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Abstract

Let G = (V, E) be a connected graph with the usual (graph) distance metric d :
V xV — NU{0}. Introduced by Gromov, G is é-hyperbolic if for every four vertices
u,v,x,y € V, the two largest values of the three sums d(u,v) + d(x,y),d(u,z) +
d(v,y),d(u,y) + d(v, z) differ by at most 26. In this paper, we determine precisely
the value of this hyperbolicity for most binomial random graphs.
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1 Introduction

Hyperbolicity is a property of metric spaces that generalizes the idea of negatively curved
spaces like the classical hyperbolic space or Riemannian manifolds of negative sectional
curvature (see, for example, [1, 10]). Moreover, this concept can be applied to discrete
structures such as trees and Cayley graphs of many finitely generated groups. The study
of properties of Gromov’s hyperbolic spaces from a theoretical point of view is a topic
of recent and increasing interest in graph theory and computer science. Informally, in
graph theory hyperbolicity measures how similar a given graph is to a tree—trees have
hyperbolicity zero and graphs that are “tree-like” have “small” hyperbolicity. Formally,
a connected graph G = (V| F) is -hyperbolic, if for every four vertices u,v,x,y € V,
the two largest values in the set

{d(u,v) + d(z,y),d(u,x) + d(v,y),d(u,y) + d(v,z)}

differ by at most 2. The hyperbolicity of G, denoted by 4 (G), is the smallest § for
which this property holds.
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Our results below show a close relation between the diameter and hyperbolicity. This
relation was also studied in [6]: the authors show that for vertex transitive graphs, the
hyperbolicity is within a constant factor of the diameter. The author of [4] bounds the
number of vertices in terms of the Cheeger constant and the hyperbolicity, showing that
the family of expanders is not uniformly d-hyperbolic for § constant. In [2] several equiva-
lent conditions for a graph to be 0-hyperbolic are given, and in [3] the authors characterize
1/2-hyperbolic graphs in terms of forbidden subgraphs. On the algorithmic side, by the
conditions investigated in [2], O-hyperbolic graphs can be recognized in linear time, and
in [16] it is shown that recognizing 1/2-hyperbolic graphs is equivalent to finding an in-
duced cycle of length 4 in a graph. Fast algorithms for computing the hyperbolicity of
large-scale graphs are given in [15].

The study of this parameter is motivated by the following observations: on the algo-
rithmic side, in [13] fast algorithms for computing properties related to the diameter of
graphs with small hyperbolicity are given. In [14] the authors give a simple construction
showing that distances in graphs with small hyperbolicity can be approximated within
small error by corresponding trees. In [12] the authors give a polynomial algorithm which
computes for such graphs an augmented graph of at most a given diameter, and whose
number of added edges is within a constant factor of the minimum number of added edges
that are needed such that the augmented graph has at most such a diameter. Finally,
in [11] it is shown that all cop-win graphs in which the cop and the robber move at dif-
ferent speeds have small hyperbolicity, and also a constant-factor approximation of dy in
time O(n*logd) is given. Moreover, the concept of hyperbolicity turns out to be useful
for many applied problems such as visualization of the Internet, the Web graph, and
other complex networks [20, 21], routing, navigation, and decentralized search in these
networks [7, 19]. In particular, hyperbolicity plays an important role when investigating
the spread of viruses through a network [18].

Let us recall a classic model of random graphs that we study in this paper. The
binomial random graph G(n,p) is defined as a random graph with vertex set [n] =
{1,2,...,n} in which a pair of vertices appears as an edge with probability p, indepen-
dently for each such a pair. As typical in random graph theory, we shall consider only
asymptotic properties of G(n, p) as n — oo, where p = p(n) may and usually does depend
on n. We say that an event in a probability space holds asymptotically almost surely
(a.a.s.) if its probability tends to one as n goes to infinity.

We say that f(n) = O(g(n)) if there exists an integer ny and a constant ¢ > 0 such
that |f(n)| < c|g(n)| for all n > ng, and f(n) = Q(g(n)), if g(n) = O(f(n)). Also,
F(n) = w(gn), or f(n) > g(n), it lim, .. |f(n)|/lg(n)| = o0, and f(n) = og(n)) or
f(n) < g(n), if g(n) = w(f(n)). Throughout this paper, logn always denotes the natural
logarithm of n.

In this paper, we investigate the hyperbolicity for binomial random graphs. Surpris-
ingly, this important graph parameter is not well investigated for random graphs which is
an important and active research area with numerous applications. In [22], sparse random
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graphs (p = p(n) = ¢/n for some real number ¢ > 1) are analyzed. It was shown that
G(n,p) is, with positive probability, not -hyperbolic for any positive . Nothing seems
to be known for p > n~!. On the other hand, it is known that for a random d-regular
graph G, for d > 3, we have that a.a.s.

1 1
5 log, ;n—w(n) <dig(G) < 5 log;_ 4 n+ O(loglogn),

where w(n) is any function tending to infinity together with n. (In fact, almost geodesic
cycles are investigated in [5], and this is an easy consequence of this result.) The hyper-
bolicity of the class of Kleinberg’s small-world random graphs is investigated in [9].

Our contribution is the following result.

Theorem 1. Let G € G(n,p).
Suppose first that

log® n

d=d(n)=pn—-1)> and p=1-—w(l/n?).

(loglogn)?

Let j > 2 be the smallest integer such that d’/n — 2logn — oo. Then, the following
properties hold a.a.s.

(i) If j is even and d~' < sznlogn, then 6u(G) = j/2.
(i) If j is even and d~' > s=nlogn (but still &~' < (2+ o(1))nlogn), then
J/2—=1<6n(G) <j/2.
(111) If j is odd, then 6y (G) = (j —1)/2.
Furthermore, the following complementary results hold.
(iv) For p = 1 — 2¢/n? for some constant ¢ > 0, a.a.s. 6y(G) € {0,1/2,1}. More

precisely,
P(ou(G) =0) = (1+o(1))e,
P(og(G)=1/2) = (14 o(1))ce  , and
P(ou(G) =1) (140(1) (1= (c+1)e™).

(v) Forp=1—o0(1/n?), a.a.s. 5g(G) = 0.

Remark. It seems that with quite a bit more work, we could slightly push the lower
bound required for d and require only that d > log®n or perhaps even only d > log®n.
Unfortunately, it seems that it is more difficult to investigate sparser graphs (that is,
assuming only d > logn or even closer to the connectivity threshold). Therefore, we aim
for an easier (and cleaner) argument in this paper, leaving the investigation of sparser
graphs as an open problem. Let us also mention that the hyperbolicity is not determined
precisely for dense graphs right before the diameter decreases from even j to j — 1 (case
(i) in Theorem 1). Again, the constant = could be slightly improved with a more delicate
argument but the gap cannot be closed with the current approach. This is also worth
investigating and (unfortunately) left open at the moment.
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2 Preliminaries

In this section, we introduce a few useful lemmas. The following result is well-known but
we include the proof for completeness.

Lemma 2. Let G be any connected graph with diameter at most D. Then 6y (G) < D/2.

Proof. Consider any four vertices u, v, x, y with their three sums of distances d; = d(u,v)+
d(z,y) = dy = d(u,z)+d(v,y) = ds = d(u,y)+d(v,z). We need to show that d; —dy < D.
Clearly, d; < 2D. First observe that by applying the triangle inequality four times,

2d; = 2(d(u,v)+d(x,y))
< d(u,y) +d(y,v) + d(u, x) + d(z,v) + d(z, u) + d(u,y) + d(z,v) + d(v, y)
= 2(dy + d3),
and thus d; < dy+ds3 or equivalently dy —ds < dz. Hence, if d3 < D, the required condition

holds and we are done. Otherwise, d3 > D and so also dy > D. As a consequence,
di —dy < 2D — D = D, and we are done as well. O

We can slightly improve the upper bound for graphs with odd diameter.

Lemma 3. Let G be any graph with diameter at most D = 2k + 1 for some integer k.
Then 0g(G) < (D —1)/2 =k.

Proof. As in the previous proof, we consider four vertices u, v, z,y with their three sums
of distances dy = d(u,v) + d(z,y) = do = d(u,z) + d(v,y) = d3 = d(u,y) + d(v,x). Our
goal is to show that dy — dy < D — 1. Arguing as in the previous proof, we get that
d1 —dy < d3. Hence, if d3 < D, then d; —dy < D —1 and we are done. Also, if dy > D+1,
then dy —dy < 2D — (D + 1) < D — 1. So the only case to analyze is when dy = d3 = D.
For a contradiction, suppose that d; — dy = D, that is, d; = d(u,v) + d(z,y) = 2D. In
particular, d(u,v) = D and d(x,y) = D. Since D = d3 = d(u,y) + d(v,z) and D is odd,
we may assume (without loss of generality) that d(u,y) < D/2. Then, since

D =d(u,v) < d(u,y) + d(y, v)

and

we have d(y,v) > D/2, d(x,u) > D/2, and we have that dy = d(u,z) + d(v,y) > D,
contradicting our assumption on ds. Therefore, d—dy < D—1, and the lemma follows. [

In order to bound the hyperbolicity from above, we will make use of the following
result for random graphs, see [8, Corollary 10.12].

Lemma 4 ([8], Corollary 10.12). Suppose that d = p(n — 1) > logn and
d'/n—2logn — oo and d'/n—2logn — —oo.

Then the diameter of G € G(n,p) is equal to i a.a.s.
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From the proof of this result, we have the following corollary.
Corollary 5. Suppose that d = p(n — 1) > logn and that
d'/n — 2logn — oo.

Then the diameter of G € G(n,p) is at most i a.a.s.

In order to obtain a lower bound on the hyperbolicity, we will need the following
expansion lemma investigating the shape of typical neighbourhoods of vertices. Before
we state the lemma we need a few definitions. For any j > 0, let us denote by N (v, j) the
set of vertices at distance at most j from v, and by S(v, j) the set of vertices at distance
exactly j from v. Also, for a set of vertices F C V', and # € V' \ F, denote by Ny\p(x, j)
the set of vertices in V' \ F' at distance at most j from x in the graph induced by V' \ F,
and similarly let Sy, p(x, ) be the set of vertices in V'\ F' at distance exactly j from z in
the graph induced by V' \ F.

Lemma 6. Suppose that d = p(n — 1) is such that

log® n 1 1/3
ety << (5ms7)

Let G = (V,E) € G(n,p) and let i > 4 be the largest even integer such that d*=' <

Lnlogn. Fiz any set F C V such that |F| = O(d/*7) = O(y/nlogn/d) and fiz any
vertexv € V\ F. Then,

(i) with probability 1 — o(n™') we have

loglogn
[Ny p(v, 1)] = d (1 to (lg—zg)) ,

og'n
(i1) with probability
1= 0@ /n) =1~ O(/dlogn/n) = 1 - O((logn)**n™")
there is no edge from v to F.
In particular, it follows that a.a.s. the following properties hold:
(i1i) for all j=1,2,...,i/2 -1,
[Nvvr(v, )] = S0, )I(1+ O(1/d)) = d(1 + o(log™" n)),

(iv) for all j =1,2,...,i/2—2, every vertex of Sy\r(v,j) has d(1+ o(loglogn/log®n))
neighbours in Sy\p(v, j + 1),
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(v) the graph induced by Ny\rp(v,i/2 — 2) forms a tree,
(vi) all vertices of Sy\p(v,i/2 — 1) have exactly one neighbour in Sy\p(v,i/2 — 2),

(vii) for any fixed partition of the neighbours of v into two sets, Vi, and Vg, such that
VL] —|Vr|| <1, let Sp, denote the set of vertices of S(v,i/2—1) that are at distance
i/2 —2 from Vi, and let Sgp = S(v,i/2 — 1)\ SL; then,

i/2—1

[SL] = ISkI(1+ o(log™ n)) = 5

(1+o(log™ n)).

Proof. Let F CV, f = |F| = O(d"/*'), and v € V \ F. Consider the random variable
X = X(F,v) = |Snr(v,1)]. We will bound X in a stochastic sense. There are two things
that need to be estimated: the expected value of X, and the concentration of X around
its expectation. Since X € Bin(n — f — 1, p), it is clear that
d
E[X] = (n—f—1)=d(1+0(f/n) =d(1+O(n"?)).

n—1

A consequence of Chernoff’s bound (see e.g. [17, Corollary 2.3]) is that

1)

P(1X —E[X]| > E[X] ) < 2exp (— : 0

for 0 < € < 3/2. Hence, after taking ¢ = 2y/logn/d, we get that with probability
1+ o(n™') we have

X =E[X](1+0(c)) = d(1 + O(n"Y2))(1 + O(e)) = d (1 +o (lcii;—(;%:)) |

This proves part (i) of the lemma. Part (ii) is straightforward since the probability that
there is no edge from v to F is equal to

(1 p)f = exp(—(1+ o(1))pf) = exp <—o (df)) —1-0 (dw) |

n

Part (iii) is a straightforward implication of (i). In order to have good bounds on
the ratios of the cardinalities of N(v,1), N(v,2), and so on, we consider the Breadth
First Search (BFS) algorithm that explores vertices one by one (instead of the whole j-th
neighbourhood). Formally, the process is initiated by putting v into the queue (. In
each step of the algorithm, one vertex w is taken from () and edges from w to all vertices
that are not in F' and have not yet been discovered are examined. All new neighbours
of w that are found are put into the queue (). The process continues until the queue @)
is empty or vertices of Ny\p(v,i/2 — 1) are discovered. (Note that if the process stops
because Ny p(v,i/2—1) is discovered, vertices of Sy\p(v,7/2—1) are in the queue @); that
is, no vertex from this sphere is processed and, in particular, edges in the graph induced
by Sy\r(v,i/2 — 1) are not exposed yet.)

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R00 6



Figure 1: Two consecutive steeps of BFS started from vertex v. The black vertex is the
vertex currently exposed. Grey vertices form the set F' that is updated each time. White
vertices are newly discovered ones.

Suppose that Ny\p(v,j — 1) is discovered and we continue investigating vertices of
the sphere Sy\p(v,j — 1), one by one, that are in the queue Q. Provided O(d/*=1)
vertices have been discovered so far, it follows from part (i) that we may assume that
when each vertex of Sy\p(v,j — 1) is processed, we discover d(1 + o(loglogn/log”n))
new neighbours that belong to Sy\r(v, 7). After that we update F' by adding all newly
discovered vertices to it, adding the vertex processed at this step, and removing the next
vertex to be processed—see Figure 1. We continue until Ny\p(v, j) is discovered to get
that

1Sv\r(v, J)| = [Swvr(v, j — 1)|d(1 + o(log log n/ log? n)).

We consider this up to the j’th iterated neighbourhood, where j = i/2 — 1 and d'~! <
nlogn/16 and thus j = O(logn/loglogn). Then the cumulative multiplicative error term

log®n
and thus |S(v,5)| = d(1 + o(log™" n)), and

[N (v, 3)| = Z 1S(v, )] = [S(v, )I(1 + O(1/d)).

This establishes (iii).

For parts (iv), (v), and (vi) we note that in each step of the BFS algorithm the
probability that there is no edge from w (the vertex that is processed at this point) to
vertices that have been already discovered is, by part (ii), 1 — O(d"/?/n). Hence, by the
union bound, a.a.s. this never happens since the number of vertices processed is

|INv\r(v,i/2 =2)] = (1+ 0(1))(1(2"1)/2’3/2 = O(d’3/2\/nlog n)
= O(d*2(nlogn)/d"Y/?) = O(d~(nlogn)/d"/?)
= o(n/d"?).

The claim follows.
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Part (vii) follows immediately (and deterministically) from (iv), (v), and (vi). The
proof of the lemma is finished. O

We first give the proof of the result for very dense graphs.

Proof of Theorem 1(iv)-(v). For p =1—o0(1/n?), note that the expected number of edges
in the complement of G is (Z)(l —p) = o(1), and thus by Markov’s inequality, a.a.s., G
is the complete graph on n vertices. If this is the case, then d(u,v) = 1 for any pair
of vertices u and v, and thus for any four vertices u,v,z,y, clearly, d(u,v) + d(z,y) —
(d(u,x) +d(v,y)) = 0, and hence dy(G) = 0. Part (v) is proved.

For p = 1 — 2¢/n? and ¢ > 0, note that a.a.s. there is no component of size 3 or
more in the complement of G. Thus, a.a.s., for all four-tuples of vertices in the original
graph, either all edges are present, only one edge is missing, or two disjoint edges are
missing. In all of these cases, the non-adjacent vertices are at distance 2, and thus a.a.s.
6n(G) < 1. The expected number of edges in the complement of G equals (5)(1 —
p) = (1 +o(1))e. Also, for any fixed r, the r-th moment of the number of edges in
the complement of G equals ¢"(1 + o(1)), and thus, by the method of moments (see, for
example, Theorem 1.22 of [8]) the number of edges converges to a random variable with
a Poisson distribution with parameter c¢. In particular, with probability (14 o(1))e™¢, the
complement of G is empty, and by the argument in the first case, we have dy(G) =
0. Also, with probability (1 4+ o(1))ce™®, the complement of G contains exactly one
edge, say {u,v}. For the four-tuples not containing both w and v, the analysis is as
before. For a four-tuple u,v,z,y we now have for the distances in the original graph
d(u,v) +d(z,y) = 3, d(u,z) + d(v,y) = d(u,y) + d(v,x) = 2, and thus éy(G) = 1/2.
Finally, with probability (1 + o(1)) (1 — (¢+ 1)e~¢) the complement of G has at least
two disjoint edges, say {u,v} and {x,y}. In this case, in the original graph we have
d(u,v) +d(z,y) = 4, d(u,z) + d(v,y) = d(u,y) + d(v,z) = 2, and thus d5(G) > 1, and
part (iv) follows. O

The main challenge of this paper is to prove the following result and the whole next
section is dedicated to it. Here, we show how Theorem 1(i)-(iii) can be derived from it.

Theorem 7. Suppose that

log® n

d=d(n)=pn-1)> and p=1-—w(l/n?).

(loglogn)?
Let i > 2 be the largest even integer such that d=* < sznlogn. Let G € G(n,p). Then,
a.a.s., 0g(G) > 1i/2.

Proof of Theorem 1(i)-(iii). Fix j to be the smallest integer such that d’ /n—2logn — oo.
In particular, @' /n = w(logn). Moreover, it follows from Corollary 5 that the diameter
of G is at most j a.a.s. Hence, by Lemma 2, a.a.s. dy(G) < j/2. This establishes upper
bounds in parts (i) and (ii).
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Suppose first that j is even and that ¢/~! < 1—16n10g n. Then j is the largest even

integer such that @/~ < {znlogn. By Theorem 7, a.a.s. 6(G) > j/2 and part (i) holds.

Suppose next that j is even and that ¢/=! > %Gnlogn (note that it follows from the
definition of j that d’~* < (2 + o(1))nlogn). Then j — 2 is the largest even integer such
that &/~% < {=nlogn, and by Theorem 7, a.a.s. 65 (G) > j/2 — 1. This finishes part (ii).

Finally, suppose that j is odd. Since ¢~'/n = O(logn), d~?/n = o(logn), and
thus j — 1 is the largest even integer such that /=2 < %Gnlog n. By Theorem 7, a.a.s.,
O (G) = (j—1)/2. Since a.a.s. the diameter of G is at most j, and j is odd, by Lemma 3
we have that a.a.s. g(G) < (j — 1)/2. Part (iii) and so the whole proof is finished. [

3 Proof of Theorem 7

Let G = (V, E) € G(n,p) and suppose that d = p(n—1) > (1o§i5g7;)2 and p = 1 —w(1/n?).
Let ¢ > 2 be the largest even integer such that d'=! < %Gnlog n. Assume first that
d > (%nlog n)'/3 which implies that i = 2. In this case, we have to prove that a.a.s.
du(G) = 1. It therefore suffices to find four vertices u,v,x,y such that the subgraph
induced by them is a 4-cycle. Since p > n™?/3(:logn)’? and 1 — p = w(n™?), the
expected number of induced cycles of length 4 is (Z) p*(1—p)? — oo. It is a straightforward
application of the second moment method to show that a.a.s. there is at least one induced
cycle in G and the statement follows in this case.

Hence, from now on we may assume that

1 1/3
< (=
d < <16nlogn> : (2)

which implies that ¢« > 4. We need one more definition: for a given v € V, k > 1, and
A CV, we say that Ny a(u, k) expands well if for all j =1,2,... k,

[Nvva(u, i) = [Sva(u, j)I(1+O(1/d)) = &’ (1 + o(log ™" n))

and for all j = 1,2,...,k — 1, every vertex of Sy\a(u,j) has d(1 + o(loglogn/ log®n))
neighbours in Sy\a(w,j + 1). Finally, fix a four-tuple of different vertices u,v,z,y and
consider the following process (see Figure 2):

HYPERBOLICITY (u, v, x,y)

1. Let B := {v,z,y}. Perform Breadth-First Search (BFS) from w in the graph induced
by V'\ B to expose Ny\p(u,i/2 —1). Make sure that the following properties hold
(otherwise stop the process):

(a) Nv\p(u,i/2 —1) expands well.
(b) The graph induced by Ny\g(u,i/2 — 1) is a tree.
(c) There is no edge from Ny\p(u,i/2 —2) to {v,z,y}.

(As a result, N(u,i/2 — 1) = Ny\p(u,i/2 — 1) and so N(u,i/2 — 1) expands well,
N(u,i/2 — 1) is a tree, and {v,z,y} N N(u,i/2 — 1) = 0.)
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Figure 2: left: HYPERBOLICITY(u, v, z,y), the big picture; right: the neighbourhood
exposure around a in more detail

2. Let D := N(u,i/2 — 1)U {x,y}. Perform BFS from v in the graph induced by
V'\ D to expose Ny\p(v,i/2 —1). (The reason that here we restrict ourselves to
the induced graph is to make sure no edge in this graph is already exposed and so,
as typical, we perform BFS by exposing edges one by one, as required.) Make sure
that the following properties hold (otherwise stop):

(d) Nv\p(v,i/2 — 1) expands well.

(e) There is no edge from Ny\p(v,i/2 — 1) to S(u,i/2 — 1) (note that edges from
vertices of N(u,i/2 — 2) are already exposed, so that the only chance for the
intersection of Ny\p(v,4/2 —1) and N(u,i/2 — 1) to be non-empty is when we
reach vertices of S(u,i/2 —1)).

(f) The graph induced by Ny\p(v,i/2 — 1) is a tree.

(g) There is no edge from Ny\p(v,i/2 —2) to {z,y}.

(As a result, N(v,i/2 — 1) = Ny\p(v,i/2 — 1) and N(v,4/2 — 1) so expands well,
N(v,i/2—1)NN(u,i/2—1) =0, N(v,i/2—1) is a tree, and {z, y }NN(v,i/2—1) = {).)

3. Let us partition (arbitrarily) the neighbours of u into two sets, Uy, and Ug, such that
||UL| — |Ug|| < 1. Let us partition the vertices of S(u,i/2 —1) and call vertices that
are at distance i/2 — 2 from Up to be ‘u-left’; otherwise, they are called ‘u-right’.
Similarly, the vertices of S(v,i/2 — 1) are partitioned into v-left and v-right ones.
Expose the edges between z and S(u,i/2 — 1) U S(v,i/2 — 1) and similarly also
between y and S(u,i/2 — 1)U S(v,i/2 —1). Make sure that the following properties
hold (otherwise stop):
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(h) The number of u-left vertices is di/;fl
vertices is also dl/;_l (1+o(log™" n)).

(1+o0(log* n)), and the number of u-right

(1) The number of v-left vertices is di/;_l (14 o0(log™ ' n)), and the number of v-right
di/2—1

vertices is also £-—(1 + o(log™' n)).

(j) There is exactly one edge between z and the u-left vertices; call the correspond-
ing neighbour of x to be a. There is no edge between x and the u-right vertices.

(k) There is exactly one edge between x and the v-left vertices; call the corre-
sponding neighbour of x to be b. There is no edge between x and the v-right
vertices.

(1) There is exactly one edge between y and the wu-right vertices; call the corre-
sponding neighbour of y to be ¢. There is no edge between y and the u-left
vertices.

(m) There is exactly one edge between y and the v-right vertices; call the corre-
sponding neighbour of y to be d. There is no edge between y and the v-left
vertices.

4. In this step, the neighbourhood of a is investigated. Unfortunately, this is slightly
more complicated since some part of the neighbourhood of «a is already “buried” in
N(u,i/2 —1). In order to accomplish our goal, we need to perform BFS not only
from a (up to level /2 — 2), but also from some other vertices of S(u,i/2 — 1) (this
time going not as deep as /2 — 2; the level until which the neighborhood is explored
depends on the distance from a)—see Figure 2 (right side).

Formally, for 1 < k£ < i/2 — 2, let Sy be the set of vertices of S(u,i/2 — 1) that are
at distance k from a in the tree induced by N(u,7/2—1). (In fact, k has to be even
in order for Si to be non-empty, but we consider all values of k for simplicity.) Let

i/2—2

Fi=|Nwi/2=1)\ [{a}u [J S| | UN@i/2-1)U{z}u{y}.

We perform BFS from a and from vertices of UZ/:Q N S, in the graph induced by

V'\ F'; we reach vertices at distance i/2 —2 from a and at distance i/2 —2 — k from
Sk. Make sure that the following properties hold (otherwise stop).

(n) Ny\r(a,i/2 —2) expands well. Moreover, for all 1 <k <i/2—2and all ¢ € S},
we have that N(¢,i/2 — 2 — k) expands well. In particular,

[Ny\p(ai/2=2)] = d7?7(1+ o(log™' n))
i/2—2
2 2 INvir(tiif2=2=k)] = od”log™" n).
k=1 (€Sy
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(o) There is no edge from Ny\p(a,i/2—2)\{a} to F and forevery k =1,2,...,i/2—
2 and every vertex ¢ € Sy, there is no edge from Ny\p(¢,i/2 —2 — k) \ {{} to
F.

(p) All graphs exposed in this step are disjoint trees. Note that this implies that
N(a,i/2 —2) is a tree.

(q) For 1 < k <i/2—2,let S} be the set of vertices of S(v,i/2 — 1) that are at
distance k from b in the tree induced by N(v,i/2 — 1) and let

i/2—2

F' o= [N@if2=D\ [{opu | St | UN@i/2—1)u{z}u{y}

UN(a,i/2 - 2).

Perform BFS from b and from vertices of Ul/ > S}, in the graph induced by

V'\ F’; Properties (n), (0), and (p) hold when a is replaced by b, F' is replaced
by F’, and the sets S are replaced by 5.

(r) For 1 < k <i/2—2,let S} be the set of vertices of S(u,i/2 — 1) that are at
distance k from c in the tree induced by N(u,i/2 — 1) and let

i/2—2

F" = | N(w,i/2= D)\ [{3u |J S{| | uN@i/2=1)u{z}u{y}

UN(a,i/2 —2) UN(b,i/2 — 2).

Perform BFS from ¢ and from vertices of UZ/ o2 S/ in the graph induced by

V' \ F"; Properties (n), (o), and (p) hold when a is replaced by ¢, F'is replaced
by F”, and the sets S}, are replaced by S}.

(s) For 1 <k <i/2—2,let S} be the set of vertices of S(v,i/2 — 1) that are at
distance k from d in the tree induced by N(v,i/2 — 1) and let

i/2—2
F" = [N@i/2=D\ [{dtu |J S| | uN(ui/2—1)Uu{z}u{y}

UN(a,i/2 —2)UN(b,i/2 —2) U N(c,i/2 — 2).
Perform BFS from d and from vertices of Ul/ 2 S} in the graph induced by
V\ F"; Properties (n), (0), and (p) hold when a is replaced by d, F'is replaced

by F", and the sets Sy are replaced by S;’.
5. Let

Q = N(u,i/2—-1)UN(v,i/2 —1)U{y}
UN(a,i/2 —2)UN(b,i/2 —2)UN(c,i/2 —2)UN(d,i/2 — 2).

We perform BFS from z in the graph induced by V'\ @ to expose Ny\qg(z,i/2 —1).
Make sure that the following properties hold (otherwise stop):
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(t) Nvio(z,i/2 — 1) expands well.
(u) There is no edge from Ny\g(z,i/2 — 1)\ {z} to Q.

(v) Nv\g(w,i/2—1) is a tree. Note that since the remaining branches accessed by
the edge xa and the edge xb are already guaranteed to be trees and there are
no edges between different parts, this implies that N(x,i/2 — 1) is a tree.

(w) There is no edge between = and y.

(x) Let R:==QU N(x,i/2—1)\ {y}. Properties (t), (u), and (v) hold when x is
replaced by y and () is replaced by R.

6. It is the end of this tedious process so it is time for a short break—perform a fire-
works show (fireworks are explosive pyrotechnic devices typically used for aesthetic,
cultural, and religious purposes; here the main purpose is to celebrate finding an
object with the desired properties).

We say that the process HYPERBOLICITY (u,v,X,y) terminates successfully if all
the required conditions are satisfied, that is, the process does not stop prematurely before
reaching the end.

Claim 8. If HYPERBOLICITY (u,v,z,y) terminates successfully for some four-tuple u, v, x,y,
then dp(G) = i/2.

Proof. By Property (e), N(u,i/2 —1)U N(v,i/2 — 1) = (), and there is no edge between
S(u,i/2—1) and S(v,i/2 —1). Hence, we have d(u,v) > i. In fact, the distance between
u and v is exactly 4, since by Properties (j) and (k) there is a path of length i going
through z. Next, by Properties (c), (g), (j), (k), (1) and (m), we have d(u,x) =
d(v,z) = d(u,y) = d(v,y) = i/2. For the distance between x and y observe the following:
first, by Properties (j) and (1) there is an = — y path of length i going from z to a, then
through u to ¢, and then to y. We will show that N(x,i/2—1)NN(y,i/2—1) = () and that
there is no edge between S(z,i/2 — 1) and S(y,i/2 — 1). Indeed, if a shortest x — y-path
first goes from x to a, by Properties (0), (r), (s) and (x), it has to go until S(a,i/2 —2),
and then it has to pass through at least two more edges before entering S(y,i/2 — 1),
including S(c,i/2 — 2) and S(d,i/2 — 2), and in each case the length is at least 7. By
properties (q), (r), (s) and (x), the same holds if the path starts from x to b. If the path
from z neither goes through a nor through b, it has to go through Ny\g(x,4/2 —1). By
Properties (u) and (x), it has to arrive at S(x,i/2 — 1), and then it has to go through
at least two edges before entering S(y,i/2 — 1), including S(c,i/2 —2) and S(d,i/2 — 2),
and in each case the length is also at least .

Hence, d(u,v) + d(x,y) > 2i, d(u,z) + d(v,y) = d(u,y) + d(v,z) = i, and thus,
du(G) = i/2. The proof of the claim is finished. O

Thus, by Claim 8, in order to show that a.a.s. g (G) > /2, it suffices to show that
a.a.s. HYPERBOLICITY (u, v, x,y) succeeds for at least one four-tuple of vertices u, v, x, y.
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Let X, 44, be the indicator random variable defined as follows:

X {1, if HYPERBOLICITY (u, v, x,y) terminates successfully,
uvay =

0, otherwise.

Let

X = Z Xu,v,x,y:

,U’?,U?I?y

where the sum is taken over all (Z) 4-tuples of all disjoint vertices. In order to prove

that a.a.s. 0g(G) > i/2, we will apply the second moment method to X. Define ¢ =

exp(—di~'/(2n)) and note that from the assumption that d'' < f=nlogn we have ¢ >
2

n

Lemma 9. For a fixed four-tuple of vertices u,v,x,vy,

i\
P(Xypoy=1) = ( 5 > q*°(1+o(1)).
Moreover, '
E(X) = 5 (1 4 o(1)) = 0"/ (0gm) ),

Proof. Fix a four-tuple of vertices u, v, z,y. First, we will calculate Pr (X, ,,, =1). We
will estimate for each of the five steps of HYPERBOLICITY (u,v,x,y) the probability that
it fails at that step. For z € {a,b,...,z}, let P, be the indicator random variable for the
event that Property (z) succeeds provided that all previous properties have succeeded as
well. Similarly, for step z € {1,2,...,5}, let T, be the indicator random variable for the
event that step z succeeds provided that all previous steps have succeeded as well.

By Lemma 6(iii) and (iv),

P(P,=1)=1+o(1).

Let E be the event that there is no edge within the last sphere Sy\p(u,i/2 — 1). By
Lemma 6(v) and (vi), in order to calculate the probability that Property (b) holds, it
remains to estimate the probability that E holds. We have

[Sy\ B (u,/2=1)]

P(E) = (1—plU ") (3)

Rl Gaiatl))

e <_p(1 +0Wp)) (WTI)Z(l + o(log™! n)))) :
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where the last equality follows from Property (a) that is assumed to hold deterministically
now. Hence,

P(E) = exp <—pd;2(1—|—0(10g_1n)))

~ exp <_d2: (14 o(log™" n)))

= o (-G, ) (L oL) =gl + (1),

where the last line follows from the assumption that d'~! < {-nlogn. Hence, the proba-
bility that Ny\p(u,i/2 — 1) is a tree is asymptotically equal to the probability that the
event F holds, and thus

P(P,=1) =q(1+0(1)).

Now, let us move to Property (c). By Lemma 6(ii) together with a union bound over all
vertices in Ny\p(u,/2 — 2), we see that with probability

1—O(d/?2d"?/n) =1 — O(d"?/n) = 1 + o(1)
there is no edge from Ny\p(u,i/2 —2) to B, and thus
P(P.=1)=1+o(1).

Hence,
P(Ty =1) =q(1+ o(1)).
Next, for Property (d), by Lemma 6(iii) and (iv), we obtain
P(Py=1)=1+4o(1).

For Property (e), since Property (d) is assumed to hold deterministically at this point,
we have
_ (1 p)|S u,i/2— 1||NV\D(vz/2 1)]
= (1- p)ls u,i/2=1)[|Sv\ p(v,i/2—1)|(1+O(1/d))

(1—p)

—p dz/2 H2(14-0(log™! n))

_ (exp (_p(l +0(p)) (WT_I)QG +oflog™ n)))>)2

and hence, by the same calculations following (3) we obtain
P(P. = 1) = ¢*(1 +o(1)).

The probability of having Property (f) is calculated as before for Property (b), and of
having Property (g) as before for Property (c). Thus,

P(T, = 1) = ¢*(1 4 o(1)).
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For Property (h) we immediately have by Lemma 6(vii) that
P(P,=1)=1+0(1),

and the same applies to Property (i). For Property (j), since Property (h) is assumed to
hold deterministically, we have

di/2—1

P(Pj =1) = (1+o0(1)) p(1 _p)(1+0(1))dz‘/2_1

i/2
= (o)

exp (—p(1+O(p))(1 + o(1))d""*™)
di/2 .
5y &XP (=(1 + o(1))d"?/n)

= (1+o(1)

i/2
= o) S
di/?
2n

exp (—(1 + 0(1))(di_1)1/2\/3/n>

— (1+0(1))

where the last line follows from the fact that (d'~1)'/2 = O(y/nlogn) (by definition of i),
and by (2), which implies that (d'~')"/2\/d/n = O(y/dlogn/n) = o(1). Note then that
Properties (j), (k), (1) and (m) are symmetric and mutually independent, and thus they
are calculated in the same way. Therefore

di/2
2n

P(T; = 1) = ( >4(1 +o(1)).

Let us move to investigating Properties (n), (o), and (p). First, we perform BFS
from @ in V'\ F. It follows immediately from Lemma 6(iii) that Ny\p(a,i/2 —2) expands
well and so the bound on |Ny\r(a,i/2 — 2)| in Property (n) holds a.a.s. For the vertices
in Sy, since Properties (a) and (b) are assumed to hold deterministically, for every even
value of k such that 2 < k < i/2 — 2, the number of vertices in Sy is (1 + o(1))d*/2.
In order to deal with the second bound of Property (n) (and to investigate Properties
(o) and (p) at the same time), we mimic the proof of Lemma 6(iii). We perform BFS
from some other vertex in some Sy in V' \ F, updating the set F' every time a vertex is
processed. As shown in Figure 1, the vertex that was processed before, together with all
its neighbours, will be added to F', and the next vertex in the queue to be processed will
be taken out of F'. Once we are done, we take the next vertex in some S; and continue
in this way until all neighbourhoods under consideration are discovered. Arguing as in
the proof of Lemma 6(iii), by Lemma 6(i) together with a union bound over all vertices
processed, we obtain the desired bounds for the sizes of neighbourhoods. Moreover, by
Lemma 6(ii) together with a union bound over all vertices that are discovered during this
step (at most O(d/?~2) vertices), we get that a.a.s. at the time when a given vertex was
processed there was no edge to already discovered vertices (neither within the same tree
where we started BFS from, nor to other trees, nor to the initial set F'). This deals with
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Properties (0) and (p). Finally, it follows that a.a.s.

i/2—2 i/2—2
Z Z N p(£,i/2 =2 — k)| < Z (14 o(1))d"?>2742 = o(d*21log ™" n),
k=1 (€S k=1

where the last equality follows from the fact that d > log” n/(loglogn)?. Thus,
P(P,=1and P,=1and P,=1) =1+ o(1).

The probabilities for Properties (q), (r) and (s) to hold are calculated in exactly the
same way as for Properties (n), (o) and (p), and hence

P(T4 = 1) =1+ 0(1).

Finally, for T5, when exposing z, Property (t) is investigated as before. Also, by
analogous calculations as for 77, the probability of having no edge to @ (Property (u))
and the one of being a tree (Property (v)), altogether yield ¢°(1 + o(1)); note that the
exponent of 5 comes from the fact that Ny\g(x,i/2—1) is a tree (giving one ¢), that there
is no edge to S(u,i/2 — 1) (giving 2 additional factors of ¢), and no edge to S(v,i/2 — 1)
(giving another 2 additional factors of ¢). Property (w) clearly also holds with probability
1+ 0(1). Similarly, when exposing y, we also have to consider the condition of having no
edge to Ny\gr(x,4/2 — 1) (Property (x)), giving us another factor of ¢*, and thus yielding
a probability of ¢"(1 + o(1)). Thus,

P(Ty=1) = ¢"*(1+o(1)).
Combining the events 17,75, ..., Ts, we obtain
P(Xuoey=1) = (d7%/(20))'q"°(1 + 0(1)),

yielding the first part of the lemma. Observing that i is such that di*! > 1—16nlog n, and
therefore d’ > sznlogn/d, and also using (2), we obtain

six) = (}) (f:qu(uoa))

24

= 00 o))

(£nlogn)?
1638qu6(1 +o(1))

= Q(n**(l0gn/d)?)
= Q(n*(logn)""?),

>

which finishes the proof of the lemma. m

We now move to the second moment method.
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Lemma 10. E [X?] = (1 + o(1))(E [X])?.

Proof. In order to analyze the expected value of X? we will consider 8 different cases.

Note that
]E |:X2:| = Z Z P(Xu,u,x,y - 1 /\ Xu’,v’,x’,y’ = 1)’

u1v7x7y u”vl7x/7y,
where both sums range over all 4-tuples of different vertices. For a fixed 4-tuple of vertices
u, v, x,y, it follows from the first part of Lemma 9 that

P(Xupay = 1) = (d/%/(2n))'¢"(1 + o(1)).

Conditioning on X, , ., = 1, our goal is to investigate P(X,/ vz = 1| X0y = 1). Note
that the lower bound for [E [X?] trivially holds and so we aim for an upper bound. There-
fore, we focus on properties that hold with probability o(1) in the unconditional case (such
as Property (b) that holds with probability asymptotic to ¢q). We ignore properties that
hold with probability 1+ o(1) in the unconditional case (such as Property (a)) although
it might happen that the probability that they hold in the conditional space is smaller
(which clearly helps).

Assume that X, , ., = 1, and let U be the set of vertices exposed to certify this, that
is,

U = N(u,i/2—-1)UN(v,i/2 —1)UN(z,i/2 —1)UN(y,i/2 — 1)
UN(a,i/2 —2)UN(b,i/2 —2) UN(c,i/2 —2)UN(d,i/2 — 2).

Since Xyop.y = 1, [U] = O(d/*71). For z € {u,v,7,y,a,b,c,d}, we always denote by
2’ the vertex in HYPERBOLICITY (u/, v, ', y') corresponding to vertex z in HYPERBOLIC-
ITY (u, v, x,9).

Before we move to investigating cases, let us note that we may assume the following
useful properties that will hold for all 4-tuples of vertices u, v, x,y with corresponding set
U a.a.s.

Claim 1: For a vertex 2’ ¢ U, the number of edges between N(z',i/2 — 1)\ U and U
is O(logn).

Proof. Indeed, we may assume that |N(2/,i/2 — 1) \ U| = O(d"/>7!) and so the expected
number of edges between N(2',i/2 — 1)\ U and U is O(pd~?) = O(d""*/n) = O(logn).
It follows from Chernoftf’s bound that there exists some constant C' > 0 such that the
probability to have at least C'logn edges of this type is o(n™*). The contribution of all
such four-tuples u/,v’, z’,y' to X? is o(1) and so can be safely ignored. H

Claim 2: For a vertex 2/ ¢ U, |[N(2',i/2 — 1) N U| = O(d’/*logn).

Proof. Indeed, suppose that there is an edge from N(z',;i/2 — 1)\ U to U. In fact, since
U is exposed during the BFS process, this edge has to be adjacent to a leaf ¢ of the
graph induced by U. We need to estimate the size of N(¢,7/2 —2) N U, since vertices in
N(2',i/2 — 1) N U due to the existence of this edge form a subset of N(¢,i/2 —2)NU.
From the fact that U induces an almost regular tree, it follows that |[N(¢,i/2 —2)NU| =
O(d'/*=1).The claim follows from the same Chernoff bound as in Claim 1. O
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Now, we are ready for a case analysis.

Case 1: {u v, 2/, ¢/} NU = (.

It follows from Claim 2 above that the part of the graph that needs to be exposed
in order to check whether X,/ . ., = 1 intersects with U only in a negligible way. It
is straightforward to show that Properties (b), (e), (f), (u), (v) and (x), as well as
Properties (j), (k), (1) and (m) are up to a 1+ o(1) factor independent of conditioning
on X, 4, = 1, and their calculations are as in Lemma 9. We obtain

IP)(XU’,U’@’,y’ = 1|Xu,wc,y =1)< (di/Q/(Qn))4q16(1 + 0(1)) = P(Xu,v,x,y = 1)<1 +0o(1)).

Clearly, the number of choices of four-tuples u, v, z,y and u’,v’, 2’, 3/ is at most the square
of the number of choices for u, v, x,y, so the contribution of this case is at most (1 +
o(1))E [X?]. (We will show that the contribution of all other cases is o(FE [X?]) and so the
contribution of this case is indeed (1 + o(1))E [X?].)

Case 2: {v/,v'} NU # 0 and {«/, ¢/} NU = 0.

Since {2’} NU = (), edges emanating from 2’ and y" are not exposed yet. Hence,
the probabilities that Properties (j), (k), (1) and (m) hold are as in the unconditional
case. Ignoring all other properties we get

P( X oty = U Xy = 1) < (d72/(2n))* (1 + 0(1)) = O (P(Xupuy = 1)g ') .
On the other hand, since at least one of v/, v" is in U, only a

O(|U|/n) = (">~ /n) = O (v/logn/(dn) ) = O(n™"*(1og ™ n)(loglogn)) = o(¢")

fraction of four-tuples is considered here. Hence, the contribution of this case to X? is
negligible.

From now on we may assume that at least one of 2/, 4" has to be in U.

Case 3: {v,v'}NU =0, and |{«/,y/} NU| = 1.

By symmetry, we may assume that 2’ € U and y' ¢ U. Since ¢y ¢ U, arguing
as in the previous case, we get that Properties (1) and (m) hold with probability up
to a 1 4+ o(1) factor as in the unconditional case. However, it might happen that, say,
N(u',i/2 —1)NU # O and Property (j) holds “for free”. Intuitively, for this to happen,
an edge joining Ny\py(v',i/2 — 1) and U must occur at the right place, which happens
with small probability. Moreover, only a small fraction of four-tuples satisfies «’ € U.

More precisely, for Property (j) to hold “for free”, we must have that d(v',z") = i/2,
and so there must be an edge between Sy(z',k) and Sy\y(v',i/2 — 1 — k) for some
k=0,1,...,i/2 — 1. By the union bound, this happens with probability

: 4?1
O(id*d/>“*p) = O .81 )
n  loglogn
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since i = O(logn/loglogn). (In fact, with a slightly more delicate argument one can
remove the logn/loglogn factor but this is not needed.) The same argument applies to
Property (k). (Recall, that we may assume that N(u/,i/2 — 1) and N(v',i/2 — 1) are
disjoint.) Hence, by considering only these four properties we get that

dir2\ 4 logn \°
IP)Xu"u’a:’ ’:]-X’LLUI =1 = O
(Xurorary [ Xy ) (( n > (loglogn>
o O P(X _ 1) —16 l()i i
- woay = )4 loglogn '

On the other hand, since 2’ € U, only a

O(|U|/n) = O(n~"*(log "2 n)(log log n)) = o(¢'*(log n/ log log n)?)

fraction of four-tuples is considered here. Hence, the contribution of this case to X? is
negligible.

Case 4: {v/,v'}NU =0, and |{2/,y'} NU| = 2.

Note that if X, s v, = 1 then, in particular, d(2’,y’) = i and so the distance between
2’ and ¢y’ in the graph induced by U is at least i. It follows that, for example, an edge
between s € Sy(2',k) and t € Sy\y(v',i/2 — 1 — k) (for some k = 0,1,...,i/2 — 1)
cannot make both Property (j) and Property (1) to hold, since that would imply that
d(z',y') < d(2',s) +d(s,y') < i— 2. Hence the calculations dealing with y" (related to
Properties (1) and (m)) are independent of the calculations dealing with 2’ (related to
Properties (j) and (k)). Arguing as in the previous case, we get that

P(Xu oy = UXupay =1) = O (P(Xypey = 1)g "*(logn/loglogn)*) .
Finally, note that only a

O((|U|/n)*) = o(1/n) = o(¢"*(log log n/ logn)*)
fraction of four-tuples is considered here, making the contribution of this case negligible.

From now on we may assume that at least one of «',v" has to be in U (and still at
least one of 2/, y').

Case 5: [{v/,v'} NU|=1, and {z/,y/'} NU| = 1.

By symmetry, suppose that v € U, v ¢ U, 2/ € U, y' ¢ U. Since ¢/ ¢ U, as before,
we get that Properties (1) and (m) hold with probability up to a 1 4+ o(1) factor as in
the unconditional case. Now, since v' ¢ U, by the same calculations as in Case 3, the
probability that Property (k) holds is at most O ((d"/?/n)logn/loglogn). Property (j),
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however, might hold deterministically now, so we lose an additional factor of O(d/?/n).
By considering only Properties (k), (1) and (m), we get that

di2\° 1
P(Xu vy = UXuway = 1) = O(( > oen )

n log logn

logn
_ P(Xypy = g 0 2 ).
O(( wway = 1)4 dz/?loglogn>

On the other hand, since v/, 2’ € U, only a
O(([U|/n)?) = O((d"*~ Jn)n~"*(log > n)(loglog n)) = o((d"* /n)q"(loglog n/log n))

fraction of four-tuples is considered here, and so the contribution of this case to X? is
negligible.

Case 6: [{v/,v'} NU|=1, and [{z/,y/'} NU| = 2.

By symmetry, suppose that ' € U and v' ¢ U. By the same argument as in Case 4,
the calculations involving Properties related to 2’ are independent of those related to y'.
Since v' ¢ U, by the same calculations as in Case 3, the probability that Properties (k)
and (m) both hold is at most O ((d"/?/n)?*(logn/loglogn)?). This time, Properties (j)
and (1) might hold deterministically, so we lose an additional factor of O((d"/?/n)?). By
considering only Properties (k) and (m) we get that

2 logn 2
P(Xu iz y = 1| Xuypzy =1 =0 P(Xypey =1 _16< n) .
Pt = s = ( Kuoay = 1) di’2) \loglogn

On the other hand, since v/, 2’,y’ € U, only a
O(([U]/n)?) = O((d*7! /n)*n~"*(log~* n)(log log n)) = o((d"”*/n)*q'*(loglog n/ log n)?)

fraction of four-tuples is considered here, and the contribution of this case to X? is neg-
ligible.

Case 7: [{v,v'} NU| =2, and [{z/,y'} NU| = 1.
By symmetry, suppose that ' € U and ¢ ¢ U. Since y ¢ U, as before, we get that

Properties (1) and (m) hold with probability up to a 14+0(1) factor as in the unconditional
case. By considering only these two properties we get that

_ n \?2
]P)(Xu’,v/,x’,y’ = HXU,U,JJ,ZJ = 1) = O (]P)(Xu,v,x,y = 1)q 16 <W> ) .
On the other hand, since u/,v’, 2’ € U, only a

O((|U|/n)*) = O((d"*" /n)*n~"/*(log™* n)(log log n)) = o((d"?/n)*¢"°)
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fraction of four-tuples is considered here, and the contribution of this case to X? is neg-
ligible.

Case 8: |[{v,v'} NU| =2, and {2/, ¥/} NU| = 2.

First, let us observe that in order to have X,/ ., = 1 the vertices «',v",2’, 3/ have
to lie on an induced cycle of length 2i (of course, this is a necessary condition only).
Moreover, note that there is only one such cycle in the graph induced by U (namely,
the one going through u,v,z,y). Hence, in order for this necessary condition to hold
“for free,” all four vertices of u’,v’, 2’,y’ have to be on this cycle. Thus, there are only
(20)* = O((logn/loglogn)*) = o(E[X]) such 4-tuples of vertices, and this contribution
is negligible. Otherwise, we observe that at least one edge of the cycle u/,v', 2’1y is not
yet present in the graph induced by U, say an edge on the path between u' and x’. For
this to happen, there must be an edge between S(u', k) and S(z’,i/2 — 1 — k) for some
k € {0,1,...,i/2 — 1} that is not yet exposed. By the same calculations as in Case 3,
this happens with probability at most

o di/Z. logn ‘
n loglogn

_ no\3
P(Xur ity = WXy = 1) = O <P(Xuﬂ,,x,y =1)g7 (=75 (logn/loglog n)> .

Thus,

On the other hand, since v/, v, 2’,y’ € U, only a
O((|U]/n)*) = O((d"*~ /n)*n~""2(log ™2 n)(loglog n)) = o((d"?/n)*q"*(loglog n/ log n))

fraction of four-tuples is considered here, and the contribution of this case to X? is neg-
ligible. [l

Using Lemma 9 and Lemma 10, Theorem 7 follows now easily by Chebyshev’s inequal-
ity.

4 Concluding remarks and open questions

We have shown that in G(n,p), for p > n(l«i(;gl—ignﬁ the hyperbolicity is (up to a possible
difference of 1) a monotone decreasing graph parameter. In general, since trees as well as
cliques have hyperbolicity 0, the hyperbolicity is not monotone, but we conjecture that in
G(n, p) with p above the threshold of connectivity, the same behavior holds. Intuitively, if
p is close to the threshold of connectivity, then G(n,p) a.a.s. contains a lot of long cycles,
and there will not be many shortcuts, making the hyperbolicity of the graph large. After
extending the definition of hyperbolicity to non-connected graphs by defining it as the
maximum over all connected components, the situation is quite different. For p < (1—¢)/n

for some € > 0, the hyperbolicity is 0 a.a.s., but for p > (1 + ¢)/n for some £ > 0, the
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appearance of the giant component makes the hyperbolicity to tend to infinity a.a.s. (see
also [22]). It would be interesting to investigate for which values of p the hyperbolicity
of G(n,p) is maximized, and what this value is. We also would like to know whether
the hyperbolicity is monotone increasing up to its maximal value and then decreasing, or
whether there are several “peaks.”
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