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Abstract

The total chromatic number of a graph G, denoted by x”(G), is the minimum
number of colors needed to color the vertices and edges of G such that no two
adjacent or incident elements get the same color. It is known that if a planar graph
G has maximum degree A > 9, then x”/(G) = A+ 1. The join K; V P, of K; and
P, is called a fan graph F,,. In this paper, we prove that if G is an F5-free planar
graph with maximum degree 8, then y”(G) = 9.
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1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow [2] for the
terminology and notation not defined here. For a graph GG, we denote its vertex set, edge
set and maximum degree by V(G), E(G) and A(G) (or simply V', E and A), respectively.
For a face f of G, the degree d(f) is the number of edges incident with it, where each
cut-edge is counted twice. The join K; V P, of K; and P, is called a fan graph F,. We
say that a graph G is Fj,-free if G contains no F,, as a subgraph. A k-cycle is a cycle of
length k. We say that two cycles are adjacent if they share at least one edge.

A total k-coloring of G is a coloring of V' U F using k colors such that no two adjacent
or incident elements receive the same color. The total chromatic number x"(G) is the
smallest integer k such that G has a total k-coloring. Clearly, x”(G) > A+ 1. Behzad [1]
and Vizing [16] independently posed the following famous conjecture, which is known as
the total coloring conjecture (TCC).

Conjecture A. For any graph G, X" (G) < A+ 2.

This conjecture was confirmed for general graphs with A < 5. In recent years, the
study of total colorings for the class of planar graphs has attracted considerable attention.
For planar graphs the only open case is A = 6 ([8, 13]), and for planar graphs with large
maximum degree, there is a stronger result. It is shown that x"(G) = A+ 1if G is a
planar graph with A > 9 ([9]). This stronger result does not hold for planar graphs of
maximum degree at most 3. For 4 < A < 8, it is unknown that x"(G) = A+ 1if Gis a
planar graph with maximum degree A. For A = 8, the following four results have been
recently proved.

Theorem A. ([7]) Let G be a planar graph with A = 8. If G contains no adjacent
3-cycles, then x"(G) = A+ 1.

(@)
Theorem B. ([15]) Let G be a planar graph with A > 8. If G contains no adjacent
4-cycles, then X"(G) = A + 1.

Theorem C. ([14]) Let G be a planar graph with A > 8. If G contains no 5- or 6-cycles
with chords, then X"(G) = A + 1.

Theorem D. ([5]) Let G be a planar graph with A > 8. If G contain no 5-cycles with
two chords, then X"(G) = A + 1.

Here, we generalize these results and get the following result.
Theorem 1. If G be an Fs-free planar graph with A > 8, then X"(G) = A + 1.

Recently, neighbor sum distinguishing total colorings have received much attention
([10]). In [11, 12] neighbor sum distinguishing total colorings of planar graphs have been
studied.

Now, we introduce some more notations and definitions. Let G be a planar graph with
a plane drawing, denote by F' the face set of G. For a vertex v of G, let N(v) denote the
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set of vertices adjacent to v, and let d(v) = |N(v)| denote the degree of v. A k-vertex,
a k™ -vertex or a kT -vertezr is a vertex of degree k, at most k or at least k, respectively.
Similarly, we can define a k-face, a k™ -face and a k™ -face. We use (vq,vq, -+ ,vi) to denote
a cycle (or a face) whose boundary vertices are vy, vg, - - , vy in the clockwise order in G.
Denote by ng(v) the number of d-vertices adjacent to v, by f;(v) the number of d-faces
incident with v.

2 Proof of Theorem 1

According to [9], planar graphs with A > 9 have a total (A + 1)-coloring, so to prove
Theorem 1, in the following we assume that A =8. Let G = (V,E, F) be a minimal
counterexample to Theorem 1, such that |[V| + |E| is minimum. Then every proper
subgraph of G has a total 9-coloring. Let L be the color set {1,2,---,9} for simplicity.
It is easy to prove that GG is 2-connected and hence the boundary of each face f is exactly
a cycle. We first show some known properties on G.
(a) G contains no edge uv with min{d(u),d(v)} < 4 and d(u) + d(v) <9 (see 3]).
(b) G contains no even cycle (vi, vy, - -+, va) such that d(vy) = d(vz) = - - = d(vgr—1) = 2
(see [3]).

It follows from (a) that, the two neighbors of a 2-vertex are all 8-vertices, and any two
4~ -vertices are not adjacent. Note that in all figures of the paper, vertices marked e have
no edges of G incident with them other than those shown.

Lemma 2. ([5], [6]) G has no configurations depicted in Fig. 1(1) — (6).

Lemma 3. ([4]) Suppose that v is an 8-vertex and vy, vy, - - ,vg are consecutive neighbors
of v with d(vy) = d(vg) = 2 and d(v;) = 3 for 2 <i < k— 1, where k € {3,4,5,6,7}. If
the face incident with v, v;,v;11 1s a 4-face for all 1 < i < k — 1, then at least one vertex
in {vg,v3, -+ ,v5_1} is a 4T -vertex.

Lemma 4. ([17]) Suppose that v is an 8-vertex and u, vy, ve, - -+ , vy are consecutive neigh-
bors of v with d(u) = d(v1) = 2 and d(v;) > 3 for 2 < i < k, where k € {3,4,5,6,7}. If
the face incident with v,v;,v;y 1 1s a 4-face for all 1 <1 < k — 2, and the face incident
with v, vg_1,vg 18 a 3-face, then at least one vertex in {ve,v3, -+ ,v_1} is a 4T -vertex.

Lemma 5. ([5]) Suppose that v is an 8-vertex and u, vy, vy, -+ , v are consecutive neigh-
bors of v with d(u) = 2 and d(v;) = 3 for 1 < i < k, where k € {4,5,6,7}. If the
face incident with v,v;, vie1 s a 4-face for all 2 < 1 < k — 2, and the face incident with
v,V;,Vj41 15 a 3-face for all j € {1,k — 1}, then at least one vertex in {vs,vs, - ,vp_1}
is a 4T -verte.

Let ¢ be a (partial) total 9-coloring of G. For a vertex v of G, we denote by C(v)
the set of colors of edges incident with v. Call ¢ is nice if only some 4~ -vertices are not
colored. Note that every nice coloring can be greedily extended to a total 9-coloring of GG,
since each 4™ -vertex is adjacent to at most four vertices and incident with at most four
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1) 2) ®)

(4) () (6)
Fig. 1. Reducible Configurations in G: d(v) = 7 in (1)

edges. Therefore, in the rest of this paper, we shall always suppose that such vertices are
colored at the very end.
By Euler’s formula |V| — |E| + |F| = 2, we have

D (2d(v) = 6)+ > _(d(f) —6) = —12 < 0.
veV fer
We define ch to be the initial charge. Let ch(v) = 2d(v) — 6 for each v € V and
ch(f) = d(f) — 6 for each f € F. So > ., rch(zr) = =12 < 0. In the following,
we will reassign a new charge denoted by ch'(z) to each € V U F according to the
discharging rules. Since our rules only move charges around, and do not affect the sum,
we have >, pch' (2) = v p ch(z) = —12. If we can show that ch'(z) > 0 for each
x € VUF, then we get an obvious contradiction to 0 < >,z ch' (2) = 3y p ch(z) =
—12. which completes our proof.
For f = (vy,vg, - ,up) € F, we use (d(vy),d(vy),--+ ,d(vx)) — (c1,¢0,+++ ,cx) toO
denote that the vertex v; sends f the amount of charge ¢; for « = 1,2,--- , k. Now we
define the discharging rules as follows.

R1. Each 2-vertex receives 1 from each of its neighbors.

R2. For a 3-face (vq,vs,v3), let
(37,77,7%) = (0
(4,67,6%) = (
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R3. For a 4-face (vy,v9,v3,vy4), let
(37,77,37,77) = (0,1,0,1),
(37,77,4%,77) = (0,3, 1, 2),
i anan) - (5 L)

RA4. For a 5-face (vy,v9,v3,v4,v5), let
(37,7%,37,77,77) — (0,5,0, %, 3),
(3_77+74+74+77+) — O’i’%’i’i)’
<4+74+74+74—+74+) — %7%7%7%7%)'

Next we show that ch'(z) > 0 for each € V U F. Since our discharging rules are
designed such that ch'(f) > 0 for all f € F and ch'(v) > 0 for all 2-vertices v € V/, it
suffices to check that ch'(v) > 0 for all 3*-vertices in G. Let v € V. Suppose d(v) = 3.
Then ch’(v) = ch(v) = 0. Suppose d(v) = 4. Then v sends at most 3 to each of its incident
faces and ch'(v) > ch(v) — 3 x 4 = 0. Suppose d(v) = 5. Then f3(v) < 3, and v sends at
most 1 to each of its incident 3-faces by R2, at most l to each of its incident 4*-faces by R3
and R4. So ch'(v) = ch(v)— f3(v) x 1= (5— f3(v)) x 2 = 21 f3(v) > 0. Suppose d(v) = 6.
Then f3(v) < 4, and v sends at most 2 to each of 1ts incident 3- faces at most 3 to each
of its incident 4-faces. So ch'(v) > ch(v) — f3(v) X 2 — (6 — f3(v)) x £ =3 — —fg( ) >

Call a 3-face is bad if it has a 37 -vertex, a 4-face is bad if it has two 3~ -vertices, good
otherwise.

Suppose d(v) = 7. Note that f3(v) < 5. If f3(v) < 2, then ch'(v) > ch(v) —
fs(v) x 32— (7= f3(v)) x 1 = 1 —1f3(v) > 0. Suppose 3 < fi3(v) < 5, then v is
incident with at most two bad 3-faces by Fig. 1(1). If 3 < f3(v) < 4, then ch'(v) >
ch(v) = masx{2x 3+ (fy(0)=2) % 5 (T= fo(0) < 1 3+ (s(0) = 1) x 3+ 3+ (T— fy0) —
1) x 3, f3(v) x 2 +2><1+(7 fg() 2)x 3} =2—1f0w) =>1> OIffg()—5,then
ch/(v) >ch(v)—max{2>< S43x242xidaxd4341t=150.

Suppose d(v) = 8. Let vy,vq,- -+ ,vg be neighbors of v and fi, fo, -, fs be faces inci-
dent with v in an clockwise order, where f; is incident with v;, v;41, and i € {1,2,--- ,8}.
Note that all the subscripts in the paper are taken modulo 8. First, we prove some
lemmas.

Lemma 6. Suppose that v is an 8-vertexr and vy,vg, -+ , Vg, Vpt1, Vs, Usy1 QTE consecutive
neighbors of v with d(v1) = 2 and d(v;) = 3 for 2 < i < k, where 3 < k+1 < s and
s €{3,5,---,7}. If v is incident with 3-faces (v, Vg, Vpy1) and (v,vs,v511), and incident

with 4-faces (v,vj,xj,vj41) for all 1 < j < k —1, then min{d(v,), d(vsy1)} = 4.

Proof. By Fig. 1(2), we have min{d(vs),d(vsy1)} > 3. Assume to be contradictory
that d(vs) = 3 or d(vsr1) = 3. Without loss of generality, suppose that d(vsy) = 3,
and N(vsy1) = {v,vs, 2541} (see Fig. 2). Consider a nice coloring ¢ of G' = G — vv;. If
o(viz1) € C(v), then the forbidden colors for vv; number at most 8, so vv; can be properly
colored. Then we can suppose p(v1z1) € C(v). Without loss of generality, suppose that
o) =9, p(nzy) =1, and p(vv;) = j for j € {2,--- ,k,k+1,s,s+ 1}. It is easy to
see that 1 € C(v;) for j € {2,---,k,s + 1}, since otherwise, we can recolor vv; with
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O
Xs+1 Vsi1 Vs

Fig. 2. Reducible Configuration in G

1, color vu; with j, a contradiction. So @(vexs) = -+ = @(vg_12k—1) = P(VkVE41) = 1
and 1 € {p(vsvs41), P(vst12s41)}. Note that p(vrxr—1) = k + 1, since otherwise, we
may get a contradiction by exchange the colors on vvi.; and wvivgiq, color vvy with
k + 1. Thus ¢(vg_17,_2) = k + 1, since otherwise, we exchange the colors on vy
and vgUgt1, VkTk—1 and vg_12,_1, color vv; with k£ 4 1, also a contradiction. Similarly,

O(Vk—oTk—3) = -+ = p(vexy) = k + 1.
If k4+1 = s, then p(vsy17541) = 1. We exchange the colors on vvgy1 and vgvg1,
VpTr—1 and vg_1Xk_1, -+, v121; and vexy, recolor vvgyy with k + 1, color vv; with s + 1,

a contradiction. So we can suppose k + 1 < s. Then k+ 1 € {p(vsvs11), p(vsr12511)},
since otherwise, we can exchange the colors on vv,; and vgvey1, Virr_1 and vi_1Tp_1,
-+, v127 and vexy, recolor vvgyq with £+ 1, color vv; with s+ 1, a contradiction. We first
exchange the colors on vvg and vsvsyq. If p(vsvs11) = k+ 1, we additionally exchange the
colors on vvgy1 and VEUky1, VpTr_1 and vg_1xg_1, - -+, v12; and vexy. Then we color vy
with s, also a contradiction. O

Lemma 7. Suppose that v is an 8-vertex and N(v) = {v;|i =1,2,--- ,8} with d(ve) = 3.
If vvy is incident with two 3-faces (v,v1,v9) and (v,vq,v3), then there exists at most one
3-vertex vj(j # 2) such that vv; is incident with a 3-face.

Proof. By Property (a), we have min{d(v,),d(v3)} > 7. Suppose, to be contradictory,
that there are two 3-vertices v; and vy (4 < j <k <8), such that vv; is incident with a
3-face and vy, is incident with another 3-face. Consider a nice coloring ¢ of G' = G — vuv,.
Without loss of generality, suppose that ¢(v) = 2 and p(vv;) =@ for i € {1,3,4,5,6,7,8}.
If9 & C(vy), then we can obtain a nice coloring of G by coloring vv, with 9, a contradiction.
So 9 € C(vq), that is, p(viva) = 9 or p(vovz) = 9. Without loss of generality, suppose
that ¢(v1v2) = 9. At the same time, we have the following results:

(1) For some i € {j, k}, if p(vav3) # @ then 9 € C(v;);

(2) For some i € {j,k}, if p(vou3) & {1,4}, then C(v;) = {1,7,9};

(3) For some i € {j,k}, if p(vovs) = 1, then C(v;) = {3,14,9}.

For (1), if 9 ¢ C(v;), then we can recolor vv; with 9, and color vvy with i to obtain
a nice coloring of G, a contradiction. For (2), if {1,4,9} C C(v;), then we exchange the
colors on vv; and vyvs, recolor vv; with 1, and color vv, with 7, a contradiction again.
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For (3), if {3,7,9} C C(v;), then we exchange the colors on vv; and vyvy, vuz and vyvs,
recolor vv; with 3, and color vvy with 7, a contradiction.

Vo
v \;
X, 1 3
Vk v Vj
Xj
Vi1
3

Fig. 3. Reducible Configurations in G

Case 1. vjv, € E(G) and vv; € E(G).

Without loss of generality, suppose that N (v;) = {v,v,41,2;} and N(v;) = {v, vg_1, 21 }
(see Fig. 3(1)). It is obvious that v;+1 # vi. Suppose ¢(vous) = 1. Then C(v;) = {3, 7,9}
by (3). We exchange the colors on vv;1; and v;vj41, color vuy with j+1. If ¢(vvj41) = 3,
then we additionally exchange the colors on vv; and vyv,, vvg and vovs. Thus we obtain a
nice coloring of G, a contradiction. Suppose p(vov3) = j + 1. Then C(v;) = {1, 5,9} and
C(vg) = {1,k,9} by (2). We exchange the colors on vv,;1 and v;v,41, recolor vvy, with
j+1, and color vvy with k. If ¢(v;vj41) = 1, then we additionally exchange the colors on
vv; and vyvy. Thus we also obtain a nice coloring of GG, a contradiction, too. So we have
o(voug) & {1,7 4+ 1}. Since ¢(vovg) is different from either j or k, we may assume that
©(vavg) # j. Then C'(v;) = {1,7,9} by (2). We exchange the colors on vv;4; and v;v,41,
color vvy with j + 1. If ¢(v;v;41) = 1, then we additionally exchange the colors on v,
and v1v9. Thus we obtain a nice coloring of GG, a contradiction.

Case 2. vy, € E(G).

Without loss of generality, suppose that N(v;) = {v,v;_1,2;} and N(vg) = {v, vy, 24}
(see Fig. 3(2)). If p(vovs) & {1,k}, then C(vy) = {1,k,9} by (2), so p(vivg) = 1
or p(vivg) = 9, a contradiction. Suppose ¢(vgv3) = 1. Then C(v;) = {3,4,9} and
C(vg) = {3,k,9} by (3). If v3 = v;_1, then p(v3v;) = 9 and p(viv;) = 3. We exchange
the colors on vv; and vjve, v9v3 and wv3v;, recolor vy, with 1, and color vv, with £, a
contradiction. So we can suppose vz # v,;_1. We exchange the colors on vv;_; and v;_1v;,
and color vvy with j — 1. If ¢(v;_1v;) = 3, then we additionally exchange the colors on
vy and vV, vug and vevs. Thus we obtain a nice coloring of GG, a contradiction. Suppose
©(vgv3) = k. Then C(v;) = {1, 7,9} by (2). We exchange the colors on vv;_; and v;_1v;,
color vvy with j — 1. If o(v;_1v;) = 1, then we additionally exchange the colors on vv;
and vi1ve. Thus we also obtain a nice coloring of GG, a contradiction, too.

Case 3. v3v; € E(G), but vyv, € E(G).
Without loss of generality, suppose that N(v;) = {v,vs,z;} and N(vy) = {v, vp_1, zx}
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(see Fig. 3(3)). It is obvious that v; # v_;. Suppose ¢(vous) = 1. Then C(v;) = {3, 7,9}
and C(vx) = {3,k,9} by (3). We exchange the colors on vv; and vve, vovs and vsvj,
recolor v, with 1, and color vvy with k. a contradiction. Suppose p(v9v3) = j. Then
C(vr) = {1,k,9} by (2). We exchange the colors on vv,_; and vg_qv, color vvy with
k—1. If p(vg_1v;) = 1, then we additionally exchange the colors on vv; and vyve. Thus
we also obtain a nice coloring of G, a contradiction. So we have ¢(vqvs) & {1,7}. Then
C(v;) = {1,7,9} by (2). We exchange the colors on vvs and vsv;, color vvy with 3. If
¢(v3v;) = 1, then we additionally exchange the colors on vv; and vyv,. Thus we also
obtain a nice coloring of G, a contradiction, too. m

Lemma 8. Suppose that d(v;) = d(vg) = 2 and d(vj) > 3 for all j =i+1,---  k—1, where
k> i+2 If min{d(f;),d(fis1), - ,d(fs-1)} = 4, then v sends at most 3 + (k — i — 2)
(Z’I’L tOtal) to fi?fi+17 T 7fk71'

Proof. By Lemma 3, max{d(viy1), -+ ,d(vg_1)} = 4 or max{d(f;), -+ ,d(fx—1)} = 5. If
max{d(vit1), -+ ,d(vs_1)} > 4, then v sends at most 2 x 3 + (k — i — 2) (in total) to
fis+ oy fe—1 by R3. If max{d(f;), - ,d(fx—1)} = 5, then or v sends at most %+(k—z'— 1)
(in total) to f;, -+, fr—1 by R3 and R4. Since 2x 3 > 1+ 3, v sends at most 3+ (k—i—2)
(in total) to fi, fz'—i—ly et fk—l‘ ]

Lemma 9. Suppose that d(v;) = d(vits) =2 and d(v;) = 3 for all j =i+ 1,i+ 2,1+ 3.
If min{d(f;),d(fir2),d(fi+3)} = 4 and d(fi11) = 3, then v sends at most 2 (in total) to
fis fisrs fiva and fiis.

Proof. 1f d(v;1) = 3, then d(v;42) > 7, and d(f;) > 5 by Lemma 4, so v sends at most
%‘i‘ % + % +1 = % to fi, fi+17 fi+2 and fi+3- If d(’l}i+2> = 3, then d(Ui+1) 2 7, and
d(vi13) = 4 or there is at least one 5*-face in {fi12, fix3} by Lemma 4, so v sends at most
% + % + HlaX{2 X %, 1+ %} = % to fi7 fi+1, fi+2 and fi+3~ If min{d(vi+1),d(vi+2)} = 4,
then v sends at most %+ g + % +1= 14—5 to fi, fix1, fire and fii3. Since % < %, v sends
at most 14—5 (in total) to fi, fix1, fire and fiis. O]

Lemma 10. Suppose that d(v;) = d(vg) = 2 and d(v;) > 3 for all j =i+ 1,---  k—1,
where k > i+ 3. If min{d(f;),d(fx—1)} =4 and d(fi11) = -+ = d(fx—2) = 3, then v sends
at most % +(k—i—-3) x % (in total) to fi, fix1, -+ s fr-1-

Proof. We note that if & > ¢ + 4, then min{d(vi;2),--- ,d(vk—2)} = 4 by Fig. 1(5).
If d(f;) = d(fr-1) = 4, then min{d(vi11),d(vx_1)} = 4 by Lemma 4, so v sends at
most 2 x 3+ (k—i1—-2)x2 =1L 4 (k-i-3)x 3(111 total) to fi, firt, -+ fu—1-
If one of f; and fr_1 is 4—face, then v sends at most i + % + % + (k—i—3) x % =
8 +(k—i—3)x2 (in total) to fi, fir1, -+, fr—1. If min{d(f;),d(fr—1)} = 5, then v
sends at most 2 X : +2x 3+ (k—i—4)x 32 =24 (k—i—3) x 2 (in total) to
fis fix1s -+ fr—1. Since max{14—1, %, % = %, v sends at most % +(k—1i—3)x % (in
total) to fi, fix1,- 5 feo1- O

Now, we come back to check the new charge of 8-vertex v and consider nine cases in
the following.
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Case 1. ny(v) = 8. Note that fe+(v) = 8 by Fig. 1(3) and (4). Then, no charge is
discharged from v to its incident faces. So ch'(v) = ch(v) —8x1=10—-8 =2 > 0 by R1.

Case 2. ny(v) = 7. Then fgr(v) > 6 and f3(v) = 0 by Fig. 1(4). So ch'(v) >
ch(v) —7Tx1-2x1=10-9=1>0.

Case 3. ny(v) = 6. Then there are four possibilities in which 2-vertices are located.
They are shown as configurations in Fig. 4. For Fig. 4(1), f¢+(v) = 5 and f3(v) < 1. So
ch'(v) = ch(v) —6 x 1 —3 —2x 1= 1> 0. For Fig. 4(2)-(4), fe+(v) =4 and f3(v) =0
So ch'(v) = ch(v) =6 x1—4x1=0.

IR KK

Fig. 4. na(v) =6

Case 4. ny(v) = 5. Then there are five possibilities in which 2-vertices are located. They
are shown as configurations in Fig. 5.

@ (2 ® (4 ©)

Fig. 5. na(v) =5

For Fig. 5(1), fe+(v) > 4 and f3(v) < 2. Soch( ) = ch(v)—5x1-2x2—-2x1 = 0. For
Fig. 5(2) and (3), fs+(v) > 3and f3(v) < 1. Soch' (v) > ch(v)— 5><1———max{141, 11} =
3> 0 by Lemma 8 and Lemma 10. For Fig. 5(4) an ( ), fo+(v) =2 and f3(v) =0. So

ch'(v) = ch(v) —5x1-3x3=1>0.

Case 5. ny(v) = 4. Then there are eight possibilities in which 2-vertices are located.
They are shown as configurations in Fig. 6.
For Fig. 6(1), fe+(v) = 3 and f3(v) < 3. If f3(v) = 3, then ch'(v) = ch(v) —4 x 1 —
(L +2x %) =3 > 0. Otherwise, ch'(v) > ch(v) —4 x 1 — f3(v) x 2 — (5 — f3(v)) x 1 =
— 1f3(v) > 0. For Fig. 6(2) and (4), fe+(v) > 2 and f3(v) < 2. If f3(v) = 2, then
ch'(v) = ch(v) —4x1—3 — (& +3)=1>0 by Lemma 8 and Lemma 10. Otherwise,
ch'(v) = ch(v)—4x1—3— f3(v)x 2 —(4— f3(v))x1 = L1 f;(v) > 0. For Fig. 6(3) and (7),
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for(v) =2 and f3(v) < 2. So ch'(v) = ch(v) —4x 1— f3(v) x &L — (2= f3(v)
1 — 1f3(v) > 0 by Lemma 8 and Lemma 10. For Fig. 6(
f3(v) < 1. Soch'(v) = ch(v)—4x1—=2x3— f3(v) x L —(1— f(
For Fig. 6(8), f3(v) = 0. So ch'(v) = ch(v) —4x 1 —4x 3 =0.

Case 6. ny(v) = 3. Then there are five possibilities in which 2-vertices are located. They
are shown as configurations in Fig. 7.

For Fig. 7(1), note that min{d(f,),d(f2)} = 6, min{d(fs),d(fs)} = 4, and f5(v) < 3.
If f5(v) < 2, then ch'(v) > ch(v) —3 x 1 — fs(v) x 3 — (6 — f3(v)) x 1 =1 —§f3(v) > 0.
Suppose f3(v) = 3, Then min{d(fs),d(f7)} = 3. Without loss of generality, suppose
that d(fi) = 3, then v sends at most 2 to f; by Lemma 4. If d(f;) = 3, then ch'(v) >
ch(v) =3 x1—-1-2x3—-3x3=0. Otherwise, d(fs) = d(f5) = d(fs) = 3, then f5 is
good by Fig. 1(5). So ch'(v) > ch(v) —3x1—-2x1-3-3_2x3=0.

For Fig. 7(2), d(f1) > 6, min{d(f2), d(fs), d(fa), d(fs)} = 4, and f3(v) < 3. If fy(v) <
1, then ch' (v) > ch(v)—3x1—3— f3(v)x 2 —(5— f3(v)) x 1 = =1 f3(v) > 0 by Lemma 8.
If f3(v) = 3, then d(f5) = d(fs) = d(fr) = 3,50 ch'(v) = ch(v)—3x1—-3 — (L +2x3) =
+ > 0 by Lemma 8 and Lemma 10. Suppose f3(v) = 2. If max{d(fs),d(fs)} > 5, then
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ch'(v) = ch(v) =3 x1—-3-—2x3-1_2x1= & > 0. Otherwise, without loss of
generality, suppose that d(f5) =3.If d(fﬁ) = 3, then f; and f5 are good by Fig. 1(5) and
Lemma 4. So ch'(v) = ch(v) — 3 x 1—§—§—§—§—Q>< 1=0. If d(f7) = 3, then f4
and fs are good. So ch'(v )2ch(v)—3><1—%—2><%—2><%—1:0.

For Flg 7( ) (f1> = 0, Hlin{d(fZ)ad(f4)ad(f5)a (fS)} 4, and f3( ) <3 If
f3(v) =3, then ch'(v) = ch(v) =3 x 1— (& +2) - =1 >0 by Lemma 10. Otherw1se
f3(v) < 2. If d(f3) = 3, then ch'(v) > ch(v) — 3 x 1— 11 — max{22,4 x 1} =3>0 If
d(fs) >4, then ch'(v) > ch(v) =3 x1— (3 +1) — max{ll +3 B 4x1}=1> O

For Fig. 7(4), f3(v) < 2. So ch' (v) > ch(v) =3 x1—2x §—max{11—|—5, 15 Ax 1} =0.
For Fig. 7(5), f3(v) < 2. So ch'(v) = ch(v) —3x1—3— f3(v) x L —(2— f3(v )) (3+1) =
11
53— 1f3(v) =0

Case 7. ny(v) = 2. Then there are four possibilities in which 2-vertices are located.
They are shown as configurations in Fig. 8.

For Fig. 8(1), note that d(f;) > 5 and f3(v) < 4. Suppose f3(v) = 4. Then without
loss of generality, let d(f3) = d(fs) = d(f7) = d(fi) =3 (i € {5,6}). Then d(vs) > 4 by
Fig. 1(5), and v sends at most max{3 + 32,342} =2 (in total) to f> and f3. If d(fs) > 5,
then ch'(v) = ch(v) —2x1—4—-2-3x3-2_1=1>0by Lemma 5. Otherwise,
d(fs) =4, then d(vg) > 4 by Lemma 4, it follows that fy (if i = 5) or f7 (if i = 6) is good,
and v sends at most max{2 + 24,2 +2+2} =7 (in total) to f5, f¢ and fr (or fy). So
ch'(v) > ch(v)—2x1—-3-2-2_-1_3=15q

Suppose fs(v) = 3. If fs+(v) > 3, then ch'(v) = ch(v) — 2 x 1 — f5+(v) x 5 —3x

% — (56— fo+(v) x 1 = §f5+(v) — % > 0. If fs+(v) = 2, then except fi, there is one
5*-face incident with v, and there is at least one good 4-face which incident with v. So
ch'(v) 2 ch(v) —2x1-2x2—-3x3-3_2x1=2L>0.1If f5:(v) =1, then d(f;) < 4
for all 2 < ¢ < 8. By symmetry, we need to consider the following cases in which 3-faces
are located.

= d(fs) = 3. Then min{d(vs),d(vy),d(vs)} > 4 and
. 1(5) and Lemma 4. So ch'(v) = ch(v) =2 x1— 1% —
2x 53— % —2x32-2x1= . Second, suppose d(f1) = d(fs) = d(fs) = 3. Then
min{d(vs), d(v )} 4 by Fig. 1(5) max{d(vs),d(vs)} > 4 and max{d(v;),d(vs)} = 4 by
Lemma 4. So ch'(v) > ch(v)—2x1—3—max{34+2x3+3x3+1,2x3+242x342x1} =

% > 0. Third, suppose d(fs) = d(fs) = d(fs) = 3. Then d(vy) > 4 by Fig. 1(5),
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d(v3) > 4 and max{d(v;),d(vs)} > 4 by Lemma 4, max{d(v5) d(vg)} > 4 by Lemma
5. So ch'(v) = ch(v)—2><1———2><%———3><%— = = > (0. Fourth, suppose
d(fs) = d(fs) = d(f7) = 3. Then min{d(vs),d(vs),d(vs)} = 4 by Fig. 1(5) and Lemma

4 max{d(vs), (UG) d(v7)} > 4 by Lemma 5. So ch'(v) = ch(v) —2x1—1—-2x3—
2 -3x3—1=¢>0. Fifth, suppose d(fs) = d(fs) = d(f7) = 3. Then d(vs) > 4 by
Fig. 1(5), d(vs) = 4 and max{d(vs),d(vs)} > 4 by Lemma 4, max{d(vg),d(v7)} > 4 by
Lemma 5. So ch'(v) > ch(v) — 2 x 1—3—-2x3-2-3x3—-1=1%>0. Sixth, suppose
d(fs3) = d(fs) = d(f7) = 3. Then fa, f1, fo and fs are good by Lemma 4 and Lemma 5,
soch' (v) 2 ch(v) —2x1—1-3x3-4x3=1>0.

Suppose f3(v) = 2. Then without loss of generality, let d(f;) = ( fi)=30B<i<yj<
7). If fs+(v) > 2, then ch'(v) > ch(v) —2x 1 — fs+(v) x § —2x % — (6—f5+( ))x 1=
2 fs+(v) =1 = 0. Otherwise, d(f,) <4 forall 2 <t <8 If there is at least one good 3-face
in {f;, f;}, then each face adjacent to good 3-face is good. So ch'(v) > ch(v)—2x1—1 -3~
%—%—4 x1= % > 0. Now we suppose both f; and f; are bad. If j =i+1, theni € {4,5}
by Fig. 1(5) and Lemma 4, it follows that there are at least two good 4-faces in { fa, f3, fa},
so ch'(v) = ch(v) —2x1—4—-2x3-3x1-2x3=1>0. Otherwise, there are two
Tt-vertices in {v;, Vi1, 05, vj41}. So ch'(v) = ch(v)—2x1—1-2x3-2x3_3x1=1>0.

Suppose f3(v) < 1. Then ch'(v) > ch(v) —2x 1 — 1 — f3(v) x 3 — (T = f3(v)) x 1 =
F-3h =0

For Fig. 8(2), note that f3(v) < 3, and v sends at most 2 (in total) to f; and f, by
Lemma 8. Suppose f3(v) = 3, without loss of generality, let d(fy) = d(f5) = d(fi) = 3
(1 € {6,7}). Then v sends at most max{3 —|— %, % + 4} = 2 (in total) to f3 and fy, and v
sends at most max{2+3+1+3, 2+34+2x3 4—1- +2+1} =2 (in total) to fs, fe, f7 and
fs by Fig. 1(5), Lemma 4 and Lemma 5. So ch’(v )>ch( )—2>< 1-3-2-2=21>0

Suppose f3(v) = 2. Then without loss of generality, let d(f;) = d(fj) =34 < i <
§ < 7). If there is at least one 5*-face in {f;|3 < t < 8}, then ch'(v) > ch(v) — 2 x
1—%—2><%—%—3><1:%>0. Otherwise, d(f;) < 4 for all 3 < ¢ < 8. If there is
at least one good 3-face in {f;, f;}, then each 4-face adjacent to good 3-face is good. So
ch'(v) = ch(v) —2 x 1 — % — % = % — 3 x1=0. Now we suppose both f; and f; are
bad. If j = ¢+ 1, then i = 5, f3, f4, f7, and fs are good by Fig. 1(5) and Lemma 4. So
ch'(v) = ch(v) —2x1—3%—4x3—-2x3=1>0. Otherwise, there are two 7*-vertices
in {v;, vit1, 05,0501} Soch'(v) = ch(v) —2x1-2—2x2-1_3x1=0.

Suppose f3(v) < 1. Then ch'(v) > ch(v) —2x 1 —3 — f3(v) x 3 — (6 — f3(v)) x 1 =
5~ 3f3(v) =0

For Fig. 8(3), note that f3(v) < 4. If f3(v) =4, then d(f2) = d(fs) = d(fs) = d(f7) =
3,soch/(v)20h()—2x1———(14—1 2 % ) 0 by Lemma 10.

Suppose fs(v) = 3. If d(fy) > 4, then d(fs) = d(fs) = d(f7) = 3, so ch'(v) >
ch(v) =2x1—(1+2)— (4 +2x2)=1>0. Ifd(f2) = 3, then v sends at most 4}
(in total) to fi, fo and f3 by Lemma 10. Wlthout loss of generality, let d(fs5) = 3. If

d(fs) = 3, then v sends at most 2 (in total) to fi and f5, v sends at most 2 to f7. So

cnl»—‘

w
W~

vlklf-“\_/

ch'(v) = ch(v)—2x1-—2-3_3_1-0, Ifd(f7)—3 thenvsendsatmost%to
f1, fs and fs, respectively. So ch'(v) > ch(v) —2x 1 -2 —2x 3 -3 x 3 =0.
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Suppose f3(v) = 2. Then without loss of generality, let d(f;) = d(f;) =3 (i < j). If
1= 2,/ then v sends at most % (in total) to f1, fo and f3, v sends at most % to fj—1 or fii1.
So ch'(v) = ch(v) —2x1 -4 -2 -3 _3x1=0. Otherwise, v sends at most 2 (in total)
to f1, fo and f3 by Lemma 8, without loss of generality, let ¢ = 5. If j = 6, then v sends at
most 2 (in total) to f; and f5. So ch'(v) > ch(v)—2x1—3-2-23-2x1=0. If j = 7, then v

2 2

sends at most % to f, and fg, respectively. So ch' (v) = ch(v)—2x 1———2><§1—2>< ——1 =0.

Suppose f3(v) < 1. If d(fy) = 3, then ch'(v) > ch(v) —2x1 -1 —5x1=1 7> 0.
Otherwise, ch'(v) = ch(v) —2x1—2 -3 —4x1=

For Fig. 8(4), note that f3(v) < 4. Suppose fg(’U) = 4. Then d(f2) = d(f3) = d(fs) =
d(f7) =3 and ch'(v) > ch(v) —2x 1—2x (1 ) = 0 by Lemma 10. Suppose f3(v) = 3.
Then ch'(v) > ch(v) —2x 1 — (& +3) — 145 1 > 0 by Lemma 9. Suppose fs(v) =2. If
two 3-faces incident with v are adjacent, then ch (v) = ch(v)—2x1—(Y+2)—4x1=0.
Otherwise, ch'(v) > ch(v) —2x 1 —2x ¥ =1 > 0. Suppose f3(U> < 1L Then ch' (v) >
ch(v) =2 x 1= f3(v) x £ — (2= f3(v)) x (4 X 1) Tfa(v) =

Case 8. ny(v) = 1. Without loss of generality, let v; be the unique 2-vertex adjacent to
v. First, we consider the case that v; is not incident with any 3-face. Note that f3(v) < 5.

Suppose f3(v) = 5. Then d(f2) = d(fs) = d(f;) = d(fs) = d(f7) =3 (i € {4,5}), and
at least two faces in {fs, fi, f¢} are good by Fig. 1(5) and Lemma 5. If min{fy, fs} > 5,
then ch'(v) > ch(v) —1—2x 1 —-3x23-2x3—-1=1>0. Otherwise, min{fi, fs} < 4,
without loss of generality, let d(f1) = 4. If d(v9) = 3, then f3, f;, f¢ and f; are good by
Lemma 6, so ch' (v) = ch(v)—1—1—3—-4x3-2x3 = 0. If d(vs) > 4, we may assume that
d(fs) =5 or d(vs) = 4, then ch'(v) > ch(v)—1—-23—-3x3—-2 1 —max{3+1 343} =0.

Suppose f3(v) = 4. Then there is at least one 3-face in {fs, fz}, without loss of
generality, let d(f2) = d(f;) = d(f;) = d(f;) =3, where 2 <i < j <tandt e {67} If
fs+(v) =2, then ch'(v) > ch(v)—1— fs+ (V) x 2 =4 x 3 — (4= f5: (v)) x 1 = 2 f5+ (V) =1 > 0.
Then f5+(v) < 1. We need to consider two cases. First, suppose there is one 5-face in
{1} U{[fe|t +1 <z < 8}, then at least two faces in {f3 fa, f5, f6} are good by Fig. 1(5)
and Lemma 5. Soch( )= ch(v)—1—%—max{2x3+2x24+3x1,3x3+2+2x1+
34x3+1+2x3}=1>0. Second, suppose d(fl) = d(fx) = 4 for all t+ 1 <z <8
If d(vy) = 3 or d(vy) =3 for all t +1 < y < 8, then v is incident with at least three good
3-faces and one good 4-face by Lemma 6. So ch'(v) > ch(v)—1—2-3x3-3x1-3 =0.
Otherwise, d(v2) > 4 and max{d(v,)|t + 1 < y < 8} > 4, that is, there are at least two
good 4-faces in {fi} U{fult+1 < z < 8} Then fs+ (v ) =1 or at least two faces in
{fg,f4,f5,f6} aregood So ch' (v) >ch( )—l-max{dx3+14+2x2+12x34+2x
242x1+2x33x34+24143x3 4><-+4><4}_0

Suppose f3(v )—3 Iff5+( ) > 1, thench( ) = ch(v) —1— fsr(v) x 3 —3x 3 —(5—
fs+(v)) x 1= % fs+(v) — % > 0. Otherwise, at least two faces incident with v are good by
Lemma 5 and Lemma 6. So ch'(v) > ch(v) —1—max{2x 3+ 3+ 3 +4x1,3x3+2x3 +
3x1}=0. Suppose f3(v) < 2. Then ch'(v) = ch(v) — 1 — f3(v) x 2 — (8 — f3(v)) x 1 =
1—5f3(v) =

Next, we consider the case that vy is incident with a 3-face. Then f3(v) < 6, and the
other 3—faces incident with v are good by Fig. 1(2). If f5(v) = 6, then d(f1) = d(f2) =
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d(f3) = d(fs) = d(fs) = d(f7) = 3, v sends at most 2 5 to fi, and v sends at most 3 . to
fs- Soch/(v)Zch(v)—l—%—E)xg—%———O Supposefg() 5. Iff5+()>1,
then ch'(v) > ch(v) — 1 — % —4x 1 — [5+(v) x 3 = (3= f5+(v)) x 1 = §f5+(v) - % = 0.

0. If f5(v) = 5, then at least two 4-faces incident with v are good. So
ch'(v) = ch(v)—1—3—4x3-1-2x3 = 0. If f3(v) < 4, then at least one 4-face incident

Wlth’UngOOd So ch'(v) = ch(v) —1—3 —(fs(v) = 1) x 2 — (8= f3(v) = 1) x 1 — 3 =
1= 3fs(v) >

Case 9. ny(v) = 0. Note that f3(v) < 6. If f3(v) <4, then ch'(v) > ch(v) — f3(v) x 2 —
(8— f3(v)) x 1 =2—12f3(v) = 0. Suppose f3(v) = 5. Then there are two adjacent 3-cycles
which incident with v, without loss of generality, let d(f;) = d(fix1) = 3. If fs+(v) > 1,
then ch'(v) > ch(v) =5 x 3 — fse(v) x 2 — (3 = f5+(v)) x 1 = 2f5+(v) — & > 0. Then
fs+(v) = 0. If d(v;11) = 3, then v is incident with at most four bad 3-faces by Lemma
7,50 ch'(v) = ch(v) —4x 3 —3 —2x1—3 = 0. Otherwise, no two 3-cycles have a
common 3-vertex, then there are at least two good faces which incident with v by Fig.
1(6), so ch'(v) = ch(v) =3 x 3 —1-max{2x3+2x 1,3+ 3+1+3 2x2+2x3} =0.
Suppose f3(v) = 6. Then without loss of generality, let d(f1) = d(f2) = d(f3) = d(f5) =
d(fs) = d(f7) = 3. If min{d(vs),d(vs3),d(vs),d(v7)} = 3, then v is incident with at
most four bad 3-faces by Lemma 7. So ch'(v) > ch(v) —4x 3 —2x 2 —-2x3 = 0.
Otherwise, min{d(vq), d(v3), d(vg),d(v7)} > 4. If max{d(vy),d(vs),d(vs),d(vs)} = 4, then
ch'(v) = ch(v) —3x 3 —3x3—-1-3=0. If d(v1) = d(vs) = d(vs) = d(vs) = 3, then
min{d(vs), d(vs), d(ve), d(v7)} = 7, 50 ch'(v) = ch(v) =4 x 3 —=2x1-2x1=0.
Hence we complete the proof of the theorem.
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