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Abstract

Let G = (V,E) be a connected graph with the usual (graph) distance metric d :
V ×V → N∪{0}. Introduced by Gromov, G is δ-hyperbolic if for every four vertices
u, v, x, y ∈ V , the two largest values of the three sums d(u, v) + d(x, y), d(u, x) +
d(v, y), d(u, y) + d(v, x) differ by at most 2δ. In this paper, we determine precisely
the value of this hyperbolicity for most binomial random graphs.
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1 Introduction

Hyperbolicity is a property of metric spaces that generalizes the idea of negatively curved
spaces like the classical hyperbolic space or Riemannian manifolds of negative sectional
curvature (see, for example, [1, 10]). Moreover, this concept can be applied to discrete
structures such as trees and Cayley graphs of many finitely generated groups. The study
of properties of Gromov’s hyperbolic spaces from a theoretical point of view is a topic
of recent and increasing interest in graph theory and computer science. Informally, in
graph theory hyperbolicity measures how similar a given graph is to a tree—trees have
hyperbolicity zero and graphs that are “tree-like” have “small” hyperbolicity. Formally,
a connected graph G = (V,E) is δ-hyperbolic, if for every four vertices u, v, x, y ∈ V ,
the two largest values in the set

{d(u, v) + d(x, y), d(u, x) + d(v, y), d(u, y) + d(v, x)}

differ by at most 2δ. The hyperbolicity of G, denoted by δH(G), is the smallest δ for
which this property holds.

∗The second author gratefully acknowledges support from NSERC and Ryerson University.
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Our results below show a close relation between the diameter and hyperbolicity. This
relation was also studied in [6]: the authors show that for vertex transitive graphs, the
hyperbolicity is within a constant factor of the diameter. The author of [4] bounds the
number of vertices in terms of the Cheeger constant and the hyperbolicity, showing that
the family of expanders is not uniformly δ-hyperbolic for δ constant. In [2] several equiva-
lent conditions for a graph to be 0-hyperbolic are given, and in [3] the authors characterize
1/2-hyperbolic graphs in terms of forbidden subgraphs. On the algorithmic side, by the
conditions investigated in [2], 0-hyperbolic graphs can be recognized in linear time, and
in [16] it is shown that recognizing 1/2-hyperbolic graphs is equivalent to finding an in-
duced cycle of length 4 in a graph. Fast algorithms for computing the hyperbolicity of
large-scale graphs are given in [15].

The study of this parameter is motivated by the following observations: on the algo-
rithmic side, in [13] fast algorithms for computing properties related to the diameter of
graphs with small hyperbolicity are given. In [14] the authors give a simple construction
showing that distances in graphs with small hyperbolicity can be approximated within
small error by corresponding trees. In [12] the authors give a polynomial algorithm which
computes for such graphs an augmented graph of at most a given diameter, and whose
number of added edges is within a constant factor of the minimum number of added edges
that are needed such that the augmented graph has at most such a diameter. Finally,
in [11] it is shown that all cop-win graphs in which the cop and the robber move at dif-
ferent speeds have small hyperbolicity, and also a constant-factor approximation of δH in
time O(n2 log δ) is given. Moreover, the concept of hyperbolicity turns out to be useful
for many applied problems such as visualization of the Internet, the Web graph, and
other complex networks [20, 21], routing, navigation, and decentralized search in these
networks [7, 19]. In particular, hyperbolicity plays an important role when investigating
the spread of viruses through a network [18].

Let us recall a classic model of random graphs that we study in this paper. The
binomial random graph G(n, p) is defined as a random graph with vertex set [n] =
{1, 2, . . . , n} in which a pair of vertices appears as an edge with probability p, indepen-
dently for each such a pair. As typical in random graph theory, we shall consider only
asymptotic properties of G(n, p) as n→∞, where p = p(n) may and usually does depend
on n. We say that an event in a probability space holds asymptotically almost surely
(a.a.s.) if its probability tends to one as n goes to infinity.

We say that f(n) = O(g(n)) if there exists an integer n0 and a constant c > 0 such
that |f(n)| 6 c|g(n)| for all n > n0, and f(n) = Ω(g(n)), if g(n) = O(f(n)). Also,
f(n) = ω(g(n)), or f(n) � g(n), if limn→∞ |f(n)|/|g(n)| = ∞, and f(n) = o(g(n)) or
f(n)� g(n), if g(n) = ω(f(n)). Throughout this paper, log n always denotes the natural
logarithm of n.

In this paper, we investigate the hyperbolicity for binomial random graphs. Surpris-
ingly, this important graph parameter is not well investigated for random graphs which is
an important and active research area with numerous applications. In [22], sparse random
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graphs (p = p(n) = c/n for some real number c > 1) are analyzed. It was shown that
G(n, p) is, with positive probability, not δ-hyperbolic for any positive δ. Nothing seems
to be known for p � n−1. On the other hand, it is known that for a random d-regular
graph G, for d > 3, we have that a.a.s.

1

2
logd−1 n− ω(n) 6 δH(G) 6

1

2
logd−1 n+O(log log n),

where ω(n) is any function tending to infinity together with n. (In fact, almost geodesic
cycles are investigated in [5], and this is an easy consequence of this result.) The hyper-
bolicity of the class of Kleinberg’s small-world random graphs is investigated in [9].

Our contribution is the following result.

Theorem 1. Let G ∈ G(n, p).
Suppose first that

d = d(n) = p(n− 1)� log5 n

(log log n)2
and p = 1− ω(1/n2).

Let j > 2 be the smallest integer such that dj/n − 2 log n → ∞. Then, the following
properties hold a.a.s.

(i) If j is even and dj−1 6 1
16
n log n, then δH(G) = j/2.

(ii) If j is even and dj−1 > 1
16
n log n (but still dj−1 6 (2 + o(1))n log n), then

j/2− 1 6 δH(G) 6 j/2.

(iii) If j is odd, then δH(G) = (j − 1)/2.

Furthermore, the following complementary results hold.

(iv) For p = 1 − 2c/n2 for some constant c > 0, a.a.s. δH(G) ∈ {0, 1/2, 1}. More
precisely,

P(δH(G) = 0) = (1 + o(1))e−c,

P(δH(G) = 1/2) = (1 + o(1))ce−c, and

P(δH(G) = 1) = (1 + o(1))
(
1− (c+ 1)e−c

)
.

(v) For p = 1− o(1/n2), a.a.s. δH(G) = 0.

Remark. It seems that with quite a bit more work, we could slightly push the lower
bound required for d and require only that d � log3 n or perhaps even only d � log2 n.
Unfortunately, it seems that it is more difficult to investigate sparser graphs (that is,
assuming only d� log n or even closer to the connectivity threshold). Therefore, we aim
for an easier (and cleaner) argument in this paper, leaving the investigation of sparser
graphs as an open problem. Let us also mention that the hyperbolicity is not determined
precisely for dense graphs right before the diameter decreases from even j to j − 1 (case
(ii) in Theorem 1). Again, the constant 1

16
could be slightly improved with a more delicate

argument but the gap cannot be closed with the current approach. This is also worth
investigating and (unfortunately) left open at the moment.
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2 Preliminaries

In this section, we introduce a few useful lemmas. The following result is well-known but
we include the proof for completeness.

Lemma 2. Let G be any connected graph with diameter at most D. Then δH(G) 6 D/2.

Proof. Consider any four vertices u, v, x, y with their three sums of distances d1 = d(u, v)+
d(x, y) > d2 = d(u, x)+d(v, y) > d3 = d(u, y)+d(v, x). We need to show that d1−d2 6 D.
Clearly, d1 6 2D. First observe that by applying the triangle inequality four times,

2d1 = 2 (d(u, v) + d(x, y))

6 d(u, y) + d(y, v) + d(u, x) + d(x, v) + d(x, u) + d(u, y) + d(x, v) + d(v, y)

= 2(d2 + d3),

and thus d1 6 d2+d3 or equivalently d1−d2 6 d3. Hence, if d3 6 D, the required condition
holds and we are done. Otherwise, d3 > D and so also d2 > D. As a consequence,
d1 − d2 < 2D −D = D, and we are done as well.

We can slightly improve the upper bound for graphs with odd diameter.

Lemma 3. Let G be any graph with diameter at most D = 2k + 1 for some integer k.
Then δH(G) 6 (D − 1)/2 = k.

Proof. As in the previous proof, we consider four vertices u, v, x, y with their three sums
of distances d1 = d(u, v) + d(x, y) > d2 = d(u, x) + d(v, y) > d3 = d(u, y) + d(v, x). Our
goal is to show that d1 − d2 6 D − 1. Arguing as in the previous proof, we get that
d1−d2 6 d3. Hence, if d3 < D, then d1−d2 6 D−1 and we are done. Also, if d2 > D+1,
then d1 − d2 6 2D − (D + 1) 6 D − 1. So the only case to analyze is when d2 = d3 = D.
For a contradiction, suppose that d1 − d2 = D, that is, d1 = d(u, v) + d(x, y) = 2D. In
particular, d(u, v) = D and d(x, y) = D. Since D = d3 = d(u, y) + d(v, x) and D is odd,
we may assume (without loss of generality) that d(u, y) < D/2. Then, since

D = d(u, v) 6 d(u, y) + d(y, v)

and
D = d(x, y) 6 d(x, u) + d(u, y),

we have d(y, v) > D/2, d(x, u) > D/2, and we have that d2 = d(u, x) + d(v, y) > D,
contradicting our assumption on d2. Therefore, d1−d2 6 D−1, and the lemma follows.

In order to bound the hyperbolicity from above, we will make use of the following
result for random graphs, see [8, Corollary 10.12].

Lemma 4 ([8], Corollary 10.12). Suppose that d = p(n− 1)� log n and

di/n− 2 log n→∞ and di−1/n− 2 log n→ −∞.

Then the diameter of G ∈ G(n, p) is equal to i a.a.s.
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From the proof of this result, we have the following corollary.

Corollary 5. Suppose that d = p(n− 1)� log n and that

di/n− 2 log n→∞.

Then the diameter of G ∈ G(n, p) is at most i a.a.s.

In order to obtain a lower bound on the hyperbolicity, we will need the following
expansion lemma investigating the shape of typical neighbourhoods of vertices. Before
we state the lemma we need a few definitions. For any j > 0, let us denote by N(v, j) the
set of vertices at distance at most j from v, and by S(v, j) the set of vertices at distance
exactly j from v. Also, for a set of vertices F ⊆ V , and x ∈ V \ F , denote by NV \F (x, j)
the set of vertices in V \ F at distance at most j from x in the graph induced by V \ F ,
and similarly let SV \F (x, j) be the set of vertices in V \F at distance exactly j from x in
the graph induced by V \ F .

Lemma 6. Suppose that d = p(n− 1) is such that

log5 n

(log log n)2
� d 6

(
1

16
n log n

)1/3

.

Let G = (V,E) ∈ G(n, p) and let i > 4 be the largest even integer such that di−1 6
1
16
n log n. Fix any set F ⊆ V such that |F | = O(di/2−1) = O(

√
n log n/d) and fix any

vertex v ∈ V \ F . Then,

(i) with probability 1− o(n−1) we have

|NV \F (v, 1)| = d

(
1 + o

(
log log n

log2 n

))
,

(ii) with probability

1−O(di/2/n) = 1−O(
√
d log n/n) = 1−O((log n)2/3n−1/3)

there is no edge from v to F .

In particular, it follows that a.a.s. the following properties hold:

(iii) for all j = 1, 2, . . . , i/2− 1,

|NV \F (v, j)| = |SV \F (v, j)|(1 +O(1/d)) = dj(1 + o(log−1 n)),

(iv) for all j = 1, 2, . . . , i/2− 2, every vertex of SV \F (v, j) has d(1 + o(log log n/ log2 n))
neighbours in SV \F (v, j + 1),
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(v) the graph induced by NV \F (v, i/2− 2) forms a tree,

(vi) all vertices of SV \F (v, i/2− 1) have exactly one neighbour in SV \F (v, i/2− 2),

(vii) for any fixed partition of the neighbours of v into two sets, VL and VR, such that
||VL|−|VR|| 6 1, let SL denote the set of vertices of S(v, i/2−1) that are at distance
i/2− 2 from VL, and let SR = S(v, i/2− 1) \ SL; then,

|SL| = |SR|(1 + o(log−1 n)) =
di/2−1

2
(1 + o(log−1 n)).

Proof. Let F ⊆ V , f = |F | = O(di/2−1), and v ∈ V \ F . Consider the random variable
X = X(F, v) = |SV \F (v, 1)|. We will bound X in a stochastic sense. There are two things
that need to be estimated: the expected value of X, and the concentration of X around
its expectation. Since X ∈ Bin(n− f − 1, p), it is clear that

E [X] =
d

n− 1
(n− f − 1) = d (1 +O(f/n)) = d(1 +O(n−1/2)).

A consequence of Chernoff’s bound (see e.g. [17, Corollary 2.3]) is that

P
(
|X − E [X] | > εE [X]

)
6 2 exp

(
−ε

2E [X]

3

)
(1)

for 0 < ε < 3/2. Hence, after taking ε = 2
√

log n/d, we get that with probability
1 + o(n−1) we have

X = E [X] (1 +O(ε)) = d(1 +O(n−1/2))(1 +O(ε)) = d

(
1 + o

(
log log n

log2 n

))
.

This proves part (i) of the lemma. Part (ii) is straightforward since the probability that
there is no edge from v to F is equal to

(1− p)f = exp(−(1 + o(1))pf) = exp

(
−O

(
di/2

n

))
= 1−O

(
di/2

n

)
.

Part (iii) is a straightforward implication of (i). In order to have good bounds on
the ratios of the cardinalities of N(v, 1), N(v, 2), and so on, we consider the Breadth
First Search (BFS) algorithm that explores vertices one by one (instead of the whole j-th
neighbourhood). Formally, the process is initiated by putting v into the queue Q. In
each step of the algorithm, one vertex w is taken from Q and edges from w to all vertices
that are not in F and have not yet been discovered are examined. All new neighbours
of w that are found are put into the queue Q. The process continues until the queue Q
is empty or vertices of NV \F (v, i/2 − 1) are discovered. (Note that if the process stops
because NV \F (v, i/2−1) is discovered, vertices of SV \F (v, i/2−1) are in the queue Q; that
is, no vertex from this sphere is processed and, in particular, edges in the graph induced
by SV \F (v, i/2− 1) are not exposed yet.)
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v v

Figure 1: Two consecutive steeps of BFS started from vertex v. The black vertex is the
vertex currently exposed. Grey vertices form the set F that is updated each time. White
vertices are newly discovered ones.

Suppose that NV \F (v, j − 1) is discovered and we continue investigating vertices of
the sphere SV \F (v, j − 1), one by one, that are in the queue Q. Provided O(di/2−1)
vertices have been discovered so far, it follows from part (i) that we may assume that
when each vertex of SV \F (v, j − 1) is processed, we discover d(1 + o(log log n/ log2 n))
new neighbours that belong to SV \F (v, j). After that we update F by adding all newly
discovered vertices to it, adding the vertex processed at this step, and removing the next
vertex to be processed—see Figure 1. We continue until NV \F (v, j) is discovered to get
that

|SV \F (v, j)| = |SV \F (v, j − 1)|d(1 + o(log log n/ log2 n)).

We consider this up to the j’th iterated neighbourhood, where j = i/2 − 1 and di−1 6
n log n/16 and thus j = O(log n/ log log n). Then the cumulative multiplicative error term
is (

1 + o

(
log log n

log2 n

))j

= (1 + o(log−1 n)),

and thus |S(v, j)| = dj(1 + o(log−1 n)), and

|N(v, j)| =
j∑

i=1

|S(v, i)| = |S(v, j)|(1 +O(1/d)).

This establishes (iii).
For parts (iv), (v), and (vi) we note that in each step of the BFS algorithm the

probability that there is no edge from w (the vertex that is processed at this point) to
vertices that have been already discovered is, by part (ii), 1 − O(di/2/n). Hence, by the
union bound, a.a.s. this never happens since the number of vertices processed is

|NV \F (v, i/2− 2)| = (1 + o(1))d(i−1)/2−3/2 = O(d−3/2
√
n log n)

= O(d−3/2(n log n)/d(i−1)/2) = O(d−1(n log n)/di/2)

= o(n/di/2).

The claim follows.
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Part (vii) follows immediately (and deterministically) from (iv), (v), and (vi). The
proof of the lemma is finished.

We first give the proof of the result for very dense graphs.

Proof of Theorem 1(iv)-(v). For p = 1− o(1/n2), note that the expected number of edges
in the complement of G is

(
n
2

)
(1 − p) = o(1), and thus by Markov’s inequality, a.a.s., G

is the complete graph on n vertices. If this is the case, then d(u, v) = 1 for any pair
of vertices u and v, and thus for any four vertices u, v, x, y, clearly, d(u, v) + d(x, y) −
(d(u, x) + d(v, y)) = 0, and hence δH(G) = 0. Part (v) is proved.

For p = 1 − 2c/n2 and c > 0, note that a.a.s. there is no component of size 3 or
more in the complement of G. Thus, a.a.s., for all four-tuples of vertices in the original
graph, either all edges are present, only one edge is missing, or two disjoint edges are
missing. In all of these cases, the non-adjacent vertices are at distance 2, and thus a.a.s.
δH(G) 6 1. The expected number of edges in the complement of G equals

(
n
2

)
(1 −

p) = (1 + o(1))c. Also, for any fixed r, the r-th moment of the number of edges in
the complement of G equals cr(1 + o(1)), and thus, by the method of moments (see, for
example, Theorem 1.22 of [8]) the number of edges converges to a random variable with
a Poisson distribution with parameter c. In particular, with probability (1 + o(1))e−c, the
complement of G is empty, and by the argument in the first case, we have δH(G) =
0. Also, with probability (1 + o(1))ce−c, the complement of G contains exactly one
edge, say {u, v}. For the four-tuples not containing both u and v, the analysis is as
before. For a four-tuple u, v, x, y we now have for the distances in the original graph
d(u, v) + d(x, y) = 3, d(u, x) + d(v, y) = d(u, y) + d(v, x) = 2, and thus δH(G) = 1/2.
Finally, with probability (1 + o(1)) (1− (c+ 1)e−c) the complement of G has at least
two disjoint edges, say {u, v} and {x, y}. In this case, in the original graph we have
d(u, v) + d(x, y) = 4, d(u, x) + d(v, y) = d(u, y) + d(v, x) = 2, and thus δH(G) > 1, and
part (iv) follows.

The main challenge of this paper is to prove the following result and the whole next
section is dedicated to it. Here, we show how Theorem 1(i)-(iii) can be derived from it.

Theorem 7. Suppose that

d = d(n) = p(n− 1)� log5 n

(log log n)2
and p = 1− ω(1/n2).

Let i > 2 be the largest even integer such that di−1 6 1
16
n log n. Let G ∈ G(n, p). Then,

a.a.s., δH(G) > i/2.

Proof of Theorem 1(i)-(iii). Fix j to be the smallest integer such that dj/n−2 log n→∞.
In particular, dj+1/n = ω(log n). Moreover, it follows from Corollary 5 that the diameter
of G is at most j a.a.s. Hence, by Lemma 2, a.a.s. δH(G) 6 j/2. This establishes upper
bounds in parts (i) and (ii).
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Suppose first that j is even and that dj−1 6 1
16
n log n. Then j is the largest even

integer such that dj−1 6 1
16
n log n. By Theorem 7, a.a.s. δH(G) > j/2 and part (i) holds.

Suppose next that j is even and that dj−1 > 1
16
n log n (note that it follows from the

definition of j that dj−1 6 (2 + o(1))n log n). Then j − 2 is the largest even integer such
that dj−3 6 1

16
n log n, and by Theorem 7, a.a.s. δH(G) > j/2− 1. This finishes part (ii).

Finally, suppose that j is odd. Since dj−1/n = O(log n), dj−2/n = o(log n), and
thus j − 1 is the largest even integer such that dj−2 6 1

16
n log n. By Theorem 7, a.a.s.,

δH(G) > (j− 1)/2. Since a.a.s. the diameter of G is at most j, and j is odd, by Lemma 3
we have that a.a.s. δH(G) 6 (j − 1)/2. Part (iii) and so the whole proof is finished.

3 Proof of Theorem 7

Let G = (V,E) ∈ G(n, p) and suppose that d = p(n−1)� log5 n
(log logn)2

and p = 1−ω(1/n2).

Let i > 2 be the largest even integer such that di−1 6 1
16
n log n. Assume first that

d > ( 1
16
n log n)1/3 which implies that i = 2. In this case, we have to prove that a.a.s.

δH(G) > 1. It therefore suffices to find four vertices u, v, x, y such that the subgraph
induced by them is a 4-cycle. Since p > n−2/3( 1

16
log n)1/3 and 1 − p = ω(n−2), the

expected number of induced cycles of length 4 is
(
n
4

)
p4(1−p)2 →∞. It is a straightforward

application of the second moment method to show that a.a.s. there is at least one induced
cycle in G and the statement follows in this case.

Hence, from now on we may assume that

d 6

(
1

16
n log n

)1/3

, (2)

which implies that i > 4. We need one more definition: for a given u ∈ V , k > 1, and
A ⊆ V , we say that NV \A(u, k) expands well if for all j = 1, 2, . . . , k,

|NV \A(u, j)| = |SV \A(u, j)|(1 +O(1/d)) = dj(1 + o(log−1 n))

and for all j = 1, 2, . . . , k − 1, every vertex of SV \A(u, j) has d(1 + o(log log n/ log2 n))
neighbours in SV \A(u, j + 1). Finally, fix a four-tuple of different vertices u, v, x, y and
consider the following process (see Figure 2):
Hyperbolicity(u, v, x, y)

1. Let B := {v, x, y}. Perform Breadth-First Search (BFS) from u in the graph induced
by V \B to expose NV \B(u, i/2− 1). Make sure that the following properties hold
(otherwise stop the process):

(a) NV \B(u, i/2− 1) expands well.

(b) The graph induced by NV \B(u, i/2− 1) is a tree.

(c) There is no edge from NV \B(u, i/2− 2) to {v, x, y}.

(As a result, N(u, i/2 − 1) = NV \B(u, i/2 − 1) and so N(u, i/2 − 1) expands well,
N(u, i/2− 1) is a tree, and {v, x, y} ∩N(u, i/2− 1) = ∅.)

the electronic journal of combinatorics 16 (2009), #R00 9



v

v-rightv-left
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u-rightu-left

x y

a b dc

u-left a ...

x

Figure 2: left: Hyperbolicity(u, v, x, y), the big picture; right: the neighbourhood
exposure around a in more detail

2. Let D := N(u, i/2 − 1) ∪ {x, y}. Perform BFS from v in the graph induced by
V \ D to expose NV \D(v, i/2 − 1). (The reason that here we restrict ourselves to
the induced graph is to make sure no edge in this graph is already exposed and so,
as typical, we perform BFS by exposing edges one by one, as required.) Make sure
that the following properties hold (otherwise stop):

(d) NV \D(v, i/2− 1) expands well.

(e) There is no edge from NV \D(v, i/2 − 1) to S(u, i/2 − 1) (note that edges from
vertices of N(u, i/2 − 2) are already exposed, so that the only chance for the
intersection of NV \D(v, i/2− 1) and N(u, i/2− 1) to be non-empty is when we
reach vertices of S(u, i/2− 1)).

(f) The graph induced by NV \D(v, i/2− 1) is a tree.

(g) There is no edge from NV \D(v, i/2− 2) to {x, y}.

(As a result, N(v, i/2 − 1) = NV \D(v, i/2 − 1) and N(v, i/2 − 1) so expands well,
N(v, i/2−1)∩N(u, i/2−1) = ∅, N(v, i/2−1) is a tree, and {x, y}∩N(v, i/2−1) = ∅.)

3. Let us partition (arbitrarily) the neighbours of u into two sets, UL and UR, such that
||UL|− |UR|| 6 1. Let us partition the vertices of S(u, i/2− 1) and call vertices that
are at distance i/2 − 2 from UL to be ‘u-left’; otherwise, they are called ‘u-right’.
Similarly, the vertices of S(v, i/2 − 1) are partitioned into v-left and v-right ones.
Expose the edges between x and S(u, i/2 − 1) ∪ S(v, i/2 − 1) and similarly also
between y and S(u, i/2− 1)∪S(v, i/2− 1). Make sure that the following properties
hold (otherwise stop):
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(h) The number of u-left vertices is di/2−1

2
(1+o(log−1 n)), and the number of u-right

vertices is also di/2−1

2
(1 + o(log−1 n)).

(i) The number of v-left vertices is di/2−1

2
(1 + o(log−1 n)), and the number of v-right

vertices is also di/2−1

2
(1 + o(log−1 n)).

(j) There is exactly one edge between x and the u-left vertices; call the correspond-
ing neighbour of x to be a. There is no edge between x and the u-right vertices.

(k) There is exactly one edge between x and the v-left vertices; call the corre-
sponding neighbour of x to be b. There is no edge between x and the v-right
vertices.

(l) There is exactly one edge between y and the u-right vertices; call the corre-
sponding neighbour of y to be c. There is no edge between y and the u-left
vertices.

(m) There is exactly one edge between y and the v-right vertices; call the corre-
sponding neighbour of y to be d. There is no edge between y and the v-left
vertices.

4. In this step, the neighbourhood of a is investigated. Unfortunately, this is slightly
more complicated since some part of the neighbourhood of a is already “buried” in
N(u, i/2 − 1). In order to accomplish our goal, we need to perform BFS not only
from a (up to level i/2− 2), but also from some other vertices of S(u, i/2− 1) (this
time going not as deep as i/2−2; the level until which the neighborhood is explored
depends on the distance from a)—see Figure 2 (right side).

Formally, for 1 6 k 6 i/2− 2, let Sk be the set of vertices of S(u, i/2− 1) that are
at distance k from a in the tree induced by N(u, i/2− 1). (In fact, k has to be even
in order for Sk to be non-empty, but we consider all values of k for simplicity.) Let

F :=

N(u, i/2− 1) \

{a} ∪ i/2−2⋃
k=1

Sk

 ∪N(v, i/2− 1) ∪ {x} ∪ {y}.

We perform BFS from a and from vertices of
⋃i/2−2

k=1 Sk in the graph induced by
V \F ; we reach vertices at distance i/2− 2 from a and at distance i/2− 2− k from
Sk. Make sure that the following properties hold (otherwise stop).

(n) NV \F (a, i/2− 2) expands well. Moreover, for all 1 6 k 6 i/2− 2 and all ` ∈ Sk

we have that N(`, i/2− 2− k) expands well. In particular,

|NV \F (a, i/2− 2)| = di/2−2(1 + o(log−1 n))

i/2−2∑
k=1

∑
`∈Sk

|NV \F (`, i/2− 2− k)| = o(di/2−2 log−1 n).

the electronic journal of combinatorics 16 (2009), #R00 11



(o) There is no edge from NV \F (a, i/2−2)\{a} to F and for every k = 1, 2, . . . , i/2−
2 and every vertex ` ∈ Sk, there is no edge from NV \F (`, i/2− 2− k) \ {`} to
F .

(p) All graphs exposed in this step are disjoint trees. Note that this implies that
N(a, i/2− 2) is a tree.

(q) For 1 6 k 6 i/2 − 2, let S ′k be the set of vertices of S(v, i/2 − 1) that are at
distance k from b in the tree induced by N(v, i/2− 1) and let

F ′ :=

N(v, i/2− 1) \

{b} ∪ i/2−2⋃
k=1

S ′k

 ∪N(u, i/2− 1) ∪ {x} ∪ {y}

∪N(a, i/2− 2).

Perform BFS from b and from vertices of
⋃i/2−2

k=1 S ′k in the graph induced by
V \F ′; Properties (n), (o), and (p) hold when a is replaced by b, F is replaced
by F ′, and the sets Sk are replaced by S ′k.

(r) For 1 6 k 6 i/2 − 2, let S ′′k be the set of vertices of S(u, i/2 − 1) that are at
distance k from c in the tree induced by N(u, i/2− 1) and let

F ′′ :=

N(u, i/2− 1) \

{c} ∪ i/2−2⋃
k=1

S ′′k

 ∪N(v, i/2− 1) ∪ {x} ∪ {y}

∪N(a, i/2− 2) ∪N(b, i/2− 2).

Perform BFS from c and from vertices of
⋃i/2−2

k=1 S ′′k in the graph induced by
V \F ′′; Properties (n), (o), and (p) hold when a is replaced by c, F is replaced
by F ′′, and the sets Sk are replaced by S ′′k .

(s) For 1 6 k 6 i/2 − 2, let S ′′′k be the set of vertices of S(v, i/2 − 1) that are at
distance k from d in the tree induced by N(v, i/2− 1) and let

F ′′′ :=

N(v, i/2− 1) \

{d} ∪ i/2−2⋃
k=1

S ′′′k

 ∪N(u, i/2− 1) ∪ {x} ∪ {y}

∪N(a, i/2− 2) ∪N(b, i/2− 2) ∪N(c, i/2− 2).

Perform BFS from d and from vertices of
⋃i/2−2

k=1 S ′′′k in the graph induced by
V \F ′′′; Properties (n), (o), and (p) hold when a is replaced by d, F is replaced
by F ′′′, and the sets Sk are replaced by S ′′′k .

5. Let

Q := N(u, i/2− 1) ∪N(v, i/2− 1) ∪ {y}
∪N(a, i/2− 2) ∪N(b, i/2− 2) ∪N(c, i/2− 2) ∪N(d, i/2− 2).

We perform BFS from x in the graph induced by V \Q to expose NV \Q(x, i/2− 1).
Make sure that the following properties hold (otherwise stop):
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(t) NV \Q(x, i/2− 1) expands well.

(u) There is no edge from NV \Q(x, i/2− 1) \ {x} to Q.

(v) NV \Q(x, i/2− 1) is a tree. Note that since the remaining branches accessed by
the edge xa and the edge xb are already guaranteed to be trees and there are
no edges between different parts, this implies that N(x, i/2− 1) is a tree.

(w) There is no edge between x and y.

(x) Let R := Q ∪N(x, i/2− 1) \ {y}. Properties (t), (u), and (v) hold when x is
replaced by y and Q is replaced by R.

6. It is the end of this tedious process so it is time for a short break—perform a fire-
works show (fireworks are explosive pyrotechnic devices typically used for aesthetic,
cultural, and religious purposes; here the main purpose is to celebrate finding an
object with the desired properties).

We say that the process Hyperbolicity(u,v,x,y) terminates successfully if all
the required conditions are satisfied, that is, the process does not stop prematurely before
reaching the end.

Claim 8. If Hyperbolicity(u,v,x,y) terminates successfully for some four-tuple u, v, x, y,
then δH(G) > i/2.

Proof. By Property (e), N(u, i/2− 1) ∪N(v, i/2− 1) = ∅, and there is no edge between
S(u, i/2− 1) and S(v, i/2− 1). Hence, we have d(u, v) > i. In fact, the distance between
u and v is exactly i, since by Properties (j) and (k) there is a path of length i going
through x. Next, by Properties (c), (g), (j), (k), (l) and (m), we have d(u, x) =
d(v, x) = d(u, y) = d(v, y) = i/2. For the distance between x and y observe the following:
first, by Properties (j) and (l) there is an x− y path of length i going from x to a, then
through u to c, and then to y. We will show that N(x, i/2−1)∩N(y, i/2−1) = ∅ and that
there is no edge between S(x, i/2− 1) and S(y, i/2− 1). Indeed, if a shortest x− y-path
first goes from x to a, by Properties (o), (r), (s) and (x), it has to go until S(a, i/2− 2),
and then it has to pass through at least two more edges before entering S(y, i/2 − 1),
including S(c, i/2 − 2) and S(d, i/2 − 2), and in each case the length is at least i. By
properties (q), (r), (s) and (x), the same holds if the path starts from x to b. If the path
from x neither goes through a nor through b, it has to go through NV \Q(x, i/2 − 1). By
Properties (u) and (x), it has to arrive at S(x, i/2 − 1), and then it has to go through
at least two edges before entering S(y, i/2− 1), including S(c, i/2− 2) and S(d, i/2− 2),
and in each case the length is also at least i.

Hence, d(u, v) + d(x, y) > 2i, d(u, x) + d(v, y) = d(u, y) + d(v, x) = i, and thus,
δH(G) > i/2. The proof of the claim is finished.

Thus, by Claim 8, in order to show that a.a.s. δH(G) > i/2, it suffices to show that
a.a.s. Hyperbolicity(u, v, x, y) succeeds for at least one four-tuple of vertices u, v, x, y.
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Let Xu,v,x,y be the indicator random variable defined as follows:

Xu,v,x,y =

{
1, if Hyperbolicity(u, v, x, y) terminates successfully,

0, otherwise.

Let
X =

∑
u,v,x,y

Xu,v,x,y,

where the sum is taken over all
(
n
4

)
4-tuples of all disjoint vertices. In order to prove

that a.a.s. δH(G) > i/2, we will apply the second moment method to X. Define q =
exp(−di−1/(2n)) and note that from the assumption that di−1 6 1

16
n log n we have q >

n−1/32.

Lemma 9. For a fixed four-tuple of vertices u, v, x, y,

P(Xu,v,x,y = 1) =

(
di/2

2n

)4

q16(1 + o(1)).

Moreover,

E [X] =
d2i

384
q16(1 + o(1)) = Ω(n5/6(log n)4/3).

Proof. Fix a four-tuple of vertices u, v, x, y. First, we will calculate Pr (Xu,v,x,y = 1). We
will estimate for each of the five steps of Hyperbolicity(u,v,x,y) the probability that
it fails at that step. For z ∈ {a, b, . . . , x}, let Pz be the indicator random variable for the
event that Property (z) succeeds provided that all previous properties have succeeded as
well. Similarly, for step z ∈ {1, 2, . . . , 5}, let Tz be the indicator random variable for the
event that step z succeeds provided that all previous steps have succeeded as well.

By Lemma 6(iii) and (iv),

P(Pa = 1) = 1 + o(1).

Let E be the event that there is no edge within the last sphere SV \B(u, i/2 − 1). By
Lemma 6(v) and (vi), in order to calculate the probability that Property (b) holds, it
remains to estimate the probability that E holds. We have

P(E) = (1− p)(
|SV \B(u,i/2−1)|

2
) (3)

= exp

(
−p(1 +O(p))

(
|SV \B(u, i/2− 1)|

2

))
= exp

(
−p(1 +O(p))

(
(di/2−1)2

2
(1 + o(log−1 n))

))
,
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where the last equality follows from Property (a) that is assumed to hold deterministically
now. Hence,

P(E) = exp

(
−pd

i−2

2
(1 + o(log−1 n))

)
= exp

(
−d

i−1

2n
(1 + o(log−1 n))

)
= exp

(
−d

i−1

2n

)
(1 + o(1)) = q(1 + o(1)),

where the last line follows from the assumption that di−1 6 1
16
n log n. Hence, the proba-

bility that NV \B(u, i/2 − 1) is a tree is asymptotically equal to the probability that the
event E holds, and thus

P(Pb = 1) = q(1 + o(1)).

Now, let us move to Property (c). By Lemma 6(ii) together with a union bound over all
vertices in NV \B(u, i/2− 2), we see that with probability

1−O(di/2−2di/2/n) = 1−O(di−2/n) = 1 + o(1)

there is no edge from NV \B(u, i/2− 2) to B, and thus

P(Pc = 1) = 1 + o(1).

Hence,
P(T1 = 1) = q(1 + o(1)).

Next, for Property (d), by Lemma 6(iii) and (iv), we obtain

P(Pd = 1) = 1 + o(1).

For Property (e), since Property (d) is assumed to hold deterministically at this point,
we have

P(Pe = 1) = (1− p)|S(u,i/2−1)||NV \D(v,i/2−1)|

= (1− p)|S(u,i/2−1)||SV \D(v,i/2−1)|(1+O(1/d))

= (1− p)(di/2−1)2(1+o(log−1 n))

=

(
exp

(
−p(1 +O(p))

(
(di/2−1)2

2
(1 + o(log−1 n))

)))2

and hence, by the same calculations following (3) we obtain

P(Pe = 1) = q2(1 + o(1)).

The probability of having Property (f) is calculated as before for Property (b), and of
having Property (g) as before for Property (c). Thus,

P(T2 = 1) = q3(1 + o(1)).
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For Property (h) we immediately have by Lemma 6(vii) that

P(Ph = 1) = 1 + o(1),

and the same applies to Property (i). For Property (j), since Property (h) is assumed to
hold deterministically, we have

P(Pj = 1) = (1 + o(1))
di/2−1

2
p(1− p)(1+o(1))di/2−1

= (1 + o(1))
di/2

2n
exp

(
−p(1 +O(p))(1 + o(1))di/2−1

)
= (1 + o(1))

di/2

2n
exp

(
−(1 + o(1))di/2/n

)
= (1 + o(1))

di/2

2n
exp

(
−(1 + o(1))(di−1)1/2

√
d/n
)

= (1 + o(1))
di/2

2n
,

where the last line follows from the fact that (di−1)1/2 = O(
√
n log n) (by definition of i),

and by (2), which implies that (di−1)1/2
√
d/n = O(

√
d log n/n) = o(1). Note then that

Properties (j), (k), (l) and (m) are symmetric and mutually independent, and thus they
are calculated in the same way. Therefore

P(T3 = 1) =

(
di/2

2n

)4

(1 + o(1)).

Let us move to investigating Properties (n), (o), and (p). First, we perform BFS
from a in V \F . It follows immediately from Lemma 6(iii) that NV \F (a, i/2− 2) expands
well and so the bound on |NV \F (a, i/2− 2)| in Property (n) holds a.a.s. For the vertices
in Sk, since Properties (a) and (b) are assumed to hold deterministically, for every even
value of k such that 2 6 k 6 i/2 − 2, the number of vertices in Sk is (1 + o(1))dk/2.
In order to deal with the second bound of Property (n) (and to investigate Properties
(o) and (p) at the same time), we mimic the proof of Lemma 6(iii). We perform BFS
from some other vertex in some Sk in V \ F , updating the set F every time a vertex is
processed. As shown in Figure 1, the vertex that was processed before, together with all
its neighbours, will be added to F , and the next vertex in the queue to be processed will
be taken out of F . Once we are done, we take the next vertex in some Sk and continue
in this way until all neighbourhoods under consideration are discovered. Arguing as in
the proof of Lemma 6(iii), by Lemma 6(i) together with a union bound over all vertices
processed, we obtain the desired bounds for the sizes of neighbourhoods. Moreover, by
Lemma 6(ii) together with a union bound over all vertices that are discovered during this
step (at most O(di/2−2) vertices), we get that a.a.s. at the time when a given vertex was
processed there was no edge to already discovered vertices (neither within the same tree
where we started BFS from, nor to other trees, nor to the initial set F ). This deals with
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Properties (o) and (p). Finally, it follows that a.a.s.

i/2−2∑
k=1

∑
`∈Sk

|NV \F (`, i/2− 2− k)| 6
i/2−2∑
k=1

(1 + o(1))di/2−2−k/2 = o(di/2−2 log−1 n),

where the last equality follows from the fact that d� log5 n/(log log n)2. Thus,

P(Pn = 1 and Po = 1 and Pp = 1) = 1 + o(1).

The probabilities for Properties (q), (r) and (s) to hold are calculated in exactly the
same way as for Properties (n), (o) and (p), and hence

P(T4 = 1) = 1 + o(1).

Finally, for T5, when exposing x, Property (t) is investigated as before. Also, by
analogous calculations as for T1, the probability of having no edge to Q (Property (u))
and the one of being a tree (Property (v)), altogether yield q5(1 + o(1)); note that the
exponent of 5 comes from the fact that NV \Q(x, i/2−1) is a tree (giving one q), that there
is no edge to S(u, i/2− 1) (giving 2 additional factors of q), and no edge to S(v, i/2− 1)
(giving another 2 additional factors of q). Property (w) clearly also holds with probability
1 + o(1). Similarly, when exposing y, we also have to consider the condition of having no
edge to NV \R(x, i/2− 1) (Property (x)), giving us another factor of q2, and thus yielding
a probability of q7(1 + o(1)). Thus,

P(T5 = 1) = q12(1 + o(1)).

Combining the events T1, T2, . . . , T5, we obtain

P(Xu,v,x,y = 1) = (di/2/(2n))4q16(1 + o(1)),

yielding the first part of the lemma. Observing that i is such that di+1 > 1
16
n log n, and

therefore di > 1
16
n log n/d, and also using (2), we obtain

E [X] =

(
n

4

)(
di/2

2n

)4

q16(1 + o(1))

=
d2i

384
q16(1 + o(1))

>
( 1
16
n log n)2

384d2
q16(1 + o(1))

= Ω(n3/2(log n/d)2)

= Ω(n5/6(log n)4/3),

which finishes the proof of the lemma.

We now move to the second moment method.
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Lemma 10. E [X2] = (1 + o(1))(E [X])2.

Proof. In order to analyze the expected value of X2 we will consider 8 different cases.
Note that

E
[
X2
]

=
∑

u,v,x,y

∑
u′,v′,x′,y′

P(Xu,v,x,y = 1 ∧Xu′,v′,x′,y′ = 1),

where both sums range over all 4-tuples of different vertices. For a fixed 4-tuple of vertices
u, v, x, y, it follows from the first part of Lemma 9 that

P(Xu,v,x,y = 1) = (di/2/(2n))4q16(1 + o(1)).

Conditioning on Xu,v,x,y = 1, our goal is to investigate P(Xu′,v′,x′,y′ = 1|Xu,v,x,y = 1). Note
that the lower bound for E [X2] trivially holds and so we aim for an upper bound. There-
fore, we focus on properties that hold with probability o(1) in the unconditional case (such
as Property (b) that holds with probability asymptotic to q). We ignore properties that
hold with probability 1 + o(1) in the unconditional case (such as Property (a)) although
it might happen that the probability that they hold in the conditional space is smaller
(which clearly helps).

Assume that Xu,v,x,y = 1, and let U be the set of vertices exposed to certify this, that
is,

U := N(u, i/2− 1) ∪N(v, i/2− 1) ∪N(x, i/2− 1) ∪N(y, i/2− 1)

∪N(a, i/2− 2) ∪N(b, i/2− 2) ∪N(c, i/2− 2) ∪N(d, i/2− 2).

Since Xu,v,x,y = 1, |U | = O(di/2−1). For z ∈ {u, v, x, y, a, b, c, d}, we always denote by
z′ the vertex in Hyperbolicity(u′, v′, x′, y′) corresponding to vertex z in Hyperbolic-
ity(u, v, x, y).

Before we move to investigating cases, let us note that we may assume the following
useful properties that will hold for all 4-tuples of vertices u, v, x, y with corresponding set
U a.a.s.

Claim 1: For a vertex z′ /∈ U , the number of edges between N(z′, i/2− 1) \U and U
is O(log n).

Proof. Indeed, we may assume that |N(z′, i/2− 1) \ U | = O(di/2−1) and so the expected
number of edges between N(z′, i/2 − 1) \ U and U is O(pdi−2) = O(di−1/n) = O(log n).
It follows from Chernoff’s bound that there exists some constant C > 0 such that the
probability to have at least C log n edges of this type is o(n−4). The contribution of all
such four-tuples u′, v′, x′, y′ to X2 is o(1) and so can be safely ignored.

Claim 2: For a vertex z′ /∈ U , |N(z′, i/2− 1) ∩ U | = O(di/4−1 log n).

Proof. Indeed, suppose that there is an edge from N(z′, i/2− 1) \ U to U . In fact, since
U is exposed during the BFS process, this edge has to be adjacent to a leaf ` of the
graph induced by U . We need to estimate the size of N(`, i/2− 2) ∩ U , since vertices in
N(z′, i/2 − 1) ∩ U due to the existence of this edge form a subset of N(`, i/2 − 2) ∩ U .
From the fact that U induces an almost regular tree, it follows that |N(`, i/2− 2)∩U | =
O(di/4−1).The claim follows from the same Chernoff bound as in Claim 1.
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Now, we are ready for a case analysis.

Case 1: {u′, v′, x′, y′} ∩ U = ∅.
It follows from Claim 2 above that the part of the graph that needs to be exposed

in order to check whether Xu′,v′,x′,y′ = 1 intersects with U only in a negligible way. It
is straightforward to show that Properties (b), (e), (f), (u), (v) and (x), as well as
Properties (j), (k), (l) and (m) are up to a 1 + o(1) factor independent of conditioning
on Xu,v,x,y = 1, and their calculations are as in Lemma 9. We obtain

P(Xu′,v′,x′,y′ = 1|Xu,v,x,y = 1) 6 (di/2/(2n))4q16(1 + o(1)) = P(Xu,v,x,y = 1)(1 + o(1)).

Clearly, the number of choices of four-tuples u, v, x, y and u′, v′, x′, y′ is at most the square
of the number of choices for u, v, x, y, so the contribution of this case is at most (1 +
o(1))E [X2]. (We will show that the contribution of all other cases is o(E [X2]) and so the
contribution of this case is indeed (1 + o(1))E [X2].)

Case 2: {u′, v′} ∩ U 6= ∅ and {x′, y′} ∩ U = ∅.
Since {x′, y′} ∩ U = ∅, edges emanating from x′ and y′ are not exposed yet. Hence,

the probabilities that Properties (j), (k), (l) and (m) hold are as in the unconditional
case. Ignoring all other properties we get

P(Xu′,v′,x′,y′ = 1|Xu,v,x,y = 1) 6 (di/2/(2n))4(1 + o(1)) = O
(
P(Xu,v,x,y = 1)q−16

)
.

On the other hand, since at least one of u′, v′ is in U , only a

O(|U |/n) = O(di/2−1/n) = O
(√

log n/(dn)
)

= O(n−1/2(log−2 n)(log log n)) = o(q16)

fraction of four-tuples is considered here. Hence, the contribution of this case to X2 is
negligible.

From now on we may assume that at least one of x′, y′ has to be in U .

Case 3: {u′, v′} ∩ U = ∅, and |{x′, y′} ∩ U | = 1.
By symmetry, we may assume that x′ ∈ U and y′ /∈ U . Since y′ /∈ U , arguing

as in the previous case, we get that Properties (l) and (m) hold with probability up
to a 1 + o(1) factor as in the unconditional case. However, it might happen that, say,
N(u′, i/2− 1) ∩ U 6= ∅ and Property (j) holds “for free”. Intuitively, for this to happen,
an edge joining NV \U(u′, i/2 − 1) and U must occur at the right place, which happens
with small probability. Moreover, only a small fraction of four-tuples satisfies x′ ∈ U .

More precisely, for Property (j) to hold “for free”, we must have that d(u′, x′) = i/2,
and so there must be an edge between SU(x′, k) and SV \U(u′, i/2 − 1 − k) for some
k = 0, 1, . . . , i/2− 1. By the union bound, this happens with probability

O(idkdi/2−1−kp) = O

(
di/2

n
· log n

log log n

)
,

the electronic journal of combinatorics 16 (2009), #R00 19



since i = O(log n/ log log n). (In fact, with a slightly more delicate argument one can
remove the log n/ log log n factor but this is not needed.) The same argument applies to
Property (k). (Recall, that we may assume that N(u′, i/2 − 1) and N(v′, i/2 − 1) are
disjoint.) Hence, by considering only these four properties we get that

P(Xu′,v′,x′,y′ = 1|Xu,v,x,y = 1) = O

((
di/2

n

)4(
log n

log log n

)2
)

= O

(
P(Xu,v,x,y = 1)q−16

(
log n

log log n

)2
)
.

On the other hand, since x′ ∈ U , only a

O(|U |/n) = O(n−1/2(log−2 n)(log log n)) = o(q16(log n/ log log n)−2)

fraction of four-tuples is considered here. Hence, the contribution of this case to X2 is
negligible.

Case 4: {u′, v′} ∩ U = ∅, and |{x′, y′} ∩ U | = 2.
Note that if Xu′,v′,x′,y′ = 1 then, in particular, d(x′, y′) = i and so the distance between

x′ and y′ in the graph induced by U is at least i. It follows that, for example, an edge
between s ∈ SU(x′, k) and t ∈ SV \U(u′, i/2 − 1 − k) (for some k = 0, 1, . . . , i/2 − 1)
cannot make both Property (j) and Property (l) to hold, since that would imply that
d(x′, y′) 6 d(x′, s) + d(s, y′) 6 i − 2. Hence the calculations dealing with y′ (related to
Properties (l) and (m)) are independent of the calculations dealing with x′ (related to
Properties (j) and (k)). Arguing as in the previous case, we get that

P(Xu′,v′,x′,y′ = 1|Xu,v,x,y = 1) = O
(
P(Xu,v,x,y = 1)q−16(log n/ log log n)4

)
.

Finally, note that only a

O((|U |/n)2) = o(1/n) = o(q16(log log n/ log n)4)

fraction of four-tuples is considered here, making the contribution of this case negligible.

From now on we may assume that at least one of u′, v′ has to be in U (and still at
least one of x′, y′).

Case 5: |{u′, v′} ∩ U | = 1, and |{x′, y′} ∩ U | = 1.
By symmetry, suppose that u′ ∈ U , v′ /∈ U , x′ ∈ U , y′ /∈ U . Since y′ /∈ U , as before,

we get that Properties (l) and (m) hold with probability up to a 1 + o(1) factor as in
the unconditional case. Now, since v′ /∈ U , by the same calculations as in Case 3, the
probability that Property (k) holds is at most O

(
(di/2/n) log n/ log log n

)
. Property (j),
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however, might hold deterministically now, so we lose an additional factor of O(di/2/n).
By considering only Properties (k), (l) and (m), we get that

P(Xu′,v′,x′,y′ = 1|Xu,v,x,y = 1) = O

((
di/2

n

)3
log n

log log n

)

= O

(
P(Xu,v,x,y = 1)q−16

n

di/2
log n

log log n

)
.

On the other hand, since u′, x′ ∈ U , only a

O((|U |/n)2) = O((di/2−1/n)n−1/2(log−2 n)(log log n)) = o((di/2/n)q16(log log n/ log n))

fraction of four-tuples is considered here, and so the contribution of this case to X2 is
negligible.

Case 6: |{u′, v′} ∩ U | = 1, and |{x′, y′} ∩ U | = 2.
By symmetry, suppose that u′ ∈ U and v′ /∈ U . By the same argument as in Case 4,

the calculations involving Properties related to x′ are independent of those related to y′.
Since v′ /∈ U , by the same calculations as in Case 3, the probability that Properties (k)
and (m) both hold is at most O

(
(di/2/n)2(log n/ log log n)2

)
. This time, Properties (j)

and (l) might hold deterministically, so we lose an additional factor of O((di/2/n)2). By
considering only Properties (k) and (m) we get that

P(Xu′,v′,x′,y′ = 1|Xu,v,x,y = 1) = O

(
P(Xu,v,x,y = 1)q−16

( n

di/2

)2( log n

log log n

)2
)
.

On the other hand, since u′, x′, y′ ∈ U , only a

O((|U |/n)3) = O((di/2−1/n)2n−1/2(log−2 n)(log log n)) = o((di/2/n)2q16(log log n/ log n)2)

fraction of four-tuples is considered here, and the contribution of this case to X2 is neg-
ligible.

Case 7: |{u′, v′} ∩ U | = 2, and |{x′, y′} ∩ U | = 1.
By symmetry, suppose that x′ ∈ U and y′ /∈ U . Since y′ /∈ U , as before, we get that

Properties (l) and (m) hold with probability up to a 1+o(1) factor as in the unconditional
case. By considering only these two properties we get that

P(Xu′,v′,x′,y′ = 1|Xu,v,x,y = 1) = O

(
P(Xu,v,x,y = 1)q−16

( n

di/2

)2)
.

On the other hand, since u′, v′, x′ ∈ U , only a

O((|U |/n)3) = O((di/2−1/n)2n−1/2(log−2 n)(log log n)) = o((di/2/n)2q16)
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fraction of four-tuples is considered here, and the contribution of this case to X2 is neg-
ligible.

Case 8: |{u′, v′} ∩ U | = 2, and |{x′, y′} ∩ U | = 2.
First, let us observe that in order to have Xu′,v′,x′,y′ = 1 the vertices u′, v′, x′, y′ have

to lie on an induced cycle of length 2i (of course, this is a necessary condition only).
Moreover, note that there is only one such cycle in the graph induced by U (namely,
the one going through u, v, x, y). Hence, in order for this necessary condition to hold
“for free,” all four vertices of u′, v′, x′, y′ have to be on this cycle. Thus, there are only
(2i)4 = O((log n/ log log n)4) = o(E [X]) such 4-tuples of vertices, and this contribution
is negligible. Otherwise, we observe that at least one edge of the cycle u′, v′, x′, y′ is not
yet present in the graph induced by U , say an edge on the path between u′ and x′. For
this to happen, there must be an edge between S(u′, k) and S(x′, i/2 − 1 − k) for some
k ∈ {0, 1, . . . , i/2 − 1} that is not yet exposed. By the same calculations as in Case 3,
this happens with probability at most

O

(
di/2

n
· log n

log log n

)
.

Thus,

P(Xu′,v′,x′,y′ = 1|Xu,v,x,y = 1) = O

(
P(Xu,v,x,y = 1)q−16

( n

di/2

)3
(log n/ log log n)

)
.

On the other hand, since u′, v′, x′, y′ ∈ U , only a

O((|U |/n)4) = O((di/2−1/n)3n−1/2(log−2 n)(log log n)) = o((di/2/n)3q16(log log n/ log n))

fraction of four-tuples is considered here, and the contribution of this case to X2 is neg-
ligible.

Using Lemma 9 and Lemma 10, Theorem 7 follows now easily by Chebyshev’s inequal-
ity.

4 Concluding remarks and open questions

We have shown that in G(n, p), for p � log5 n
n(log logn)2

the hyperbolicity is (up to a possible

difference of 1) a monotone decreasing graph parameter. In general, since trees as well as
cliques have hyperbolicity 0, the hyperbolicity is not monotone, but we conjecture that in
G(n, p) with p above the threshold of connectivity, the same behavior holds. Intuitively, if
p is close to the threshold of connectivity, then G(n, p) a.a.s. contains a lot of long cycles,
and there will not be many shortcuts, making the hyperbolicity of the graph large. After
extending the definition of hyperbolicity to non-connected graphs by defining it as the
maximum over all connected components, the situation is quite different. For p < (1−ε)/n
for some ε > 0, the hyperbolicity is 0 a.a.s., but for p > (1 + ε)/n for some ε > 0, the
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appearance of the giant component makes the hyperbolicity to tend to infinity a.a.s. (see
also [22]). It would be interesting to investigate for which values of p the hyperbolicity
of G(n, p) is maximized, and what this value is. We also would like to know whether
the hyperbolicity is monotone increasing up to its maximal value and then decreasing, or
whether there are several “peaks.”
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cul de l’hyperbolicité d’un graphe, 15èmes Rencontres Francophones sur les Aspects
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