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Abstract

A graph G is k-degenerate if it can be transformed into an empty graph by
subsequent removals of vertices of degree k or less. We prove that every connected
planar graph with average degree d > 2 has a 4-degenerate induced subgraph con-
taining at least (38 − d)/36 of its vertices. This shows that every planar graph of
order n has a 4-degenerate induced subgraph of order more than 8/9 · n. We also
consider a local variation of this problem and show that in every planar graph with
at least 7 vertices, deleting a suitable vertex allows us to subsequently remove at
least 6 more vertices of degree four or less.
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1 Degeneracy and choosability

A graph G is k-degenerate if every subgraph of G has a vertex of degree k or less. E-
quivalently, a graph is k-degenerate if we can delete the whole graph by subsequently
removing vertices of degree at most k. The reverse of this sequence of removed vertices
can be used to colour (or list-colour) G with k + 1 colours in a greedy fashion. Graph
degeneracy is therefore a natural bound on both chromatic number and list chromatic
number. In certain problems, graph degeneracy even provides the best known bounds on
choosability [3].

This article focuses on degeneracy of planar graphs. Every subgraph of a planar graph
has a vertex of degree at most 5 because it is also planar; therefore, every planar graph
is 5-degenerate. For k < 5, a planar graph need not to be k-degenerate. An interesting
question arises how large k-degenerate subgraphs in planar graphs can be guaranteed. We
discuss this question for particular values of k in the following paragraphs.

Let G be a planar graph. To find a maximum induced 0-degenerate subgraph, we need
to find a maximum independent set. According to the 4-colour theorem, we can find an
independent set of order at least 1/4 · |V (G)|. This bound is tight since K4 has no two
independent vertices.

To find a maximum induced 1-degenerate subgraph, we need a large induced forest in
G. Borodin [4] proved that every planar graph G is acyclically 5-colourable, that is, we
can partition the vertices of G into five classes such that the subgraph induced by the
union of any two classes is acyclic (hence, a forest). By taking two largest classes we can
guarantee an induced forest of order at least 2/5 · |V (G)| in G. The Albertson-Berman
conjecture [1] asserts that every planar graph has an induced forest containing at least
half of its vertices. This conjecture is tight as K4 has no induced forest of order greater
that 2. Borodin and Glebov [5] proved that the Albertson-Berman conjecture is true for
planar graphs of girth at least 5.

Let G be a plane graph. The vertices that belong to the unbounded face induce
an outerplanar graph. Let us delete them. The vertices that belong to the unbounded
face again induce an outerplanar graph and we can repeat the process. In this way we
create a sequence of outerplanar layers such that only vertices in neighbouring layers
can be adjacent. If we take every second layer, the vertices from these layers induce a
disjoint union of outerplanar graphs. Since outerplanar graphs are 2-degenerate (every
outerplanar graph contains a vertex of degree at most 2, see [6]), we can partition the
vertices of G into two sets such that each set induces a 2-degenerate graph. The larger
of these two sets has at least 1/2 · |V (G)| vertices. On the other hand, in the octahedron
we can take at most 4 vertices into an induced 2-degenerate subgraph, so the maximum
2-degenerate subgraph has order 2/3 · |V (G)|.

Degeneracy 3 was studied by Oum and Zhu [7] who were interested in the order of
a maximum 4-choosable induced subgraph of a planar graph. They showed that every
planar graph has an induced 3-degenerate subgraph of order at least 5/7 · |V (G)|. For the
upper bound, the best we are aware of is that both octahedron and icosahedron contain
no induced 3-degenerate subgraph of order greater than 5/6 · |V (G)|.

the electronic journal of combinatorics 16 (2009), #R00 2



To the authors’ knowledge, there are no published results concerning maximum 4-
degenerate induced subgraphs of planar graphs. A likely reason is that such bounds are
not interesting for list-colouring applications: Thomassen proved that every planar graph
is 5-choosable [8].

The problem of maximum degenerate subgraphs was also studied for general graphs by
Alon, Kahn, and Seymour [2]. They precisely determined how large k-degenerate induced
subgraph one can guarantee depending only on the degree sequence of G.

This paper focuses on degeneracy 4. We define two operations for vertex removal:
deletion and collection. To delete a vertex v, we remove v and its incident edges from
the graph. To collect a vertex v is the same as to delete v, but to be able to collect v
we require v to be of degree at most 4. Although the definitions are very similar, for our
purpose there is a clear difference: we want to collect as many vertices as possible and
delete as few as possible. The collected vertices induce a 4-degenerate subgraph whose
order we are trying to maximize. We say we can collect a set S of vertices if there exists a
sequence in which the vertices of S can be collected. Vertices that are deleted or collected
are collectively called removed. Note that a graph G is 4-degenerate if and only if we can
collect all its vertices.

The main results of this paper are the following two theorems.

Theorem 1. Every connected planar graph with average degree d > 2 has a 4-degenerate
induced subgraph containing at least (38− d)/36 of its vertices.

Theorem 2. In every planar graph with at least 7 vertices we can delete a vertex in such
a way that we can collect at least 6 vertices.

Since the average degree of a planar graph is less than 6, Theorem 1 has the following
corollary.

Corollary 3. In every planar graph G we can delete less than 1/9 of its vertices in such a
way that we can collect all the remaining ones. The collected vertices induce a 4-degenerate
subgraph of G containg more than 8/9 of its vertices.

These results are probably not the best possible. In the icosahedron, we need to delete
one vertex out of twelve to be able to collect the remaining eleven. We believe that this
is the worst possible case.

Conjecture 4. In every planar graph G we can delete at most 1/12 of its vertices in such
a way that we can collect all the remaining ones.

Conjecture 5. In every planar graph with at least 12 vertices we can delete a vertex in
such a way that we can collect at least 11 vertices.

2 Induction invariants

To prove Theorem 2 we only need to find a vertex whose deletion allows us to collect
6 vertices in the neighbourhood. To prove Corollary 3 in this straightforward manner
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we would need to collect 8 vertices per one deleted vertex. We cannot guarantee this
immediately in all cases, but even if we collect only 6 vertices, we do something else that
helps us: we create a large face and thus decrease the average degree of the graph. For a
planar graph G, let

Φ(G) =
∑

v∈V (G)

(deg(v)− 5), (1)

Γ(G) =
1

12
|V (G)|+ 1

36
Φ(G) +

1

18
tc(G), (2)

where tc(G) is the number of tree components of G. Theorem 6 below is the actual
theorem we are going to prove.

Theorem 6. Suppose that G is a planar graph. The following is true:

(1) We can collect all vertices of G, or delete a vertex of G and then collect at least 6
vertices.

(2) There is a set S ⊂ V (G) with at most Γ(G) vertices such that if we delete S then
we can collect all the remaining vertices of G.

Theorem 1 is implied by Theorem 6 (2): if d is the average degree of G, then Φ(G) =
(d− 5)|V (G)| and if d > 2, then G is not a tree, thus

Γ(G) =
1

12
|V (G)|+ 1

36
(d− 5)|V (G)| = d− 2

36
|V (G)|.

Lemma 7. Any smallest counterexample to Theorem 6 is connected.

Proof. Let G be a smallest counterexample to Theorem 6 which is not connected. Let G1

be a component of G and let G2 = G−G1.
Suppose that statement (1) of Theorem 6 does not hold for G. Then G cannot be

collected. Therefore either G1 or G2 cannot be collected. Since G is the smallest coun-
terexample to Theorem 6, the graph G1 or G2 contains a vertex whose deleting allows us
to collect 6 vertices, a contradiction.

Suppose that statement (2) of Theorem 6 does not hold for G but it holds for G1 and
G2. We obtain sets S1 and S2 satisfying the conditions of statement (2) of Theorem 6.
The union of S1 and S2 satisfies statement (2) of Theorem 6, a contradiction.

Lemma 8. Any smallest counterexample to Theorem 6 does not contain a vertex that can
be collected.

Proof. Assume a vertex v of d 6 4 is collected. Then

Γ(G− v) = Γ(G)− 1

12
+

1

36
(5− d)− 1

36
d+

1

18
(tc(G− v)− tc(G)).

Here −1/12 is due to the decrease of the number of vertices by one, + 1
36

(5 − d) is due
to the removal of v from the sum defining Φ (equation (1)), − 1

36
d is due to the fact that
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neighbours of v are of smaller degree after deleting v, the last term is due to the change of
the number of tree components. Since deleting v increases the number of tree components
by at most d− 1, we conclude that Γ(G− v) 6 Γ(G). By the minimality of G, there is a
set S ⊂ V (G− v) with at most Γ(G− v) 6 Γ(G) vertices such that deleting S allows us
to collect the remaining vertices of G.

In the remainder of this paper, let G be a plane graph which is a counterexample to
Theorem 6 of smallest order. We shall derive a contradiction via discharging. Thanks to
Lemmas 7 and 8, G is connected and has minimum degree 5.

3 Discharging procedure

For a positive integer k, a vertex of degree k is called a k-vertex, and a vertex of degree
at least k is a k+-vertex. Similarly, a k-neighbour is a neighbour of degree k, and a k+-
neighbour is a neighbour of degree at least k. A face of G of length k is referred to as
a k-face and a face of length at least k is referred to as k+-face. The sets of k-vertices,
k+-vertices, and k+-faces of G are denoted by Vk, Vk+ , and Fk+ , respectively. The sets of
all vertices, edges, and faces of G are denoted by V , E, and F , respectively.

In figures, we put k or k+ besides a k- or a k+-vertex, respectively (see Figure 1 for
an example). If no number is given, then the vertex has degree 5 or 6.

Each vertex of V6+ is assigned a certain type according to Table 1. If w is of degree
d, contained in at least n⊔ non-triangular faces, and has at most n5 neighbours from V5,
then w can have type t. The type of w is the type that occurs first in the table among all
the types w can have. The symbol n5 = 3c means that w has exactly three 5-neighbours
and all of them are consecutive in the embedding of G.

Let vw be an edge such that v ∈ V5 and w ∈ V6+. For every such edge we define the
maximum charge mc(v, w) that v can send to w. This maximum charge is given in the
last column of Table 1. If w is of type 9c or 8c, then mc(v, w) depends on the position
of v with respect to w: the value of mc(v, w) is 1 when v is the central one of the three
consecutive 5-neighbours of w and 9/10 otherwise.

First, we assign certain initial charges to the vertices and faces of G. Each d-vertex
receives charge 6−d and each `-face receives charge 2(3− `). In the following discharging
procedure, we redistribute the charges between vertices and faces in a certain way such
that no charge is created or lost. The initial and final charge of a vertex or a face x is
denoted by ch0(x) and ch(x), respectively. For a set S ⊂ V ∪ F , the expression ch(S)
denotes the total charge of the set S, that is, the sum of charges of the elements of S.

By Euler’s theorem, the initial total charge ch0(V ∪ F ) is equal to∑
v∈V

(6− deg(v)) +
∑
f∈F

2(3− `) = 6|V | − 2|E|+ 6|F | − 4|E| = 12.

Our aim is to move charge from vertices to faces. Note that only the 5-vertices have
positive initial charge. The discharging procedure consists in the following three steps.
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Type Degree Min. number Max. number Max.
(t) (d) of non-tr. faces of V5 neigh. charge

(n⊔) (n5) (mc)
10a 10+ 0 3 1
10b 10+ 0 ∞ 1/2
9a 9 1 3 1
9b 9 0 2 1
9c 9 0 3c 9/10, 1, 9/10
9d 9 0 9 1/2
8a 8 0 1 1
8b 8 1 2 1
8c 8 2 3c 9/10, 1, 9/10
8d 8 0 2 9/10
8e 8 0 8 1/2
7a 7 0 1 4/5
7b 7 1 2 13/20
7c 7 0 2 2/5
7d 7 0 7 1/3
6a 6 1 1 2/5
6b 6 0 6 0

Table 1: Maximal charges that can be sent to a vertex.
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Step 1: Discharging to faces. For each vertex v and for every face f ∈ F4+ that
contains v do the following:

1. If v is of degree 6, then send 2/5 from v to f .

2. If v is not of degree 6, but both its neighbours on f have degree 6, then send 3/5
from v to f .

3. If v is not of degree 6 and one of its neighbours is not of degree 6, then send 1/2
from v to f .

Step 2: Distance discharging. In every subgraph of G isomorphic to the configuration
in Figure 1 send 1/5 from vertex v to vertex w (vertices are denoted as in Figure 1; the
depicted vertices are pairwise distinct).

Step 3: Final discharging of the 5-vertices. For each vertex v ∈ V5 carry out
the following procedure. Order the neighbours w ∈ V6+ of v according to the value of
mc(v, w) starting with the largest value; let w1, w2, . . . be the resulting ordering. If the
value of mc(v, w) is the same for two neighbours of v, then we order them arbitrarily. For
i = 1, 2, . . . , send min{mc(v, wi), cha(v)} from v to wi, where cha(v) denotes the current
charge of v. If mc(v, wi) > cha(v), then we say that v completely discharges into wi.

The discharging procedure we have carried out has not changed the total charge.

Lemma 9. After the discharging procedure, no face has positive charge. Consequently,
ch(V ) > 12.

Proof. The only step where a face can obtain positive charge is Step 1. Let f be a non-
triangular face of G. Let l be the length of f . Note that if a vertex sends 3/5 to f , then
both neighbours of v on f send 2/5. Therefore the number of vertices that send 3/5 to f
is less than or equal to the number of vertices that send 2/5 to f . This shows that the
face f receives charge at most l/2, which is not enough to make ch(f) positive.

Consequently, the sum of final charges of vertices of G is positive.

6 6

w

7+6+

6+

6+

v
5 6+

6+

6+

Figure 1: Distance discharging.
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4 Avoiding small cut-sets

A triangle-cut C is a subgraph of G isomorphic to C3 such that V (C) is a cut-set of G.
A chordless quadrilateral-cut C is an induced subgraph of G isomorphic to C4 such that
V (C) is a cut-set of G. A bad cut-set is a triangle-cut, or a chordless quadrilateral-cut.

A good subgraph of G is either G itself if G contains no bad cut-set or a proper subgraph
H which satisfies all the following conditions:

1. H contains a bad cut-set C of G.

2. There is an embedding of G such that all the vertices of G − V (H) are in the
exterior of C, and all the vertices of H−C are in the interior of C. If this condition
is satisfied, then C cuts H from G.

3. H − C contains no vertex v that is in a bad cut-set of G.

Lemma 10. The graph G has a good subgraph H.

Proof. Assume that G has a triangle-cut CA. Then G can be embedded in the plane in
such a way that the interior and the exterior of C are both nonempty. We choose the
triangle-cut CA and the embedding so that the interior contains the minimum number of
vertices. Let HA be the subgraph of G induced by V (CA) and the vertices in the interior
of CA. Thus CA cuts HA from G.

If HA − V (C) contains a vertex that is in a triangle-cut C ′ of G, then the vertices of
CA−C ′ all belong to the same component K of HA− V (C ′). Hence G can be embedded
in such a way that the interior of C ′ contains less vertices than that of CA, contrary to
our choice of CA.

If G has no triangle-cut, then let CA = ∅ and HA = G.
Assume HA−V (CA) contains a vertex that is in a chordless quadrilateral-cut C of G.

We choose C and an embedding of G in such a way that the component of G−C containing
CA lies in the exterior of C (if V (CA) = ∅, then we choose an arbitrary component), and
the number of vertices that lie in the interior of C is minimum but nonzero. Let H be
the subgraph of G induced by V (C) and the vertices in the interior of C. Thus C cuts H
from G.

Assume C = v1v2v3v4v1. If H − V (C) contains a vertex v that is in a chordless
quadrilateral-cut C ′ of G, as only non-adjacent vertices can belong to different compo-
nents of G − C ′, we may assume that v1 and v3 are in different components of G − C ′.
Consequently, vertices v2 and v4 must be in C ′. As vertex v has degree at least 5, v
has a neighbour x distinct from v1, v2, v3, v4. The vertex x lies either inside vv2v1v4 or
vv2v3v4. Assume x lies inside vv2v1v4. Let C ′′ = vv2v1v4. The circuit C ′′ is a chordless
quadrilateral-cut of G: the vertex x is inside C ′, vertex v3 is outside C ′, v2v4 is not a
chord since C has no chord, and finally v1v is not chord because if it was, then either
v1vv2 or v1vv4 is a triangle-cut of G. The interior of C ′′ has fewer vertices than that of
C, contradicting our choice of C.
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If HA − V (CA) contains no vertex that is in a chordless quadrilateral-cut of G. then
H = HA and C = CA. In any case, H and C satisfy the conditions in the definition of a
good subgraph.

Let H be a good subgraph whose existence is guaranteed by Lemma 10 and C the cut
separating it from the rest of G (C is empty if H = G). The vertices from V (C) will be
called cut vertices. In case C is a triangle-cut, vertices in H − V (C) that are adjacent to
two vertices of C are extraordinary. In all possible cases for C, vertices from H − V (C)
which are not extraordinary are called ordinary.

Lemma 11. The graph H contains an extraordinary vertex v with ch(v) > 2 or the sum
of the final charges of ordinary vertices in H is positive.

Proof. If V (C) = ∅, then H = G and all vertices are ordinary; the statement of the
lemma is immediately implied by Lemma 9. We split the rest of the proof into two cases
according to the type of the bad cut-set C—either C is a triangle-cut or C is a chordless
quadrilateral-cut. In our embedding of G, the inner vertices and the inner faces of C will
be collectively called the kernel of H and will be denoted by K. The “outer face” of H
(bounded by C) is denoted by f .

Case 1: C is a chordless quadrilateral-cut. There are no extraordinary vertices in
this case. Let C = v1v2v3v4v1. Let us compute the initial charge on the kernel of H.
Note that this charge is the same as if we have assigned initial charges in H instead of
G. When the initial charges are assigned to vertices and faces of H as a plane graph, the
total charge is 12. Since the outer face has charge −2 and the vertex vi of C has charge
6− degH(vi), the initial charge of the kernel K is

ch0(K) = 12 + 2−
4∑

i=1

(6− degH(vi)) .

The initial charge of K may get lost via discharging to V (C) at Step 3 or via distance
discharging at Step 2. Each 5-vertex v in K has initial charge 1. Such a vertex v first
sends charge at least 2/5 to each of its incident non-triangular faces, then sends charge
1/5 to a distance 2 neighbour if Step 2 applies, and then sends some of the remaining
charge to its 6+-neighbours.

For simplicity, we first assume that no charge of K is lost via distance discharging. Let
fi be the bounded face of H incident to vivi+1 for i ∈ {1, 2, 3, 4} (indices taken modulo
4, i.e., f4 is incident to v4v1). If fi is a triangle, then vi, vi+1 have a common neighbour.
Assume q of the faces f1, f2, f3, f4 are triangles, and 4− q of them are 4+-faces. Then the
number of 5-vertices in K adjacent to V (C) is at most

∑4
i=1(degH(vi) − 2) − q, and the

amount of charge send from these vertices to faces in K is at least (4 − q) · 4/5. Hence
the total amount of charge sent from K to V (C) is at most

4∑
i=1

(degH(vi)− 2)− q − (4− q)4

5
6

4∑
i=1

(degH(vi)− 2)− 16

5
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Therefore, the final charge of K is

ch(K) > 12 + 2−
4∑

i=1

(6− degH(vi))−
4∑

i=1

(degH(vi)− 2) +
16

5
> 0. (3)

If some vertices send charge from K via distance discharging out of K, then each such
instance of distance discharging implies that two neighbours of V (C) in K have degree 6
which prevents these two vertices to discharge any charge outside K. So the total charge
send from K to G−K is less than the amount estimated above.

Thus in any case, ch(K) > 0. Thanks to Lemma 9, faces do not have positive charge
and so the sum of charges of ordinary vertices is positive.

Case 2: C is a triangle-cut. Let v1, v2, and v3 be the vertices of C. Similarly as in
Case 1, the initial charge of the kernel is

ch0(K) = 12−
3∑

i=1

(6− degH(vi)) .

Let X be the set of vertices in K adjacent to V (C). Each v ∈ X may send charge 1 out
of K. Thus the total charge send from K to G−K is bounded above by

|X| 6
3∑

i=1

(degH(vi)− 2) .

If K has no extraordinary vertex, then the bounded faces of H incident to the edges of C
are 4+-faces. Hence vertices in X send at least 12/5 of the charge to faces in K. So the
total charge send from K to G−K is bounded above by |X| − 12/5, implying that

ch(K) > 12−
3∑

i=1

(6− degH(vi))−
3∑

i=1

(degH(vi)− 2) +
12

5
> 0.

Assume K has extraordinary vertices. Let Y5 be the set of extraordinary 5-vertices
and Y6+ be the set of extraordinary 6+-vertices. As each extraordinary vertex is adjacent
to two vertices of V (C), we have

|X| 6
3∑

i=1

(degH(vi)− 2)− (|Y5|+ |Y6+ |).

Assume that the vertices from Y5 sent total charge c out of K. Vertices from Y6+ do not
send any charge out of K. Finally, ordinary vertices can send at most |X|− (|Y5|+ |Y6+|),
and so the total charge send from X to G−K is at most c+ |X|−(|Y5|+ |Y6+ |). Therefore,

ch(K) > ch0(K)−
3∑

i=1

(degH(vi)− 2) + 2(|Y5|+ |Y6+|)− c

= 2(|Y5|+ |Y6+ |)− c.
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Note that ch(Y5) 6 |Y5|−c 6 2|Y5|−c (the last inequality is strict if Y5 6= ∅). If a vertex of
Y6+ has final charge at least 2, the lemma is proved; otherwise ch(Y6+) 6 2|Y6+| (and the
inequality is strict if Y6+ 6= ∅). Since Y5∪Y6+ 6= ∅, we have 2|Y5|−c+2|Y6+| > ch(Y5∪Y6+).
Therefore ch(K) > ch(Y5 ∪ Y6+) and so the final charge of K − (Y5 ∪ Y6+) is positive.

Thanks to Lemma 9, faces do not have positive charge and so the sum of charges of
ordinary vertices is positive.

5 Analysis of configurations

According to Lemma 11, after discharging, H has an ordinary positive vertex or an
extraordinary vertex with charge at least 2. Our aim is to prove that both cases lead to a
contradiction. In either case, we will do it by examining an exhaustive list of configurations
and showing that none of those configurations can occur in the minimal counterexample
G.

In each of the configurations, we obtain a graph G′ from G by deleting a vertex v
and collecting several other vertices (always at least six) subsequently. This ensures that
statement (1) of Theorem 6 is true for G. The graph G′ has less vertices than G, hence
Theorem 6 holds for G′ and thus there exists a subset S ′ ⊆ V (G′) of order at most Γ(G′)
whose deletion allows us to collect the remaining vertices of G′. Consequently, the deletion
of the set S = S ′∪{v} allows us to collect all the vertices of G. If Γ(G) > Γ(G′) + 1, then
this contradicts the fact that G is a counterexample to Theorem 6. This would show that
the examined configuration is not contained in G.

The critical part is to prove Γ(G) > Γ(G′) + 1. The computation consists in several
steps; we demonstrate it in full detail in the proof of Lemma 12. After that, we introduce
a short notation that will allow us to skip repetitive arguments and help the reader to
track all the details.

Lemma 12. The graph G has no extraordinary vertex v with ch(v) > 2.

Proof. Suppose, for a contradiction, that G contains such a vertex v. Any 5-vertex has
initial charge 1 and then its charge only decreases, hence v ∈ V6+. The initial charge of v
is 6−degG(v), so it has to receive charge at least deg(v)−4 during the discharging phase.
Note that v can receive at most deg(v)/5 via distance discharging, so most of the charge
has to come from 5-neighbours in Step 3. Moreover, any distance discharging reduces the
possible number of 5-neighbours. A short case analysis left to the reader shows that v
must be of type 8e. In addition, v must be surrounded by 8 vertices v1, . . . , v8 of degree
5, and all the faces surrounding v are triangles.

We can delete v and collect v1, . . . , v8, obtaining a graph G′. All we have to show is
that Γ(G) > Γ(G′) + 1. The function Γ depends on three parameters: the number of
vertices, the value of the function Φ, and the number of tree components. The removal
of vertices v, v1, . . . , v8 affects the value of Γ as follows:

1. The number of vertices decreases by 9.
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2a. The value of Φ decreases because the removed vertices do not contribute to the sum
(1) anymore. In most of our configurations, we do not know the degree of every
vertex precisely, but for every vertex w we have a lower bound mindeg(w) on its
degree. Let bi be the number of vertices with mindeg(w) = i for i ∈ {5, . . . , 9} and
let b10 be the number of vertices with mindeg(w) > 10. Let b = (b5, b6, b7, b8, b9, b10);
in our case, b = (8, 0, 0, 1, 0, 0). The value of Φ is decreased by at least b6 + 2b7 +
3b8 +4b9 +5b10 because of the removal of the vertices from the sum (1). In our case,
Φ decreased by at least 3.

2b. The value of Φ is also decreased because the neighbours of the removed vertices
have smaller degree in G′. Let Σd denote the sum of the degrees of the removed
vertices; clearly Σd > 5b5 + 6b6 + 7b7 + 8b8 + 9b9 + 10b10. Let Σe be the number of
edges of the graph induced by v, v1, . . . , v8. Clearly, the value of Φ decreases by at
least Σd − 2Σe because of the neighbours’ degree reduction.

The only remaining problem is to count Σe. We have 8 edges between v and
v1, . . . , v8. We have another 8 edges between vertices v1, . . . , v8 on the triangu-
lar faces containing v. No other edge may exist in the subgraph of G induced by
v, v1, . . . , v8. Such an edge would together with v induce a triangle-cut of G, which
contradicts that v is extraordinary. Therefore Σe 6 16. (Note that we only need
an upper bound on Σe.) We conclude that Φ decreases by at least 16 because of
decreased degrees of the neighbours of removed vertices. In total Φ decreases by at
least 19.

3. Now we show that no new tree component is created (creation of tree components
during reduction increases Γ). Assume that such a tree component exists; it must
have a vertex w of degree at most 1 in G′. The vertex w therefore has at least four
neighbours among the deleted vertices. All four these neighbours are neighbours of
v; let vi and vj be two non-adjacent of them (note that we only need three of the four
neighbours to proceed with this kind of argument). The cycle vviwvjv is a chord-
less quadrilateral cut, and this contradicts the assumption that v is extraordinary.
Therefore, no tree component is created.

This argument also holds in configurations when w can be a neighbour of v. In this
case a triangle-cut containing v, w and some other neighbour of v is created.

The value of Γ decreases by at least 9/12 + 19/36 = 23/18.

The reduction idea used in the proof of Lemma 12 will be used many times. We
summarize the key points of the calculation in the following lemma; its statement is
structured with respect to the phase of the computation.

Lemma 13. Suppose that we remove an ordinary vertex v together with some neigh-
bours v1, . . . , vm1 of v and some vertices v′1, . . . , v

′
m2

at distance 2 from v. The following
statements are true:
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(Σe): Two neighbours vi and vj of v are joined by an edge if and only if vvivj is a triangular
face. The vertex v′k, for k ∈ {1, . . . ,m2}, can be adjacent to at most two neighbours
of v. If v′k is adjacent to two neighbours of v, say vi and vj, then either v′kvivvj is
a 4-face, or v′kvivj and vvivj are triangular faces.

(∆Φ): ∆Φ > 5b5 + 7b6 + 9b7 + 11b8 + 13b9 + 15b10 − 2Σe.

(tc): If m2 6 1 (that is, we removed at most one vertex at distance 2 from v), then no
new tree component is created.

(∆Γ): ∆Γ = ∆|V |/12 + ∆Φ/36 + ∆tc/18.

Proof. Statement (Σe) is implied by the absence of bad cuts containing v; if v′k is adjacent
to both vi and vj and vivj ∈ E(G), then vivjv

′
k is a triangular face (for otherwise the edge

vivj would be contained in a triangle-cut in G and v would be extraordinary). Statement
(∆Φ) is implied by the definitions of Φ and b. Statement (tc) is implied by the argument
from the proof of Lemma 12 (enumeration of the change of Γ, part 3). Statement (∆Γ)
follows from the definition of Γ.

To make our computations easier to follow we will present the key points in a concise
form (the following example captures the computation used in proving Lemma 12):

Delete(v) Collect(v1, v2, v3, v4, v5, v6, v7, v8)

∆|V | = 9 b = (8, 0, 0, 1, 0, 0) Σe 6 16 ∆Φ > 19 ∆tc = 0 ∆Γ > 23/18.

Whenever possible, the order of the collected vertices will match the order in which these
vertices can be collected.

All the computations except for the computation of Σe are entirely routine. If Lemma
13 cannot be used or a further clarification is needed, we signalize it by a star. The
explanation will follow in square brackets.

6 Charges on vertices of degree 6 and more

This section shows that no ordinary 6+-vertex may have positive charge. Since the initial
charge of any such vertex is not positive, its positive charge can only be obtained during
the discharging phase. First, we determine the maximum charge a vertex can obtain via
distance discharging in Step 2 of the discharging procedure described in Section 3.

Lemma 14. If a vertex w of degree k > 7 has at least m neighbours of degree 5, then w
can receive charge at most b(k −m− 1)/3c/5 for m > 0 and at most bk/3c/5 for m = 0
via distance discharging.

Proof. If a vertex w of degree k > 7 receives charge 1/5 via distance discharging, it
must have four consecutive neighbours forming a path (v1, v2, v3, v4) of degrees 6+, 6, 6, 6+,
respectively. Moreover, v2 and v3 have a common 5-neighbour, the vertex which sends
charge 1/5 to w.
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Note that v2 and v3 cannot be contained in any other path of this type: they have
only one 5-neighbour. The vertices v1 and v4 can be shared by two paths of this type
around w. Consequently, w must have at least 3i neighbours from V6+ to get charge i/5
via distance discharging. For m > 0, w must have at least 3i + 1 such neighbours. This
last two statements imply the lemma.

Corollary 15. Vertices of types 10a, 9a, 9b, 9c, 8a, 8b, 8c, 8d, 7a, 7b, 7c, 6a and 6b
cannot have positive charge.

Proof. We sketch the proof for a vertex w of type 7a; the other cases are proved very
similarly (we need to employ n⊔ and look also at Step 1 in some of them). The initial
charge of w is 6− 7 = −1.

If w has a 5-neighbour, it receives charge at most 4/5 in Step 3 of the discharging
procedure because it has only one 5-neighbour and that neighbour can send at most
mc(w) to w. By Lemma 14, it can receive at most b5/3c/5 = 1/5 in Step 2. Altogether,
the total amount of charge w receives is at most 4/5 + 1/5 = 1, and so its final charge is
not positive.

If w has no 5-neighbour, it receives nothing in Step 3 and at most b7/3c/5 = 2/5 in
Step 2 according to Lemma 14. Thus w has negative final charge.

Lemma 16. The graph G has no ordinary 8+-vertex with positive charge.

Proof. Assume to the contrary that v is an ordinary 8+-vertex with positive final charge.
By Corollary 15, v is of type 10b, 9d or 8e. If v has at least six 5-neighbours, say v1, . . . , v6,
then we delete v and collect v1, . . . , v6. For the purpose of counting b, the lower bound
mindeg(v) on the degree of v will be 8.

Delete(v) Collect(v1, v2, v3, v4, v5, v6)

∆|V | = 7 b = (6, 0, 0, 1, 0, 0) Σe 6 11 ∆Φ > 19 ∆tc = 0 ∆Γ > 10/9.

We prove that if v is of type 10b or 9d and ch(v) > 0, then it must have at least six
5-neighbours. Indeed, if v has exactly five 5-neighbours, then it receives charge at most
2.5 from them. Additional charge might have been receives by distance discharging, but
its amount is bounded from above by b(deg(v)−5−1)/3c/5 due to Lemma 14. The initial
charge of v is 6− deg(v), so its final charge 6− deg(v) + 2.5 + b(deg(v)− 5− 1)/3c/5 is
negative. If v has at most four 5-neighbours, then v receives charge at most 2 from these
neighbours and at most deg(v)/15 by distance discharging (we used Lemma 14 again).
The final charge 6− deg(v) + 2 + deg(v)/15 is therefore negative.

The last two paragraphs show that v is of type 8e and has at most five 5-neighbours.
Since ch(v) > 0, it is straightforward to verify that v has at least four 5-neighbours.

If v has exactly four 5-neighbours, say v1, . . . , v4, then v must receive charge 1/5
from some vertex u via distance charging. Hence v has four consecutive 6+-neighbours,
including two 6-vertices v5, v6 adjacent to u. Moreover, all the faces incident to v are
triangular faces. So v1, . . . , v4 are consecutive neighbours of v that form a path. Let w be
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the common neighbour of v, v1, and v5.

Delete(w) Collect(v1, v2, v3, v4, v, v5, v6)

∆|V | = 8 b = (4, 3, 0, 1, 0, 0) Σe 6 13 ∆Φ > 26 ∆tc = 0 ∆Γ > 25/18.

Assume v has exactly five 5-neighbours, say v1, . . . v5. Only one face around v can
be non-triangular and therefore we can always find a neighbour w 6∈ {v1, v2, . . . , v5} of v
that allows us to collect three vertices from {v1, v2, . . . , v5}, which eventually allows us to
collect v and the remaining vertices from {v1, v2, . . . , v5}.

Delete(w) Collect(v1, v2, v3, v4, v5, v)

∆|V | = 7 b = (6, 0, 0, 1, 0, 0) Σe 6 11 ∆Φ > 19 ∆tc = 0 ∆Γ > 10/9.

Lemma 17. The graph G has no ordinary 6+-vertex with positive charge.

Proof. For a contradiction, assume that v is such a vertex. The vertex v must be of type
7d and have at least three 5-neighbours due to Lemma 16 and Corollary 15. Let m > 3
be the number of 5-neighbours of v.

Case m = 3: The vertex v must be only on triangular faces and receives charge by
distance discharging from some vertex x. So the three 5-neighbours of v, say v1, v2, v3, are
consecutive and form a path. Let v4, v5 be two 6-vertices that are common neighbours of
v and x. Let w be the common neighbour of v, v1 and v4.

Delete(w) Collect(v1, v2, v3, v, v4, v5)

∆|V | = 7 b = (3, 3, 1, 0, 0, 0) Σe 6 11 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.

Case m = 4: Vertex v must be only on triangular faces (note that distance discharging
into v is impossible). We can easily find all four possible configurations around v; they
are displayed in Figure 2. The neighbours of v are denoted according to the figure.

Configuration 1: If v7 is of degree 6, then

Delete(v5) Collect(v4, v3, v2, v1, v, v7)

∆|V | = 7 b = (4, 2, 1, 0, 0, 0) Σe 6 11 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.

If v7 has another 5-neighbour w 6= v1, then

Delete(v7) Collect(w, v1, v2, v3, v4, v)

∆|V | = 7 b = (5, 0, 2, 0, 0, 0) Σe 6 11 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.

Assume v7 has degree at least 7 and has no other 5-neighbour. Then mc(v1, v7) > 4/5.
If the edge v1v7 is on a non-triangular face f , the vertex v1 would discharge at least 1/2
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Figure 2: Possible configurations around a 7-vertex.

into f and then discharge completely into v7, leaving nothing to discharge into v, implying
that ch(v) 6 0. Therefore, there exist a common neighbour w of v1 and v7.

Delete(w) Collect(v1, v2, v3, v4, v, v7)

∆|V | = 7 b = (5, 0, 2, 0, 0, 0) Σe 6 11 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.

Assume v7 has degree at least 8. Then v1 completely discharges into v7, leaving nothing
for v1 to discharge into v. Consequently, ch(v) 6 0, a contradiction.

Configuration 2: The argument is very similar to Configuration 1. It suffices to switch
the roles of v4 and v5.

Configuration 3: If v7 has degree at most 7, then

Delete(v6) Collect(v5, v4, v, v1, v2, v7)

∆|V | = 7 b = (4, 2, 1, 0, 0, 0) Σe 6 11 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.

Assume v7 has degree at least 8. If v7 has another 5-neighbour w besides v1, then

Delete(v7) Collect(v1, v2, v, v4, v5, w)

∆|V | = 7 b = (5, 0, 1, 1, 0, 0) Σe 6 11 ∆Φ > 23 ∆tc = 0 ∆Γ > 11/9.

If v7 has no other 5-neighbour, then v1 discharges completely into v7, and hence v does
not have positive final charge in this configuration.

Configuration 4: If v7 has degree at most 7, then

Delete(v5) Collect(v6, v4, v, v1, v2, v7)

∆|V | = 7 b = (4, 2, 1, 0, 0, 0) Σe 6 11 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.
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Assume v7 has degree at least 8. If v5 has degree at most 7, then

Delete(v7) Collect(v1, v2, v, v4, v6, v5)

∆|V | = 7 b = (4, 2, 1, 0, 0, 0) Σe 6 11 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.

Thus both v7 and v5 have degree at least 8. This implies that all the charge of v6 is sent
to v7 and v5, and v6 discharges 0 to v. Therefore, v does not have positive final charge in
this configuration.

Case m = 5: There can be only one non-triangular face around v. Simple case analysis
shows that v always has three consecutive neighbours, say x, y and z, such that x is not
of degree 5, y and z are of degree 5, and edges xy and yz exist. The other 5-neighbours
of v will be denoted by v1, v2, v3.

Delete(x) Collect(y, z, v, v1, v2, v3)

∆|V | = 7 b = (5, 1, 1, 0, 0, 0) Σe 6 11 ∆Φ > 19 ∆tc = 0 ∆Γ > 10/9.

Case m > 6: Let us denote some six 5-neighbours of v by v1, . . . , v6.

Delete(v) Collect(v1, v2, v3, v4, v5, v6)

∆|V | = 7 b = (6, 0, 1, 0, 0, 0) Σe 6 11 ∆Φ > 17 ∆tc = 0 ∆Γ > 19/18.

7 Charges on vertices of degree 5

In this section we show that all 5-vertices outside bad cuts completely discharge and none
of them has positive final charge.

Lemma 18. No ordinary 5-vertex has positive final charge.

Proof. For a contradiction, let v be such a vertex. The vertex v cannot have too many
7+-neighbours. If it was so, then v would completely discharge into these higher-degree
vertices no matter what type they are of. The neighbours of v will be denoted in accor-
dance with Figure 3.

Our first step is to list all possible configurations around the vertex v. According
to Step 1 of the discharging procedure, any 5-vertex sends at least 1/2 into each non-
triangular face it lies in. Consequently, v is contained it at most one non-triangular face.
We will distinguish two cases.

Case 1: v lies in triangular faces only. To guarantee that we do not miss any
configuration, we list them in the following order:

1. Configurations are ordered according to the number of 7+-neighbours of v. The
vertex v has at most two such neighbours, and if it has exactly two of them, then
at least one of them must have degree exactly 7 because each 8+-vertex drains at
least 1/2 from v.
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2. The second ordering criterion is the degree of the highest-degree neighbour of v. We
may assume that this vertex is v1 without a loss of generality (if there are two such
candidates, we choose any of them).

3. Finally, if v has two 7+-neighbours, then by symmetry we may assume that the
second vertex is either v2 or v3. Configurations where v2 has degree more than 6 are
earlier in the ordering.

Case 2: v lies in one non-triangular face. The primary criterion is the same as the
first criterion of Case 1, however, v has now at most one 7+-neighbour and this neighbour
has degree 7 because otherwise it would drain all the remaining charge from v (recall that
v sends at least 1/2 into the non-triangular face).

The secondary criterion for this case is that we order the configurations according to
the position of the non-triangular face. If deg(v1) = 7, we may assume without a loss of
generality that this is the face containing either v1vv2, v2vv3, or v3vv4. If v1 has degree at
most 6, then we may assume that v1vv2 is in the boundary of the non-triangular face.

Listing all the configurations in this way, we obtain 14 possible configurations of the
neighbourhood of v. These configurations are displayed in Figure 3. The vertices v,
v1, . . . , v5 are denoted, the other vertices of G are non-denoted.

Claim 19. For all configurations except 10 and 14, the vertex v1 has no non-denoted
5-neighbour.

Proof. Suppose v1 has a non-denoted 5-neighbour w. For all configurations except 10 and
14, we can do the following:

Delete(v1) Collect(v, v2, v3, v4, v5, w)

∆|V | = 7 b = (6, 0, 1, 0, 0, 0) Σe 6 12 ∆Φ > 15 ∆tc = 0 ∆Γ > 1.

Configurations 1, 2, 7: By Claim 19, the vertex v1 has at most three 5-neighbours. In
Configuration 1, the type of v1 is 10a, 9a, or 9b. Therefore, v completely discharges into
v1, hence it cannot have positive final charge. In Configurations 2 and 7, the type of v1
can be 10a, 9a, 9b, or 9c. In all cases v completely discharges into v1.

Configuration 3: By Claim 19, the vertex v1 can be of type 8a, 8b, 8c or 8d. In the first
three cases, v discharges completely into v1. If v1 is of type 8d, v discharges 9/10 into v1
and can send at least 1/3 into v2, hence v cannot have positive charge.

Configuration 4: If v2 or v4 has degree 6, the argument used in Configuration 3 applies.
Otherwise, both v2 and v4 are 5-vertices.

If v1 and v2 have a common neighbour w other than v, we do the following:

Delete(w) Collect(v2, v, v5, v1, v4, v3)

∆|V | = 7 b = (5, 0, 1, 1, 0, 0) Σe 6 12 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.
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Figure 3: Possible configurations around a 5-vertex.

A very similar reduction can be used if v1 and v5 have a common neighbour other than v.
If neither v1 and v2 nor v1 and v5 have a common neighbour different from v, then v1

lies in at least two non-triangular faces, thus it is of type 8c. Consequently, v completely
discharges into v1.

Configuration 8: The vertex v1 is of degree 8. By Claim 19, it has at most three 5-
neighbours. If v1 lies on at least two non-triangular faces, it is of type 8a, 8b or 8c, so v
discharges completely into v1.

Assume that v1 lies in exactly one non-triangular face. If either v2 or v5 has degree 6,
then v1 is of type 8a or 8b, and so v completely discharges into v1. We are left with the
case where deg(v2) = deg(v5) = 5. Either a common non-denoted neighbour of v1 and v2
exists, or a common non-denoted neighbour of v1 and v5 exists. Say w 6= v is a common
non-denoted neighbour of v1 and v2.

Delete(w) Collect(v2, v, v3, v4, v5, v1)

∆|V | = 7 b = (6, 0, 0, 1, 0, 0) Σe 6 12 ∆Φ > 17 ∆tc = 0 ∆Γ > 19/18.
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If v1 is in no non-triangular face, then at least one of the vertices v2 and v5 is of degree
5 (otherwise v discharges completely into v1 which would be of type 8a), say it is v2. Let
w be the common non-denoted neighbour of v2 and v1. Then

Delete(w) Collect(v2, v, v3, v4, v5, v1)

∆|V | = 7 b = (6, 0, 0, 1, 0, 0) Σe 6 12 ∆Φ > 17 ∆tc = 0 ∆Γ > 19/18.

Configuration 5: By Claim 19, v1 cannot have a non-denoted 5-neighbour. Symmetrically,
v2 has no non-denoted 5-neighbour. The vertex v would completely discharge into v1 and
v2 unless deg(v3) = 5 and deg(v5) = 5. Moreover, there are only triangular faces around
v1 and v2, for otherwise one of v1, v2 is of type 7b and the other one 7b or 7c, so v
completely discharges. Let w 6= v be the common non-denoted neighbour of v5 and v1.
Then

Delete(w) Collect(v5, v, v4, v3, v2, v1)

∆|V | = 7 b = (5, 0, 2, 0, 0, 0) Σe 6 12 ∆Φ > 19 ∆tc = 0 ∆Γ > 10/9.

Configuration 6: By Claim 19, v1 and v3 have no non-denoted 5-neighbours. If deg(v2) = 5
and deg(v5) = 5, then let w be a non-denoted neighbour of v2.

Delete(w) Collect(v2, v, v5, v4, v3, v1)

∆|V | = 7 b = (5, 0, 2, 0, 0, 0) Σe 6 12 ∆Φ > 19 ∆tc = 0 ∆Γ > 10/9.

The same approach works if deg(v2) = 5 and deg(v4) = 5. In all the remaining cases,
both of v1 and v3 have at most two 5-neighbours. This means that v1 and v3 are only in
triangular faces, otherwise v completely discharges into one of these vertices. Moreover,
either v2 or v5 is of degree 5 (otherwise v discharges), say it is v2. Let w 6= v be the
common non-denoted neighbour of v2 and v1.

Delete(w) Collect(v2, v, v1, v5, v4, v3)

∆|V | = 7 b = (4, 1, 2, 0, 0, 0) Σe 6 12 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.

Configuration 9: If one of the vertices v2, . . . , v5 is of degree 5, say it is v2, then let w be
a non-denoted neighbour of v2.

Delete(w) Collect(v2, v, v3, v4, v5, v1)

∆|V | = 7 b = (6, 0, 1, 0, 0, 0) Σe 6 12 ∆Φ > 15 ∆tc = 0 ∆Γ > 1.

Therefore v2, . . . v5 are of degree 6. If some neighbour w of a denoted vertex had degree
5, we can delete v1 and collect the remaining denoted vertices together with w with the
same calculation. Otherwise, we may assume that no denoted vertex has a 5-neighbour
different from v.

If some denoted vertex u is in a non-triangular face, then v discharges into v1 and u
even though u has degree 6. Let w be the common non-denoted neighbour of v3 and v4.
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If deg(w) > 7, then v discharges 1/5 into w via distance discharging and 4/5 into v1, thus
it cannot have positive charge. If deg(w) 6 6, then

Delete(v3) Collect(v, v4, v2, v5, v1, w)

∆|V | = 7 b = (2, 4, 1, 0, 0, 0) Σe 6 12 ∆Φ > 23 ∆tc = 0 ∆Γ > 11/9.

Configuration 10: We split the argument according to the number m of denoted 5-vertices.
Case 1: m = 6. Assume that a denoted vertex, say v1, has a 7+-neighbour w.

Delete(w) Collect(v1, v, v2, v3, v4, v5)

∆|V | = 7 b = (6, 0, 1, 0, 0, 0) Σe 6 12 ∆Φ > 15 ∆tc = 0 ∆Γ > 1.

Assume that a denoted vertex, say v1, has a 6-neighbour w which is adjacent to no
other denoted vertex.

Delete(w) Collect(v1, v, v2, v3, v4, v5)

∆|V | = 7 b = (6, 1, 0, 0, 0, 0) Σe 6 11 ∆Φ > 15 ∆tc = 0 ∆Γ > 1.

From now on, we assume that all neighbours of denoted vertices have degree at most
6. Assume that there exists a neighbour w of a denoted vertex such that deg(w) = 6.
The vertex w is adjacent to at least two denoted vertices. Moreover, there are no bad
cuts containing v, and so w is adjacent to exactly two denoted vertices which are also
adjacent, say, v1 and v2. Let w′ we a non-denoted neighbour of v4 (it must be different
from w because w is not adjacent to v4). If w and w′ are adjacent, then

Delete(w′) Collect(v4, v, v1, v2, v3, v5, w)

∆|V | = 8 b = (7, 1, 0, 0, 0, 0) Σe 6 15 ∆Φ > 12 ∆tc = 0∗ ∆Γ > 1.

If w and w′ are not adjacent, then

Delete(w′) Collect(v4, v, v1, v2, v3, v5, w)

∆|V | = 8 b = (7, 1, 0, 0, 0, 0) Σe 6 14 ∆Φ > 14 ∆tc > −1∗ ∆Γ > 1.

[Both vertices w and w′ may be connected to at most two denoted vertices. Lemma 13
does not cover the necessary analysis of created tree components. A tree component
cannot be an isolated vertex because then it would be a neighbour of 5 removed vertices;
three of them must be denoted and this forces a bad cut containing v. Therefore any newly
created tree component contains at least two leaves x1 and x2. Both these vertices must
have at least four neighbours among removed vertices, but at most two neighbours among
denoted vertices (to avoid bad cuts containing v), hence both x1 and x2 are adjacent to
both w and w′. Thus if a tree component was created, then there cannot be an edge
between w and w′ because there would be a K5-minor in G (containing vertices v, w, w′,
x1, and x2). This finishes the explanation indicated by a star for the case where w and
w′ are adjacent (we have proved that no new tree components can be created).
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It remains to prove that two or more new tree components cannot be created. Assume
we created two tree components S and T . We know that both S and T contain two
leaves connected to both w and w′ and having at least two denoted neighbours; let those
leaves be s1 and s2 for S and t1 and t2 for T . The paths ws1w

′, ws2w
′, wt1w

′, wt2w
′

divide the plane into four regions. One of those regions contains v, say it is the one with
boundary ws1w

′s2. But then t1 or t2 is separated from all the denoted vertices and has
no neighbours among them though it should have two due to its definition.]

We are left with the case where all neighbours of denoted vertices have degree 5. This
is together at least 11 vertices: there are exactly two edges joining a denoted vertex to
non-denoted vertices; on the other hand, a non-denoted vertex has at most two denoted
neighbours since we are avoiding bad cuts containing v, and so there are at least five non-
denoted vertices. These 11 vertices must have another neighbour (otherwise, we would be
able to collect the whole graph because any planar graph with at most 11 vertices contains
a 4-vertex). Deleting that neighbour and collecting the 11 vertices itself decreases Γ by
at least 1. Each created tree component must have at least 5 neighbours among removed
vertices, therefore ∆Φ is at least five times the number of newly created tree components,
and so 1

36
∆Φ + 1

18
∆tc > 0. Altogether, Γ decreases by at least 1.

Case 2: m = 5. Let v1 be the 6-neighbour of v. If a denoted 5-vertex, say v2, has a
non-denoted 6+-neighbour w, then

Delete(w) Collect(v1, v, v2, v3, v4, v5)

∆|V | = 7 b = (5, 2, 0, 0, 0, 0) Σe 6 12 ∆Φ > 15 ∆tc = 0 ∆Γ > 1.

Let us call the vertices v2, v3, v4, v5 red and their non-denoted neighbours blue. We
are left with the situation where all red and blue vertices have degree 5. Each red vertex
has two blue neighbours, so there are potentially eight blue vertices. A blue vertex can
be a neighbour of two red vertices only if those red vertices are v2 and v3, v3 and v4, or
v4 and v5. Moreover, each of the listed pairs has at most one common blue neighbour.
Consequently, there are at least five blue vertices.

If there are at least six blue vertices, we can delete one of them, then subsequently
collect all red vertices, then collect the remaining blue vertices, and finally collect v and
v1. Altogether, we can remove 12 vertices while deleting just one of them. Removing
those 12 vertices itself decreases Γ by at least 1. Each created tree component must have
at least 5 neighbours among removed vertices, therefore ∆Φ > |∆tc|. Hence Γ decreases
by at least 1.

If there are exactly five blue vertices and there exists a non-denoted neighbour w of
a blue vertex which is not blue, we can delete w and then subsequently collect all blue
and denoted vertices, removing 12 vertices from G. The argument from the previous
paragraph applies in this case, too.

If the five blue vertices have no additional neighbour, then v1 is a cut-vertex (due to
Euler’s formula, there are exactly two non-denoted neighbours of v1 different from blue
vertices). Consequently, v1v2v is a bad C3-cut; a contradiction.
Case 3: m 6 4. Assume that some neighbour of v, say v1, has degree 5. Let w be a
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non-denoted neighbour of v1.

Delete(w) Collect(v1, v, v2, v3, v4, v5)

∆|V | = 7 b = (5, 2, 0, 0, 0, 0) Σe 6 12 ∆Φ > 15 ∆tc = 0 ∆Γ > 1.

Otherwise, all neighbours of v have degree 6. Next, assume that a neighbour of v, say v1,
has a non-denoted neighbour w of degree 5.

Delete(v1) Collect(w, v, v2, v3, v4, v5)

∆|V | = 7 b = (2, 5, 0, 0, 0, 0) Σe 6 12 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.

Otherwise, all non-denoted neighbours of denoted vertices have degree at least 6, and thus
denoted vertices have at most one 5-neighbour.

Let us look at the edge v1v2. If v1 and v2 are only on triangular faces, then they have
a common neighbour w. The vertex w has degree at least 7, otherwise we can do the
following:

Delete(v1) Collect(v, v2, v3, v4, v5, w)

∆|V | = 7 b = (2, 5, 0, 0, 0, 0) Σe 6 12 ∆Φ > 21 ∆tc = 0 ∆Γ > 7/6.

In that case we can discharge 1/5 from v to w via distance discharging. We repeat this
argument for the edges v2v3, v3v4, v4v5, v5v1. If all vertices vi, for i ∈ {1, 2, 3, 4, 5}, are
only in triangular faces, then v discharges. If some vertex vi, for i ∈ {1, 2, 3, 4, 5}, is in
a non-triangular face, then it is of type 6a and v discharges 2/5 into this vertex. This
compensates for the inability to do distance discharging to neighbours of vi. Consequently,
in any case v cannot have positive charge.

Configuration 11: The vertex v discharges into the non-triangular face and into v1, which
has no more than two 5-neighbours.

Configurations 12 and 13: If both v2 and v5 have degree 5, then let w be a non-denoted
neighbour of v2.

Delete(w) Collect(v2, v, v5, v3, v4, v1)

∆|V | = 7 b = (6, 0, 1, 0, 0, 0) Σe 6 11 ∆Φ > 17 ∆tc = 0 ∆Γ > 19/18.

Otherwise, at least one of the vertices v2, v5 has degree 6. If the other of them also had
degree 6, then v1 would be of type 7a and v would completely discharge. Thus we are left
with the case where {deg(v2), deg(v5)} = {5, 6}.

If v5 has degree 5, then there is a common non-denoted neighbour w of v1 and v5
because v1 cannot be in a non-triangular face (if it was, it would be of type 7b and would
discharge). Thus we can do

Delete(w) Collect(v5, v, v1, v2, v4, v3)

∆|V | = 7 b = (6, 0, 1, 0, 0, 0) Σe 6 11 ∆Φ > 17 ∆tc = 0 ∆Γ > 19/18.
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If v2 has degree 5, the situation is symmetric to the previous one for Configuration 12.
For Configuration 13, we delete the common non-denoted neighbour w of v2 and v1 and
collect the remaining denoted vertices in the order v2, v, v1, v5, v4, v3. The calculations
are the same.

Configuration 14: If deg(v1) = 5, then let w be a neighbour of v1 that is not adjacent to
any denoted vertex (one such neighbour lies on the non-triangular face containing v).

Delete(w) Collect(v1, v, v2, v3, v4, v5)

∆|V | = 7 b = (7, 0, 0, 0, 0, 0) Σe 6 10 ∆Φ > 15 ∆tc = 0 ∆Γ > 1.

Therefore deg(v1) = 6. If any other denoted vertex besides v has degree 5, say it is v3,
then let w be a neighbour of v3.

Delete(w) Collect(v3, v, v2, v4, v5, v1)

∆|V | = 7 b = (6, 1, 0, 0, 0, 0) Σe 6 11 ∆Φ > 15 ∆tc = 0 ∆Γ > 1.

If any non-denoted neighbour of a denoted vertex has degree 5, say it is v1, then let w be
that neighbour.

Delete(w) Collect(v1, v, v5, v4, v3, v2)

∆|V | = 7 b = (2, 5, 0, 0, 0, 0) Σe 6 11 ∆Φ > 23 ∆tc = 0 ∆Γ > 11/9.

Otherwise, v1 and v2 are of type 6a, so each of them can get 2/5 from v. Since v1 sends
at least 1/2 into the non-triangular face, it cannot have positive charge.

Proof of Theorem 6. Lemma 11 and Lemma 12 show that a minimal counterexample to
Theorem 6 contains an ordinary vertex with positive charge. Lemma 16, Lemma 17, and
Lemma 18 say that no such vertex exists, which is a contradiction.

Observe that in most of the cases, ∆Γ > 1. If ∆Γ > 1 in all cases, we could have
defined Γ(G) as

Γ(G) =
1

12
|V (G)|+ λΦ(G) + 2λtc(G)

for some λ < 1/36, which would lead to an improvement of Theorem 6. The most prob-
lematic case which hinders further improvement is the case when a 5-vertex is surrounded
by five 5-vertices. One of these configurations is in Figure 4.
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