi) = d(f6) = d(f7) = 3 (i ∈ {4, 5}), and
at least two faces in {f3, fi, f6} are good by Fig. 1(5) and Lemma 5. If min{f1, f8} > 5,
then ch

′
(v) > ch(v)− 1− 2× 1

3
− 3× 3

2
− 2× 5

4
− 1 = 1

3
> 0. Otherwise, min{f1, f8} 6 4,

without loss of generality, let d(f1) = 4. If d(v2) = 3, then f3, fi, f6 and f7 are good by
Lemma 6, so ch

′
(v) > ch(v)−1−1− 3

2
−4× 5

4
−2× 3

4
= 0. If d(v2) > 4, we may assume that

d(f8) > 5 or d(v8) > 4, then ch
′
(v) > ch(v)−1− 3

4
−3× 5

4
− 3

2
−1−max{3

2
+ 1

3
, 5
4
+ 3

4
} = 0.

Suppose f3(v) = 4. Then there is at least one 3-face in {f2, f7}, without loss of
generality, let d(f2) = d(fi) = d(fj) = d(ft) = 3, where 2 < i < j < t and t ∈ {6, 7}. If
f5+(v) > 2, then ch

′
(v) > ch(v)−1−f5+(v)× 1

3
−4× 3

2
−(4−f5+(v))×1 = 2

3
f5+(v)−1 > 0.

Then f5+(v) 6 1. We need to consider two cases. First, suppose there is one 5+-face in
{f1} ∪ {fx|t+ 1 6 x 6 8}, then at least two faces in {f3, f4, f5, f6} are good by Fig. 1(5)
and Lemma 5. So ch

′
(v) > ch(v)− 1− 1

3
−max{2× 3

2
+2× 5

4
+3× 1, 3× 3

2
+ 5

4
+2× 1+

3
4
, 4 × 3

2
+ 1 + 2 × 3

4
} = 1

6
> 0. Second, suppose d(f1) = d(fx) = 4 for all t + 1 6 x 6 8.

If d(v2) = 3 or d(vy) = 3 for all t+ 1 6 y 6 8, then v is incident with at least three good
3-faces and one good 4-face by Lemma 6. So ch

′
(v) > ch(v)−1− 3

2
−3× 5

4
−3×1− 3

4
= 0.

Otherwise, d(v2) > 4 and max{d(vy)|t + 1 6 y 6 8} > 4, that is, there are at least two
good 4-faces in {f1} ∪ {fx|t + 1 6 x 6 8}. Then f5+(v) = 1 or at least two faces in
{f3, f4, f5, f6} are good. So ch

′
(v) > ch(v)− 1−max{4× 3

2
+ 1 + 2× 3

4
+ 1

3
, 2× 3

2
+ 2×

5
4
+ 2× 1 + 2× 3

4
, 3× 3

2
+ 5

4
+ 1 + 3× 3

4
, 4× 3

2
+ 4× 3

4
} = 0.

Suppose f3(v) = 3. If f5+(v) > 1, then ch
′
(v) > ch(v)− 1− f5+(v)× 1

3
− 3× 3

2
− (5−

f5+(v))× 1 = 2
3
f5+(v)− 1

2
> 0. Otherwise, at least two faces incident with v are good by

Lemma 5 and Lemma 6. So ch
′
(v) > ch(v)−1−max{2× 3

2
+ 5

4
+ 3

4
+4×1, 3× 3

2
+2× 3

4
+

3× 1} = 0. Suppose f3(v) 6 2. Then ch
′
(v) > ch(v)− 1− f3(v)× 3

2
− (8− f3(v))× 1 =

1− 1
2
f3(v) > 0.

Next, we consider the case that v1 is incident with a 3-face. Then f3(v) 6 6, and the
other 3-faces incident with v are good by Fig. 1(2). If f3(v) = 6, then d(f1) = d(f2) =
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d(f3) = d(f5) = d(f6) = d(f7) = 3, v sends at most 1
2
to f4, and v sends at most 3

4
to

f8. So ch
′
(v) > ch(v) − 1 − 3

2
− 5 × 5

4
− 1

2
− 3

4
= 0. Suppose f3(v) 6 5. If f5+(v) > 1,

then ch
′
(v) > ch(v) − 1 − 3

2
− 4 × 5

4
− f5+(v) × 1

3
− (3 − f5+(v)) × 1 = 2

3
f5+(v) − 1

2
> 0.

Otherwise, f5+(v) = 0. If f3(v) = 5, then at least two 4-faces incident with v are good. So
ch

′
(v) > ch(v)−1− 3

2
−4× 5

4
−1−2× 3

4
= 0. If f3(v) 6 4, then at least one 4-face incident

with v is good. So ch
′
(v) > ch(v) − 1 − 3

2
− (f3(v) − 1)× 5

4
− (8 − f3(v) − 1)× 1 − 3

4
=

1− 1
4
f3(v) > 0.

Case 9. n2(v) = 0. Note that f3(v) 6 6. If f3(v) 6 4, then ch
′
(v) > ch(v)− f3(v)× 3

2
−

(8−f3(v))×1 = 2− 1
2
f3(v) > 0. Suppose f3(v) = 5. Then there are two adjacent 3-cycles

which incident with v, without loss of generality, let d(fi) = d(fi+1) = 3. If f5+(v) > 1,
then ch

′
(v) > ch(v) − 5 × 3

2
− f5+(v) × 1

3
− (3 − f5+(v)) × 1 = 2

3
f5+(v) − 1

2
> 0. Then

f5+(v) = 0. If d(vi+1) = 3, then v is incident with at most four bad 3-faces by Lemma
7, so ch

′
(v) > ch(v) − 4 × 3

2
− 5

4
− 2 × 1 − 3

4
= 0. Otherwise, no two 3-cycles have a

common 3-vertex, then there are at least two good faces which incident with v by Fig.
1(6), so ch

′
(v) > ch(v)− 3× 3

2
− 1−max{2× 5

4
+2× 1, 3

2
+ 5

4
+1+ 3

4
, 2× 3

2
+2× 3

4
} = 0.

Suppose f3(v) = 6. Then without loss of generality, let d(f1) = d(f2) = d(f3) = d(f5) =
d(f6) = d(f7) = 3. If min{d(v2), d(v3), d(v6), d(v7)} = 3, then v is incident with at
most four bad 3-faces by Lemma 7. So ch

′
(v) > ch(v) − 4 × 3

2
− 2 × 5

4
− 2 × 3

4
= 0.

Otherwise, min{d(v2), d(v3), d(v6), d(v7)} > 4. If max{d(v1), d(v4), d(v5), d(v8)} > 4, then
ch

′
(v) > ch(v) − 3 × 3

2
− 3 × 5

4
− 1 − 3

4
= 0. If d(v1) = d(v4) = d(v5) = d(v8) = 3, then

min{d(v2), d(v3), d(v6), d(v7)} > 7, so ch
′
(v) > ch(v)− 4× 3

2
− 2× 1− 2× 1 = 0.

Hence we complete the proof of the theorem.
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