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Abstract

We say that a set system F C 2[ shatters a given set S C [n] if 29 =
{F N S: F € F}. The Sauer inequality states that in general, a set sys-
tem F shatters at least |F| sets. Here we concentrate on the case of equality. A
set system is called shattering-extremal if it shatters exactly |F| sets. In this paper
we characterize shattering-extremal set systems of Vapnik-Chervonenkis dimension
2 in terms of their inclusion graphs, and as a corollary we answer an open ques-
tion about leaving out elements from shattering-extremal set systems in the case of
families of Vapnik-Chervonenkis dimension 2.
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1 Introduction

Throughout this paper n will be a positive integer, the set {1,2,...,n} will be referred
to shortly as [n] and the power set of any set S C [n] will be denoted by 2°. For a set
system F C 2" we will write supp(F) for its support, i.e. supp(F) = Uper F.

The central notion of our study is shattering.

Definition 1. A set system F C 2l shatters a given set S C [n] if
29={FNS:FecF}

The family of subsets of [n] shattered by F is denoted by Sh(F). The following
inequality states that in general, a set system F shatters at least |F| sets.

Proposition 2. |Sh(F)| > |F| for every set system F C 2.

The statement was proved by several authors, e.g. Aharoni and Holzman [1], Pajor
[12], Sauer [13], Shelah [14]. Often it is referred to as the Sauer inequality. Here we are
interested in the case of equality.

Definition 3. A set systems F C 2/ is shattering-extremal, or s-extremal for short, if it
shatters exactly |F| sets, i.e. |F| = [Sh(F)|.

Many interesting results have been obtained in connection with these combinatorial
objects, among others by Bollobas, Leader and Radcliffe in [3], by Bollobas and Radcliffe
in [4], by Frankl in [5]. Fiiredi and Quinn in [6], and recently Kozma and Moran in [§]
provided interesting examples of s-extremal set systems. Anstee, Rényai and Sali in [2]
related shattering to standard monomials of vanishing ideals, and based on this relation,
the present authors in [9] and in [10] developed algebraic methods for the investigation of
s-extremal families.

Definition 4. The inclusion graph of a set system F C 2", denoted by G £, is the simple
directed edge labelled graph whose vertices are the elements of F, and there is a directed
edge with label j € [n] going from G to F' exactly when F' = G U {j}.

The inclusion graph of the complete set system 2" will be denoted by H,. The
undirected version of H,, is often referred to as the Hamming graph H(n,2), or as the
hypercube of dimension n, whose vertices are all 0—1 vectors of length n, and two vertices
are adjacent iff they differ in exactly one coordinate. When computing distances between
vertices in the inclusion graph Gz we forget about the direction of edges, and define the
distance between vertices F,G € F, denoted by dg,(F,G), as their graph distance in
the undirected version of G, i.e. the length of the shortest path between them in the
undirected version of Gz. Similarly, some edges in G form a path between two vertices if
they do so in the undirected version of Gz. For example, the distance between two vertices
F,G C [n]in H,, is just the size of the symmetric difference FAG, i.e. dy, (F,G) = |FAG)|.
As a consequence, when only distances of vertices will be considered, and the context will
allow, we omit the directions of edges to avoid unnecessary case analysis, and will specify
edges by merely listing their endpoints.
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Definition 5. The Vapnik-Chervonenkis dimension of a set system F C 2", denoted by
dimyc(F), is the maximum cardinality of a set shattered by F.

The general task of giving a good description of s-extremal systems seems to be too
complex at this point, therefore we restrict our attention to the simplest cases, where the
VC dimension of F is small. S-extremal systems, where the VC dimension is at most 1
were fully described in [11].

Proposition 6. (See [11]) A set system F C 2" is s-extremal and of VC dimension at
most 1 iff Gx is a tree and all labels on the edges are different.

Proposition 6 can also be interpreted as follows:

Proposition 7. (See [11]) There is a one-to-one correspondence between s-extremal fami-
lies F C 2" of VC dimension 1 with supp(F) = [n], NperF = 0 and directed edge-labelled
trees on n + 1 vertices, all edges having a different label from [n].

Note that the assumptions supp(F) = [n] and NperF = () are not restrictive. Both of
them can be assumed to hold without loss of generality, otherwise one could omit common
elements and then restrict the ground set to supp(F).

In this paper we continue the work initiated in [11], and characterize s-extremal set
systems of VC dimension at most 2. We do this by providing an algorithmic procedure
for constructing the inclusion graphs of all such set systems. This characterization then
allows us to answer an open question, posed in [11], about leaving out elements from such
set systems.

The paper is organized as follows. After the introduction in Section 2 we investigate
the properties of shattering and its connection to inclusion graphs. Next, in Section 3
we propose a building process for extremal families and investigate its properties. Based
on this building process in Section 4 we present and prove our main results. Finally in
Section 5 we make some concluding remarks concerning future work.

2 Preliminaries

To start with, we first introduce a useful subdivision of set systems.

Definition 8. The standard subdivision of a set system F C 2 with respect to an
element i € [n] consists of the following two set systems:

Fo={F:FeF;i¢F}C2r\ and
Fi={F\{i}: F € Fyie F} C 2\,

For the sake of completeness we provide a possible proof of Proposition 2, whose main
idea will be useful later on.
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Proof of Proposition 2. We will prove this statement by induction on n. For n = 1 the
statement is trivial. Now suppose that n > 1, and consider the standard subdivision of
F with respect to the element n. Note that Fy, F; C 2"~ and hence by the induction
hypothesis we have |Sh(Fy)| = |Fo| and |Sh(F1)| = |Fi]. Moreover |F| = |Fo| + |Fl,
Sh(Fo) U Sh(Fy) C Sh(F) and if S € Sh(Fy) N Sh(Fy), then according to the definition
of Fo and F; we have S U {n} € Sh(F). Summarizing

|Sh(F)| = |Sh(Fo)| + [Sh(F1)| = | Fol| + |F1| = |F].
Il

From the proof of Proposition 2 it is easy to see, that if F is s-extremal, then so
are the systems Fy and F; in the standard subdivision with respect to any element
i € [n]. Iterating this for an s-extremal system F C 2" we get that for all pairs of sets
A C B C [n], the system

{F\A|FeF, ACF C B}
is s-extremal. Moreover if in the above system we add A to every set, then the family of
shattered sets remains unchanged, hence we get that the subsystem
Fap={F|FeF, ACFCB}CF

is also s-extremal.
In [3] and [4] a different version of shattering, strong shattering is introduced .

Definition 9. A set system F C 2" strongly shatters the set F C [n], if there exists
I C [n]\F such that

28 +I1={HUI|HCF}CF.

The family of all sets strongly shattered by some set system F is denoted by st(F).
Clearly st(F) C Sh(F), both Sh(F) and st(F) are down sets and both families are
monotone, meaning that if 7 C F' are set systems then Sh(F) C Sh(F’) and st(F) C
st(F'). For the size of st(F) one can prove the so called reverse Sauer inequality:

Proposition 10. (See [3]) |st(F)| < |F| for every set system F C 2.

Bollobés and Radcliffe in [4] obtained several important results concerning shattering
and strong shattering, including:

Proposition 11. (See [4], Theorem 2) F C 2" is extremal with respect to the Sauer
inequality (i.e. is shattering-extremal) iff it is extremal with respect to the reverse Sauer
inequality i.e. |st(F)| = |F| < |Sh(F)| = |F|.
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Since the two extremal cases coincide, we will call such set systems shortly just ex-
tremal. As a consequence of the above facts, we get, that for extremal systems we have
st(F) = Sh(F).

For i € [n] let ¢; be the ith bit flip operation, i.e. for F € 2"l we have

. F\{i} ifieF
pi(F) = FA{i} = { FU{i} ifig¢F
and ;(F) = {@i(F) | F € F}. The family of shattered sets is trivially invariant under the
bit flip operation, i.e. Sh(F) = Sh(p;(F)) for all i € [n], and hence so is extremality. This
means that when dealing with a nonempty set system F, and examining its extremality,
we can assume that () € F, otherwise we could apply bit flips to it, to bring () inside.

In terms of the inclusion graph, ¢; flips the directions of edges with label 7, i.e. there
is a bijection between the vertices of G and G, () that preserves all edges with label
different from ¢, and reverses edges with label i. This bijection is simply given by the
reflection with respect to the hyperplane x; = % in the Hamming graph, when viewed as
a subset of R".

Note that for any set system F C 2/, the identity map naturally embeds the inclusion
graph G into H,,. We say that the inclusion graph Gz is isometrically embedded (into
H.,), if this embedding is an isometry, meaning that for arbitrary F,G € F we have
de,(F,G) = dp, (F,G), i.e. there is a path of length dy, (F, G) = |F' A G| between F' and
G inside the undirected version of Gr. Greco in [7] proved the following:

Proposition 12. If F C 2" is extremal, then G is isometrically embedded.

As this fact will be used several times, we provide the reader with a simple proof
from [9]:

Proof. Suppose the contrary, namely that G is not isometrically embedded. Then there
exist sets A, B € F such that dy, (A, B) = k < dg,(A, B). Suppose that A and B are
such that %k is minimal. Clearly k& > 2. W.l.o.g we may suppose that A = () and |B| = k,
otherwise one could apply bit flips to the set system to achieve this. Note that distances
both in G and in H,, are invariant under bit flips.

We claim that there is no set C' € F different from A with C' & B. Indeed suppose
such C' exists, then

di, (A, C) + dg, (C, B) = d, (A, B) = k < dg, (A, B) < dg,.(4,C) + dg, (C, B).

From this we have either dg,(A,C) < dg,(A,C) or dy,(C,B) < dg.(C,B). Since
dm, (A, C),dy, (C,B) < k we get a contradiction in both cases with the minimality of
k.

Now since F is extremal, so must be Fy 5. However in our case Fyp = {0, B}, and
so if B = {by,...,bx}, then Sh(Fyp) = {0,{b:},...,{bx}}. Counting cardinalities we
get that |Sh(Fyp)| = |B|+1=k+1> 3> 2 = |Fpgl|, implying that Fy 5 cannot be
extremal. This contradiction finishes the proof. n
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It is easy to see that S € st(F) (and so in the extremal case S € Sh(F)) is just
equivalent to the fact that Gys is isomorphic to a subgraph of G as a directed edge
labelled graph, i.e. there exists a bijection between the vertices of Gos and 23! vertices
of Gr preserving edges, edge labels and edge directions. If this happens, we will say, that
there is a copy of Ggys in Gr.

Suppose that for a set S C [n] there are 2 different copies of Gys in Gz, i.e. there are
two different sets I, Iy C [n]\S such that 25 + I;,2% + I, C F. Since I, # I, there must
be an element o ¢ S such that o € I;Aly. For this element « we clearly have that F
shatters S U {a}.

Observation 13. If F C 2" is extremal and S C [n] is a mawimal element in st(F) =

Sh(F), in the sense that S € st(F) = Sh(F) and for all 8" 2 S we have S" ¢ st(F) =
Sh(F), then S is uniquely strongly shattered, i.e. there is one unique copy of Gys in Gz

Indeed, by the earlier reasoning, multiple copies would result a contradiction with the
maximality of S.

3 Construction of extremal families

In this section we will describe and study a process for building up an extremal set
system on the ground set [n] together with its inclusion graph. First we describe the
building process for the set system and then study how the inclusion graph evolves in
the meantime. Let Step 0 be the initialization, after which we are given the set system
{0}. Now suppose we are given a set system JF and consider the following two types of
operations to enlarge JF:

e Step A - If such exists, take an element « € [n]\supp(F) together with a set W € F
and add the set V = {W,a} to F.

Note that the singleton {«a} is strongly shattered by F U {V'}, as shown by the sets
W and V, but is not by F, as by assumption « ¢ supp(F).

e Step B - If there exist, take two elements «, f € supp(F) such that {«, B} ¢ st(F),
together with sets P,W,Q € F such that Q AW = {a} and P AW = {3}. Let
V =W A{a, 5}. V is also the unique set satisfying PAV = {a} and QAV = {3}.
For these sets we have that {P,W,Q,V} = W NV 4 28 = pnQ + 2{*F and
hence V' cannot belong to F, otherwise the sets P,W,Q,V would strongly shatter
{a, 8}, contradicting our assumption. Therefore, it is reasonable to add V' to F.

Note that the set {«, 5} is strongly shattered by F U {V'}, as shown by the sets
P, W,(Q and V, but is not by F by assumption.

Let £ be the collection of all set systems F that can be built up starting with Step 0
and then using steps of type A and B in an arbitrary but valid order.

Lemma 14. Any set system F € & is extremal and dimyc(F) < 2.
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Proof. We will use induction on the size of F. If |F| = 1 then necessarily F = {0}, which
is clearly extremal and dimyc(F) = 0. Now suppose we know the result for all members
of £ of size at most m > 1, and consider a system F € £ of size m + 1. As F € £ it can
be built up starting from {@} using Steps A and B. Fix one such building process, and
let ' be the set system before the last building step. As noted previously, independently
of the type of the last step there is a set S that is strongly shattered by F but is not
strongly shattered by F’. S is either a singleton or a set of size 2, depending on the type
of the last step. By the induction hypothesis F' is extremal and dimyc(F’) < 2. Using
the reverse Sauer inequality we get that

[F'| = [st(F) < |st(F)| < [F| = [F+1,

what is possible only if |st(F)| = |st(F')| + 1 and |st(F)| = |F]|, in particular F is
extremal.

However in the extremal case the family of shattered sets is the same as the family
of strongly shattered sets, and so the above reasoning also gives that there is exactly one
set that is shattered by F and is not shattered by F’, namely S, and so dimyc(F) <
mazx(dimyc(F'),|S]) < 2. O

The proof of Lemma 14 also describes how the family of shattered/strongly shattered
sets grows during a building process. After each step it grows by exactly one new set,
namely by {a}, if the step considered was Step A with the label «, and by {a, 8}, if the
step considered was Step B with labels «, 5. By our assumptions on the steps it also
follows that a valid building process for a set system F € £ cannot involve twice Step A
with the same label «, neither twice Step B with the same pair of labels «, 3, and we also
have that

B {@} U {{a} | Step A is used with label a} U

Sh(F) = st(F) = :
{{a, B} | Step B is used with labels a and /3}

Now consider a valid building process from &, and let us examine, how the inclusion
graph evolves. We use the notation from the definitions of Steps A and B. Suppose we
have already built up a set system F, and we are given its inclusion graph Gr.

In Step A we add a new vertex, namely V to Gz, together with one new directed
edge with label a going from W to V. As a ¢ supp(F), V has no other neighbors in G .
Figure 1 shows Step A in terms of the inclusion graph.

In Step B we also add one new vertex to G, namely V. As the distance of V' from
both P and Q is 1, and P AV = {a} and Q AV = {S}, we have to add at least 2 new
edges, one between P and V' with label o and one between ) and V' with label 8. The
direction of these edges is predetermined by the vertices P, /W and Q). Figure 2 shows all
possible cases for the directions of these edges. We claim that no other edges need to be
added, i.e. V has no other neighbors in G#. Indeed suppose that the new vertex V has
another neighbor X in Gz, different from P and @, that should be connected to it with
some label ~ different from o and . See Figure 3, where edge directions are ignored, only
edge labels are shown.
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Figure 1: Step A

Figure 2: Step B
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Figure 3: Case of Step B

Here dy, (P, X) = |P A X| = |[{a,7}| = 2. On the other hand as F was built using
Steps A and B starting from {(}}, it is a member of £, and so by Lemma 8 it is extremal.
According to Proposition 12 this implies that G is isometrically embedded. This means
that there should be a vertex Y in G connected to both P and X with edges with labels
~v and « respectively. The same reasoning applies for () and X with some intermediate
vertex Z and edge labels 3, v. However in this case, independently of the directions of
the edges, we have {X N{a, 8},Y N{a, B}, ZNn{a, B}, WN{a, B}} = 2{*F} ie. the sets
X,Y, Z W shatter the set {a, 8}, and so by the extremality of F we have that {«, 5} is
also strongly shattered, what contradicts the assumptions of Step B.

From now on it will depend on the context whether we regard Steps A and B as
building steps for extremal set systems of VC dimension at most 2 or as building steps
for their inclusion graphs.

Figure 4 shows a possible building process in £ for the set system

F={0,{1},{2},{3},{2,3}}

in terms of the inclusion graph.

Take an element of £ and fix a valid building process for it. The above observations also
imply, that when observing the evolution of the inclusion graph, after the first occurrence
of an edge with some fixed label «, new edges with the same label can come up only
when using Step B always with a different label next to . By easy induction on the
number of building steps, this results that between any two edges with the same label «
there is a “path of 4-cycles“. See Figure 5. Note that as in Figure 5, all the /3;’s must be
different. Along this path of 4-cycles we also obtain a shortest path between X; and X5,
and similarly between Y; and Y5.
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Step A

Step 0 with label 1
R ANAAN —1>

Step A 1

with label 3
ANAANAS 0|

{1}
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1
with label 2 /
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Step B
Wlth labels 2,3
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Figure 4: Example of a building process in €
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Figure 5: Path of 4 cycles
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4 Main results

The first of the main results of this paper is that the set systems in £, described in the
previous section, are actually all the extremal set systems of VC dimension at most 2 and
containing ().

Theorem 15. F C 2" is an extremal set system with dimyc(F) < 2 and ) € F iff
Fek.

Before turning to the proof of Theorem 15, we first prove a lemma about the building
processes in £, that will play a key role further on.

Lemma 16. Suppose that F', F are elements of € such that F' C F. Then F' can be
extended with valid building process to build up F.

Proof. Suppose this is not the case, and consider a counterexample. Without loss of
generality we may suppose that the counterexample is such that F' cannot be continued
with any valid step towards F. F' and F are both extremal and so Gz and G are both
isometrically embedded, in particular connected, hence the neighborhood of Gz inside
G is nonempty. Now take a closer look at the edges on the boundary of Gz .

If there were an edge going out from Gz with a label a € supp(F)\supp(F’), then
Step A would apply with this label a. On the other hand there cannot be an edge going
into Gz with a label o ¢ supp(F’), otherwise the endpoint of this edge inside Gz would
contain «, what would be a contradiction.

We can therefore assume that the label of any edge on the boundary of G, indepen-
dently of the direction of the edge, is an element of supp(F’). However as ) € F' and G
is isometrically embedded, an element belongs to supp(F’) only if it appears as an edge
label in G . Now take an edge (W, V) on the boundary of Gz with W € F', V € F\F’
and with some label a, together with an edge (X,Y’) with the same label inside Gz .
Denote the distance of the edges (W, V') and (X,Y) by ¢, i.e. dy, (W, X) =dy, (V,Y) = L.
The latter equality means, that depending on the direction of the edges, W and X both
do contain the element «, or neither of them does. Suppose that the triple o, (W, V),
(X,Y) is such that the distance ¢ is minimal.

First suppose that ¢ > 1. Since the edges (W, V), (X,Y) have the same label and
F € &, there is a path of 4-cycles of length ¢ between them inside Gx. This path of
4-cycles also provides shortest paths between the endpoints of the edges (W, V), (X,Y).
By the minimality of our choice, in this path, except the edges at the ends, there cannot
be an edge with label a neither totally inside Gz, neither on the boundary of it, meaning
that this path of 4-cycles is essentially going outside Gz . See Figure 6.

Since Gz is isometrically embedded and dy, (W, X) = ¢, there must be a path of
length ¢ between W and X inside Gr. As this path runs inside Gz, it has to be disjoint
from the path of 4-cycles. Along the path of 4-cycles all the (;’s are different, so for each
1 exactly one of the sets W and X contains the element (5;. In particular for ¢ = 1, the
shortest path between W and X inside Gz also has to contain an edge (7',.5) with label
[y with direction determined by the sets W and X. However the distance between W and
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Figure 6: Case ! > 1

T is at most £ — 1, and hence the triple 51, (W, @Q1), (T, S) contradicts with the minimality
of the initial triple a, (W, V), (X,Y’) where the distance was /.

By the above reasoning only ¢ = 1 is possible. In this case the endpoints of the edges
(W, V), (X,Y) are connected by edges with the same label. Let this label be . The
direction of these edges is predetermined by Gz . {«a, f} ¢ st(F’), otherwise there would
be already a copy of Gya.sy in Gz, which together with the vertices W, V, XY would give
us two different copies of it inside Gz, which is impossible by Observation 13, as {«, 5}
is a maximal set strongly shattered by the extremal family F. Hence Step B applies with
new vertex V', edges (W, V), (V,Y) and labels a, 8 respectively, contradicting with the
fact, that we started with a counterexample. See Figure 7. O

Now we are ready to prove Theorem 15.

Proof of Theorem 15. One direction of the theorem is just Lemma 14. For the other
direction we use induction on the number of sets in F. If |F| = 1, then F is necessarily
{0}, and so belongs trivially to £. Now suppose we proved the statement for all set
systems with at most m — 1 members, and let F be an extremal family of size m, of
VC dimension at most 2 and containing (). Take an arbitrary element o appearing as a
label of an edge going out from @) in Gz, i.e. an element « such that {a} € F. Consider
the standard subdivision of F with respect to the element a with parts Fy and F; (see
Definition 8), and let
Fi={Fu{a} : FeF}
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G

«

G]:\G}‘/ ?
O,

Figure 7: Case { =1

Note that with respect to shattering and strong shattering /; and ]?1 behave in the same
way. Since F is extremal, so are Fy, F; and hence F; as well, and clearly their VC
dimension is at most 2. The collection of all edges with label « in the inclusion graph Gz
forms a cut. This cut divides Gz into two parts, that are actually the inclusion graphs
Gr, and Gz . Note that Gz, and Gz are isomorphic as directed edge labelled graphs.
Let Tp and T} be the induced subgraphs on the endpoints of the cut edges in Gz, and Gz ,
respectively. See Figure 8. T and T} are isomorphic, and they are actually the inclusion
graphs of the set systems Ty = FoNJF; and 71 = {FU{a}, F € Ty}. Similarly to the pair
Fi, .7?1, the set systems 7y and 7; also behave in the same way with respect to shattering
and strong shattering. By assumption F is extremal, and so according to Proposition 5.1
from [11] so is Ty and hence 7;. For every set S in Sh(Ty) = Sh(Fy N Fy) C 2MMe} the
set S U{a} is shattered by F, implying that dimyc(Ty) < dimyc(F) —1 < 1. Therefore
To is an extremal family of VC dimension at most 1, and so by Proposition 6 we get that
To (and hence T7) is a directed edge labelled tree having all edge labels different. Note
that for any edge label 5 appearing in Ty (and hence in T7), there is a copy of Gya.s
along the cut, implying that {«, 8} € st(F) = Sh(F). By the VC dimension constraint
on F the set {«, 8} is a maximal element of st(F) = Sh(F), and so by Observation 13
there cannot be another copy of Gyas in G, neither in Gz, nor in Gz, in particular
{a, B} ¢ st(Fo).

Let’s now turn to the building process of F. Our choice of o guarantees that () € Fy, F;
and so by the induction hypothesis both of them belong to £. In particular we can build
up Fo, and in the meantime G,, according to the building rules in £. o ¢ supp(Fy) and
so we can apply Step A with a to add one fixed cut edge to Gx,. Then we apply Step
B several times to add the whole of 7} to Gz, and simultaneously 77 to Fy. By earlier
observations all edge labels of T; are different, and if /3 is such a label, then {«, 5} ¢ st(Fy),
and hence all these applications of Step B will be valid ones. The building process so far
shows that FyUT; is also a member of £. Gx,u7; is just Gz, and T glued together along
the cut in the way described above.

Tp shows that 7o can be built up using only Step A, and hence it belongs to . The
inclusion 7; C JF; shows that 7y C JF;, therefore by Lemma 16 7, can be extended with a
valid building process to build up F;. This extension can also be considered as building
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[oo)—"()

Figure 8: Building up extremal set systems

up ]?1 from T1. 0 ¢ Ty, .7?1 and so neither of the two systems is a member of £, however
this causes no problems, as the pairs 7y, 71 and F;, F; behave in the same way with
respect to shattering and strong shattering, and so all building steps remain valid.

We claim, that this last building procedure remains valid, and so completes a desired
building process for F, if we start from FoU 7T instead of 7;. First note that if there is a
label appearing both in Gz, and Gz, then it appears also in Ty, and hence in 7. Indeed
let 3 be such a label, and consider 2 edges with this label, one going from W to Vj in G£,
and the other going from W; to V1 in Gz . See Figure 8. G is isometrically embedded,
therefore there is a shortest path both between W, and W; and between V; and V; in G£.
Thanks to [ these two paths have to be disjoint. Both of these paths must have a common
edge with the cut, say (Fp, P1) and (Qo, @1), with Fy and Qp in Gx,. Since 5 € Py A Qo,
along the shortest path between Py and () in the isometrically embedded inclusion graph
T}, of the extremal family 7y there must be an edge with label 5. According to this, when
applying Step A in the extension process, then the used element will be new not just
when we start from 77, but also when starting from Fy U 77.

Finally suppose that an application of Step B with some labels 3,7 in the extension
process turns invalid when we start from Fy U 7T instead of 7;. This is possible only if
{8,7} € st(FoUTi)\st(Tp), i.e. there is a copy of Gys.4) already in Gz,,7;. However this
copy together with the copy, that the invalid use of Step B results, gives two different
occurrences of Gys,y inside Gz, which is impossible by Observation 13, as {3,7} is a
maximal set strongly shattered by the extremal family F. O]
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As a corollary of Theorem 15 one can solve an open problem, posed in [11], in the
special case when the VC dimension of the systems investigated is bounded by 2.

Open Problem 17. (See [11]) For a nonempty s-extremal family F C 2" does there
always exist a set F' € F such that F\{F} is still s-extremal?

The case when the VC dimension of the systems investigated is bounded by 1 was
solved in [11]. Here we propose a solution for set systems of VC dimension at most 2.

Theorem 18. Let F C 2" be a nonempty extremal family of VC dimension at most 2.
Then there ezists an element F' € F such that F\{F'} is still extremal.

Proof. Let F' € F be an arbitrary set from the set system. Recall that ; is the ith bit
flip operation, and let ¢ = [[..p ¢s. Since bit flips preserve extremality, ¢ (F) is extremal
as well. Moreover p(F) =) € p(F), and so by Theorem 15 we have p(F) € &, hence we
can consider a building process for it. Let V' € ¢(F) be the set added in the last step of
this building process. The same building process shows that p(F)\{V} € &, and hence
by Theorem 15 we have that ¢(F)\{V'} is an extremal family of VC dimension at most
2 and containing (. However o(F)\{V} = o(F\{¢(V)}), and since bit flips preserve
extremality, we get that p(o(F\{e(V)})) = F\{e(V)} is also extremal, meaning that
the set (V') € F can be removed from the extremal system F so that the result is still
extremal. [l

5 Concluding remarks and future work

The building process from Section 2 can be generalized to the case when the VC dimension
bound is some fixed natural number t. We can define a building step for every set S C [n]
with |S| < ¢. Let Step(0) be the initialization, after which we are given the set system
{0}. For some set S C [n] with |S| < ¢, Step(S) can be applied to a set system F, if
there exists some set F' C [n], F' ¢ F, such that S € st(F U {F})\st(F). If such set F
exists, choose one, and let the resulting system be F U {F'}. In terms of the inclusion
graph S € st(FU{F})\st(F) means, that by adding the set I’ there arises a copy of Gys
inside G ry¢7} containing the vertex F'. Similarly as previously, one can prove that F’s
only neighbors are the ones contained in this copy of G,s. Using this observation Step(S)
could have been defined in terms of the inclusion graph as well (as it was done in the
case t = 2).

Restrict our attention to those set systems, that can be built up starting with Step((),
and then using always new building steps, i.e. not using a building step with the same
set S twice. Along the same lines of thinking as in the case t = 2, one can prove that
every such set system is extremal. We think, that these set systems are actually all
the extremal families of VC dimension at most ¢. Unfortunately, for the time being
we were unable to prove a suitable generalization of Lemma 16. Once it is done, the
generalization of Theorem 15, and as a corollary a generalization of Theorem 18 would
follow easily. Although the general version Theorem 15 would not give such a transparent
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structural description of extremal systems as in the case t = 1, but still, its corollary, the
generalization of Theorem 18 would solve the open problem proposed in [11] in its entire
generality.
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