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Abstract

The notion of removable classes arises in connection with ear decompositions of
matching covered graphs introduced by Lovász and Plummer. The last (single or
double) ear of an ear decomposition is defined as a removable class. Every matching
covered graph not induced by a circuit has at least three removable classes. In
this paper, we characterize matching covered graphs with precisely three removable
classes and show, as a corollary, that every non-planar matching covered graph has
at least four removable classes. Let G be a matching covered graph. A matching
covered subgraph H of G is conformal if G − V H has a perfect matching. Given
S ⊆ EG, what is a minimal conformal subgraph of G that contains S? It is known
that if |S| = 2 then it is induced by a circuit. As an application of the main result,
we answer this question for |S| = 3.

1 Matching covered graphs

The graphs considered here are loopless, but they may have multiple edges. The notation
and terminology we use is essentially that of Bondy and Murty [1].

A connected graph G is matching covered if each of its edges lies in a perfect matching.
Some authors refer to matching covered graphs as 1-extendable graphs. The treatise by
Lovász and Plummer [11] and the seminal work by Lovász [10] on the matching lattice
contain the basic theory of matching covered graphs. For the convenience of the reader,
we shall briefly review here the terminology and results which are pertinent to this article.
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1.1 Conformal subgraphs

Let G be a matching covered graph. A matching covered subgraph H of G is conformal
if G− V H has a perfect matching.

An even subdivision of a graph G is a graph obtained from G by replacing each edge
e with an odd path joining the ends of e but having none of its internal vertices in V G.
Thus, any graph is an even subdivision of itself. It is easy to see that a graph G is
matching covered if and only if every even subdivision of G is matching covered. The
following is a classical result due to Lovász.

Theorem 1. ([9]) Every nonbipartite matching covered graph contains a conformal sub-
graph that is an even subdivision of K4 or C6.

The following result plays an important role in the proof of our main result.

Theorem 2. ([2]) Any set of k > 2 edges of a matching covered graph G lies in a
conformal subgraph formed by the union of at most k−1 M-alternating circuits, for some
perfect matching M of G.

It follows from the theorem above that any two edges of a matching covered graph
lie in a conformal circuit. (See also [8].) This paper extends this result to three edges.
More precisely, given a matching covered graph G and a set S of three edges of G, we
characterize minimal conformal subgraphs of G that contain the edges of S.

1.2 Cuts, contractions and splicings

Let G be a connected graph. For any set X of vertices of G, we denote the coboundary of
X by ∂GX. Thus, ∂GX consists precisely of those edges that have one end in X and one
end in the complement X of X. If G is understood, we write simply ∂X instead of ∂GX.
The set ∂X is called a cut and the sets X and X are its shores. A cut is odd if both its
shores have an odd number of vertices and is trivial if one of its shores is a singleton.

Given a cut C = ∂X of G, where X is a nonempty proper subset of V G, the two
graphs obtained by contracting X to a single vertex x and X to a single vertex x are
called the C-contractions of G. A graph G is the splicing of two graphs G1 and G2 if it
has a cut C such that G1 and G2 are isomorphic to the two C-contractions of G. The
following assertion may be easily verified.

Proposition 3. Any splicing of two matching covered graphs is also matching covered.

1.3 Separating and tight cuts

A cut C in a matching covered graph G is separating if both C-contractions are matching
covered. Each shore of C then induces a connected subgraph of G. The following result
is deduced directly from this definition.

Proposition 4. Let G be a matching covered graph. A cut C of G is separating if and
only if every edge of G lies in a perfect matching that contains precisely one edge in C.
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A separating cut C of a matching covered graph G is tight if |M ∩ C| = 1 for every
perfect matching M of G. Thus, every tight cut is also separating. The converse does not
hold in general. For example, the graph C6 and the Petersen graph have separating cuts
that are not tight.

A matching covered graph is solid if each separating cut is tight. Every bipartite
matching covered graph is solid. Odd wheels and Möbius ladders are also examples of
solid matching covered graphs [7]. In fact, these graphs have no separating cut. The
Petersen graph and C6 are examples of nonsolid matching covered graphs.

A matching covered graph free of nontrivial tight cuts is called a brace if it is bipartite,
a brick otherwise.

1.4 Ear decompositions

An ear in a matching covered graph G is a path P of odd length such that both ends of
P have degree at least 3 in G but all the internal vertices of P have degree 2 in G. For an
ear P , the graph G − P is the graph obtained from G by deleting all edges and internal
vertices of P , and P is said to be removable if G−P is matching covered. A double ear in
G is a pair {P1, P2} of vertex-disjoint ears. A double ear {P1, P2} is removable if neither
P1 nor P2 is removable, but G − (P1 ∪ P2) = (G − P1) − P2 is matching covered. The
following theorem is one of the basic results of the theory of matching covered graphs [11,
Chapter 5].

Theorem 5 (Ear decomposition). Let G be a matching covered graph not induced by a
circuit, and let H be a conformal matching covered subgraph of G. Then there exists a
sequence (G1, G2, . . . , Gr) of subgraphs of G such that G1 = G, Gr = H and, for 2 6 i 6 r,
Gi is obtained from Gi−1 by deleting either a removable ear or a removable double ear of
Gi−1.

A single removable ear, or the pair of ears that constitute a removable double ear, will
be referred to as a removable class. An edge e is also described as removable if G − {e}
is matching covered. The following results present basic properties of removable classes.

Lemma 6. The removable classes of a matching covered graph not induced by a circuit
are pairwise disjoint.

Proof: Let G be a matching covered graph not induced by a circuit. Let R be a removable
class of G and let e be any edge of R. Let us show that R is the only removable class that
contains e.

As G is not induced by a circuit, R includes a unique ear P that contains e. If R is
a single ear then R = {P} and R is the only removable class that contains e. Suppose
therefore that R is a double ear. Then there must be another ear Q such that R = {P,Q}.
Moreover, G−P is connected (because G is 2-connected) but not matching covered, and
so there exists an edge of EG− P not in any 1-factor of G− P . This edge must be in Q

since G− (P ∪Q) is matching covered, and so Q is uniquely determined. Hence e belongs
to a unique removable class.
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Corollary 7. Every matching covered graph not induced by a circuit has at least three
removable classes.

Proof: Let G be a matching covered graph not induced by a circuit. Consider an ear
decomposition (G1, G2, . . . , Gr) of G. By Theorem 5, G2 is obtained from G by deleting
a removable class, say Q1, of G.

Now consider an alternating circuit C containing an edge ofQ1. We claim thatQ1 ⊂ C.
This is clearly true if Q1 is a single ear. If Q1 is a double ear {Q′

1, Q
′′

1} and C contains
Q′

1 but not Q′′

1 then Q′′

1 would be a removable single ear of G (because G[EG2 ∪ C]
is matching covered), in contradiction to the definition of a removable double ear. As
asserted, Q1 ⊂ C. Now, applying the ear decomposition theorem with H = C, we get a
second removable class Q2 of G.

By Theorem 2, there exists an alternating circuit D containing an edge of Q1 and an
edge of Q2. By the same reasoning as above, we have Q1 ∪Q2 ⊂ D. By applying the ear
decomposition theorem again with H = D, we get a third removable class of G.

An attempt to continue the reasoning in this proof to find a fourth removable class
fails because the “new” removable class is not necessarily distinct from the three already
found.

1.5 A dependence relation

Let G be a matching covered graph, and let e and f be any two edges of G. Then e

depends on f , or e implies f , if every perfect matching that contains e also contains f .
We write e ⇒ f to indicate that e depends on f . We say that two edges e and f are
mutually dependent if e ⇒ f and f ⇒ e. In this case we write e ⇔ f . Clearly ⇔ is an
equivalence relation.

A set Q of mutually dependent edges of G such that no edge in EG−Q depends on
an edge of Q is called a minimal class of G. Each minimal class therefore consists of a set
of independent edges, and distinct minimal classes are disjoint. For instance, a removable
singleton or doubleton of a matching covered graph is a minimal class. Let e be an edge of
G. Any minimal class Q that contains an edge that depends on e is said to be a minimal
class induced by e. In this case every edge of Q depends on e. Minimal classes in a brick
have some attractive properties.

Theorem 8. ([10, Lemma 3.4]) Let G be a brick and Q a minimal class of G. Then
|Q| 6 2. Moreover, if |Q| = 2, then G−Q is bipartite.

2 Extremal graphs and their properties

A matching covered graph not induced by a circuit is extremal if it has precisely three
removable classes.

It is easy to see that forming an even subdivision does not change the number of
removable classes of a matching covered graph. The following result summarizes this
property.
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Proposition 9. A graph G is extremal if and only if every even subdivision of G is
extremal.

The next result provides a more precise idea of an extremal graph.

Lemma 10. An extremal graph is an even subdivision of a cubic graph.

Proof: Let G be an extremal graph. Let Q1, Q2 and Q3 be the three removable classes
of G. Let ei, i = 1, 2, 3, be an edge of Qi.

By Theorem 2, G has a 2-connected conformal subgraph containing e1, e2 and e3
formed by the union of two M -alternating circuits C and D, for some perfect matching
M of G. Then, H = C ∪ D contains Q1, Q2 and Q3. If G is distinct from H then, by
considering an ear decomposition of G finishing with H, we find that the first removable
class of G is distinct from Q1, Q2 and Q3, which is a contradiction. Thus, G = H.

As circuits C and D are alternating with the same perfect matching M , each vertex
common to C and D is incident with an edge that is also common to C and D. It follows
that G is an even subdivision of a cubic graph.

In view of Proposition 9 and Lemma 10, to characterize extremal graphs, it suffices to
characterize cubic extremal graphs. Thus, we turn our attention to characterizing cubic
extremal graphs. Let Θ be the graph with just two vertices and three links joining them.

Proposition 11. Every cubic extremal graph is simple, unless it is the Θ graph.

Proof: Let G be a cubic extremal graph, and let e and f be parallel edges of G. Then,
G − {e} and G − {f} are matching covered. Then {{e}} is a removable class of G.
Analogously, {{f}} is a removable class of G.

If G− {e} is not a circuit then, by Corollary 7, G− {e} has at least three removable
classes. At most one removable class of G − {e} contains {f}. The removable classes of
G − {e} that do not contain {f} are removable classes of G. Then, G has at least four
removable classes, a contradiction.

Thus, G − {e} is a circuit. Then, G is a subdivision of Θ. As G is cubic, it follows
that G is, in fact, the Θ graph.

3 Extremal graphs free of separating cuts

As every tight cut is also separating, an extremal graph free of separating cuts is also free
of tight cuts, that is, it is a brick or a brace. By Lemma 10, it is cubic. Thus, in this
section, we characterize cubic extremal bricks and braces free of separating cuts. We shall
make use of an important property concerning removable edges in braces.

Lemma 12. ([5, Lemma 3.2]) Let G be a brace on at least six vertices. Then every edge
of G is removable.

The following result characterizes cubic extremal braces.
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Theorem 13. The only cubic extremal brace is the Θ graph.

Proof: By Lemma 12, every edge of a brace on six or more vertices is removable. A brace
on six or more vertices has at least nine edges. Thus, an extremal brace has at most four
vertices. But, there is only one connected cubic bipartite graph on four vertices and it
has four removable edges. Therefore, a cubic extremal brace has two vertices. The only
cubic extremal graph on two vertices is the Θ graph.

We now proceed to characterize extremal bricks free of separating cuts. Recall that a
brick free of separating cuts is a solid brick. We shall show that K4 is the only extremal
solid brick. The following result will be used.

Lemma 14. ([4, Corollary 6.15]) If G is a solid brick of maximum degree 3 or 4, then,
for every vertex v of G, at most one edge incident with v does not lie in a removable class
of G.

Theorem 15. Graph K4 is the only solid extremal brick.

Proof: Let G be a solid extremal brick. Let H be the subgraph of G spanned by the union
of the removable classes of G. By Lemma 14, H has minimum degree at least 2 and spans
G. By Theorem 8, every removable class of G has one or two edges. As G has precisely
three removable classes, H has at most six edges. It follows that |V G| = |V H| 6 6.

By Theorem 1, G has a conformal subgraph which is an even subdivision of K4 or C6.
By Lemma 10 and Proposition 11, G is a cubic simple graph. Thus, G must in fact be
K4 or C6. But, C6 is not solid. Therefore, G is K4.

4 Extremal graphs which have a separating cut

The following theorem, together with Theorem 15, provide an iterative procedure to
construct all extremal graphs.

Theorem 16. Let G be a cubic extremal graph and let C be a separating cut of G. Then
both C-contractions are cubic extremal graphs.

Proof: By induction on |V G|. We may assume that C is nontrivial, as the conclusion is
clear otherwise. By Proposition 11, G is simple. Let G1 and G2 be the two C-contractions.
Then G1 and G2 are matching covered graphs. Every matching covered graph is 2-
connected. So, |C| > 2. As G is cubic, we must in fact have |C| > 3 (otherwise G1 and
G2 would be graphs with an odd number of vertices of odd degree).

Case 1. G1 or G2 has no nontrivial separating cut.

Assume, without loss of generality, that G2 has no nontrivial separating cut. As every
tight cut is a separating cut, G2 has no nontrivial tight cut, that is, G2 is a brick or brace.

Suppose that G2 is a brace. If |V G2| > 6 then it follows from Lemma 12 that G2

has at least six removable edges not in C. These edges constitute at least six removable
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classes in G. We may thus assume that |V G2| = 4. But each vertex of G2 is of degree at
least 3, in contradiction to the fact that G2 is a simple brace. We conclude that G2 must
be a brick.

Let Q1, Q2, . . . , Qk be the removable classes of G1. Then, G1−Qi is matching covered,
for i = 1, 2, . . . , k. By Corollary 7, k > 3.

If some Qi does not contain an edge of C then G − Qi is matching covered, that is,
Qi is a removable class of G. Suppose that a removable class Qi of G1 contains an edge e
of C. Let Ri be a minimal class of G2 induced by e, and let f be any edge of EG2 − Ri.
Then f does not depend on an edge of the minimal class Ri, and so G2−Ri has a 1-factor
containing f . Moreover it is connected, by Theorem 8, since its minimum degree is at
least 3. Consequently G2 − Ri is matching covered. If Ri does not contain an edge of
C then G − Ri is matching covered, so that Ri includes a removable class of G. In the
remaining case, Ri ∩C = {e}. Then G− (Qi ∪Ri) is matching covered, by Proposition 3.
Therefore Qi ∪ Ri includes a removable class of G. Thus, every removable class Qi of
G1 yields at least one removable class of G. The resulting removable classes of G are
disjoint since minimal classes of G2 induced by distinct edges of C are disjoint. But G

has precisely three removable classes. Thus, G1 has precisely three removable classes. As
asserted, G1 is extremal. Thus, G1 is cubic, since |C| > 3.

Let us now show that G2 is extremal. If G1 has no nontrivial separating cut then G2 is
an extremal graph by the argument above. We may thus assume that G1 has a nontrivial
separating cut.

Let D = ∂(Y ) be a nontrivial separating cut of G1 such that the shore, say Y , that
does not contain the contraction vertex of G1 is minimal. Note that every separating cut
of G1 is also a separating cut of G. Then, D is a separating cut of G. Let H1 and H2 be
the two D-contractions of G. Then H1 and H2 are matching covered graphs. Fix notation
such that H2 is obtained by contracting Y , so that C is a separating cut of H2. By the
choice of D, graph H1 has no nontrivial separating cut. By the argument above, H2 is
cubic and extremal. As C is a separating cut of H2, the inductive hypothesis shows that
both C-contractions of H2 are extremal graphs. One of the C-contractions of H2 is G2.
Thus, G2 is extremal.

Case 2. G1 and G2 both have nontrivial separating cuts.

Let D = ∂(Y ) be a nontrivial separating cut of G1 such that the shore Y that does
not contain the contraction vertex of G1 is minimal. Then D is also a separating cut
of G. Let H1 and H2 be the two D-contractions of G. Then H1 and H2 are matching
covered graphs. Fix notation such that H2 is obtained by contracting Y . By Case 1, H1

and H2 are extremal. But C is a separating cut of H2. By the inductive hypothesis, both
C-contractions of H2 are extremal graphs. One of the C-contractions of H2 is G2. Thus,
G2 is extremal. Analogously, G1 is extremal. By Lemma 10, G1 and G2 are cubic.
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5 The list of extremal graphs

Now, we present a list of the nonbipartite cubic extremal graphs: there are nine of them.
The following result is useful to guarantee that every extremal graph is a brick.

Lemma 17. ([6, Corollary 2.8]) Any splicing of two cubic bricks is a (cubic) brick.

By Theorems 15 and 16, every cubic extremal graph distinct from Θ is obtained by
iterative splicings of K4. As K4 is a cubic brick, it follows from the above lemma that
every nonbipartite extremal graph is a brick. As bricks are 3-connected graphs, every
minimal class is a removable class, by Theorem 8.

We shall make use of the following arguments to ensure that a cubic graph is not
extremal. The next result is a consequence of the definition of minimal classes.

Proposition 18. Let G be a cubic extremal graph. Then each removable class lies in
precisely one perfect matching of G.

Proof: Let v ∈ V G. Let e1, e2 and e3 be the three edges incident on v. For i = 1, 2, 3,
let Qi be a minimal class of G induced by ei. As G is extremal, Q1, Q2 and Q3 are the
three removable classes of G. By the definition of an induced minimal class, every perfect
matching that includes Qi also contains edge ei. This assertion holds for any vertex of G.
Thus, for each i and each vertex w there exists a unique edge that is incident on w and
belongs to every perfect matching that includes Qi. We conclude that each class Qi lies
in a unique perfect matching of G.

Let H be a cubic graph and let v ∈ V H. We shall denote by (H ⊙ K4)v the graph
obtained by splicing H and K4 at vertex v.

Corollary 19. Let H be a cubic extremal graph and let v ∈ V H. Let Q be a removable
class of H which has no edge incident with v. Let

G = (H ⊙K4)v.

If there is a perfect matching M in G containing Q and the three edges incident with v

then G is not extremal.

Proof: By hypothesis, H − Q is matching covered, and Q has no edge incident with v.
It follows that Q is a removable class of G. But, Q lies in two perfect matchings of G,
namely, M and the perfect matching of G whose restriction to EH is the perfect matching
of H that includes Q. By Proposition 18, G is not extremal.

The above corollary suggests the following definition. A vertex v of a cubic graph H

is said to satisfy the extension condition if the graph obtained from H by deleting v and
all the three neighbours of v does not have a perfect matching containing a removable
class of H.

The following theorem is an immediate consequence of Theorem 15 and Theorem 16.
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Theorem 20. Let G be a cubic extremal graph different from K4. Then

G = (H ⊙K4)v,

where H is a cubic extremal graph on |V (G)| − 2 vertices and v is a vertex of H that
satisfies the extension condition.

Theorem 20 suggests how all cubic extremal graphs distinct from Θ may be generated.
We start with K4, the only cubic extremal graph on four vertices. For n > 4, suppose
that the set Gn of all extremal cubic graphs on n vertices is known. Then each graph in
the set Gn+2, the set of cubic extremal graphs on n+2 vertices, is of the form (H ⊙K4)v,
where H is a member of Gn and v is a vertex of H that satisfies the extension condition.
All graphs (up to isomorphism) that can be generated in this way are shown in Figure 1.

The three removable classes of each extremal graph are indicated in the figure with
numbers 1, 2 and 3. Vertices that satisfy the extension condition are labelled u and v.
Up to automorphisms, no other vertex satisfies the extension condition.

There is only one extremal cubic brick on sixteen vertices, namely G9 (Figure 1) and
no vertex of this graph satisfies the extension condition. Therefore, there are no cubic
extremal graphs on eighteen vertices. It is quite interesting that this procedure cannot
be carried on forever.

Corollary 21. Any non-planar matching covered graph has at least four removable clas-
ses.

6 Application

Let F be the set of the nine graphs in Figure 1. The next result generalizes the theorem [8]
that any two edges of a matching covered graph lie in a conformal circuit.

Corollary 22. Let G be a matching covered graph and let S be a set of three edges of G.
Then S is contained in a conformal subgraph of G which is induced by a circuit or is an
even subdivision of Θ or of a member of F .

Proof: We use induction on |EG|. The corollary holds if G is induced by a circuit, and
so we suppose it is not.

Suppose that G contains a removable class Q such that Q ∩ S = ∅. Then G − Q is
a conformal matching covered subgraph of G containing S. If G − Q is induced by a
circuit then we are done. Otherwise the inductive hypothesis shows that S is included in
a conformal subgraph H of G−Q which is induced by a circuit or is an even subdivision
of Θ or of a member of F . The conformal property is transitive. Thus, H is a conformal
subgraph of G.

We may thus assume that every removable class of G contains an edge of S. By
Corollary 7, G has at least three removable classes. By Lemma 6, the removable classes
of G are disjoint. As |S| = 3, it follows that G has precisely three removable classes, that
is, G is extremal. Thus, G is an even subdivision of Θ or of a member of F .
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Figure 1: Cubic extremal graphs
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