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Abstract

Suppose that a fence needs to be protected (perpetually) by k mobile agents with
maximum speeds v1, . . . , vk so that no point on the fence is left unattended for more
than a given amount of time. The problem is to determine if this requirement can be
met, and if so, to design a suitable patrolling schedule for the agents. Alternatively,
one would like to find a schedule that minimizes the idle time, that is, the longest time
interval during which some point is not visited by any agent. We revisit this problem,
introduced by Czyzowicz et al. (2011), and discuss several strategies for the cases where
the fence is an open and a closed curve, respectively.

In particular: (i) we disprove a conjecture by Czyzowicz et al. regarding the op-
timality of their algorithm A2 for unidirectional patrolling of a closed fence; (ii) we
present a schedule with a lower idle time for patrolling an open fence, improving an
earlier result of Kawamura and Kobayashi.

Keywords: Multi-agent patrolling, idle time, approximation algorithm.
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1 Introduction

A set of k mobile agents with (possibly distinct) maximum speeds vi (i = 1, . . . , k) are in
charge of patrolling a given region of interest. Patrolling problems find applications in the
field of robotics where surveillance of a region is necessary. An interesting one-dimensional
variant has been introduced by Czyzowicz et al. [7], where the agents move along a rectifiable
Jordan curve representing a fence. The fence is either a closed curve (the boundary of a
compact region in the plane), or an open curve (the boundary between two regions). For
simplicity (and without loss of generality) it can be assumed that the open curve is a line
segment and the closed curve is a circle. The movement of the agents over the time interval
[0,∞) is described by a patrolling schedule (or guarding schedule), where the speed of the
ith agent, ai (i = 1, . . . , k), may vary between zero and its maximum value vi in any of the
two moving directions (left or right).

Given a closed or open fence of length ` and maximum speeds v1, . . . , vk > 0 of k agents,
the goal is to find a patrolling schedule that minimizes the idle time I, defined as the longest
time interval in [0,∞) during which a point on the fence remains unvisited, taken over all
points. A straightforward volume argument [7] yields the lower bound I > `/

∑k
i=1 vi for an

(open or closed) fence of length `. A patrolling algorithm computes a patrolling schedule for
a given fence and set of speeds v1, . . . , vk > 0.

For an open fence (line segment), Czyzowicz et al. [7] proposed a simple partitioning
strategy, algorithm A1, where each agent moves back and forth perpetually in a segment
whose length is proportional with its speed. Specifically, for a segment of length ` and k
agents with maximum speeds v1, . . . , vk, algorithm A1 partitions the segment into k pieces
of lengths `vi/

∑k
j=1 vj, and schedules the ith agent to patrol the ith interval with speed

vi. Algorithm A1 has been proved to be optimal for uniform speeds [7], i.e., when all
maximum speeds are equal. Algorithm A1 achieves an idle time 2`/

∑k
i=1 vi on a segment

of length `, and so A1 is a 2-approximation algorithm for the shortest idle time. It has
been conjectured [7, Conjecture 1] that A1 is optimal for arbitrary speeds, however this was
disproved by Kawamura and Kobayashi [10]: they selected speeds v1, . . . , v6 and constructed

a schedule for 6 agents that achieves an idle time of 41
42

(
2`/
∑k

i=1 vi

)
.

A patrolling algorithm A is universal if it can be executed with any number of agents
k and any speed setting v1, . . . , vk > 0 for the agents. For example, A1 above is universal,
however certain algorithms (e.g., algorithm A3 in Section 3 or the algorithm in Section 4)
can only be executed with certain speed settings or number of agents, i.e., they are not
universal.

For the closed fence (circle), no universal algorithm has been proposed to be optimal.
For uniform speeds (i.e., v1 = . . . = vk = v), it is not difficult to see that placing the agents
uniformly around the circle and letting them move in the same direction yields the shortest
idle time. Indeed, the idle time in this case is `/(kv) = `/

∑k
i=1 vi, matching the lower bound

mentioned earlier.
For the variant in which all agents are required to move in the same direction along

a circle of unit length (say clockwise), Czyzowicz et al. [7, Conjecture 2] conjectured that
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the following algorithm A2 always yields an optimal schedule. Label the agents so that
v1 > v2 > . . . > vk > 0. Let r, 1 6 r 6 k, be an index such that max16i6k ivi = rvr.
Place the agents at equal distances of 1/r around the circle, so that each moves clockwise
at the same speed vr. Discard the remaining agents, if any. Since all agents move in the
same direction, we also refer to A2 as the “runners” algorithm. It achieves an idle time of
1/max16i6k ivi [7, Theorem 2]. Observe that A2 is also universal.

Related problems. Multi-agent patrolling is a variation of the problem of multi-robot
coverage [4, 5], studied extensively in the robotics community. A variety of models has been
considered for patrolling, including deterministic and randomized, as well as centralized and
distributed strategies, under various objectives [1, 9]. Idleness, as a measure of efficiency for
a patrolling strategy, was introduced by Machado et al. [11] in a graph setting; see also the
article by Chevaleyre [4].

The closed fence patrolling problem is reminiscent of the classical lonely runners conjec-
ture, introduced by Wills [12] and Cusick [6], independently, in number theory and discrete
geometry. Assume that k agents run clockwise along a circle of length 1, starting from the
same point at time t = 0. They have distinct but constant speeds (the speeds cannot vary,
unlike in the model considered in this paper). A runner is called lonely when he/she is at
distance of at least 1

k
from any other runner (along the circle). The conjecture asserts that

each runner ai is lonely at some time ti ∈ (0,∞). The conjecture has only been confirmed
for up to k = 7 runners [2, 3]. A recent survey [8] lists a few other related problems.

Notation and terminology. A unit circle is a circle of unit length. We parameterize a
line segment and a circle of length ` by the interval [0, `]. A schedule of k agents consists of
k functions fi : [0,∞]→ [0, `], for i = 1, . . . , k, where fi(t) is the position of agent i at time
t. Each function fi is continuous (for a closed fence, the endpoints of the interval [0, `] are
identified), it is piecewise differentiable, and its derivative (speed) is bounded by |f ′i | 6 vi.

A schedule is called periodic with period T > 0 if fi(t) = fi(t+T ) for all i = 1, . . . , k and
t > 0. The idle time I of a schedule is the maximum length of an open time interval (t1, t2)
such that there is a point x ∈ [0, `] where fi(t) 6= x for all i = 1, . . . , k and t ∈ (t1, t2). Given
a fence length `, a fence type (closed or open), and maximum speeds v1, . . . , vk, idle(A)
denotes the idle time of a schedule produced by algorithm A for these parameters.

We use position-time diagrams to plot the agent trajectories with respect to time. One
axis represents the position fi(t) of the agents along the fence and the other axis represents
time. In Fig. 1, for instance, the horizontal axis represents the position of the agents along
the fence and the vertical axis represents time. In Fig. 2, however, the vertical axis represents
the position and the vertical axis represents time. A schedule with idle time I is equivalent
to a covering problem in such a diagram (see Fig. 1). For a straight-line (i.e., constant
speed) trajectory between points (x1, y1) and (x2, y2) in the diagram, construct a shaded
parallelogram with vertices, (x1, y1), (x1, y1 + I), (x2, y2), (x2, y2 + I), where I denotes the
desired idle time and the shaded region represents the covered region. In particular, if
an agent stays put in a time-interval, the parallelogram degenerates to a vertical segment.
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A schedule for the agents ensures idle time I if and only if the entire area of the diagram in
the time interval [I,∞) is covered.

The efficiency of a patrolling algorithmA is measured by the ratio ρ = idle(A)/idle(A1)
between the idle times of A and the partition-based algorithm A1. Lower values of ρ indi-
cate better (more efficient) algorithms. Recall however that certain algorithms can only be
executed with certain speed settings or number of agents.

s

w

Position (along fence)

T
im

e
I

s

A

B

C

Figure 1: Agent moving with speed s from A to B, waiting at B for time w and then moving from
B to C with speed s.

Our results.

1. Consider the unidirectional unit circle (where all agents are required to move in the
same direction).

(i) We disprove a conjecture by Czyzowicz et al. [7, Conjecture 2] regarding the op-
timality of algorithm A2. Specifically, we construct a schedule for 32 agents with
harmonic speeds vi = 1/i, i = 1, . . . , 32, that has an idle time strictly less than 1. In
contrast, algorithm A2 yields a unit idle time for harmonic speeds (idle(A2) = 1),
hence it is suboptimal. See Theorem 1, Section 2.

(ii) For every τ ∈ (0, 1] and t > τ , there exists a positive integer k = k(t) 6 e4t/τ
2

and
a schedule for the system of k agents with harmonic speeds vi = 1/i, i = 1, . . . , k, that
ensures an idle time at most τ during the time interval [0, t]. See Theorem 2, Section 2.

2. Consider the open fence patrolling. For every integer x > 2, there exist k = 4x + 1
agents with

∑k
i=1 vi = 16x+ 1 and a guarding schedule for a segment of length 25x/3.

Alternatively, for every integer x > 2 there exist k = 4x + 1 agents with suitable
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speeds v1, . . . , vk, and a guarding schedule for a unit segment that achieves idle time
at most 48x+3

50x
2∑k

i=1 vi
. In particular, for every ε > 0, there exist k agents with suitable

speeds v1, . . . , vk, and a guarding schedule for a unit segment that achieves idle time
at most

(
24
25

+ ε
)

2∑k
i=1 vi

. This improves the previous bound of 41
42

2∑k
i=1 vi

by Kawamura

and Kobayashi [10]. See Theorem 3, Section 4.

3. Consider the bidirectional unit circle.

(i) For every k > 4, there exist maximum speeds v1, . . . , vk > 0 and a patrolling
algorithm A3 with a shorter idle time than that achieved by both A1 and A2. In
particular, for large k, the idle time of A3 with these speeds is about 2/3 of that
achieved by A1 and A2. See Proposition 1, Section 3.

(ii) For every k > 2, there exist maximum speeds v1, . . . , vk > 0 and an optimal
schedule for patrolling the circle that does not use up to k− 1 of the agents a2, . . . , ak.
In contrast, for a segment, any optimal schedule must use all agents. See Proposition 2,
Section 3.

(iii) There exist settings in which if all k agents are used by a patrolling algorithm, then
some agent(s) need overtake (pass) other agent(s). This partially answers a question
left open by Czyzowicz et al. [7, Section 3]. See the remark at the end of Section 3.

2 Unidirectional Circle Patrolling

A counterexample for the optimality of algorithm A2. We show that algorithm A2

by Czyzowicz et al. [7] for unidirectional circle patrolling is not always optimal. We consider
agents with harmonic speeds vi = 1/i, i ∈ N. Obviously, for this setting we have idle(A2) =
1, which is already achieved by the agent a1 with the highest (here unit) speed. We design
a periodic schedule (patrolling algorithm) for k = 32 agents with idle time I < 1. In this
schedule, agent a1 moves continuously with unit speed, and it remains to schedule agents
a2, . . . , a32 such that every point is visited at least one more time in the unit length open
time interval between two consecutive visits of a1. We start with a weaker claim, for closed
intervals but using only 6 agents.

Lemma 1. Consider the unit circle, where all agents are required to move in the same
direction. For k = 6 agents of harmonic speeds vi = 1/i, i = 1, . . . , 6, there is a schedule
where agent a1 moves continuously with speed 1, and every point on the circle is visited by
some other agent in every closed unit time interval between two consecutive visits of a1.

Proof. Our proof is constructive. We construct a periodic schedule for the 6 agents with
period 8; refer to Fig. 2. Agents a1, a2 and a4 continuously move with maximum speed,
while agents a3, a5 and a6 each stop at certain times in their movements. Their schedule in
one period t ∈ [0, 8] is given by the following piecewise linear functions.
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Figure 2: A periodic schedule of 6 agents of speeds 1/i, i = 1, . . . , 6, on a unit circle with period 8.
Agent a1 moves continuously with speed 1. Each point is visited by one of the agents a2, a3, a4, a5, a6
between any two consecutive visits of agent a1.

f1(t) = t mod 1, f2(t) = t/2 mod 1, f4(t) = (t− 3)/4 mod 1.

f3(t) =


(t− 1)/3 mod 1 for t ∈ [0, 2.5] ∪ [7.5, 8]
0.5 for t ∈ [2.5, 3.5] ∪ [6.5, 7.5]
(t− 2)/3 mod 1 for t ∈ [3.5, 6.5]
t/3 mod 1 for t ∈ [7.5, 8].

f5(t) =


0 for t ∈ [0, 2]
(t− 2)/5 mod 1 for t ∈ [2, 4.5]
0.5 for t ∈ [4.5, 5.5]
(t− 3)/5 mod 1 for t ∈ [5.5, 8].

f6(t) =


(t− 3.5)/6 mod 1 for t ∈ [0, 0.5]
0.5 for t ∈ [0.5, 1.5]
(t− 4.5)/6 mod 1 for t ∈ [1.5, 4.5]
1 for t ∈ [4.5, 5.5]
(t− 5.5)/6 mod 1 for t ∈ [5.5, 8].

Theorem 1. Consider the unit circle, where all agents are required to move in the same
direction. For 32 agents of harmonic speeds vi = 1/i, i = 1, . . . , 32, there is a periodic
schedule with idle time strictly less than 1.

Proof. Agents a1, . . . , a6 follow the periodic schedule described in Lemma 1. A time-position
pair (t, x) ∈ [0, 8) × [0, 1) is a critical point in the time-position diagram if (1) point x on
the fence is not visited by any agent in the open time interval (t, t + 1), or (2) point x is
only visited by an agent stationary at x during the time interval (t, t+ 1). To establish the
theorem, we need to take care of the critical points. The problem with critical points of
type (2) is that some other points in the neighborhood of x will not be visited for some time
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interval in (t, t + 1) whose duration can be arbitrarily close to 1, even though the point x
itself is covered by the stationary agent. There are exactly 12 critical points in the schedule
in Fig. 2. Specifically, these points are (j, 0) for j = 0, 1, . . . , 7; and (j+ 1

2
, 1
2
) for j = 1, 3, 5, 7.

For each critical point (t, x), we assign one, two, or four agents such that they jointly
traverse a small neighborhood of the critical point in each period in the periodic schedule.

We schedule agents a7 and a8 to move continuously with speed 1/8, as follows.

f7(t) =
1

8

(
t− 1

3

)
mod 1, f8(t) =

1

8

(
t− 7

3

)
mod 1.

Agent a7 traverses the unit intervals of the critical points (0, 0) and (3 + 1
2
, 1
2
); and agent

a8 traverses the unit intervals of the critical points (2, 0) and (5 + 1
2
, 1
2
). We are left with 8

critical points, which will be taken care of by agents a9, . . . , a32.
Agents a9, . . . , a16 are scheduled to move with constant speed 1/16. These 8 agents form

4 pairs, where each pair is responsible to visit the neighborhood of a critical point in each
period of length 8 (each agent in a pair returns to the same critical point after 16 units of
time). Finally, agents a17, . . . , a32 move with constant speed 1/32. These 16 agents form 4
quadruples, where each quadruple is responsible to visit the neighborhood of a critical point
in each period of 8 (each agent in a quadruple returns after 32 units of time).

This schedule ensures that every point on the fence within a small neighborhood of the
12 critical points is visited by some agent within every time interval of length 1 − ε, where
ε > 0 is a sufficiently small constant. Apart from these neighborhoods, the first 6 agents
already visit every point within every time interval of length 1 − ε provided that ε > 0 is
sufficiently small.

Remark. In Theorem 1, we required that all agents move in the same direction (clockwise)
along the unit circle, but we allowed agents to stop (i.e., have zero speed). If all agents are
required to maintain a strictly positive speed, the proof of Theorem 1 would still go through:
in this case, agents a3, a5 and a6 could move at an extremely slow but positive speed instead
of stopping. As a result, some points at the neighborhoods of the 12 critical points would
remain unvisited for 1 unit of time (this frequency is maintained by agent a1 alone). However,
agents a7, . . . , a32 would still ensure that every point in these neighborhoods is also visited
within every time interval of length 1− ε.

Finite time patrolling. Interestingly enough, we can achieve any prescribed idle time
below 1 for an arbitrarily long time in this setting, provided we choose the number of agents
k large enough.

Theorem 2. Consider the unit circle, where all agents are required to move in the same
direction. For every 0 < τ 6 1 and t > τ , there exists k = k(t) 6 e4t/τ

2
and a schedule for

the system of k agents with maximum speeds vi = 1/i, i = 1, . . . , k, that ensures an idle time
at most τ during the time interval [0, t].
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Proof. We construct a schedule with an idle time at most τ . Let agent a1 start at time 0
and move clockwise at maximum (unit) speed, i.e., f1(t) = t mod 1 denotes the position on
the unit circle of agent a1 at time t. Assume without loss of generality that t is a multiple
of τ , i.e., t = mτ , where m is a natural number. Divide the time interval [0, t] into 2m
subintervals of length τ/2. For j = 1, . . . , 2m, [(j − 1)τ/2, jτ/2] is the jth interval.

For each j, cover the unit circle C so that every point of C is visited at least once by
some agent. This ensures that each point of the circle is visited at least once in the time
interval [0, τ/2] and no two consecutive visits to any one point are separated in time by more
than τ thereafter until time t, as required.

To achieve the covering condition in each interval j, we use the first agent (a1, of unit
speed), and as many other unused agents as needed. The ‘origin’ on C is reset to the current
position of a1 at time (j − 1)τ/2, i.e., the beginning of the current time interval. So the
fastest agent is used (continuously) in all 2m time intervals. Agent a1 can cover a distance of
τ/2 during one interval. From its endpoint, at time (j − 1)τ/2, start the unused agent with
the smallest index, say i1(j); this agent can cover a distance of τ

2
1

i1(j)
during the interval.

Continue in the same way using new agents, all starting at time (j − 1)τ/2, until the entire
circle C is covered; let the index of the last agent used be i2(j). The covering condition can
be written as:

τ

2

1 +

i2(j)∑
i=i1(j)

1

i

 > 1, or equivalently, 1 +

i2(j)∑
i=i1(j)

1

i
>

2

τ
. (1)

For example1, if τ = 2/3: j = 1 requires agents a1 through a11, since H11 > 3, but H10 < 3;
j = 2 requires agents a1 and agents a12 through a85, since 1 + (H85 − H11) > 3, but
1 + (H84 −H11) < 3.

We now bound from above the total number k of distinct agents used. Observe that the
covering condition (1) may lead to overshooting the target. Because the harmonic series has
decreasing terms, the overshooting error cannot exceed the term 1

i2(1)+1
for τ = 1, namely

1/5 (the overshooting for τ = 1 is only 1
3
− 1

4
= 1

12
< 1

5
). So inequality (1) becomes

2

τ
6 1 +

i2(j)∑
i=i1(j)

1

i
6

2

τ
+

1

5
. (2)

Recall that t = mτ . By adding inequality (2) over all 2m time intervals yields (in
equivalent forms)

Hk − 1 +
8m

5
6

4m

τ
, or Hk 6

4t

τ 2
+ 1− 8t

5τ
. (3)

For t > τ we have 1 6 8t
5τ

. Since ln k 6 Hk, it follows from (3) that

ln k 6
4t

τ 2
, or k 6 e4t/τ

2

,

as required.

1Hn =
∑n

i=1 1/i denotes the nth harmonic number.
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3 Bidirectional Circle Patrolling

The “train” algorithm for closed fence patrolling. Czyzowicz et al. [7, Theorem 5]
showed that for k = 3 there exist maximum speeds v1, v2, v3 and a schedule that achieves
a shorter idle time than both algorithm A1 and A2, namely 35/36 versus 12/11 and 1. We
extend their result for all k > 4. We propose a new patrolling algorithm, A3, for maximum
speeds v1 > v2 > . . . > vk > 0. That is, A3 assumes that one of the agents is faster than
all others; we then show that for all k > 4 there exist k maximum speeds for which A3

outperforms both A1 and A2.
Place the k − 1 agents a2, . . . , ak at equal distances, x on the unit circle, and let them

move all clockwise perpetually at the same speed vk; we say that a2, . . . , ak make a “train”.
Let a1 move back and forth (i.e., clockwise and counterclockwise) perpetually on the moving
arc of length 1− (k − 2)x, i.e., between the start and the end of the train. Refer to Fig. 3.

a2
a3

ak ak−1

a1
vk

v1

Figure 3: Train algorithm: the train a2, . . . , ak moving unidirectionally with speed vk and the
bidirectional agent a1 with speed v1.

Proposition 1. For every k > 4, there exist maximum speeds v1 > v2 > . . . > vk such that
algorithm A3 achieves a shorter idle time than both A1 and A2. In particular, for large k,
the idle time achieved by the train algorithm is about 2/3 of the idle times achieved by A1

and A2.

Proof. Consider the speed setting v1 = a, v2 = . . . = vk = b, where a > b > 0, and
max16i6k ivi = kb (i.e., a 6 kb). Put y = 1 − (k − 2)x. To determine the idle time, x/b,
write:

[1− (k − 2)x]

(
1

a− b +
1

a+ b

)
=
x

b
, or equivalently,

2ay

a2 − b2 =
1− y

(k − 2)b
.

Solving for x/b yields

idle(A3) =
2a

a2 − b2 + 2(k − 2)ab
.

the electronic journal of combinatorics 16 (2009), #R00 9



For our speed setting, we also have

idle(A1) =
2

a+ (k − 1)b
, and idle(A2) =

1

kb
.

Write t = a/b. It can be checked that for k > 4, idle(A3) 6 idle(A1) and idle(A3) 6
idle(A2) when a2 − b2 − 4ab > 0, i.e., t > 2 +

√
5. In particular, for a = 1, and b = 1/k

(note that a 6 kb), we have

idle(A3) =
2

1− 1/k2 + 2(k − 2)/k
−→
k→∞

2

3
,

while

idle(A1) =
2

1 + (k − 1)/k
−→
k→∞

1, and idle(A2) =
1

k(1/k)
= 1.

Useless agents for circle patrolling. Czyzowicz et al. [7] showed that for k = 2 there
are maximum speeds for which an optimal schedule does not use one of the agents. Here we
extend this result for all k > 2:

Proposition 2. (i) For every k > 2, there exist maximum speeds v1, . . . , vk > 0 and an
optimal schedule for patrolling the circle with these speeds that does not use up to k − 1 of
the agents a2, . . . , ak.
(ii) In contrast, for a segment, any optimal schedule must use all agents.

Proof. (i) Let v1 = 1 and v2 = . . . = vk = ε/k, for a small positive ε 6 1/300, and C be a
unit circle. Obviously by using agent a1 alone (moving perpetually clockwise) we can achieve
unit idle time. Assume for contradiction that there exists a schedule achieving an idle time
less than 1. Let f1(t) denote the position of agent a1 at time t. Assume without loss of
generality that f1(0) = 0 and consider the time interval [0, 2]. For 2 6 i 6 k, let Ji be the
interval of points visited by agent ai during the time interval [0, 2], and put J = ∪ki=2Ji. We
have |Ji| 6 2ε/k, thus |J | 6 2ε. We make the following observations:

1. f1(1) ∈ [−2ε, 2ε]. Indeed, if f1(1) /∈ [−2ε, 2ε], then either some point in [−2ε, 2ε] is
not visited by any agent during the time interval [0, 1], or some point in C \ [−2ε, 2ε]
is not visited by any agent during the time interval [0, 1].

2. a1 has done almost a complete (say, clockwise) rotation along C during the time interval
[0, 1], i.e., it starts at 0 ∈ [−2ε, 2ε] and ends in [−2ε, 2ε], otherwise some point in
C \ [−2ε, 2ε] is not visited during the time interval [0, 1].

3. f1(2) ∈ [−4ε, 4ε], by a similar argument.

4. a1 has done almost a complete rotation along C during the time interval [1, 2], i.e., it
starts in [−2ε, 2ε] and ends in [−4ε, 4ε]. Moreover this rotation must be in the same
clockwise sense as the previous one, since otherwise there would exist points not visited
for at least one unit of time.

the electronic journal of combinatorics 16 (2009), #R00 10



Pick three points x1, x2, x3 ∈ C\J close to 1/4, 2/4, and 3/4, respectively, i.e., |xi−i/4| 6
1/100, for i = 1, 2, 3. By Observations 2 and 4, these three points must be visited by a1 in
the first two rotations during the time interval [0, 2] in the order x1, x2, x3, x1, x2, x3. Since
a1 has unit speed, successive visits to x1 are separated in time by at least one time unit,
contradicting the assumption that the idle time of the schedule is less than 1.

(ii) Given v1 > v2 > . . . > vk > 0, assume for contradiction that there is an optimal
guarding schedule with unit idle time for a segment s of maximum length that does not
use agent aj (with maximum speed vj), for some 1 6 j 6 k. Extend s at one end by a
subsegment of length vj/2 and assign aj to this subsegment to move back and forth from
one end to the other, perpetually. We now have a guarding schedule with unit idle time for
a segment longer than s, which is a contradiction.

Overtaking other agents. Consider an optimal schedule for circle patrolling (with unit
idle time) for the agents in the proof of Proposition 2, with v1 = 1 and v2 = . . . = vk = ε/k,
in which all agents move clockwise at their maximum speeds. Obviously a1 will overtake all
other agents during the time interval [0, 2]. Thus there exist settings in which if all k agents
are used by a patrolling algorithm, then some agent(s) need to overtake (pass) other agent(s).
Observe however that overtaking can be easily avoided in this setting by not making use of
any of the agents a2, . . . , ak.

4 An Improved Idle Time for Open Fence Patrolling

Kawamura and Kobayashi [10] showed that algorithm A1 by Czyzowicz et al. [7] does not
always produce an optimal schedule for open fence patrolling. They presented two coun-
terexamples: their first example uses 6 agents and achieves an idle time of 41

42
idle(A1); their

second example uses 9 agents and achieves an idle time of 99
100

idle(A1). By replicating the
strategy from the second example with a number of agents larger than 9, i.e., iteratively us-
ing blocks of agents, we improve the ratio to 24/25 + ε for any ε > 0. We need two technical
lemmas to verify this claim.

Lemma 2. Consider a segment of length ` = 25
3

such that three agents a1, a2, a3 are pa-
trolling perpetually each with speed of 5 and generating an alternating sequence of uncovered
triangles T2, T1, T2, T1, . . ., as shown in the position-time diagram in Fig. 4. Denote the ver-
tical distances between consecutive occurrences of T1 and T2 by δ12 and between consecutive
occurrences of T2 and T1 by δ21. Denote the bases of T1 and T2 by b1 and b2 respectively, and
the heights of T1 and T2 by h1 and h2 respectively. Then

(i) 10
3

is a period of the schedule.

(ii) T1 and T2 are congruent; further, b1 = b2 = 1
3
, δ12 = δ21 = 4

3
, and h1 = h2 = 5

6
.

Proof. (i) Observe that a1, a2 and a3 reach the left endpoint of the segment at times 2(25/3)/5 =
10/3, 5/5 = 1, and (25/3 + 5/3)/5 = 2, respectively. During the time interval [0, 10/3], each
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Figure 4: Three agents each with a speed of 5 patrolling a fence of length 25/3; their start positions
are 0, 5, and 20/3, respectively. Figure is not to scale.

agent traverses the distance 2` and the positions and directions of the agents at time t = 10/3
are the same as those at time t = 0. Hence 10/3 is a period for their schedule.

(ii) Since AL ‖ BM and AB ‖ LM , we have b1 = b2. Since L is the midpoint of IP ,
we have δ12 + b2 = δ21 + b1, thus δ12 = δ21. Since all the agents have same speed, 5, all
the trajectory line segments in the position-time diagram have the same slope, 1/5. Hence
∠BAC = ∠ABC = ∠MLN = ∠LMN . Thus, T1 is similar to T2. Since b1 = b2, T1 is
congruent to T2, and consequently h1 = h2.

Put b = b1, h = h1, and δ = δ12. Recall from (i) that |AH| = 10/3. By construction,
we have |BD| = 1, thus |BH| = |BD| + |DG| + |GH| = 1 + 1 + 1 = 3. We also have
|AH| = b + |BH|, thus b = 10/3 − 3 = 1/3. Since L is the midpoint of IP , we have
δ + b = 5/3, thus δ = 5/3− b = 4/3.

Let x(N) denote the x-coordinate of point N ; then x(N) + h = 25/3. To compute
x(N) we compute the intersection of the two segments HL and BM . We have H = (0, 0),
L = (25/3, 5/3), B = (0, 3), and M = (25/3, 4/3). The equations of HL and BM are
HL : x = 5y and BM : x + 5y = 15, and solving for x yields x = 15/2, and consequently
h = 25/3− 15/2 = 5/6.

Lemma 3. (i) Let s1 be the speed of an agent needed to cover an uncovered isosceles triangle
Ti; refer to Fig. 5 (left). Then s1 = h

1−b/2 , where b < 1 and h are the base and height of Ti,
respectively.

(ii) Let s2 be the speed of an agent needed to cover an alternate sequence of congruent
isosceles triangles T1, T2 with bases on same vertical line; refer to Fig. 5 (right). Then
s2 = h

3b/2+y−1 where y is the vertical distance between the triangles, b < 1 is the base and h
is the height of the congruent triangles.

the electronic journal of combinatorics 16 (2009), #R00 12



1− b
2

α

h

b

1

VW

s1

X

Y

Z

U b
2

Ti

s2

y

2h

α

1

1

2h
s2

b

h
s2

b
2

B

A C

D

T1

T2

h

Figure 5: Left: agent covering an uncovered triangle Ti. Right: agent covering an alternate sequence
of congruent triangles T1, T2, with collinear bases.

Proof. (i) In Fig. 5 (left), tanα = 1/s1, |UZ| = b/2, hence |V Z| = 1 − b/2. Also, |V Z||WV | =

tanα = 1−b/2
h

= 1
s1

, which yields s1 = h
1−b/2 .

(ii) In Fig. 5 (right), |AB| = 1+ 2h
s2

. Also, |CD| = b
2
+y+b+ h

s2
. Equating 1+ 2h

s2
= 3b

2
+y+ h

s2

and solving for s2, we get s2 = h
3b/2+y−1 .

Theorem 3. For every integer x > 2, there exist k = 4x+ 1 agents with
∑k

i=1 vi = 16x+ 1
and a guarding schedule for a segment of length 25x/3. Alternatively, for every integer x > 2
there exist k = 4x + 1 agents with suitable speeds v1, . . . , vk, and a guarding schedule for a
unit segment that achieves idle time at most 48x+3

50x
2∑k

i=1 vi
. In particular, for every ε > 0,

there exist k agents with suitable speeds v1, . . . , vk, and a guarding schedule for a unit segment
that achieves idle time at most

(
24
25

+ ε
)

2∑k
i=1 vi

.

Proof. Refer to Fig. 6. We use a long fence divided into x blocks; each block is of length
25/3. Each block has 3 agents each of speed 5 running in zig-zag fashion. Consecutive blocks
share one agent of speed 1 which covers the uncovered triangles from the trajectories of the
zig-zag agents in the position-time diagram. The first and the last block use two agents of
speed 1 not shared by any other block. The setting of these speeds is explained below.

From Lemma 2(ii), we conclude that all the uncovered triangles generated by the agents of
speed 5 are congruent and their base is b = 1/3 and their height is h = 5/6. By Lemma 3(i),

we can set the speeds of the agents not shared by consecutive blocks to s1 = 5/6
1−1/6 = 1.

Also, in our strategy, Lemma 2(ii) yields y = δ = 4/3. Hence, by Lemma 3(ii), we can set

the speeds of the agents shared by consecutive blocks to s2 = 5/6
1/2+4/3−1 = 1.
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Figure 6: Top: iterative construction with 5 blocks; each block has three agents with speed 5.
Middle: 6 agents with speed 1. Bottom: patrolling strategy for 5 blocks using 21 agents for two
time periods (starting at t = 1/3 relative to Fig. 4); the block length is 25/3 and the period is 10/3.
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In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 6 (top),
unit speed agents not shared by 2 consecutive blocks and unit speed agents shared by two
consecutive blocks as in Fig. 6 (middle). By Lemma 2(i), the agents of first type have
period 10/3. In Fig. 6 (middle), there are two agents of second type and both have a similar
trajectory. Thus, it is enough to verify for the leftmost unit speed agent. It takes 5/6 time
from A to B and again 5/6 time from B to C. Next, it waits for 5/3 time at C. Hence after
5/6 + 5/6 + 5/3 = 10/3 time, its position and direction at D is same as that at A. Hence,
its time period is 10/3. For the agents of third type, refer to Fig. 6 (middle): it takes 10/6
time from E to F and 10/6 time from F to G. Thus, arguing as above, its time period is
10/3. Hence, overall, the time period of the strategy is 10/3.

For x blocks, we use 3x+(x+1) = 4x+1 agents. The sum of all speeds is 5(3x)+1(x+1) =
16x + 1 and the total fence length is 25x

3
. The resulting ratio is ρ = 16x+1

2
/25x

3
= 48x+3

50x
. For

example, when x = 2 we reobtain the bound of Kawamura and Kobayashi [10] (from their
2nd example), when x = 39, ρ = 100

104
and further on, ρ −→

x→∞
24
25

. Thus an idle time of at most(
24
25

+ ε
)

2∑k
i=1 vi

can be achieved for every given ε > 0, as required.
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