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Abstract

In 2010, Bardt and To6th verified that any r-critical graph with at most r 4+ 4
vertices has a subdivision of K,. Based in this result, the authors conjectured that,
for every positive integer ¢, there exists a bound r(c) such that for any r, where
r > r(c), any r-critical graph on r + ¢ vertices has a subdivision of K. In this note,
we verify the validity of this conjecture for ¢ = 5, and show counterexamples for all
c > 6.
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1 Introduction

In this note, we discuss a few points arising from the interesting paper of Barat and
Téth [2]. Their motivation is Albertson’s Conjecture that if the chromatic number x(G)
of a graph G is r, then the crossing number cr(G) of G is at least that of K,. In other
words, among all graphs with chromatic number at least r, the one with smallest crossing
number is K,. This is trivial for » < 4 and follows from the Four Colour Theorem for
r = 5. It was proved by Albertson, Cranston, and Fox [1] for r < 12 (precisely the values
of r for which cr(K,) is currently known). Barat and Téth extended this to r < 16 by
using their new lower bound on crossing numbers to show that every r-chromatic graph
other than K, has crossing number at least the conjectured value of cr(K,).

Albertson’s Conjecture is related to Hajés” Conjecture that every r-chromatic graph
contains a subdivision of K,. The Hajés Conjecture obviously implies the Albertson
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Conjecture. Unfortunately, the Hajés Conjecture is false for > 7 [3] and remains open
for r = 5,6. There is more detailed information to be found in [8].

Barat and Téth were interested in graphs that satisfy the Hajés Conjecture. Recall
that a graph G is r-critical if x(G) = r but, for every edge e of G, x(G—e) < r. Dirac [5, 7]
proved that no r-critical graph has r 4 1 vertices and that C5 V K, _3 is the only r-critical
graph with r 4+ 2 vertices. (Here GV H is the join of G and H; it is the graph obtained
from the disjoint union of G and H by adding all edges having one end in G and one end
in H.) Gallai [9] extended this by showing that, for r > 4, there are only two r-critical
graphs with r + 3 vertices.

An observation of Barat and Téth is that, for » > 6, there are precisely 22 r-critical
graphs with r + 4 vertices. In the next section, we prove the following, a straightforward
generalization of Barat and Téth’s observation.

Theorem 1. Let ¢ be a positive integer. There are numbers n(c) and r(c) so that, for
any r = r(c), there are precisely n(c) r-critical graphs with r + ¢ vertices.

In particular, r(5) = 7 and n(5) = 395. Moreover, every r-critical graph with r + 5
vertices has a subdivision of K,.

Barat and To6th also proposed the following conjecture.

Conjecture 2. For every positive integer ¢, there is a number r(c) so that, if r > r(c),
then any r-critical graph with r + ¢ vertices has a subdivision of K.

Theorem 1 shows this conjecture is true for ¢ = 5. We shall see in the next section
that the methods used to prove Theorem 1 combine with some standard examples to
demonstrate that this conjecture is not true for any ¢ > 6.

The note concludes with some remarks on the assertion of Barat and Téth that the
Catlin examples satisfy the Albertson Conjecture. We explain why their proof is not valid,
and so it is still open whether the Catlin examples satisfy the Albertson Conjecture.

2 Results

This section contains the proof of Theorem 1 and the proof of Conjecture 2 for ¢ = 5,
along with its refutation for every ¢ > 6. The main theoretical tool is the following result
of Gallai [9]. A vertex v in a graph G is universal if v is adjacent to every other vertex in

G.

Theorem 3 (Gallai [9]). Let G be an r-critical, n-vertex graph with v > 3. Then G

contains at least [%(gr — nﬂ universal vertices. In particular, if r > %c, then any r-

critical graph with r + ¢ vertices has a universal vertex.

We are now ready for the proof of Theorem 1.

Proof of Theorem 1. Theorem 3 implies that, for » > (3¢)/2, an r-critical graph with
r 4 ¢ vertices has a universal vertex. Since it is well-known that G V v is (r 4 1)-critical
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if and only if G is r-critical, for r > (3¢)/2, the number of r-critical graphs with r + ¢
vertices is the same as the number of (r — 1)-critical graphs with (r — 1) + ¢ vertices; thus,
r(c) < [(3¢)/2] and n(c) is the number of (|(3c)/2])-critical graphs with [(3¢)/2] + ¢
vertices. In particular, 7(5) < 7.

For the second part of Theorem 1, we consider the special case ¢ = 5. To see that
n(5) = 395, Royle’s table [13] of small critical graphs shows there are exactly the following
graphs that are, for some r, r-critical, with r + 5 vertices, and have no universal vertex:

(i) twenty-one 4-critical graphs on 9 vertices;

(ii) one hundred and forty-one 5-critical graphs on 10 vertices;
(iii) two hundred and thirty-one 6-critical graphs on 11 vertices; and
(iv) two T7-critical graphs on 12 vertices.

Because r(5) < 7, the two 7-critical graphs in this list show r(5) = 7. For r > 8, every
r-critical graph with r + 5 vertices has a universal vertex and so is the join of some K
with one of the 395 listed graphs. That is, n(5) = 395.

Moreover, it suffices to show that each one of the 395 graphs in the list has a subdivision
of the appropriate K,. Dirac [6] proved the Hajés Conjecture for r = 4, so each one of
the twenty-one 4-critical graphs of the list has a subdivision of K4. For r = 5, Mader’s
Theorem [11] that any graph with n vertices and at least 3n —5 edges has a subdivision of
K5 is helpful. For each one of the one hundred and forty-one 5-critical graphs of the list we
counted its edges from the adjacency list provided by Royle’s table. We checked by hand
those graphs with fewer than 3n — 5 edges; every one had a subdivision of K5. Finally,
all the two hundred and thirty-one 6-critical graphs were checked by hand, and for each
one a Kg-subdivision was found. Most of the 6-critical graphs have approximately the
same structure, which made them less difficult to verify. A typical example is shown in
Figure 1. This is Graph 391 in the table. (Royle (personal communication) independently
verified by computer program that these 395 graphs satisfy the Hajés Conjecture.) [ |

We now turn our attention to showing that Conjecture 2 is false for every ¢ > 6. In
order to do this, we use the following subgraphs of Catlin’s graphs L(,C5) [3].

Family F.. For ¢ > 6, let F,. be the graph whose vertex set consists of five non-empty
pairwise disjoint sets Ay, Ay, C1, Cy, and C3 where |C| = |Cy| = |C3] = 3 and |A;| =
|As] = ¢ — 4, such that these sets induce cliques in F.. The sets Ay, As, C1, Cy, and Cj
are joined in the following way: A,V Cy, A1V Cs, C1V Ay, A3V C5, and Cy V C5. Figure 2
shows a scheme of the graphs F..

In the following, we prove that, for ¢ > 6, F. is a (¢ + 1)-critical graph that does not
contain a subdivision of K(.,1). Since F; has 2c¢+1 vertices and is (c+ 1)-critical, the join
F.V K, has 2c +t + 1 vertices, is (¢ 4+t + 1)-critical, and does not contain a subdivision
of Kcyi41)- Thus, Conjecture 2 is false for every c¢ > 6.
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Figure 2: Scheme of a graph F,. Heavy edges indicate that every vertex in one set is
adjacent to every vertex in the other.

Proposition 4. Forc > 6, x(F.) =c+ 1.

Proof. Since every independent set in F, has at most two vertices, we see that

(F)|  2e+1 1

v
F.) > .

For ¢ > 6, the graph F. can be assigned a (¢ + 1)-coloring such that the vertices in
the sets Aj, A, C1, Cy, and Cj receive the following colors: € = {1,2,3}, Cy = {1,4,5},
C3={2,6,7}, Ay ={6,7,8,9,....,c+ 1}, and Ay = {4,5,8,9,...,c+ 1}. [ |
Proposition 5. For ¢ > 6, F, is (c+ 1)-critical.

Proof. For ¢ > 6, we show that, after the removal of an arbitrary edge e, the graph F.—e¢

is c-colorable. There are 6 different cases to consider.
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Case 1. e € E(CY).

For ¢ > 6, the vertex subsets of F,—e can be assigned the following colors: C = {1, 2},
Cy = {1,6,7}, C3 = {2,4,5}, Ay = {4,5,8,...,¢+ 1}, and Ay = {6,7,8,...,c+ 1}.
Observe that the color 3 does not appear in this coloring. Therefore, F,. — e is colorable
with ¢ colors.

Case 2. Edge e has one endpoint in the set C; and the other endpoint in the set A;.

For ¢ > 6, the vertex subsets of F. — e can be assigned the following colors: C; =
{1,2,3}, Cy = {2,6,7}, C3 = {1,3,5}, Ay = {1,5,8,...,¢c+ 1}, and Ay ={6,7,8,...,c+
1}. Observe that the color 4 does not appear in this coloring. Therefore, F,.—e is colorable
with ¢ colors.

The remaining cases, listed below, are treated analogously.
Case 3. e € E(4,).
Case 4. Edge e has one endpoint in the set A; and the other endpoint in the set Cs.
Case 5. e € E(Cy).
Case 6. Edge e has one endpoint in the set Cy and the other endpoint in the set C3. W

The next proposition completes our analysis of the graph F..
Proposition 6. For c > 6, I does not contain a subdivision of Kc41).

Proof. Catlin [3] showed that the graphs Fi and F; do not have a subdivision of K7 and
Ky, respectively. Thus, we may suppose ¢ > 8 and F,. has a subdivision of K.,;. Let W
be the set of vertices with degree ¢ in a subdivision of K.,;. Within the subdivision, any
two vertices of W are joined by ¢ pairwise internally-disjoint paths.

Only if ¢ = 8 does ] U Cy U C5 have enough vertices to contain W. In this case,
W =V(CyUCyUC3) and there must be nine disjoint paths through A; representing the
edges from C] to C5. Since A; has only four vertices, this is impossible.

Thus, in all cases, at least one vertex of W is in A; U Ay. Since V(C;UCy) is a cut-set
in F. of size 6 < ¢, there cannot be vertices of W in both V(A;) and V(As). Therefore,
we may assume W NV (A;) # 0 and WNV(Ay) = 0.

Since V(C1UCs) also separates A; from C3, we deduce that WNV (C3) = (). Therefore,
W - V(Cl U Al U 02)

Since |W| =c+1 and |V(C1UA;UCy)| = c+2, exactly one vertex v in C; UA; UCy is
not in W. It follows that there are at least 6 (5 is enough) internally-disjoint C}Cy-paths
in K41 representing the edges from W NV/(C}) to W NV(Cy). Since at most one vertex
of Ay is not in W, at most one of the 6 C1Cs-paths can go through A;. In the other
direction, at most three can go through C5. Thus there are too few paths for F,. to have
a subdivision of K .

To conclude the proof, there is a subdivision of K, consisting of the ¢ — 4 vertices in
Ay, three vertices in C, and one vertex in Cy. This uses only three internally disjoint
C1C5-paths through C3 U A,. [ |
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3 Catlin graphs and Albertson’s Conjecture

In their paper, Barat and Téth claim (Lemma 16) that Catlin’s graphs satisfy Albertson’s
Conjecture. In the proof, they use (asymptotic versions of) the not-yet proved conjectures
on the values of the crossing numbers of Ky, Kj, and Ky ;. We prove the following,
without any assumption about the crossing number of K and Kj .

Theorem 7. The graph F,. has crossing number at least that of K..1.

Proof. We have already exhibited a subdivision of K. in F.. This subdivision uses
three internally disjoint CoC'-paths through A,, but is otherwise disjoint from A,. It is
known [10, 12] that the crossing number of K., denoted cr(K.), is at most

e

Since, cr(K.) < f(c), there is a vertex v of K, so that the edges incident with v are
involved in at most [4f(c)/c]| crossings.

Let D be a drawing of K, with at most f(c) crossings. We obtain a drawing D’ of
K.;1 by adding a new vertex v’ close to v and joined to v with no crossings. For each
other vertex w of K., we add the edge v'w alongside vw. These latter edges cross the
same number of edges to K. — v as those incident with v do, which is to say at most
|4f(c)/c] crossings. In addition, Woodall [14] observes that the edges at v' can be drawn
so as to cross the edges incident with v at most [ (¢ — 1)/2][ (¢ —2)/2] times. Thus,

er(Kopr) < er(K,) + Ff(C)J + r;lJ r;QJ .

C

On the other hand, the crossing number of K is known [4] to be at least .8594 f (k).
The three internally disjoint paths through As are all incident with a common node of
the subdivision of K., so no crossing between two of them is counted in the crossings of
this K.. Therefore, all the crossings in the K. 1 induced by As U C5 are additional. We
deduce that the crossing number of F, is at least cr(K,) + .8594 f(c — 1).

It follows that, if
- 22|

then the crossing number of F, is at least that of K.,;. We note that, since the left side
is degree 4 in ¢ while the right is degree 3 in ¢ (f(c) is degree 4 in ¢), this certainly is
true for ¢ large enough. In fact, this holds for ¢ > 12. For ¢ < 12, already [1] shows that
Albertson’s Conjecture is true, so in these cases also, cr(F.) > cr(K.41). [

Unfortunately, a straightforward analogue of this argument does not show that the
Catlin graphs satisfy the Albertson Conjecture.
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