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peter.csikvari@gmail.com

Zhicong Lin
Department of Mathematics and Statistics, Lanzhou University

Lanzhou 730000, P.R. China

Institut Camille Jordan, Université Claude Bernard Lyon 1
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Abstract

In this paper we study several problems concerning the number of homomor-
phisms of trees. We begin with an algorithm for the number of homomorphisms
from a tree to any graph. By using this algorithm and some transformations on
trees, we study various extremal problems about the number of homomorphisms
of trees. These applications include a far reaching generalization and a dual of
Bollobás and Tyomkyn’s result concerning the number of walks in trees.

Some other main results of the paper are the following. Denote by hom(H,G)
the number of homomorphisms from a graph H to a graph G. For any tree Tm on
m vertices we give a general lower bound for hom(Tm, G) by certain entropies of
Markov chains defined on the graph G. As a particular case, we show that for any
graph G,

exp(Hλ(G))λm−1 6 hom(Tm, G),

where λ is the largest eigenvalue of the adjacency matrix of G and Hλ(G) is a
certain constant depending only on G which we call the spectral entropy of G. We
also show that if Tm is any fixed tree and

hom(Tm, Pn) > hom(Tm, Tn),

for some tree Tn on n vertices, then Tn must be the tree obtained from a path Pn−1
by attaching a pendant vertex to the second vertex of Pn−1.
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All the results together enable us to show that among all trees with fixed number
of vertices, the path graph has the fewest number of endomorphisms while the star
graph has the most.

Keywords: trees; walks; graph homomorphisms; adjacency matrix; extremal prob-
lems; KC-transformation; Markov chains

1 Introduction

We use standard notations and terminology of graph theory, see for instance [2, 4]. The
graphs considered here are finite and undirected without multiple edges and loops. Given
a graph G, we write V (G) for the vertex set and E(G) for the edge set. A homomorphism
from a graph H to a graph G is a mapping f : V (H) → V (G) such that the images of
adjacent vertices are adjacent. Let Hom(H,G) denote the set of homomorphisms from
H to G and by hom(H,G) the number of homomorphisms from H to G. Throughout
this article, we write Pn and Sn for the path and the star on n vertices, respectively. The
length of a path is the number of its edges. The union of graphs G and H is the graph
G ∪H with vertex set V (G) ∪ V (H) and edge set E(G) ∪E(H). A tree T together with
a root vertex v will be denoted by T (v).

The problem of computing hom(H,G) is difficult in general. However, there has
been recent interest in counting homomorphisms between special graphs. In particular,
formulas for computing the number of homomorphisms between two different paths were
given in [1,16]. But even for these special trees, the formulas are bulky and inelegant. In
Section 2, we shall give an algorithm for computing the number of homomorphisms from
trees to any graph. This algorithm will be called Tree-walk algorithm.

Recently, the first author proved a conjecture of Nikiforov concerning the number of
closed walks on trees. He proved in [6] that, for a fixed integer m, the number of closed
walks of length m on trees of order n attains its maximum at the star Sn and its minimum
at the path Pn. In other words,

hom(Cm, Pn) 6 hom(Cm, Tn) 6 hom(Cm, Sn), (1.1)

where Tn is a tree on n vertices and Cm is the cycle on m vertices.
Bollobás and Tyomkyn [3] gave a variant of the first author’s result by replacing the

number of closed walks by the number of all walks, that is

hom(Pm, Pn) 6 hom(Pm, Tn) 6 hom(Pm, Sn), (1.2)

where Tn is a tree on n vertices. In both [3] and [6], the authors use a certain transfor-
mation of trees. In [6], it is called the generalized tree shift, whereas in [3], it is renamed
to KC-transformation.

To define this transformation, let x and y be two vertices of a tree T such that
every interior vertex of the unique x–y path P in T has degree two, and write z for
the neighbor of y on this path. Let N(v) denote the set of neighbors of a vertex v. The
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Figure 1: The KC-transformation.

KC-transformation, KC(T, x, y), of the tree T with respect to the path P is obtained
from T by deleting all edges between y and N(y) \ z and adding the edges between x and
N(y) \ z instead (See Fig. 1). Note that KC(T, x, y) and KC(T, y, x) are isomorphic.

The following property of KC-transformation was proved in [6].

Proposition 1.1. The KC-transformation gives rise to a graded poset of trees on n ver-
tices (graded by the number of leaves) with the star as the largest and the path as the
smallest element. See Figure 2.

Figure 2: The induced poset of KC-transformation on trees of 6 vertices.

In [6] the first author proved that the KC-transformation increases the number of closed
walks of fixed length in trees. By Proposition 1.1, this leads to the proof of inequality
(1.1).
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In the very same spirit, Bollobás and Tyomkyn [3] showed that the KC-transformation
increases the number of walks of fixed length in trees. In the language of graph homo-
morphism, their result can be restated as follows.

Theorem 1.2 (Bollobás–Tyomkyn). Let T be a tree and let T ′ be obtained from T by a
KC-transformation. Then

hom(Pm, T
′) > hom(Pm, T ) (1.3)

for any m > 1.

Now a natural question arises: does inequality (1.3) still hold when Pm is replaced by
an arbitrary fixed tree? A tree is called starlike if it has at most one vertex of degree
greater than two. Note that paths are starlike. We answer this question in the affirmative
for starlike trees.

Theorem 1.3. Let T be a tree and T ′ the KC-transformation of T with respect to a path
of length k. Then the inequality

hom(H,T ′) > hom(H,T ) (1.4)

holds when k is even and H is any tree, or k is odd and H is a starlike tree.

Moreover, we find a counterexample for inequality (1.4) when k is odd and H is not
a starlike tree (see the end of Section 3).

Another extremal problem concerning the number of homomorphisms between trees
that worth considering is to find the extremal trees for hom(· , Pn) over all trees on m
vertices. We address this question in a follow-up paper [8], here we only mention the
main result of this paper. This result can be considered as a dual of inequality (1.2).

Theorem 1.4. Let Tm be a tree on m vertices. Furthermore, let diam(Tm) denote the
diameter of Tm.

(i) Let T ′m be obtained from Tm by a KC-transformation. If n is even, or n is odd and
diam(Tm) 6 n− 1, then

hom(Tm, Pn) 6 hom(T ′m, Pn). (1.5)

(ii) For any m,n,
hom(Pm, Pn) 6 hom(Tm, Pn) 6 hom(Sm, Pn).

As we mentioned, the proof of Theorem 1.4 will be given in [8], it only builds on the
algorithm of Section 2. Note that inequality (1.5) is not true in general when n is odd
and diam(Tm) is greater than n− 1.

For the sake of keeping this paper self-contained, we will also give a new proof for
the following theorem of Sidorenko [19] concerning the extremal property of the stars
among trees. Note that Fiol and Garriga [10] proved the special case of this theorem
when Tm = Pm, clearly, they were not aware of the work of Sidorenko.
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Theorem 1.5 (Sidorenko). Let G be an arbitrary graph and let Tm be a tree on m vertices.
Then

hom(Tm, G) 6 hom(Sm, G).

After all, it is a natural question whether it is true or not that

hom(Pm, G) 6 hom(Tm, G)

for any tree Tm on m vertices. Surprisingly, the answer is no! It was already known
to A. Leontovich [14]. It turns out that even if one restricts G to be a tree there is a
counterexample (see Remark 4.13).

We have already seen a few examples to the phenomenon that in many extremal
problems concerning trees it turns out that the maximal (minimal) value of the examined
parameter is attained at the star and the minimal (maximal) value is attained at the path
among trees on n vertices (cf. [7,17]). In what follows we will show that this phenomenon
occurs quite frequently if one studies homomorphisms of trees.

Let Ya,b,c be the starlike tree on a + b + c + 1 vertices which has exactly 3 leaves and
the vertex of degree 3 has distance a, b, c from the leaves, respectively.

Theorem 1.6. Let Tn be a tree on n vertices. Assume that for a tree Tm we have

hom(Tm, Tn) < hom(Tm, Pn).

Then Tn = Y1,1,n−3 and n is even.

In fact, we conjecture that we only have to exclude the case n = 4 and T4 = S4.

Conjecture 1.7. Let Tn be a tree on n vertices, where n > 5. Then for any tree Tm we
have

hom(Tm, Pn) 6 hom(Tm, Tn).

An endomorphism of a graph is a homomorphism from the graph to itself. For a graph
G, denote by End(G) the set of endomorphisms of G. We remark that End(G) forms a
monoid with respect to the composition of mappings. One of the main results of this
paper is the following extremal property about the number of endomorphisms of trees.

Theorem 1.8. For all trees Tn on n vertices we have

|End(Pn)| 6 |End(Tn)| 6 |End(Sn)|.

Both the proofs of Theorem 1.6 and the first part of Theorem 1.8 require a crucial
lower bound involving Markov chains for the number of graph homomorphisms from trees
(see Theorem 4.1). Our lower bound generalizes a recent result due to Dellamonica et
al. [9] (by choosing the classical Markov chain on graphs) and is also closely related to
works of Kopparty and Rossman [13] and Rossman and Vee [21]. The idea of studying
homomorphisms via entropies of Markov chains on graphs seems new.
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The rest of this paper is organized as follows. In Section 2, we state the tree-walk
algorithm. Section 3 is devoted to the proof of Theorem 1.3. In Section 4, we prove some
lower bounds involving Markov chains and an upper bound (Theorem 1.5) for the number
of homomorphisms from trees to an arbitrary graph. The proofs of Theorem 1.6 and The-
orem 1.8 are given in Section 5, where some lower bounds concerning the homomorphisms
of arbitrary trees are also proved.

In order to make our paper transparent, we offer the following two tables, Figure 3
and 4, which summarize our results. In both tables, the first row follows from Theorem 1.2
or its generalization Corollary 3.3. The last row is obvious since hom(Sm, G) is the sum
of degree powers of G and it also follows from Corollary 3.3. The first, second and third
columns follow from Theorem 1.4, Theorem 1.5 and Corollary 3.5 respectively. The “X”
means that there is no inequality between the two expressions in general and the “?”
means that we do not know whether the statement is true or not.

hom(Pm, Pn) 6 hom(Pm, Tn) 6 hom(Pm, Sn)

> X >

hom(Tm, Pn)
(∗)
6 hom(Tm, Tn) X hom(Tm, Sn)

> > >
hom(Sm, Pn) 6 hom(Sm, Tn) 6 hom(Sm, Sn)

Figure 3: The number of homomorphisms between trees of sizes m and n. The (∗)
means that there are some well-determined (possible) counterexamples which should be
excluded.

hom(Pn, Pn) 6 hom(Pn, Tn) 6 hom(Pn, Sn)

> ? >

hom(Tn, Pn) 6 hom(Tn, Tn) X hom(Tn, Sn)

> > >

hom(Sn, Pn) 6 hom(Sn, Tn) 6 hom(Sn, Sn)

Figure 4: The number of homomorphisms and endomorphisms of trees of size n.

2 The Tree-walk algorithm

In this section we shall state an algorithm for the number of homomorphisms from a tree
to any graph. As a generalized concept of walks in graphs, we call a homomorphism from
a tree to a graph a tree-walk on this graph.
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Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be two vectors. We usually denote by
‖a‖ = a1 + a2 + · · · + an the norm of a and by a ∗ b = (a1b1, . . . , anbn) the Hadamard
product of a and b. Denote by 1n the n-dimensional row vector with all entries are equal
to 1. Let G be a graph with n vertices. The adjacency matrix of G is the n × n matrix
AG := (auv)u,v∈V (G), where auv = 1 when uv ∈ E(G), otherwise 0. We begin with a
fundamental lemma about the number of walks in a graph.

Lemma 2.1. Let G be a labeled graph and A = AG the adjacency matrix of G. Then the
(i, j)-entry of the matrix An counts the number of walks in G from vertex i to vertex j
with length n.

Proof. By easy induction on n. See for example [20, Theorem 4.7.1].

Definition 2.2 (hom-vector). Let T be a tree and G be a graph with vertices labeled by
1, 2, . . . , n. Let v ∈ V (T ) be any vertex of T . The n-dimensional vector

h(T, v,G) := (h1, h2, . . . , hn)

where
hi = |{f ∈ Hom(T,G) | f(v) = i}|,

is called the hom-vector at v from T to G. Clearly, hom(T,G) = ‖h(T, v,G)‖. Sometimes,
we also call h(T, v,G) the hom-vector from the rooted tree T (v) to the graph G and use
the more compact notation h(T (v), G).

The following Tree-walk algorithm can be viewed as a generalization of Lemma 2.1 for
computing the number of tree-walks in graphs.

The Tree-walk algorithm. Let A = AG be the adjacency matrix of the labeled graph
G. Let v be a vertex of the tree T . We now give the algorithm to compute h(T, v,G).
We consider two type of recursion steps.

Recursion 1. If v is a non-leaf vertex of T , then we can decompose T to T1∪T2 such
that V (T1) ∩ V (T2) = {v}, and T1 and T2 are strictly smaller than T . In this case

h(T, v,G) = h(T1, v, G) ∗ h(T2, v, G).

Recursion 2. If v is a leaf with the unique neighbor u in T , then

h(T, v,G) = h(T − v, u,G)A.

Hence we use Recursion 1 or Recursion 2 according to the vertex v is a non-leaf or a
leaf. In most of the proofs we simply check whether some property of the vector h(T, v,G)
remains valid after applying Recursion 1 and Recursion 2.

Note that if a leaf has distance d from the closest vertex of degree at least 3 then we can
execute a sequence of Recursion 2 in one step by simply multiplying the corresponding
hom-vector by Ad. This way we can speed up the algorithm a bit. For the sake of
convenience, we include an example.
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Figure 5: A labeled tree T and a graph G.

Example 2.3. Let T and G be the tree and the graph depicted in Fig. 5. Denote by
T [V ] the induced subtree on the vertex set V ⊆ V (T ). Let us compute h(T, 7, G) by the
Tree-walk algorithm. First, we compute h(T [1, 3], 3, G) by using Recursion 2:

h(T [1, 3], 3, G) = 17AG = (2, 3, 3, 4, 1, 1).

Next we compute h(T [1, 2, 3], 3, G) by using Recursion 1:

h(T [1, 2, 3], 3, G) = h(T [1, 3], 3, G) ∗ h(T [2, 3], 3, G) = (4, 9, 9, 16, 1, 1).

Now let us compute h(T [1, 2, 3, 4], 4, G) by using Recursion 2 again:

h(T [1, 2, 3, 4], 4, G) = h(T [1, 2, 3], 3, G)AG = (25, 29, 26, 23, 9, 16).

As a next step we determine h(T [6, 5, 4], 4, G):

h(T [6, 5, 4], 4, G) = 17A
2
G = (7, 9, 8, 9, 3, 4).

Hence

h(T [1, 2, 3, 4, 5, 6], 4, G) =h(T [1, 2, 3, 4], 4, G) ∗ h(T [6, 5, 4], 4, G)

=(175, 261, 208, 207, 27, 64).

Finally,

h(T, 7, G) = h(T [1, 2, 3, 4, 5, 6], 4, G)AG = (468, 590, 495, 708, 208, 207).

Thus hom(T,G) = ‖h(T, 7, G)‖ = 2676.

3 Proof of Theorem 1.3

The main purpose of this section is to prove Theorem 1.3. We shall give an inductive
proof of Theorem 1.2 which can be generalized to tree-walks by the tree-walk algorithm.

We first need some notations. Let T be a tree and T ′ = KC(T, p0, pk) its KC-
transformation with respect to a path P of length k, a path with vertices labeled consec-
utively with p0, p1, . . . , pk. We denote by A and B the components of p0 and pk in the
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subgraph of T by deleting all the edges of P . Let A′, B′ and P ′ be the components of T ′

corresponding with components A, B and P under the KC-transformation, respectively.
The vertices of the path P ′ will be labeled consecutively with p′0, p

′
1, . . . , p

′
k, where p′i is

corresponding to pi for 0 6 i 6 k. So p0 ∈ A, pk ∈ B in T , and p′0 ∈ A′, B′ in T ′.

Lemma 3.1. Let a1, a2, b1, b2, c1, c2, d1, d2 be positive numbers satisfying the inequalities:
ai > max(ci, di), ai + bi > ci + di for i = 1, 2. Then a1a2 > max(c1c2, d1d2) and a1a2 +
b1b2 > c1c2 + d1d2.

Proof. Clearly, we only have to prove that a1a2 + b1b2 > c1c2 + d1d2, the other inequality
is trivial. Note that bi > max(0, ci + di − ai). If one of ci + di − ai < 0, say c1 + d1 < a1
then

a1a2 > (c1 + d1)a2 > c1c2 + d1d2.

If both ci + di − ai > 0 for i = 1, 2, then

a1a2 + b1b2 > a1a2 + (c1 + d1 − a1)(c2 + d2 − a2) =

= c1c2 + d1d2 + (a1 − c1)(a2 − d2) + (a1 − d1)(a2 − c2) > c1c2 + d1d2.

Hence we are done.

We first treat the case of k being even.

Proof of first part of Theorem 1.3. In this proof k is even: k = 2t. We label V (A) \ p0
with {am | 1 6 m 6 M}, V (A′) \ p′0 with {a′i | 1 6 m 6 M}, V (B) \ pk with {bn | 1 6
n 6 N} and V (B) \ p′0 with {b′n | 1 6 n 6 N}, where am (resp. bn) is corresponding to
a′m (resp. b′n) under the KC-transformation. For v ∈ H, we always write

h(H, v, T ) = (a1, a2, . . . , aM , p0, p1, . . . , pk, b1, b2, . . . , bN)

and
h(H, v, T ′) = (a′1, a

′
2, . . . , a

′
M , p

′
0, p
′
1, . . . , p

′
k, b
′
1, b
′
2, . . . , b

′
N),

where we use the labels of vertices of T and T ′ to index the parameters of the hom-vectors
to T and T ′ respectively. We hope that it will not cause any confusion. We shall prove
by induction on the steps of tree-walk algorithm that

a′m > am, b
′
n > bn

p′i + p′k−i > pi + pk−i

p′i > pi, p
′
i > pk−i

for 1 6 m 6M, 1 6 n 6 N, 0 6 i 6 t.
It is easy to verify that all these inequalities are satisfied after applying any recursion

step of the tree-walk algorithm. When v is a leaf of H then it is trivial that these
inequalities are preserved. If v is not a leaf then we use Lemma 3.1 to see that the
Hadamard-product preserves these inequalities.
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Lemma 3.2. Let k be odd and assume that A and B have at least two vertices. Let
am(r), bn(r), pi(r), a

′
m(r), b′n(r), p′i(r) denote the number of homomorphism of Pr into T

and T ′, respectively, such that the endvertex of Pr goes to the vertices am, bn, pi, a
′
m, b

′
n

and p′i, respectively. Then the following inequalities hold for every r:

a′m(r) > am(r), b′n(r) > bn(r) (3.1)

p′i(r) + p′j(r) > pi(r) + pj(r) (3.2)

p′i(r) + p′j(r) > pk−i(r) + pk−j(r) (3.3)

for 1 6 m 6M, 1 6 n 6 N and i+ j 6 k.

Proof. We prove the claim by induction on r. For r = 1, 2, the claim is trivial. Note that
we only have to prove that

a′m(r) > am(r), b′n(r) > bn(r)

p′i(r) + p′j(r) > pi(r) + pj(r)

for 1 6 m 6M, 1 6 n 6 N and i+ j 6 k. We obtain the inequality

p′i(r) + p′j(r) > pk−i(r) + pk−j(r)

by simply exchanging the role of A and B. Also note that if we put i = j in the
inequality (3.2) and (3.3) we obtain that p′i(r) > pi(r), pk−i(r) for i < k/2.

Observe that for any vertex v we have:

v(r) =
∑

u∈N(v)

u(r − 1).

We will treat the cases k = 1 and k > 3 separately.

Case 1: k = 1. In this case, we have to prove the inequalities:

a′m(r) > am(r), b′n(r) > bn(r), p′0(r) > max(p0(r), p1(r)), p
′
0(r) + p′1(r) > p0(r) + p1(r).

The inequalities a′m(r) > am(r), b′n(r) > bn(r) simply follow from the inequalities
a′m(r − 1) > am(r − 1), b′n(r − 1) > bn(r − 1), and p′0(r − 1) > p0(r − 1), p1(r − 1).

Observe that

p′0(r) =
∑

a′m∈N(p′0)

a′m(r − 1) +
∑

b′n∈N(p′0)

b′n(r − 1) + p′1(r − 1) =

=
∑

a′m∈N(p′0)

a′m(r − 1) +
∑

b′n∈N(p′0)

b′n(r − 1) + p′0(r − 2) >

>
∑

am∈N(p0)

am(r − 1) +
∑

bn∈N(p1)

bn(r − 1) + p0(r − 2) >
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>
∑

am∈N(p0)

am(r − 1) +
∑

bn∈N(p1)

bn(r − 2) + p0(r − 2) =

=
∑

am∈N(p0)

am(r − 1) + p1(r − 1) = p0(r).

We used the induction hypothesis and that bm(r − 1) > bm(r − 2). In general, u(r) >
u(r − 1) since any homomorphism of Pr−1 starting at the vertex u can be extended to a
homomorphism of Pr starting at u. Clearly, we can get p′0(r) > p1(r) similarly, or we just
switch the role of A and B.

Finally,

p′0(r) + p′1(r) =
∑

a′m∈N(p′0)

a′m(r − 1) +
∑

b′n∈N(p′0)

b′n(r − 1) + p′0(r − 1) + p′1(r − 1) >

>
∑

am∈N(p0)

am(r − 1) +
∑

bn∈N(p1)

bn(r − 1) + p0(r − 1) + p1(r − 1) = p0(r) + p1(r).

Hence we are done in this case.

Case 2: k > 3. Clearly, the inequalities a′m(r) > am(r), b′n(r) > bn(r) simply follow
from the inequalities a′m(r − 1) > am(r − 1), b′n(r − 1) > bn(r − 1), and p′0(r − 1) >
p0(r − 1), pk(r − 1) as before.

So we only have to prove the inequality p′i(r) + p′j(r) > pi(r) + pj(r) for i+ j 6 k. We
can assume that i 6 j. If i > 1, then j 6 k − 1 and

p′i(r) + p′j(r) = (p′i−1(r − 1) + p′j+1(r − 1)) + (p′i+1(r − 1) + p′j−1(r − 1)) >

> (pi−1(r − 1) + pj+1(r − 1)) + (pi+1(r − 1) + pj−1(r − 1)) = pi(r) + pj(r).

So we only have to consider the case i = 0. In this case we consider the cases j =
0, j = 1, 2 6 j 6 k − 2, j = k − 1, j = k separately. Unfortunately, all of them behaves a
bit differently.

Subcase j = 0:

2p′0(r) = 2

( ∑
a′m∈N(p′0)

a′m(r − 1) +
∑

b′n∈N(p′0)

b′n(r − 1) + p′1(r − 1)

)

> 2

( ∑
am∈N(p0)

am(r − 1) + p1(r − 1)

)
= 2p0(r),

since p′1(r − 1) > p1(r − 1), because 1 < k/2.

Subcase j = 1:

p′0(r) + p′1(r) =
∑

a′m∈N(p′0)

a′m(r − 1) +
∑

b′n∈N(p′0)

b′n(r − 1) + p′1(r − 1) + p′0(r − 1) + p′2(r − 1)
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>
∑

am∈N(p0)

am(r − 1) + p1(r − 1) + p0(r − 1) + p2(r − 1) = p0(r) + p1(r),

since p′1(r − 1) > p1(r − 1) and p′0(r − 1) + p′2(r − 1) > p0(r − 1) + p2(r − 1).

Subcase 2 6 j 6 k− 2: Here we jump back from r to r− 2, so we need a few notations.
Let dA and dB denote the degree of p′0 in A and B, respectively. Furthermore, let d(v, u)
denote the distance of the vertices u and v. Then

p′0(r) + p′j(r) =
∑

a′m:d(a′m,p
′
0)=2

a′m(r − 2) +
∑

b′n:d(b
′
n,p

′
0)=2

b′n(r − 2) + (dA + dB + 1)p′0(r − 2)

+p′2(r − 2) + p′j−2(r − 2) + 2p′j(r − 2) + p′j+2(r − 2) >

>
∑

am:d(am,p0)=2

am(r − 2) + (dA + 1)p0(r − 2) + p2(r − 2)+

+pj−2(r − 2) + 2pj(r − 2) + pj+2(r − 2) = p0(r) + pj(r),

since the inequality follows from the following inequalities:

a′m(r − 2) > am(r − 2), b′n(r − 2) > 0

(dB − 1)p′0(r − 2) > −p0(r − 2)

(dA − 1)p′0(r − 2) > (dA − 1)p0(r − 2)

p′2(r − 2) + p′j−2(r − 2) > p2(r − 2) + pj−2(r − 2)

2(p′0(r − 2) + p′j(r − 2)) > 2(p0(r − 2) + pj(r − 2))

p′0(r − 2) + p′j+2(r − 2) > p0(r − 2) + pj+2(r − 2).

Subcase j = k − 1:

p′0(r)+p′k−1(r) =
∑

a′m∈N(p′0)

a′m(r−1)+
∑

b′n∈N(p′0)

b′n(r−1)+p′1(r−1)+p′k−2(r−1)+p′k(r−1) =

=
∑

am:d(a′m,p
′
0)=2

a′m(r−2)+dAp
′
0(r−2)+

∑
b′n∈N(p′0)

b′n(r−1)+p′0(r−2)+p′2(r−2)+p′k−3(r−2)+2p′k−1(r−2).

On the other hand,

p0(r) + pk−1(r) =
∑

am∈N(p0)

am(r − 1) + p1(r − 1) + pk−2(r − 1) + pk(r − 1) =

=
∑

am:d(am,p0)=2

am(r−2)+dAp0(r−2)+p0(r−2)+p2(r−2)+pk−3(r−2)+2pk−1(r−2)+
∑

bn∈N(pk)

bn(r−2).
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The inequality p′0(r) + p′k−1(r) > p0(r) + pk−1(r) follows from

a′m(r − 2) > am(r − 2), b′n(r − 1) > bn(r − 1) > bn(r − 2)

(dA − 1)p′0(r − 2) > (dA − 1)p0(r − 2)

p′2(r − 2) + p′k−3(r − 2) > p2(r − 2) + pk−3(r − 2)

2(p′0(r − 2) + p′k−1(r − 2)) > 2(p0(r − 2) + pk−1(r − 2)).

Subcase j = k:

p′0(r) + p′k(r) =
∑

a′m∈N(p′0)

a′m(r − 1) +
∑

b′n∈N(p′0)

b′n(r − 1) + p′1(r − 1) + p′k−1(r − 1) >

>
∑

am∈N(p0)

am(r − 1) +
∑

bn∈N(pk)

bn(r − 1) + p1(r − 1) + pk−1(r − 1) = p0(r) + pk(r).

Proof of the second part of Theorem 1.3. From Lemma 3.2 we only keep the inequalities

a′m(r) > am(r), b′n(r) > bn(r)

p′i(r) > pi(r), pk−i(r)

p′i(r) + p′k−i(r) > pi(r) + pk−i(r)

for 1 6 m 6M, 1 6 n 6 N, 0 6 i 6 k/2.
For a tree H and v ∈ H, let us write

h(H, v, T ) = (a1, a2, . . . , aM , p0, p1, . . . , pk, b1, b2, . . . , bN)

and
h(H, v, T ′) = (a′1, a

′
2, . . . , a

′
M , p

′
0, p
′
1, . . . , p

′
k, b
′
1, b
′
2, . . . , b

′
N),

where we use the labels of vertices of T and T ′ to index the parameters of the hom-vectors
to T and T ′, respectively. We say that h(H, v, T ) 6 h(H, v, T ′) if the following inequalities
hold

a′m > am, b
′
n > bn

p′i + p′k−i > pi + pk−i

p′i > pi, p
′
i > pk−i

for 1 6 m 6 M, 1 6 n 6 N, 0 6 i 6 k/2. As we have seen these inequalities hold for a
path Pr and its endvertex. Since these inequalities are preserved for Hadamard-product
by Lemma 3.1, we see that h(H, v, T ) 6 h(H, v, T ′) for starlike trees H, where v is the
center of the starlike tree. This implies that

hom(H,T ′) > hom(H,T ).
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The following generalization of inequality (1.2) follows immediately from Proposi-
tion 1.1 and Theorem 1.3.

Corollary 3.3. Let H be a starlike tree and let Tn be a tree on n vertices. Then

hom(H,Pn) 6 hom(H,Tn) 6 hom(H,Sn).

The reader may wonder that if inequality (1.4) holds when k is odd and H is not a
starlike tree. This is not true in general. A counterexample will be constructed in the
following, which also shows that

hom(H,Tn) 6 hom(H,Sn)

is not true for any tree H.

Proposition 3.4. Let T be a tree with color classes A and B considered as a bipartite
graph. Then

hom(T, Sn) = (n− 1)|A| + (n− 1)|B|.

Corollary 3.5. Let Tm be a tree on m vertices, then

hom(Pm, Sn) 6 hom(Tm, Sn) 6 hom(Sm, Sn).

If T 6= Sm then the second inequality is strict.

Proof of Proposition 3.4. Since T and Sn are bipartite graphs, a color class of T have to
go into a color class of Sn. If the color class A goes to the center of Sn, then any vertex
belonging to the color class of B can go to any leaf of the star, so it provides (n − 1)|B|

homomorphisms. The other case provides (n− 1)|A| homomorphisms.

This simple proposition also shows us how to construct a tree Tn for which hom(Tn, Tn) >
hom(Tn, Sn).

Figure 6: The doublestar S∗10.

Let Tn = S∗2k be the doublestar on 2k vertices with 2k − 2 leaves and two vertices of
degree k. Then it is easy to see that

hom(S∗2k, S
∗
2k) > 2(k − 1)2(k−1) = 2(k2 − 2k + 1)k−1,

while
hom(S∗2k, S2k) = 2(2k − 1)k.

Hence for k > 5 we have

hom(S∗2k, S
∗
2k) > hom(S∗2k, S2k).

Note that S2k can be obtained from S∗2k by a KC-transformation.
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4 Graph homomorphisms from trees

4.1 Markov chains and homomorphisms

Theorem 4.1. Let G be a graph and let P = (pij) be a Markov chain on G:∑
j∈N(i)

pij = 1 for all i ∈ V (G),

where pij > 0 and pij = 0 if (i, j) /∈ E(G). Let Q = (qi) be the stationary distribution of
P : ∑

j∈N(i)

qjpji = qi for all i ∈ V (G).

Let us define the following entropies:

H(Q) =
∑

i∈V (G)

qi log
1

qi
,

and
H(D|Q) =

∑
i∈V (G)

qi log di,

where di is the degree of the vertex i, and let

H(P |Q) =
∑

i∈V (G)

qi

 ∑
j∈N(i)

pij log
1

pij

 .

Let Tm be a tree with ` leaves on m vertices, where m > 3. Then

hom(Tm, G) > exp

(
H(Q) + `H(D|Q) + (m− 1− `)H(P |Q)

)
.

Proof. Let v be a root of T . Let ai be the number of homomorphisms of Tm into G such
that the root vertex v goes into the vertex i ∈ V (G). Let

F (Tm(v), G) =
n∏
i=1

aqii .

We will show by induction on m that

F (Tm(v), G) > exp (`∗H(D|Q) + (m− 1− `∗)H(P |Q)) ,

where `∗ is the number of leaves different from v, so it is ` if v is not a leaf and `− 1 if v
is a leaf. Note that

F (K2(v), G) = expH(D|Q).
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If v is not a leaf of Tm, then we can decompose Tm to T1(v) and T2(v). Then

F (Tm(v), G) = F (T1(v), G)F (T2(v), G)

because of the Hadamard-products of the hom-vectors. From this the claim follows im-
mediately by induction.

If v is a leaf of Tm with the unique neighbor u, then let

h(Tm − v, u,G) = (b1, . . . , bn).

So ai =
∑

j∈N(i) bj.

For positive numbers r1, . . . , rt and positive weights w1, . . . , wt with
∑t

i=1wi = 1, the
weighted AM-GM inequality says that

r1 + · · ·+ rt = w1

(
r1
w1

)
+ · · ·+ wt

(
rt
wt

)
>

(
r1
w1

)w1

. . .

(
rt
wt

)wt

=

= exp

(
t∑
i=1

wi log
1

wi

)
t∏
i=1

rwi
i .

Hence

F (Tm(v), G) =
n∏
i=1

aqii =
n∏
i=1

 ∑
j∈N(i)

bj

qi

>
n∏
i=1

 ∏
j∈N(i)

(
bj
pij

)pijqi

=

=
n∏
i=1

 ∏
j∈N(i)

(
1

pij

)pijqi n∏
i=1

b
∑

j∈N(i) pjiqj
i =

n∏
i=1

 ∏
j∈N(i)

(
1

pij

)pijqi n∏
i=1

bqii

In the last step we used that Q is a stationary distribution with respect to P . Hence

F (Tm(v), G) > exp(H(P |Q))F ((Tm − v)(u), G).

Now the claim follows by induction.
To finish the proof of the theorem, we only have to choose a nonleaf root and use that

hom(Tm, G) =
n∑
i=1

ai > exp(H(Q))F (Tm(v), G).

Remark 4.2. Note that the inequality H(D|Q) > H(P |Q) always holds. Consequently,

hom(Tm, G) > exp(H(Q) + (m− 1)H(P |Q)).

As Theorem 4.1 suggests, this is an inequality for entropies and indeed, it can be proved
in this way. By P and Q, we defined a distribution on the set of homomorphisms: we
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choose a root according to Q, then we choose every nonleaf new vertex according to P
and finally we choose the leaves uniformly. The entropy of this distribution is exactly
H(Q) + `H(D|Q) + (m − 1 − `)H(P |Q) since every nonleaf vertex has distribution Q.
Note that this entropy is smaller than the entropy of the uniform distribution, that is,
log hom(Tm, G). For basic facts about entropy, see for example [5].

Theorem 4.3. Let G be a connected graph on the vertex set {1, 2, . . . , n} and let λ be the
largest eigenvalue of the adjacency matrix of the graph G. Let y be a positive eigenvector
of unit length corresponding to λ. Let qi = y2i . Then for any rooted tree Tm on m vertices
we have

hom(Tm, G) > exp(Hλ(G))λm−1,

where

Hλ(G) =
n∑
i=1

qi log
1

qi

is the spectral entropy of the graph G.

Proof. We will use Theorem 4.1. Let pij =
yj
λyi

. Since y is a positive eigenvector, we have

pij > 0. For all i we have λyi =
∑

j∈N(i) yj, thus
∑

j∈N(i) pij = 1. For qi = y2i we have

qipij = y2i
yj
λyi

=
1

λ
yiyj = qjpji.

Hence ∑
i∈N(j)

qjpji =
∑
i∈N(j)

qipij = qi.

This means that P = (pij) is a Markov chain with stationary distribution Q = (qi). The
conditional entropy

H(P |Q) =
∑

i∈V (G)

qi

 ∑
j∈N(i)

pij log
1

pij

 =
∑

i∈V (G)

y2i

 ∑
j∈N(i)

yj
λyi

log
λyi
yj

 =

=
∑

{i,j}∈E(G)

yiyj
λ

(
2 log λ+ log

yi
yj

+ log
yj
yi

)
= log(λ)

1

λ

∑
(i,j)∈E(G)

yiyj = log λ.

Hence the result follows from Theorem 4.1.

Remark 4.4. A Markov chain is called reversible if qipij = qjpji for all i, j ∈ V (G). As
we have seen, the Markov chain constructed in the previous proof is reversible. It is not
hard to show that on trees every Markov chain is reversible.

Remark 4.5. Theorem 4.3 is the best possible in the sense that there cannot be a larger
number than λ in such a statement since

hom(Pm, G) 6 nλm−1.
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Indeed,

hom(Pm, G)

n
=

1n
TAm−11n

1n
T1n

6 max
v 6=0

vTAm−1v

vTv
= λmax(A

m−1) = λm−1.

Note that we can deduce that if (Tm)∞m=1 is a sequence of trees such that Tm has m
vertices then

lim inf
m→∞

hom(Tm, G)1/m > lim inf
m→∞

hom(Pm, G)1/m = λ.

This result could have been deduced as well from a theorem of B. Rossman and E. Vee [21]
claiming that

hom(Tm, G) > hom(Cm, G),

where Cm is the cycle on m vertices. In fact, this was proved for directed trees and cycles,
but it implies the inequality for undirected tree and cycle. This result can also be deduced
from Theorem 3.1 of [13].

The following special case of Theorem 4.1, involving the degree sequence of graphs, is
Theorem 3 in the paper [9].

Theorem 4.6 (Dellamonica et al.). Let G be a graph on the vertex set {1, 2, . . . , n} with
e(G) edges and with degree sequence (d1, . . . , dn). Then for any tree Tm on m vertices we
have

hom(Tm, G) > 2e(G) · Cm−2,

where

C =

(
n∏
i=1

ddii

)1/2e(G)

.

Proof. Let us consider the following classical Markov chain: pij = 1
di

if j ∈ N(i). The

stationary distribution is qi = di
2e(G)

. Note that

H(P |Q) =
∑

i∈V (G)

qi

 ∑
j∈N(i)

pij log
1

pij

 =
∑

i∈V (G)

qi log di =
1

2e(G)

∑
i∈V (G)

di log di = logC

and

H(Q) +H(P |Q) =
∑

(i,j)∈E(G)

qipij log
1

qipij
=

∑
(i,j)∈E(G)

1

2e(G)
log(2e(G)) = log(2e(G)).

Hence the result follows from Theorem 4.1.

Definition 4.7. The homomorphism density t(H,G) is defined as follows:

t(H,G) =
hom(H,G)

|V (G)||V (H)| .

This is the probability that a random map is a homomorphism.
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Sidorenko’s conjecture says that

t(H,G) > t(K2, G)e(H)

for every bipartite graph H with e(H) edges. It is known that Sidorenko’s conjecture [18]
is true for trees. By now, there are many proofs for this particular case of Sidorenko’s
conjecture: see [11,15] and it can be deduced as well from Theorem 3.1 of [13]. Below we
give a new proof for this fact.

Theorem 4.8. For any tree Tm on m vertices and a graph G we have

t(Tm, G) > t(K2, G)m−1.

Proof. Let |V (G)| = n. The theorem will immediately follows form Theorem 4.6. By
convexity of the function x log x we have

1

2e(G)

∑
i∈V (G)

di log di >
1

2e(G)
n

(
2e(G)

n
log

2e(G)

n

)
= log

2e(G)

n
.

Hence

t(Tm, G) =
hom(Tm, G)

nm
>

1

nm
2e(G)

(
2e(G)

n

)m−2
=

(
2e(G)

n2

)m−1
= t(K2, G)m−1.

4.2 Sidorenko’s theorem on extremality of stars

The objective of this section is to give a new proof for Theorem 1.5 in order to keep this
paper self-contained. This was proved originally by Sidorenko [19]. Our proof is very
similar to the original one, but it is slightly more elementary.

Before we start the proof we will need two definitions and two lemmas.

Definition 4.9. Let Mu and Nv be two rooted graphs with root vertices u and v, respec-
tively. Then Mu ◦u=v Nv denotes the graph obtained from Mu ∪ Nv by identifying the
vertices u and v.

Lemma 4.10. Let Ru,v be a graph with specified (not necessarily distinct) vertices u and
v. Let Ju′ and Kv′ be two graphs with root vertices u′ and v′. Finally, let the graphs A,B
and C be obtained from Ru,v, Ju′ , Kv′ as follows:

A = (Ru,v ◦u=u′ Ju′) ◦v=v′ Kv′ ,

B = (Ru,v ◦u=u′ Ju′) ◦u=u′ Ju′ ,
C = (Ru,v ◦v=v′ Kv′) ◦v=v′ Kv′ .

(In other words, in B and C we attach two copies of the same graph at the specified
vertex.) Then for any graph G we have

2 hom(A,G) 6 hom(B,G) + hom(C,G).
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Proof. Let i, j ∈ V (G) and let h(Ru,v, i, j) denote the number of homomorphisms of Ru,v

to G where u goes to i and v goes to j. We similarly define h(Ju′ , i) and h(Kv′ , j). Then

hom(A,G) =
∑

i,j∈V (G)

h(Ru,v, i, j)h(Ju′ , i)h(Kv′ , j).

Similarly,

hom(B,G) =
∑

i,j∈V (G)

h(Ru,v, i, j)h(Ju′ , i)
2,

and
hom(C,G) =

∑
i,j∈V (G)

h(Ru,v, i, j)h(Kv′ , j)
2.

Hence

hom(B,G) + hom(C,G)− 2 hom(A,G)

=
∑

i,j∈V (G)

h(Ru,v, i, j)(h(Ju′ , i)− h(Kv′ , j))
2 > 0.

We are done.

Definition 4.11. Let d(u, v) be the distance of the vertices u, v ∈ V (G). Then the
Wiener-index W (G) of a graph G is defined as

W (G) :=
∑

u,v∈V (G)

d(u, v).

In our application Ru,v will be a tree and Ju′ and Kv′ be the trees on 2 vertices. The
following lemma about the Wiener-index is trivial.

Lemma 4.12. Let Ru,v be a tree with distinct vertices u and v. Let Ju′ and Kv′ be
two copies of the two-node trees with root vertices u′ and v′, respectively. Finally, let
the graphs A,B and C be obtained from Ru,v, Ju′ , Kv′ as in the former lemma. Then
2W (A) > W (B) +W (C).

Proof of Theorem 1.5. Let TG be the set of those trees F onm vertices for which hom(F,G)
is maximal. Let T ∈ TG be the tree for which W (T ) is minimal. We show that T = Sm.
Assume for contradiction that T 6= Sm. Then T has two leaves, a and b such that
d(a, b) > 3. Let u and v be the unique neighbors of a and b, respectively. Then u 6= v.
Let Ru,v = T − {a, b}, Ju′ = {u′, a} and Kv′ = {v′, b}. Then

A = (Ru,v ◦u=u′ Ju′) ◦v=v′ Kv′ = T.

As in the lemmas, let
B = (Ru,v ◦u=u′ Ju′) ◦u=u′ Ju′ ,

C = (Ru,v ◦v=v′ Kv′) ◦v=v′ Kv′ .
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Note that B and C are also trees on m vertices. By the Lemma we have

2 hom(A,G) 6 hom(B,G) + hom(C,G).

Since A = T ∈ TG, then hom(B,G) + hom(C,G) 6 2 hom(A,G). So hom(A,G) =
hom(B,G) = hom(C,G) implying that B,C ∈ TG as well. But then 2W (T ) > W (B) +
W (C), so one of them has strictly smaller Wiener-index than T , this contradicts the
choice of T . Hence T must be Sm.

Remark 4.13. Let E7 be the tree obtained from P6 by putting a pendant edge to the
third vertex of the path. Then there is a tree T for which

hom(P7, T ) > hom(E7, T ).

The following tree T is suitable: let T = T (k1, k2, k3) be the tree where the root vertex v0
have k1 neighbors, all of its neighbors has k2+1 neighbors and the vertices having distance
2 from v0 have k3 + 1 neighbors. If we choose k1, k2, k3 such that k2 � k1 � k3 � k1k2
(for instance ki = kαi , where α2 < α1 < α3 < α1 + α2 and k is large), then

hom(P7, T )− hom(E7, T ) = k21k
2
2k

2
3 + o(k21k

2
2k

2
3).

5 Proofs of Theorems 1.6 and 1.8

In this section we give the proof of Theorem 1.6 and Theorem 1.8. As we will see,
Theorem 1.6 with some additional observations implies Theorem 1.8.

To prove Theorem 1.6 we will build on the fact that there are not many homomor-
phisms into a path. Indeed, by Theorem 1.5 we have

hom(Tm, Pn) 6 hom(Sm, Pn) = (n− 2)2m−1 + 2.

So for a particular tree Tn, it is enough to prove that for every tree Tm we have

hom(Tm, Tn) > (n− 2)2m−1 + 2. (5.1)

This would immediately imply that

hom(Tm, Tn) > hom(Tm, Pn). (5.2)

We will prove that inequality 5.1 is indeed true for all trees Tn with at least four leaves
and for a large class of trees with three leaves. For the remaining trees with three leaves
we use Theorem 1.3.

Remark 5.1. To prove Theorem 1.6 and Theorem 1.8 we cannot rely entirely on the
use of KC-transformation. That is why we had to find another strategy to prove these
theorems.

Indeed, KC-transformation does not always increase the number of endomorphisms of
trees. The first counterexample is the two trees on 8 vertices in Fig. 7. The tree T ′8 is the
KC-transformation of T8, but |End(T ′8)| = 10430 < 17190 = |End(T8)|.
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Figure 7: The trees T8 (left) and T ′8 (right).

5.1 The extremality of the star

Note that Theorem 1.5 and Theorem 1.3 together implies the following chain of inequal-
ities:

|End(Tn)| = hom(Tn, Tn) 6 hom(Sn, Tn) 6 hom(Sn, Sn) = |End(Sn)|,

since Sn is a starlike tree. In this section, we will also give a direct proof for it.

Theorem 1.8(Second part). Let Tn be a tree on n vertices. Then

|End(Tn)| 6 |End(Sn)|.

If Tn 6= Sn then strict inequality holds.

Proof. For the sake of simplicity we prove the statement for n > 17. The same proof
applies to n < 17, we only need to compute a bit more carefully. In the end of the proof
we will give the details of this more precise calculation.

Note that |End(Sn)| = (n− 1)n−1 + (n− 1).
Let Tn be a tree on n vertices and let d = d1 > d2 > . . . > dn be its degree sequence.

Note that d1 + d2 6 n, since the tree has only n− 1 edges and the stars corresponding to
the first two largest degrees can share at most one common edge.

First we prove that |End(Tn)| 6 ndn−1. To see it, let u1, . . . un be the vertices of the
tree Tn such that u1, . . . , uk induces a tree for every k. Then we can chose the image of
u1 by n ways, and if we have already chosen the image of u1, . . . , uk−1, then we can chose
the image of uk in at most d ways, since it must be the neighbor of some previous vertex.
This means that |End(Tn)| 6 ndn−1.

If d 6 2n/3 then

ndn−1 6 n

(
2n

3

)n
6 (n− 1)n−1

if n > 17, since then (
3

2

)n
> en2 > n2

(
1 +

1

n− 1

)n−1
.

So we can assume that d > 2n
3

. Set d = n − k. We can assume that Tn 6= Sn,
consequently k > 2. Let v1 be the vertex having the largest degree and v2, . . . , vd+1 its
neighbors. Now we can decompose the set of endomorphisms according to the image of v1
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is v1 or not. If it is v1 then there can be at most dn−1 such endomorphisms. If the image
of v1 is not v1, then we can chose that image in at most (n − 1) ways and the image of
v2, v3, . . . , vd+1 can be chosen at most d2 times and the image of all other vertices can be
chosen in at most d ways. Hence

|End(Tn)| 6 dn−1 + (n− 1)dd2d
n−1−d.

All we need to prove is that if d 6 n− 2 then

dn−1 + (n− 1)dd2d
n−1−d 6 (n− 1)n−1 + (n− 1).

With the notations d = n− k we have

dn−1 + (n− 1)dd2d
n−1−d 6 (n− k)n−1 + (n− 1)kn−k(n− k)k−1.

By the binomial theorem we have

(n− 1)n−1 = (n− k + k − 1)n−1 > (n− k)n−1 + (n− 1)(n− k)n−2(k − 1).

It is enough to prove that (n− k)n−2 > kn−k(n− k)k−1. This is equivalent with

(n− k)n−k−1 > kn−k

and it is true since it is equivalent with(n
k
− 1
)n−k

> 2n−k > n− k.

In the last step we have used that n/k > 3.
It is clear from the proof that we only have to check whether one of the inequalities

hold for some d:

n 6

(
n− 1

d

)n−1
or

(n
k
− 1
)n−k

> n− k.

For 8 6 n 6 16 it is easy to see that if d 6 n − 4 then the first inequality holds and if
d > n − 4, equivalently k 6 3 then the second inequality holds. For n = 5, 6, 7 the first
inequality holds if d 6 n − 3, and the second inequality holds if d > n − 3, equivalently
k 6 2. For n = 4 the claim is trivial 30 = |End(S4)| > |End(P4)| = 16.

5.2 The extremality of the path

Theorem 5.2. Let Tm and Tn be trees on m and n vertices, respectively. If the tree Tn
has at least four leaves, then

hom(Tm, Tn) > (n− 2)2m−1 + 2.

An easy consequence of this theorem is the following.
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Corollary 5.3. If Tn is a tree on n vertices with at least 4 leaves, then

hom(Tm, Tn) > hom(Tm, Pn).

Proof. Indeed,

hom(Tm, Tn) > (n− 2)2m−1 + 2 = hom(Sm, Pn) > hom(Tm, Pn),

where the second inequality follows from Theorem 1.5.

A consequence of this theorem and Theorem 1.4 (the proof of which will be given in
the follow-up paper [8]) is that path has the minimal number of endomorphisms.

Theorem 1.8(First part). For all trees Tn on n vertices we have

|End(Tn)| > |End(Pn)|.

Proof. If Tn has at least four leaves, then

hom(Tn, Tn) > hom(Tn, Pn) > hom(Pn, Pn),

where the first inequality follows from Corollary 5.3, while the second inequality follows
from Theorem 1.4. If the tree Tn has exactly three leaves, then it is star-like. Hence we
can use Theorem 1.3 to prove the first inequality:

hom(Tn, Tn) > hom(Tn, Pn) > hom(Pn, Pn).

The proof of Theorem 5.2 will be given next, which would complete the proof of
Theorem 1.8.

First, we prove a reduction lemma which says that we only have to prove Theorem 5.2
for trees with exactly 4 leaves.

Lemma 5.4 (Reduction lemma). Let Tm be a tree on m vertices and let n be fixed.
Assume that for any tree Tk we have

hom(Tm, Tk) > (k − 2)2m−1 + 2,

where k < n and Tk has at least four leaves, or k = n and Tk has exactly four leaves.
Then for any tree Tn on n vertices with at least 4 leaves we have

hom(Tm, Tn) > (n− 2)2m−1 + 2.

In the proof of this lemma we will subsequently use the following very simple fact.

Fact. If G is a graph and G1, G2 are induced subgraphs of G with possible intersection,
then for any graph H we have

hom(H,G) > hom(H,G1) + hom(H,G2)− hom(H,G1 ∩G2).
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Proof of the lemma. We can assume that m > 2. Assume that Tn is a tree with at least
5 leaves. Otherwise we have nothing to prove.

Let us call a path maximal in Tn if it connects leaves. If a maximal path contains k
vertices of degree at least 3, then we say that the maximal path has k branches.

Case 1: Tn contains a maximal path with at least 3 branches. Let v0Pvr
be a maximal path with vertices u1, . . . , uk having degree at least 3. Let B1, . . . , Bk be
the branches which we get if we delete all vertices and edges of the path v0Pvr except
u1, . . . , uk. So Bi is a rooted tree with root ui. Let u−2 and u+2 be the two neighbors of u2
on the path v0Pvr. Let T (2) be the tree induced by the vertices V (B2) ∪ {u−2 , u+2 }. Let
|V (T (2))| = t. We distinguish two cases.

v vuu u
0 r1 u u

2 2 2

− +

B B
1 2 B

k

k

Figure 8: A path with branches.

Subcase 1.1: hom(Tm, T
(2)) < (t− 2)2m−1 + 2. Consider the following trees G1 and G2.

G1 is the tree spanned by the vertices v0Pu
+
2 and the branches B1, B2. G2 is the tree

spanned by the vertices u−2 Pvr and the branches B2, . . . , Bk. Note that G1 ∪ G2 = Tn,
G1 ∩ G2 = T (2) and G1, G2 contains at least 4 leaves, because k > 3. By the hypothesis
of the lemma we have

hom(Tm, Gi) > (|V (Gi)| − 2)2m−1 + 2

for i = 1, 2. Hence

hom(Tm, Tn) > hom(Tm, G1) + hom(Tm, G2)− hom(Tm, G1 ∩G2) >

> (|V (G1)| − 2)2m−1 + 2 + (|V (G2)| − 2)2m−1 + 2− ((|V (G1 ∩G2)| − 2)2m−1 + 2) =

= ((|V (G1 ∪G2)| − 2)2m−1 + 2 = (n− 2)2m−1 + 2.

In this case we are done.

Case 1.2: hom(Tm, T
(2)) > (t− 2)2m−1 + 2. Consider the following trees G1 and G2. G1

is the tree spanned by the vertices (V (Tn) \ V (T (2))) ∪ {u−2 , u2, u+2 }. G2 is simply T (2).
Note that G1 ∪G2 = Tn, G1 ∩G2 = {u−2 , u2, u+2 } = P3 and G1 contains at least 4 leaves.
By the hypothesis of the lemma we have

hom(Tm, G1) > (|V (G1)| − 2)2m−1 + 2.
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We also know that in this case

hom(Tm, G2) > (|V (G2)| − 2)2m−1 + 2.

Note that
hom(Tm, P3) 6 hom(Sm, P3) = 2m−1 + 2.

Then
hom(Tm, Tn) > hom(Tm, G1) + hom(Tm, G2)− hom(Tm, G1 ∩G2) >

> (|V (G1)| − 2)2m−1 + 2 + (|V (G2)| − 2)2m−1 + 2− ((|V (G1 ∩G2)| − 2)2m−1 + 2) =

= ((|V (G1 ∪G2)| − 2)2m−1 + 2 = (n− 2)2m−1 + 2.

In this case we are done too.

Case 2: All maximal paths of Tn have at most 2 branches. In the following
we show that they have quite simple structure: they are starlike or double starlike trees,
see Figure 9.

Let v1 be a vertex of Tn of degree at least 3. Let us decompose Tn to the branches
B′1, B

′
2, . . . B

′
k at v1. So v1 is a leaf in the trees B′1, B

′
2, . . . B

′
k. We show that all except

at most one of B′1, B
′
2, . . . , B

′
k are paths. Assume that, for instance, B′1, B

′
2 are not paths.

Then they contains at least two leaves of Tn: B′1 contains u1, u2, B
′
2 contains u3, u4. Then

the maximal path u1Pu3 has at least three branches: one-one inside the branches B′1 and
B′2 and B′3 at the vertex v. If all branches are paths, then we are done: Tn is starlike. If
one of them is not path, say B′1, then let us consider the vertex v2 ∈ V (B′1) having degree
at least 3 which is closest to v1. Repeating the previous argument to v2 instead of v1, all
except one branches at v2 must be path and we also know that the branch containing v1
is not path. Hence the tree is double starlike, where the middle path is v1Pv2.

v v

a

a

a

b

b

1

2

s

1

2

b

bt

3

1 2

Figure 9: A double starlike tree.

We can consider a starlike tree as a double starlike tree, where v1 = v2. Let a1, . . . , as
and b1, . . . , bt be the leaves of Tn, where a1, . . . , as are closer to v1 than to v2, while
b1, . . . , bt are closer to v2 than to v1. If v1 = v2 we just decompose the set of leaves into
two sets of (almost) equal size. Note that s, t > 2. Since we can assume that there are at
least 5 leaves, we assume that s+ t > 5.

If u1, . . . , u` are some vertices of a tree, then we say that the tree spanned by u1, . . . , u`
is the smallest subtree which contains the vertices u1, . . . , u`. It is

span(u1, . . . , u`) = ∪16i,j6`uiPuj.
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Subcase 2.1: If s > 3 and t > 3 both hold, then let G1 be the tree spanned by the
vertices a1, a2, b1, b2, and let G2 be the tree spanned by the vertices a2, . . . as, b2, . . . , bt.
Then G1 ∪G2 = Tn, G1 ∩G2 = a2Pb2 and both G1, G2 have at least 4 leaves. Since

hom(Tm, G1 ∩G2) 6 hom(Sm, G1 ∩G2) =

= hom(Sm, a2Pb2) = (|V (G1 ∩G2)| − 2)2m−1 + 2,

we have

hom(Tm, Tn) > hom(Tm, G1) + hom(Tm, G2)− hom(Tm, G1 ∩G2) >

> (|V (G1)| − 2)2m−1 + 2 + (|V (G2)| − 2)2m−1 + 2− ((|V (G1 ∩G2)| − 2)2m−1 + 2) =

= (|V (G1 ∪G2)| − 2)2m−1 + 2 = (n− 2)2m−1 + 2.

Hence we are done in this case.
Subcase 2.2: If s > 4 and t = 2 then let G1 be the tree spanned by a1, a2, b1, b2 and

let G2 be the tree spanned by a2, . . . , ak, b1. Then G1 ∪ G2 = Tn, G1 ∩ G2 = a2Pb1 and
both G1, G2 have at least 4 leaves. In this case we are done as before. Clearly, the case
s > 2 and t > 4 is completely similar.

Subcase 2.3: The last case is s = 3, t = 2 (and s = 2, t = 3). Let G1 =
span(a1, a2, b1, b2), G2 = span(a2, a3, b1, b2), G3 = span(a2, b1, b2), G4 = (a1, a2, a3, v2).
Then G1 ∩G2 = G3, G3 ∩G4 = a2Pv2. Note that G1, G2, G4 has 4 leaves, thus

hom(Tm, Gi) > (|V (Gi)| − 2)2m−1 + 2

for i = 1, 2, 4. If hom(Tm, G3) 6 (|V (G3)|−2)2m−1+2, then from Tn = G1∪G2, G3 = G1∩
G2 we obtain that hom(Tm, Tn) > (n−2)2m−1+2. If hom(Tm, G3) > (|V (G3)|−2)2m−1+2,
then from Tn = G3 ∩ G4 we obtain that hom(Tm, Tn) > (n − 2)2m−1 + 2. Hence we are
done in this case as well.

Proof of Theorem 5.2. The result immediately follows from Lemma 5.4 and Proposi-
tion 5.5 below.

Proposition 5.5. Let Tn be a tree on n vertices with exactly four leaves. Then for any
tree Tm on m vertices we have

hom(Tm, Tn) > (n− 2)2m−1 + 2,

where n is the number of vertices of Tn.

Proof. If Tn has a vertex of degree 4 then by Theorem 4.6 we have

hom(Tm, Tn) > 2(n− 1)Cm−2,

where

C =

(
n∏
i=1

ddii

)1/2e(Tn)

= 2.

Hence
hom(Tm, Tn) > (n− 1)2m−1 > (n− 2)2m−1 + 2.

For the case when Tn has two vertices of degree 3, we need more preparation.
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Lemma 5.6. Let Tn be a tree with exactly 4 leaves and two vertices of degree 3. Let x
and y be the vertices of Tn with degree 3. Assume that there are at most 3 vertices of Tn
which have degree 2 and not on the path xPy. Then for any tree Tm on m vertices we
have

hom(Tm, Tn) > (n− 2)2m−1 + 2,

where n is the number of vertices of Tn.

Proof. We can assume that m > 4, otherwise the statement is trivial. We prove the
slightly stronger inequality

hom(Tm, Tn) >

(
n− 2 +

1

8

)
2m−1.

If m > 4, then this implies that

hom(Tm, Tn) > (n− 2)2m−1 + 1

or equivalently,
hom(Tm, Tn) > (n− 2)2m−1 + 2.

To prove this statement we use Theorem 4.1 with a suitable Markov chain. Let pij = 1
2

for (i, j) ∈ E(Tn) if i has degree 2. Naturally, pij = 1 if (i, j) ∈ E(G) and i is a leaf.
Finally, if i ∈ {x, y}, j ∈ xPy then pij = 1

2
and if i ∈ {x, y}, j /∈ xPy then pij = 1

4
.

Let r be the number of vertices of xPy. Then n = r + t+ 4 for an integer t > 0. Let
N = 4r + 2t + 4. Then the stationary distribution is the following: qi = 4

N
if i ∈ xPy,

qi = 2
N

if i /∈ xPy, but has degree 2 and finally, qi = 1
N

if i is a leaf.
Then

H(P |Q) =
N − 12

N
log 2 +

8

N

(
1

2
log 2 +

1

2
log 4

)
= log 2.

On the other hand,
H(Q) + 2(H(D|Q)−H(P |Q)) =

=

(
4r

N
log

N

4
+

2t

N
log

N

2
+

4

N
log

N

1

)
+ 2

8

N

(
log 3− 3

2
log 2

)
=

= log
N

4
+

2t

N
log 2 +

16(log 3− log 2)

N
.

Note that

log

(
n− 2 +

1

8

)
− log

N

4
6
∫ n−2

N/4

1

x
dx 6

n− 2 + 1
8
−N/4

N/4
=

=
4

N

(
t

2
+ 1 +

1

8

)
=

1

N

(
2t+

9

2

)
.

Hence if
1

N

(
2t+

9

2

)
6

2t

N
log 2 +

16(log 3− log 2)

N
,
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then

log

(
n− 2 +

1

8

)
6 H(Q) + 2(H(D|Q)−H(P |Q)),

consequently

hom(Tk, G) > exp(H(Q) + 2H(D|Q) + (m− 3)H(P |Q)) >

(
n− 2 +

1

8

)
2m−1.

The above inequality is satisfied if

t 6
8 log 3

2
− 9

4

1− log 2
≈ 3.238.

This proves the statement of the theorem.

Lemma 5.7. Let Tn be a tree obtained from a path on n − 8 vertices by gluing one-one
P5 at the middle vertices to both ends of the path Pn−8 (see Fig. 10). Then for any tree
Tm on m vertices we have

hom(Tm, Tn) > (n− 1)2m−1.

Proof. We will show by induction on m that

hom(Tm, Tn) > (n− 1)2m−1. (5.3)

Let v be any leaf of Tm with unique neighbor u and let Tm−1 = Tm − v be a rooted tree
with root u.

x

y

x

y

z a .... b z

y

y

x

x

Figure 10: Special double starlike trees.

Let us use the hom-vectors of the Fig. 10, that is

h(Tm−1, u, Tn) = (x, x, y, y, z, a, . . . , b, z, y, y, x, x).

Now suppose that
hom(Tm−1, Tn) > (n− 1)2m−2.
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It is easy to see by induction that z > 2x if Tm−1 has at least two vertices. By tree-walk
algorithm, we have

hom(Tm(v), Tn) = 4x+ 8y + 6z + 2(a+ · · ·+ b)

> 8x+ 8y + 4z + 2(a+ · · ·+ b)

= 2 hom(Tm−1, G)

> (n− 1)2m−1,

which shows (5.3).

Next we introduce a transformation which we will call LS-switch (Large-Small switch).

T

T

T

T

TT

T

1 1

2 2

3 3

4

T T’

T
4

Figure 11: LS-switch.

Definition 5.8 (LS-switch). Let R(u, v) be a tree with specified vertices u and v such that
the distance of u and v is even and R has an automorphism of order 2 which exchanges the
vertices u and v. Let T1(x), T2(x), T3(y), T4(y) be rooted trees such that T2(x) is the rooted
subtree of T1(x) and T4(y) is the rooted subtree of T3(y). Let the tree T be obtained from
the trees R(u, v), T1(x), T2(x), T3(y), T4(y) by attaching a copy of T1(x), T4(y) to R(u, v) at
vertex u and a copy of T2(x), T3(y) at vertex v. Assume that the tree T ′ is obtained from
the trees R(u, v), T1(x), T2(x), T3(y), T4(y) by attaching a copy of T1(x), T3(y) to R(u, v)
at vertex u and a copy of T2(x), T4(y) at vertex v. Then T ′ is the LS-switch of T . Observe
that there is a natural bijection between the color classes of T ′ and T .

A particular case of the LS-switch is when R(u, v) is a path of even length with end
vertices u and v, T2(x) and T4(y) are one-vertex rooted trees, then T ′ is obtained from
T by an even-KC-transformation, i.e., KC-transformation according to a path of even
length. Another useful special case is when R(u, v) is a tree where we attach an arbitrary
tree to the middle vertex of the path on 3 vertices and u and v are the end vertices of
the path (in this case the automorphism simply switches u and v), and T2(x), T4(y) are
the rooted trees with 1 vertex, in this case we get back to a particular case of the original
Kelmans-transformation [12].
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The following theorem with respect to the LS-switch is just an extension of the even
case of Theorem 1.3.

Theorem 5.9. Let T ′ be the LS-switch of T . Let H be an arbitrary tree. Then

hom(H,T ) 6 hom(H,T ′).

Proof. (Sketch.) The unique shortest path connecting all Ti’s in T (or T ′) will be denoted
by P2k, a path of even length with vertices labeled consecutively by 0, 1, . . . , 2k. Without
loss of generality, we can assume that 0 ∈ V (T1). For 1 6 j 6 2k − 1, let Aj denote
the component of T that contains the vertex j when we delete all edges of P2k. By the
definition of LS-switch, the subtrees Aj and A2k−j are isomorphic, so we can identify
V (Aj) \ {j} with V (A2k−j) \ {2k− j}. We will also consider V (T2) \ {0, 2k} as the subset
of V (T1) \ {0, 2k} and V (T4) \ {0, 2k} as the subset of V (T3) \ {0, 2k}.

Let v be a vertex of H. For 0 6 s 6 2k, u ∈ V (Ti) \ {0, 2k} (1 6 i 6 4) and
a ∈ V (Aj) \ {j} (1 6 j 6 2k − 1), we define

ps := |{{f ∈ Hom(H,T ) : f(v) = m}|, p′s := |{{f ∈ Hom(H,T ′) : f(v) = m}|,

ti(u) := |{f ∈ Hom(H,T ) : f(v) = u}|, t′i(u) := |{f ∈ Hom(H,T ′) : f(v) = u}|,

and

pj(a) := |{f ∈ Hom(H,T ) : f(v) = a}|, p′j(a) := |{f ∈ Hom(H,T ′) : f(v) = a}|.

We prove by induction that the following inequalities are preserved by the steps of the
tree-walk algorithm. For any 0 6 s 6 k, a ∈ V (Aj)\{j} (1 6 j 6 k), u ∈ V (T2)\{0, 2k},
w ∈ V (T4) \ {0, 2k}, x ∈ V (T1) \ V (T2) and y ∈ V (T3) \ V (T4) we have

p′k−s + p′k+s > pk−s + pk+s and p′k−s > pk+s, pk−s (5.4)

p′j(a) + p′2k−j(a) > pj(a) + p2k−j(a) and p′j(a) > p2k−j(a), pj(a) (5.5)

t′1(u) + t′2(u) > t1(u) + t2(u) and t′1(u) > t1(u), t2(u) (5.6)

t′3(w) + t′4(w) > t3(w) + t4(w) and t′3(w) > t3(w), t4(w) (5.7)

t′1(x) > t1(x) and t′3(y) > t3(y). (5.8)

We only need to check that the two operations in the tree-walk algorithm preserve all the
above inequalities, which is routine and left to the reader.

Now assume that Tn has two vertices, x and y, of degree 3. Among these trees (n
vertices, 4 leaves, two vertices of degree 3) let us choose Tn to be the one for which
hom(Tm, Tn) is minimal and among these trees the length of the path is maximal.

Let the four leaves of Tn denoted by z1, z2, z3, z4 such that z1, z2 are closer to x than y,
and z3, z4 are closer to y than x. Let the number of edges of xPy, xPz1, xPz2, yPz3, yPz4
be a, b, c, d, e, respectively. We show that max(b, c, d, e) 6 2. Indeed, if say b > 2 then Tn
can be obtained by an LS-switch from a graph T ∗n as follows.
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If b is even, then let u be the unique vertex such that d(z1, u) = 2. Then uPx = R(u, x)
is a path of even length. Let T2 = z1Pu. Furthermore, let T1 be the tree spanned by the
vertices x, z3, z4. T3 = xPz2 and T4 = {u}. Then T2 is a rooted subtree of T1 and T4 is
a rooted subtree of T3. Now making an inverse LS-swith we obtain T ∗n . By Theorem 5.9,
we know that

hom(Tm, Tn) > hom(Tm, T
∗
n)

and in T ∗n , the vertices of degree 3, y and u, has distance a+ b− 2 > a contradicting the
choice of Tn.

If b is odd, then let u be the unique neighbor of z1 and we repeat the previous argument.
The distance of u and x is even again.

Hence we can assume that max(b, c, d, e) 6 2. If not all of them are 2, then we can
use Lemma 5.6 to get that

hom(Tm, Tn) > (n− 2)2m−1 + 2.

If b = c = d = e = 2, then we use Lemma 5.7 to obtain that

hom(Tm, Tn) > (n− 1)2m−1 > (n− 2)2m−1 + 2.

This completes the proof of Proposition 5.5.

5.3 Trees with 3 leaves

Lemma 5.10. (a) Let n = a + b + c + 1, and min(a, b, c) > 2. Then for any tree Tm on
m vertices we have

hom(Tm, Ya,b,c) > (n− 2)2m−1 + 2.

(b) Let n = a+ b+ 2, and min(a, b) > 3. Then for any tree Tm on m vertices we have

hom(Tm, Ya,b,1) > (n− 2)2m−1 + 2.

Proof. (a)
We can think to Ya,b,c with min(a, b, c) > 2 as follows: we consider Y2,2,2 and we

subdivide the edges between the vertex of degree 3 and its neighbors a few times. Let us
write the weights 1, 4, 1, 4, 1, 4, 9 to the vertices of Y2,2,2 according to the figure and then
let us write weights 6 on the new vertices obtained by subdivision. It is easy to check that
there is a unique Markov chain on Ya,b,c, where the stationary distribution is proportional
to the weights. (In fact, we write a few transition probabilities on the figure.)

It is easy to check that H(P |Q) = log 2 and if N = 24 + 6(n− 7) = 6(n− 3), then

H(Q) + 2(H(D|Q)−H(P |Q)) =

=

(
9

N
log

N

9
+

12

N
log

N

4
+

3

N
log

N

1
+

6(n− 7)

N
log

N

6

)
+

the electronic journal of combinatorics (), # 32



1

4

9

6

4

1

1

4

6

6

11/3

1/2

1/4

3/4

1/2

Figure 12: Ya,b,c where min(a, b, c) > 2 with a special Markov chain.

+2 · 12

N

(
log 2−

(
1

4
log 4 +

3

4
log

4

3

))
=

= log
N

6
+

9

N
log

6

9
+

12

N
log

6

4
+

3

N
log

6

1
+

24

N

(
log 2−

(
1

4
log 4 +

3

4
log

4

3

))
=

= log(n− 3) +
24

N
log

3

2
.

Since

log(n− 2 + ε)− log(n− 3) =

∫ n−2+ε

n−3

dx

x
6

1 + ε

n− 3
=

6

N
(1 + ε)

we can choose ε = 4 log 3
2
− 1 > 1

2
to deduce that

hom(Tm, Ya,b,c) > (n− 2 + ε)2m−1.

This is already greater than (n−2)2m−1+2 for m > 3. The statement is trivial for m 6 2.

(b)

4 9 12 16 12 12 9

4

12 4 11

1 3/83/4 2/3 1/2 1/2 1/2 1/2 1/3 1/4

Figure 13: Ya,b,1 where min(a, b) > 3 with a special Markov chain.

We use completely the same argument as in part (a). We think to Ya,b,1 as a subdivision
of Y3,3,1 and use the Markov chain on the figure. Again we have H(P |Q) = log 2 and the
sum of the weights is N = 48 + 12(n− 8) = 12(n− 4). Hence

H(Q) + 2(H(D|Q)−H(P |Q)) = log
N

12
+

12

N

(
11

3
log 3− 1

3
log 2

)
.
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Since

log(n− 2 + ε)− log(n− 4) =

∫ n−2+ε

n−4

dx

x
6

2 + ε

n− 4
=

12

N
(2 + ε)

we can choose ε = 11
3

log 3− 1
3

log 2− 2 > 1.79 to deduce that

hom(Tm, Ya,b,c) > (n− 2 + ε)2m−1.

This is already greater than (n − 2)2m−1 + 2 for m > 2. The statement is trivial for
m = 1.

Remark 5.11. Since every Markov chains is reversible on a tree, there is a natural way
to define a new Markov chain on a subdivided edge. Assume that the probabilities of
the stationary distribution were qi, qj and pij, pji were the transition probabilities at the
vertices i, j. Then qipij = qjpji (reversibility) and we can put a vertex r with weight
2qipij and pri = prj = 1/2 on the edge (i, j). Then the new stationary distribution will
be proportional to the weights {qi |i ∈ V (T )} ∪ {2qipij}.

Theorem 1.6. Let Tn be a tree on n vertices. Assume that for a tree Tm we have

hom(Tm, Tn) < hom(Tm, Pn).

Then Tn = Y1,1,n−3 and n is even.

Proof. Note that if Tn has at least 4 leaves then Theorem 5.5 implies that

hom(Tm, Tn) > (n− 2)2m−1 + 2 = hom(Sm, Pn) > hom(Tm, Pn)

contradicting to the condition of the theorem. Hence Tn = Ya,b,c for some a, b, c. Ob-
serve that if one of a, b, c is even then Ya,b,c can be obtained from Pn by an even-KC-
transformation and then Theorem 1.3 implies

hom(Tm, Tn) > hom(Tm, Pn)

contradicting to the condition of the theorem. Note that if n is odd, then one of a, b, c is
necessarily even and so we are done. From Lemma 5.10 we also know that min(a, b, c) = 1,
say c = 1 and min(a, b) 6 2. But then min(a, b) = 1, because it must be odd. Hence
Tn = Y1,1,n−3 and n is even.

Remark 5.12. There is a tree Tm for which hom(Tm, S4) < hom(Tm, P4). On Fig. 14 one
can see a rooted tree and its homomorphism vectors to S4 and P4. Now if we attach k
copies of this rooted tree at the root then for the obtained tree Tm we have

hom(Tm, P4) = 2 · 4k + 2 · 10k > 4 · 9k = hom(Tm, S4)

for large enough k.
On the other hand, it seems that hom(Tm, Y1,1,n−3) > hom(Tm, Pn) if n > 6 and even.
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Figure 14: An example.

6 Open problems

We collected a few open problems and conjectures in this section.
We first recall a conjecture from the Introduction, namely that there is no exceptional

case in Theorem 1.6 if n > 5.

Conjecture 1.7 Let Tn be a tree on n vertices, where n > 5. Then for any tree Tm we
have

hom(Tm, Pn) 6 hom(Tm, Tn).

Note that to prove Conjecture 1.7, one only needs to prove that for any tree Tm we
have

hom(Tm, Pn) 6 hom(Tm, Y1,1,n−3)

for n > 6, where n is even.

There is also an open problem in Figure 4, if true, would provide an alternative proof
of the first part of Theorem 1.8 (through Theorem 1.2).

Problem 6.1. Is it true that

hom(Pn, Tn) 6 hom(Tn, Tn)

for every tree Tn on n vertices?

We believe that the answer is affirmative for this question. This question naturally
leads to the following problem.

Problem 6.2. Characterize all graphs G for which

hom(Pm, G) 6 hom(Tm, G)

for all m and all trees Tm on m vertices.
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Note that if G is d-regular, then hom(Pm, G) = hom(Tm, G) = |V (G)|dm−1. We have
also seen that the inequality of Problem 6.2 is satisfied if G = Pn or Sn. Probably, it
is hard to characterize these graphs. Maybe, it is easier to describe those graphs G for
which the inequality of Problem 6.2 is satisfied for large enough m.

The dual of Problem 6.2 is also natural:

Problem 6.3. Characterize all trees Tm on m vertices for which

hom(Pm, G) 6 hom(Tm, G)

for all graph G.

Probably, this is an easier problem than Problem 6.2. Note that already Sidorenko [19]
achieved nice results on this problem. Still the problem is far from being solved.

In light of the tree-walk algorithm, it would be interesting to develop an algorithm for
computing the number of homomorphisms from bipartite graphs to any graph.

Acknowledgments
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